1
|
Zhao Z, Asai R, Mikawa T. Differential Sensitivity of Midline Patterning to Mitosis during and after Primitive Streak Extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620280. [PMID: 39484456 PMCID: PMC11527125 DOI: 10.1101/2024.10.25.620280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Midline establishment is a fