1
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024; 67:4259-4297. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
2
|
Chang Y, Sun W, Murchie AIH, Chen D. Genome-wide identification of Kanamycin B binding RNA in Escherichia coli. BMC Genomics 2023; 24:120. [PMID: 36927548 PMCID: PMC10018874 DOI: 10.1186/s12864-023-09234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The aminoglycosides are established antibiotics that inhibit bacterial protein synthesis by binding to ribosomal RNA. Additional non-antibiotic aminoglycoside cellular functions have also been identified through aminoglycoside interactions with cellular RNAs. The full extent, however, of genome-wide aminoglycoside RNA interactions in Escherichia coli has not been determined. Here, we report genome-wide identification and verification of the aminoglycoside Kanamycin B binding to Escherichia coli RNAs. Immobilized Kanamycin B beads in pull-down assays were used for transcriptome-profiling analysis (RNA-seq). RESULTS Over two hundred Kanamycin B binding RNAs were identified. Functional classification analysis of the RNA sequence related genes revealed a wide range of cellular functions. Small RNA fragments (ncRNA, tRNA and rRNA) or small mRNA was used to verify the binding with Kanamycin B in vitro. Kanamycin B and ibsC mRNA was analysed by chemical probing. CONCLUSIONS The results will provide biochemical evidence and understanding of potential extra-antibiotic cellular functions of aminoglycosides in Escherichia coli.
Collapse
Affiliation(s)
- Yaowen Chang
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Dongrong Chen
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Sindeldecker D, Dunn M, Zimmer A, Anderson M, Alfonzo J, Stoodley P. Genomic and transcriptomic profiling of phoenix colonies. Sci Rep 2022; 12:13726. [PMID: 35962051 PMCID: PMC9374717 DOI: 10.1038/s41598-022-18059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium responsible for numerous human infections. Previously, novel antibiotic tolerant variants known as phoenix colonies as well as variants similar to viable but non-culturable (VBNC) colonies were identified in response to high concentrations of aminoglycosides. In this study, the mechanisms behind phoenix colony and VBNC-like colony emergence were further explored using both whole genome sequencing and RNA sequencing. Phoenix colonies were found to have a single nucleotide polymorphism (SNP) in the PA4673 gene, which is predicted to encode a GTP-binding protein. No SNPs were identified within VBNC-like colonies compared to the founder population. RNA sequencing did not detect change in expression of PA4673 but revealed multiple differentially expressed genes that may play a role in phoenix colony emergence. One of these differentially expressed genes, PA3626, encodes for a tRNA pseudouridine synthase which when knocked out led to a complete lack of phoenix colonies. Although not immediately clear whether the identified genes in this study may have interactions which have not yet been recognized, they may contribute to the understanding of how phoenix colonies are able to emerge and survive in the presence of antibiotic exposure.
Collapse
Affiliation(s)
- Devin Sindeldecker
- Department of Microbial Infection and Immunity, The Ohio State University, 760 BRT, 460 West, 12th Avenue, Columbus, OH, 43210, USA.
| | - Matthew Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Aubree Zimmer
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Matthew Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, 760 BRT, 460 West, 12th Avenue, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, 760 BRT, 460 West, 12th Avenue, Columbus, OH, 43210, USA
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
- National Center for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Habjan E, Ho VQT, Gallant J, Van Stempvoort G, Jim KK, Kuijl C, Geerke DP, Bitter W, Speer A. Anti-tuberculosis Compound Screen using a Zebrafish Infection Model identifies an Aspartyl-tRNA Synthetase Inhibitor. Dis Model Mech 2021; 14:273850. [PMID: 34643222 PMCID: PMC8713996 DOI: 10.1242/dmm.049145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022] Open
Abstract
Finding new anti-tuberculosis compounds with convincing in vivo activity is an ongoing global challenge to fight the emergence of multidrug-resistant Mycobacterium tuberculosis isolates. In this study, we exploited the medium-throughput capabilities of the zebrafish embryo infection model with Mycobacterium marinum as a surrogate for M. tuberculosis. Using a representative set of clinically established drugs, we demonstrate that this model could be predictive and selective for antibiotics that can be administered orally. We further used the zebrafish infection model to screen 240 compounds from an anti-tuberculosis hit library for their in vivo activity and identified 14 highly active compounds. One of the most active compounds was the tetracyclic compound TBA161, which was studied in more detail. Analysis of resistant mutants revealed point mutations in aspS (rv2572c), encoding an aspartyl-tRNA synthetase. The target was genetically confirmed, and molecular docking studies propose the possible binding of TBA161 in a pocket adjacent to the catalytic site. This study shows that the zebrafish infection model is suitable for rapidly identifying promising scaffolds with in vivo activity. Summary: Exploitation of the medium-throughput capabilities of a zebrafish embryo infection model of tuberculosis to screen compounds for their in vivo activity, one of which was characterized as an aspartyl-tRNA synthetase inhibitor.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.,Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Vien Q T Ho
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - James Gallant
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gunny Van Stempvoort
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Coen Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daan P Geerke
- Department of Molecular Toxicology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.,Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Pang L, Weeks SD, Van Aerschot A. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int J Mol Sci 2021; 22:1750. [PMID: 33578647 PMCID: PMC7916415 DOI: 10.3390/ijms22041750] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.
Collapse
Affiliation(s)
- Luping Pang
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
- KU Leuven, Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49–box 822, 3000 Leuven, Belgium
| | | | - Arthur Van Aerschot
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
| |
Collapse
|
6
|
Patra D, Banerjee S, Sova Mandi C, Haseena KS, Basu G, Dutta S. A Pyrimido-Quinoxaline Fused Heterocycle Lights Up Transfer RNA upon Binding at the Mg 2+ Binding Site. Chembiochem 2020; 22:359-363. [PMID: 32869357 DOI: 10.1002/cbic.202000584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/07/2022]
Abstract
Transfer RNAs (tRNAs) are fundamental molecules in cellular translation. In this study we have highlighted a fluorescence-based perceptive approach for tRNAs by using a quinoxaline small molecule. We have synthesised a water-soluble fluorescent pyrimido-quinoxaline-fused heterocycle containing a mandatory piperazine tail (DS1) with a large Stokes shift (∼160 nm). The interaction between DS1 and tRNA results in significant fluorescence enhancement of the molecule with Kd ∼5 μM and multiple binding sites. Our work reveals that the DS1 binding site overlaps with the specific Mg2+ ion binding site in the D loop of tRNA. As a proof-of-concept, the molecule inhibited Pb2+ -induced cleavage of yeast tRNAPhe in the D loop. In competitive binding assays, the fluorescence of DS1-tRNA complex is quenched by a known tRNA-binder, tobramycin. This indicates the displacement of DS1 and, indeed, a substantiation of specific binding at the site of tertiary interaction in the central region of tRNA. The ability of compound DS1 to bind tRNA with a higher affinity compared to DNA and single-stranded RNA offers a promising approach to developing tRNA-based biomarker diagnostics in the future.
Collapse
Affiliation(s)
- Dipendu Patra
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India.,Academy of Scientific and Innovative Research (AcSIR) CSIR - Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Sayanika Banerjee
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Chandra Sova Mandi
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - K S Haseena
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Sanjay Dutta
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India.,Academy of Scientific and Innovative Research (AcSIR) CSIR - Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
7
|
Abstract
Aminoacyl-tRNA synthetases (AARSs) have been considered very attractive drug-targets for decades. This interest probably emerged with the identification of differences in AARSs between prokaryotic and eukaryotic species, which provided a rationale for the development of antimicrobials targeting bacterial AARSs with minimal effect on the homologous human AARSs. Today we know that AARSs are not only attractive, but also valid drug targets as they are housekeeping proteins that: (i) play a fundamental role in protein translation by charging the corresponding amino acid to its cognate tRNA and preventing mistranslation mistakes [1], a critical process during fast growing conditions of microbes; and (ii) present significant differences between microbes and humans that can be used for drug development [2]. Together with the vast amount of available data on both pathogenic and mammalian AARSs, it is expected that, in the future, the numerous reported inhibitors of AARSs will provide the basis to develop new therapeutics for the treatment of human diseases. In this chapter, a detailed summary on the state-of-the-art in drug discovery and drug development for each aminoacyl-tRNA synthetase will be presented.
Collapse
Affiliation(s)
- Maria Lukarska
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France.
| |
Collapse
|
8
|
Patwardhan NN, Cai Z, Newson CN, Hargrove AE. Fluorescent peptide displacement as a general assay for screening small molecule libraries against RNA. Org Biomol Chem 2019; 17:1778-1786. [PMID: 30468226 DOI: 10.1039/c8ob02467g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A prominent hurdle in developing small molecule probes against RNA is the relative scarcity of general screening methods. In this study, we demonstrate the application of a fluorescent peptide displacement assay to screen small molecule probes against four different RNA targets. The designed experimental protocol combined with statistical analysis provides a fast and convenient method to simultaneously evaluate small molecule libraries against different RNA targets and classify them based on affinity and selectivity patterns.
Collapse
Affiliation(s)
- Neeraj N Patwardhan
- Department of Chemistry, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Inhibition of tRNA aminoacylation has proven to be an effective antimicrobial strategy, impeding an essential step of protein synthesis. Mupirocin, the well-known selective inhibitor of bacterial isoleucyl-tRNA synthetase, is one of three aminoacylation inhibitors now approved for human or animal use. However, design of novel aminoacylation inhibitors is complicated by the steadfast requirement to avoid off-target inhibition of protein synthesis in human cells. Here we review available data regarding known aminoacylation inhibitors as well as key amino-acid residues in aminoacyl-tRNA synthetases (aaRSs) and nucleotides in tRNA that determine the specificity and strength of the aaRS-tRNA interaction. Unlike most ligand-protein interactions, the aaRS-tRNA recognition interaction represents coevolution of both the tRNA and aaRS structures to conserve the specificity of aminoacylation. This property means that many determinants of tRNA recognition in pathogens have diverged from those of humans-a phenomenon that provides a valuable source of data for antimicrobial drug development.
Collapse
Affiliation(s)
- Joanne M Ho
- a Department of BioSciences , Rice University , Houston , TX , United States
| | | | - Dieter Söll
- c Departments of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , United States.,d Department of Chemistry , Yale University , New Haven , CT , United States
| | | |
Collapse
|
10
|
Colameco S, Elliot MA. Non-coding RNAs as antibiotic targets. Biochem Pharmacol 2016; 133:29-42. [PMID: 28012959 DOI: 10.1016/j.bcp.2016.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Antibiotics inhibit a wide range of essential processes in the bacterial cell, including replication, transcription, translation and cell wall synthesis. In many instances, these antibiotics exert their effects through association with non-coding RNAs. This review highlights many classical antibiotic targets (e.g. rRNAs and the ribosome), explores a number of emerging targets (e.g. tRNAs, RNase P, riboswitches and small RNAs), and discusses the future directions and challenges associated with non-coding RNAs as antibiotic targets.
Collapse
Affiliation(s)
- Savannah Colameco
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Marie A Elliot
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
11
|
Ariza-Mateos A, Díaz-Toledano R, Block TM, Prieto-Vega S, Birk A, Gómez J. Geneticin Stabilizes the Open Conformation of the 5' Region of Hepatitis C Virus RNA and Inhibits Viral Replication. Antimicrob Agents Chemother 2016; 60:925-35. [PMID: 26621620 PMCID: PMC4750704 DOI: 10.1128/aac.02511-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023] Open
Abstract
The aminoglycoside Geneticin (G418) is known to inhibit cell culture proliferation, via virus-specific mechanisms, of two different virus genera from the family Flaviviridae. Here, we tried to determine whether Geneticin can selectively alter the switching of the nucleotide 1 to 570 RNA region of hepatitis C virus (HCV) and, if so, whether this inhibits viral growth. Two structure-dependent RNases known to specifically cleave HCV RNA were tested in the presence or absence of the drug. One was the Synechocystis sp. RNase P ribozyme, which cleaves the tRNA-like domain around the AUG start codon under high-salt buffer conditions; the second was Escherichia coli RNase III, which recognizes a double-helical RNA switch element that changes the internal ribosome entry site (IRES) from a closed (C) conformation to an open (O) one. While the drug did not affect RNase P activity, it did inhibit RNase III in the micromolar range. Kinetic studies indicated that the drug favors the switch from the C to the O conformation of the IRES by stabilizing the distal double-stranded element and inhibiting further processing of the O form. We demonstrate that, because the RNA in this region is highly conserved and essential for virus survival, Geneticin inhibits HCV Jc1 NS3 expression, the release of the viral genomic RNA, and the propagation of HCV in Huh 7.5 cells. Our study highlights the crucial role of riboswitches in HCV replication and suggests the therapeutic potential of viral-RNA-targeted antivirals.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | - Rosa Díaz-Toledano
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | | | - Samuel Prieto-Vega
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain
| | - Alex Birk
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | - Jordi Gómez
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| |
Collapse
|
12
|
Cochrane RVK, Norquay AK, Vederas JC. Natural products and their derivatives as tRNA synthetase inhibitors and antimicrobial agents. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00274a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tRNA synthetase enzymes are promising targets for development of therapeutic agents against infections by parasitic protozoans (e.g. malaria), fungi and yeast, as well as bacteria resistant to current antibiotics.
Collapse
Affiliation(s)
| | - A. K. Norquay
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| | - J. C. Vederas
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| |
Collapse
|
13
|
Leeder WM, Reuss AJ, Brecht M, Kratz K, Wachtveitl J, Göringer HU. Charge reduction and thermodynamic stabilization of substrate RNAs inhibit RNA editing. PLoS One 2015; 10:e0118940. [PMID: 25742417 PMCID: PMC4350841 DOI: 10.1371/journal.pone.0118940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023] Open
Abstract
African trypanosomes cause a parasitic disease known as sleeping sickness. Mitochondrial transcript maturation in these organisms requires a RNA editing reaction that is characterized by the insertion and deletion of U-nucleotides into otherwise non-functional mRNAs. Editing represents an ideal target for a parasite-specific therapeutic intervention since the reaction cycle is absent in the infected host. In addition, editing relies on a macromolecular protein complex, the editosome, that only exists in the parasite. Therefore, all attempts to search for editing interfering compounds have been focused on molecules that bind to proteins of the editing machinery. However, in analogy to other RNA-driven biochemical pathways it should be possible to stall the reaction by targeting its substrate RNAs. Here we demonstrate inhibition of editing by specific aminoglycosides. The molecules bind into the major groove of the gRNA/pre-mRNA editing substrates thereby causing a stabilization of the RNA molecules through charge compensation and an increase in stacking. The data shed light on mechanistic details of the editing process and identify critical parameters for the development of new trypanocidal compounds.
Collapse
Affiliation(s)
- W.-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas J. Reuss
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Michael Brecht
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Katja Kratz
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - H. Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
14
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
15
|
Gurcha SS, Usha V, Cox JAG, Fütterer K, Abrahams KA, Bhatt A, Alderwick LJ, Reynolds RC, Loman NJ, Nataraj V, Alemparte C, Barros D, Lloyd AJ, Ballell L, Hobrath JV, Besra GS. Biochemical and structural characterization of mycobacterial aspartyl-tRNA synthetase AspS, a promising TB drug target. PLoS One 2014; 9:e113568. [PMID: 25409504 PMCID: PMC4237437 DOI: 10.1371/journal.pone.0113568] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (TB), a disease with high worldwide mortality rates. Current treatment programs are under significant threat from multi-drug and extensively-drug resistant strains of M. tuberculosis, and it is essential to identify new inhibitors and their targets. We generated spontaneous resistant mutants in Mycobacterium bovis BCG in the presence of 10× the minimum inhibitory concentration (MIC) of compound 1, a previously identified potent inhibitor of mycobacterial growth in culture. Whole genome sequencing of two resistant mutants revealed in one case a single nucleotide polymorphism in the gene aspS at 535GAC>535AAC (D179N), while in the second mutant a single nucleotide polymorphism was identified upstream of the aspS promoter region. We probed whole cell target engagement by overexpressing either M. bovis BCG aspS or Mycobacterium smegmatis aspS, which resulted in a ten-fold and greater than ten-fold increase, respectively, of the MIC against compound 1. To analyse the impact of inhibitor 1 on M. tuberculosis AspS (Mt-AspS) activity we over-expressed, purified and characterised the kinetics of this enzyme using a robust tRNA-independent assay adapted to a high-throughput screening format. Finally, to aid hit-to-lead optimization, the crystal structure of apo M. smegmatis AspS was determined to a resolution of 2.4 Å.
Collapse
Affiliation(s)
- Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Veeraraghavan Usha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Jonathan A. G. Cox
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Klaus Fütterer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Katherine A. Abrahams
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Luke J. Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Robert C. Reynolds
- Department of Chemistry, University of Alabama at Birmingham, College of Arts and Sciences, 1530 3rd Avenue South, Birmingham, Alabama, 35294-1240, United States of America
| | - Nicholas J. Loman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - VijayaShankar Nataraj
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carlos Alemparte
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - David Barros
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Adrian J. Lloyd
- Department of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Judith V. Hobrath
- Organic Chemistry Department, Southern Research Institute, Birmingham, Alabama, 35205, United States of America
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Dewan V, Reader J, Forsyth KM. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem (Cham) 2013; 344:293-329. [PMID: 23666077 DOI: 10.1007/128_2013_425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural "pro-drug" antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using naturally antibiotic resistant AARSs, and how horizontal gene transfer of these AARS genes to pathogens may threaten the future use of this class of antibiotics.
Collapse
Affiliation(s)
- Varun Dewan
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, Center for RNA Biology, and Center for Retroviral Research, The Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
17
|
Daher M, Rueda D. Fluorescence characterization of the transfer RNA-like domain of transfer messenger RNA in complex with small binding protein B. Biochemistry 2012; 51:3531-8. [PMID: 22482838 DOI: 10.1021/bi201751k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transfer messenger RNA (tmRNA) and small binding protein B (SmpB) are the main components of the trans-translation rescue machinery that releases stalled ribosomes from defective mRNAs. Little is known about how SmpB binding affects the conformation of the tRNA-like domain (TLD) of tmRNA. It has been previously hypothesized that the absence of a D stem in the TLD provides flexibility in the elbow region of tmRNA, which can be stabilized by its interaction with SmpB. Here, we have used Förster resonance energy transfer to characterize the global structure of the tRNA-like domain of tmRNA in the presence and absence of SmpB and as a function of Mg(2+) concentration. Our results show tight and specific binding of SmpB to tmRNA. Surprisingly, our data show that the global conformation and flexibility of tmRNA do not change upon SmpB binding. However, Mg(2+) ions induce an 11 Å compaction in the tmRNA structure, suggesting that the flexibility in the H2a stem may allow different conformations of tmRNA as the TLD and mRNA-like domain need to be positioned differently while moving through the ribosome.
Collapse
Affiliation(s)
- May Daher
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | |
Collapse
|
18
|
The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Curr Biol 2012; 22:103-12. [PMID: 22244999 DOI: 10.1016/j.cub.2011.12.015] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/01/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Induction of plant immune responses involves significant transcription reprogramming that prioritizes defense over growth-related cellular functions. Despite intensive forward genetic screens and genome-wide expression-profiling studies, a limited number of transcription factors have been found that regulate this transition. RESULTS Using the endoplasmic-reticulum-resident genes required for antimicrobial protein secretion as markers, we identified a heat-shock factor-like transcription factor that specifically binds to the TL1 (GAAGAAGAA) cis element required for the induction of these genes. Surprisingly, plants lacking this TL1-binding factor, TBF1, respond normally to heat stress but are compromised in immune responses induced by salicylic acid and by microbe-associated molecular pattern, elf18. Genome-wide expression profiling indicates that TBF1 plays a key role in the growth-to-defense transition. Moreover, the expression of TBF1 itself is tightly regulated at both the transcriptional and translational levels. Two upstream open reading frames encoding multiple aromatic amino acids were found 5' of the translation initiation codon of TBF1 and shown to affect its translation. CONCLUSIONS Through this unique regulatory mechanism, TBF1 can sense the metabolic changes upon pathogen invasion and trigger the specific transcriptional reprogramming through its target genes expression.
Collapse
|
19
|
Deigan KE, FerrÉ-D’AmarÉ AR. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res 2011; 44:1329-38. [PMID: 21615107 DOI: 10.1021/ar200039b] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riboswitches are messenger RNA (mRNA) domains that regulate gene function in response to the intracellular concentration of a variety of metabolites and second messengers. They control essential genes in many pathogenic bacteria, thus representing an inviting new class of biomolecular target for the development of antibiotics and chemical-biological tools. In this Account, we briefly review the discovery of riboswitches in the first years of the 21st century and their ensuing characterization over the past decade. We then discuss the progress achieved so far in using riboswitches as a focus for drug discovery, considering both the value of past serendipity and the particular challenges that confront current researchers. Five mechanisms of gene regulation have been determined for riboswitches. Most bacterial riboswitches modulate either transcription termination or translation initiation in response to ligand binding. All known examples of eukaryotic riboswitches, and some bacterial riboswitches, control gene expression by alternative splicing. The glmS riboswitch, which is widespread in Gram-positive bacteria, is a catalytic RNA activated by ligand binding: its self-cleavage destabilizes the mRNA of which it is part. Finally, one example of a trans-acting riboswitch is known. Three-dimensional structures have been determined for representatives of 13 structurally distinct riboswitch classes, providing atomic-level insight into their mechanisms of ligand recognition. While cellular and viral RNAs have attracted widespread interest as potential drug targets, riboswitches show special promise due to the diversity of small-molecule recognition strategies that are on display in their ligand-binding pockets. Moreover, riboswitches have evolved to recognize small-molecule ligands, which is unique among known structured RNA domains. Structural and biochemical advances in the study of riboswitches provide an impetus for the development of methods for the discovery of novel riboswitch activators and inhibitors. Recent rational drug design efforts focused on select riboswitch classes have yielded a small number of candidate antibiotic compounds, including one active in a mouse model of Staphylococcus aureus infection. The development of high-throughput methods suitable for riboswitch-specific drug discovery is ongoing. A fragment-based screening approach employing equilibrium dialysis that may be generically useful has demonstrated early success. Riboswitch-mediated gene regulation is widely employed by bacteria; however, only the thiamine pyrophosphate-responsive riboswitch has thus far been found in eukaryotes. Thus, riboswitches are particularly attractive as targets for antibacterials. Indeed, antimicrobials with previously unknown mechanisms have been found to function by binding riboswitches and causing aberrant gene expression.
Collapse
Affiliation(s)
- Katherine E. Deigan
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda Maryland 20894, United States
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Adrian R. FerrÉ-D’AmarÉ
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda Maryland 20894, United States
| |
Collapse
|
20
|
Berschneider B, Wieland M, Rubini M, Hartig JS. Small-molecule-dependent regulation of transfer RNA in bacteria. Angew Chem Int Ed Engl 2009; 48:7564-7. [PMID: 19739151 DOI: 10.1002/anie.200900851] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Barbara Berschneider
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
21
|
Hayrapetyan A, Grosjean H, Helm M. Effect of a quaternary pentamine on RNA stabilization and enzymatic methylation. Biol Chem 2009; 390:851-61. [PMID: 19558320 DOI: 10.1515/bc.2009.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extreme thermophiles produce unusually long polyamines, including the linear caldopentamine (Cdp) and the branched pentamine tetrakis(3-aminopropyl)-ammonium (Taa), with the latter containing a central quaternary ammonium moiety. Here we compare the interaction of these two pentamines with RNA by studying the heat denaturation, electrophoretic behavior, and ability of tRNA to be methylated in vitro by purified tRNA methyltransferases under various salt conditions. At concentrations in the micromolar range, branched Taa causes a considerable increase in the melting temperature (T(m)) of yeast tRNA(Phe) transcripts by >20 degrees C, which is significantly greater than stabilization by the linear Cdp. In non-denaturing gel electrophoresis, strong and specific binding to Taa, but not to Cdp, was clearly observed for tRNA(Phe). In both types of experiments, polyamines and monovalent metal ions competed for binding sites. Structural probing revealed no significant conformational changes in tRNA on Taa binding. In post-transcriptional in vitro methylation reactions, the formation of m(2)G/m(2)(2)G by the methyltransferase Trm1p and of m(1)A by TrmIp were not affected or only slightly stimulated by polyamines. In contrast, Taa specifically inhibited Trm4p-dependent formation of m(5)C only in tRNA(Phe), likely by occupying sites that are relevant to RNA recognition by the methyltransferase.
Collapse
Affiliation(s)
- Armine Hayrapetyan
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Berschneider B, Wieland M, Rubini M, Hartig J. Ligandenabhängige Regulierung einer Transfer-RNA in Bakterien. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
|
24
|
Kumar R, Garneau P, Nguyen N, William Lown J, Pelletier J. Methionine Sustituted Polyamides are RNAse Mimics that Inhibit Translation. J Drug Target 2008; 12:125-34. [PMID: 15203891 DOI: 10.1080/1061186042000220728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNAse mimics are small molecules that can cleave RNA in a fashion similar to ribonucleases. These compounds would be very useful as gene specific reagents if their activities could be regulated and targeted. We demonstrate here that polyamides with methionine substituents show enhanced RNA cleavage activity relative to other polyamides. Conjugation of these compounds to aminoglycosides produced RNAse mimics that are capable of inhibiting eukaryotic protein synthesis. As a new class of compounds capable of interacting with nucleic acids, these novel aminoglycoside-polyamides constitute promising scaffolds for the construction of nuclease mimics with biological activity.
Collapse
Affiliation(s)
- Rohtash Kumar
- Department of Chemistry University of Alberta Edmonton Alta. Canada
| | | | | | | | | |
Collapse
|
25
|
Tselika S, Konstantinidis T, Synetos D. Two nucleotide substitutions in the A-site of yeast 18S rRNA affect translation and differentiate the interaction of ribosomes with aminoglycoside antibiotics. Biochimie 2008; 90:908-17. [DOI: 10.1016/j.biochi.2008.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/12/2008] [Indexed: 11/27/2022]
|
26
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
27
|
Wang B, Wilkinson KA, Weeks KM. Complex Ligand-Induced Conformational Changes in tRNAAsp Revealed by Single-Nucleotide Resolution SHAPE Chemistry. Biochemistry 2008; 47:3454-61. [DOI: 10.1021/bi702372x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Kevin A. Wilkinson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
28
|
Sun T, Zhang Y. Pentamidine binds to tRNA through non-specific hydrophobic interactions and inhibits aminoacylation and translation. Nucleic Acids Res 2008; 36:1654-64. [PMID: 18263620 PMCID: PMC2275129 DOI: 10.1093/nar/gkm1180] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selective and potent inhibition of mitochondrial translation in Saccharomyces cerevisiae by pentamidine suggests a novel antimicrobial action for this drug. Electrophoresis mobility shift assay, T1 ribonuclease footprinting, hydroxyl radical footprinting and isothermal titration calorimetry collectively demonstrated that pentamidine non-specifically binds to two distinct classes of sites on tRNA. The binding was driven by favorable entropy changes indicative of a large hydrophobic interaction, suggesting that the aromatic rings of pentamidine are inserted into the stacked base pairs of tRNA helices. Pentamidine binding disrupts the tRNA secondary structure and masks the anticodon loop in the tertiary structure. Consistently, we showed that pentamidine specifically inhibits tRNA aminoacylation but not the cognate amino acid adenylation. Pentamidine inhibited protein translation in vitro with an EC(50) equivalent to that binds to tRNA and inhibits tRNA aminoacylation in vitro, but drastically higher than that inhibits translation in vivo, supporting the established notion that the antimicrobial activity of pentamidine is largely due to its selective accumulation by the pathogen rather than by the host cell. Therefore, interrupting tRNA aminoacylation by the entropy-driven non-specific binding is an important mechanism of pentamidine in inhibiting protein translation, providing new insights into the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | |
Collapse
|
29
|
Bao Y, Herrin DL. Mg2+ mimicry in the promotion of group I ribozyme activities by aminoglycoside antibiotics. Biochem Biophys Res Commun 2006; 344:1246-52. [PMID: 16650821 DOI: 10.1016/j.bbrc.2006.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 04/15/2006] [Indexed: 11/28/2022]
Abstract
Aminoglycoside antibiotics inhibit several types of ribozymes, including group I introns, by displacing critical Mg2+ ions. However, they stimulate activity of the small hairpin ribozyme. We show here that aminoglycosides promote self-splicing of the Cr.psbA2 group I intron at subthreshold Mg2+ concentrations. Neomycin is the most effective of the aminoglycosides tested; it stimulates splicing of Cr.psbA2 at micromolar concentrations, and, in this respect, is >100-fold more effective than spermidine. At optimal Mg2+ for Cr.psbA2 splicing, these drugs, especially kanamycin B and tobramycin, promote GTP attack at the 3' splice-site. Kinetic analysis suggests that this is due to an alternatively folded state of the ribozyme that is induced, or stabilized, by aminoglycosides. A similar effect is observed at high Mg2+ concentrations. Comparing the effects of structurally related aminoglycosides indicates that splicing promotion is more sensitive to drug structure than misfolding and occurs at lower drug concentrations. These data show that aminoglycosides can promote biochemical activities of a large ribozyme by acting as a Mg2+ mimic. The results also underscore the functional diversity of group I introns in nature.
Collapse
Affiliation(s)
- Yijia Bao
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A6700, Austin, TX 78712, USA
| | | |
Collapse
|
30
|
Abstract
One of the major challenges in medicine today is the development of new antibiotics as well as effective antiviral agents. The well-known aminoglycosides interact and interfere with the function of several noncoding RNAs, among which ribosomal RNAs (rRNAs) are the best studied. Aminoglycosides are also known to interact with proteins such as ribonucleases. Here we review our current understanding of the interaction between aminoglycosides and RNA. Moreover, we discuss briefly mechanisms behind the inactivation of aminoglycosides, a major concern due to the increasing appearance of multiresistant bacterial strains. Taken together, the general knowledge about aminoglycoside and RNA interaction is of utmost importance in the process of identifying/developing the next generation or new classes of antibiotics. In this perspective, previously unrecognized as well as known noncoding RNAs, apart from rRNA, are promising targets to explore.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
31
|
Hori Y, Rogert MC, Tanaka T, Kikuchi Y, Bichenkova EV, Wilton AN, Gbaj A, Douglas KT. Porphyrins and porphines bind strongly and specifically to tRNA, precursor tRNA and to M1 RNA and inhibit the ribonuclease P ribozyme reaction. ACTA ACUST UNITED AC 2005; 1730:47-55. [PMID: 16005529 DOI: 10.1016/j.bbaexp.2005.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 06/01/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Porphyrins and porphines strongly inhibit the action of the RNA subunit of the Escherichia coli ribonuclease P (M1 RNA). Meso-tetrakis(N-methyl-pyridyl)porphine followed linear competitive kinetics with pre-tRNA(Gly1) from E. coli as variable substrate (Ki 0.960 microM). Protoporphyrin IX showed linear competitive inhibition versus pre-tRNA(Gly1) from E. coli (Ki 1.90 microM). Inhibition by meso-tetrakis[4-(trimethylammonio)phenyl]porphine versus pre-tRNA(Gly1) from E. coli followed non-competitive kinetics (Ki 4.1 microM). The porphyrins bound directly to E. coli tRNAVal, E. coli pre-tRNAGly1 and M1 RNA and dissociation constants for the 1:1 complexes were determined using fluorescence spectroscopy. Dissociation constants (microM) against E. coli tRNAVal and E. coli pre-tRNAGly were: meso-tetrakis(N-methyl-pyridyl)porphine 1.21 and 0.170; meso-tetrakis[4-(trimethylammonio)phenyl]porphine, 0.107 and 0.293; protoporphyrin IX, 0.138 and 0.0819. For M1 RNA, dissociation constants were 32.8 nM for meso-tetrakis(N-methyl-pyridyl)porphine and 59.8 nM for meso-tetrakis[4-(trimethylammonio)phenyl]porphine and excitation and emission spectra indicate a binding mode with strong pi-stacking of the porphine nucleus and base pairs in a rigid low-polarity environment. Part of the inhibition of ribonuclease P is from interaction with the pre-tRNA substrate, resulting from porphyrin binding to the D-loop/T-loop region which interfaces with M1 RNA during catalysis, and part from the porphyrin binding to the M1 RNA component.
Collapse
Affiliation(s)
- Yoshiaki Hori
- Division of Bioscience and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 441-8580, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Szilaghi R, Shahzad-ul-Hussan S, Weimar T. The RNA-Bound Conformation of Neamine as Determined by Transferred NOE Experiments. Chembiochem 2005; 6:1270-6. [PMID: 15937986 DOI: 10.1002/cbic.200400363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tRNA(Phe)-bound conformation of the aminoglycoside neamine, a member of the neomycin B family, has been investigated by transferred NOE experiments in aqueous solution. This is the first time that the bioactive conformation of an RNA-bound aminoglycoside has been determined by this method. In buffers without divalent Mg(2+) ions, a high degree of electrostatically driven unspecific binding of aminoglycosides to the RNA was observed. Careful optimization of experimental conditions yielded buffer conditions optimized for cryo-probe NMR experiments. In particular, addition of Mg(2+) ions to the solutions was necessary to reduce the amount of unspecific binding as monitored by one-dimensional NMR and surface plasmon resonance experiments. CD spectroscopy was used to probe the effect of aminoglycosides and buffer conditions on the double helical content of tRNA(Phe). Finally the tRNA(Phe)-bound conformation of neamine was determined by trNOE build-up curves and compared with the previously reported crystal structure of neomycin B complexed to this RNA. Although the aminoglycoside in the crystal structure contains several configurational errors, the overall shape of the crystallographically determined RNA-bound structure is identical to the RNA-bound conformation defined by the NMR experiments. Therefore, the crystal structure has been refined by trNOE data. This is particularly important in the context of aminoglycosides being discussed as lead structures for the development of new anti-RNA drugs.
Collapse
Affiliation(s)
- Richard Szilaghi
- Universität zu Lübeck, Institut für Chemie, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | |
Collapse
|
33
|
Ruan B, Bovee ML, Sacher M, Stathopoulos C, Poralla K, Francklyn CS, Söll D. A unique hydrophobic cluster near the active site contributes to differences in borrelidin inhibition among threonyl-tRNA synthetases. J Biol Chem 2004; 280:571-7. [PMID: 15507440 DOI: 10.1074/jbc.m411039200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Borrelidin, a compound with anti-microbial and anti-angiogenic properties, is a known inhibitor of bacterial and eukaryal threonyl-tRNA synthetase (ThrRS). The inhibition mechanism of borrelidin is not well understood. Archaea contain archaeal and bacterial genre ThrRS enzymes that can be distinguished by their sequence. We explored species-specific borrelidin inhibition of ThrRSs. The activity of ThrRS from Sulfolobus solfataricus and Halobacterium sp. NRC-1 was inhibited by borrelidin, whereas ThrRS enzymes from Methanocaldococcus jannaschii and Archaeoglobus fulgidus were not. In Escherichia coli ThrRS, borrelidin binding induced a conformational change, and threonine was not activated as shown by ATP-PP(i) exchange and a transient kinetic assay measuring intrinsic tryptophan fluorescence changes. These assays further showed that borrelidin is a noncompetitive tight binding inhibitor of E. coli ThrRS with respect to threonine and ATP. Genetic selection of borrelidin-resistant mutants showed that borrelidin binds to a hydrophobic region (Thr-307, His-309, Cys-334, Pro-335, Leu-489, Leu-493) proximal to the zinc ion at the active site of the E. coli ThrRS. Mutating residue Leu-489 --> Trp reduced the space of the hydrophobic cluster and resulted in a 1500-fold increase of the K(i) value from 4 nM to 6 microm. An alignment of ThrRS sequences showed that this cluster is conserved in most organisms except for some Archaea (e.g. M. jannaschii, A. fulgidus) and some pathogens (e.g. Helicobacter pylori). This study illustrates how one class of natural product inhibitors affects aminoacyl-tRNA synthetase function, providing potentially useful information for structure-based inhibitor design.
Collapse
Affiliation(s)
- Benfang Ruan
- Department of Molecular Biophysics, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
MESH Headings
- Aminoglycosides/pharmacology
- Anti-Bacterial Agents/pharmacology
- Binding Sites
- Drug Delivery Systems
- Models, Molecular
- RNA/chemistry
- RNA/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/drug effects
- RNA, Ribosomal, 16S/metabolism
- Substrate Specificity
- Technology, Pharmaceutical
- Water/chemistry
Collapse
Affiliation(s)
- Quentin Vicens
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Modélisation et simulations des Acides Nucléiques, UPR 9002, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
35
|
Abstract
Functional RNAs such as ribosomal RNA and structured domains of mRNA are targets for small molecule ligands that can act as modulators of the RNA biological activity. Natural ligands for RNA display a bewildering structural and chemical complexity that has yet to be matched by synthetic RNA binders. Comparison of natural and artificial ligands for RNA may help to direct future approaches to design and synthesize potent novel scaffolds for specific recognition of RNA targets.
Collapse
Affiliation(s)
- Thomas Hermann
- Department of Computational Chemistry & Structure, Anadys Parmaceuticals, Inc., 9050 Camino Santa Fe, San Diego, CA 92121, USA.
| |
Collapse
|
36
|
Vicens Q, Westhof E. Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures. Biopolymers 2003; 70:42-57. [PMID: 12925992 DOI: 10.1002/bip.10414] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The potential of RNA molecules to be used as therapeutic targets by small inhibitors is now well established. In this fascinating wide-open field, aminoglycoside antibiotics constitute the most studied family of RNA binding drugs. Within the last three years, several x-ray crystal structures were solved for aminoglycosides complexed to one of their main natural targets in the bacterial cell, the decoding aminoacyl-tRNA site (A site). Other crystallographic structures have revealed the binding modes of aminoglycosides to the three existing types of resistance-associated enzymes. The present review summarizes the various aspects of the molecular recognition of aminoglycosides by these natural RNA or protein receptors. The analysis and the comparisons of the detailed interactions offer insights that are helpful in designing new generations of antibiotics.
Collapse
Affiliation(s)
- Quentin Vicens
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Modélisation et simulations des Acides Nucléiques, UPR 9002, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
37
|
Corvaisier S, Bordeau V, Felden B. Inhibition of transfer messenger RNA aminoacylation and trans-translation by aminoglycoside antibiotics. J Biol Chem 2003; 278:14788-97. [PMID: 12588865 DOI: 10.1074/jbc.m212830200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer messenger RNA (tmRNA) directs the modification of proteins of which the biosynthesis has stalled or has been interrupted. Here, we report that aminoglycosides can interfere with this quality control system in bacteria, termed trans-translation. Neomycin B is the strongest inhibitor of tmRNA aminoacylation with alanine (K(i) value of approximately 35 micro m), an essential step during trans-translation. The binding sites of neomycin B do not overlap with the identity determinants for alanylation, but the aminoglycoside perturbs the conformation of the acceptor stem that contains the aminoacylation signals. Aminoglycosides reduce the conformational freedom of the transfer RNA-like domain of tmRNA. Additional contacts between aminoglycosides and tmRNA are within the tag reading frame, probably also disturbing reprogramming of the stalled ribosomes prior protein tagging. Aminoglycosides impair tmRNA aminoacylation in the presence of all of the transfer RNAs from Escherichia coli, small protein B, and elongation factor Tu, but when both proteins are present, the inhibition constant is 1 order of magnitude higher. SmpB and elongation factor Tu have RNA chaperone activities, ensuring that tmRNA adopts an optimal conformation during aminoacylation.
Collapse
Affiliation(s)
- Sophie Corvaisier
- Laboratoire de Biochimie Pharmaceutique, Faculté de Pharmacie, Université de Rennes I, UPRES Jeune Equipe 2311, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | | | | |
Collapse
|
38
|
Evans JM, Turner BA, Bowen S, Ho AM, Sarver RW, Benson E, Parker CN. Inhibition of bacterial IF2 binding to fMet-tRNA((fMet)) by aminoglycosides. Bioorg Med Chem Lett 2003; 13:993-6. [PMID: 12643896 DOI: 10.1016/s0960-894x(03)00085-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Screening for inhibitors of bacterial protein synthesis Initiation Factor 2 (IF2) binding to N-formyl-Methionyl-transfer RNA (fMet-tRNA((fMet))) identified a series of aminoglycosides, that included amikacin and kanamycin A1, as inhibitors of this interaction. Subsequent testing revealed that aminoglycosides displayed a wide range of inhibitory activity. However, the failure of these compounds to completely inhibit binding of IF2 to fMet-tRNA((fMet)), the known ability of aminoglycosides to bind RNA, and the ability of the aminoglycosides to displace PicoGreen bound to fMet-tRNA((fMet)) suggest these compounds act by binding fMet-tRNA((fMet)). This hypothesis is further supported by isothermal denaturation experiments that failed to show any interaction between the IF2 protein and the aminoglycosides.
Collapse
Affiliation(s)
- J M Evans
- Global High Throughput Screening, Pharmacia Corp., Kalamazoo, MI 49007, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Ren YG, Martínez J, Kirsebom LA, Virtanen A. Inhibition of Klenow DNA polymerase and poly(A)-specific ribonuclease by aminoglycosides. RNA (NEW YORK, N.Y.) 2002; 8:1393-1400. [PMID: 12458793 PMCID: PMC1370346 DOI: 10.1017/s1355838202021015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aminoglycosides are known to bind and perturb the function of catalytic RNA. Here we show that they also are potent inhibitors of protein-based catalysis using Escherichia coli Klenow polymerase (pol) and mammalian poly(A)-specific ribonuclease (PARN) as model enzymes. The inhibition was pH dependent and released in a competitive manner by Mg2+. Kinetic analysis showed that neomycin B behaved as a mixed noncompetitive inhibitor. Iron-mediated hydroxyl radical cleavage was used to show that neomycin B interfered with metal-ion binding in the active sites of both enzymes. Our analysis suggests a mechanism of inhibition where the aminoglycoside binds in the active site of the enzyme and thereby displaces catalytically important divalent metal ions. The potential causes of aminoglycoside toxicity and the usage of aminoglycosides to probe, characterize, and perturb metalloenzymes are discussed.
Collapse
Affiliation(s)
- Yan-Guo Ren
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
40
|
Carriere M, Vijayabaskar V, Applefield D, Harvey I, Garneau P, Lorsch J, Lapidot A, Pelletier J. Inhibition of protein synthesis by aminoglycoside-arginine conjugates. RNA (NEW YORK, N.Y.) 2002; 8:1267-1279. [PMID: 12403465 PMCID: PMC1370336 DOI: 10.1017/s1355838202029059] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Inhibition of translation by small molecule ligands has proven to be a useful tool for understanding this complex cellular mechanism, as well as providing drugs of significant medical importance. Many small molecule ligands inhibit translation by binding to RNA or RNA/protein components of the ribosomal subunits and usurping their function. A class of peptidomimetics [aminoglycoside-arginine conjugates (AAC)] has recently been designed to inhibit HIV TAR/tat interaction and in experiments aimed at assessing the inhibitory effects of AACs on TAR-containing transcripts, we found that AACs are general inhibitors of translation. Experiments reported herein aim at characterizing these novel properties of AACs. We find that AACs are inhibitors of eukaryotic and prokaryotic translation and exert their effects by blocking peptide chain elongation. Structure/activity relationship studies suggest that inhibition of translation by AACs is directly related to the number of arginine groups present on the aminoglycoside backbone and to the nature of the core aminoglycoside. AACs are therefore attractive tools for understanding and probing ribosome function.
Collapse
|
41
|
Hermann T. Rational ligand design for RNA: the role of static structure and conformational flexibility in target recognition. Biochimie 2002; 84:869-75. [PMID: 12458079 DOI: 10.1016/s0300-9084(02)01460-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of static structure and conformational flexibility in the recognition of RNA targets by small molecule ligands is discussed with emphasis on the natural aminoglycoside antibiotics and their promiscuity in RNA target binding. A brief overview is given of previous efforts to design simplified aminoglycoside derivatives targeted at the bacterial decoding site RNA.
Collapse
Affiliation(s)
- Thomas Hermann
- Department of Computational Chemistry and Structure, Anadys Pharmaceuticals, Inc., 9050 Camino Santa Fe, San Diego, CA 92121, USA.
| |
Collapse
|
42
|
Current awareness on yeast. Yeast 2002; 19:805-12. [PMID: 12112235 DOI: 10.1002/yea.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|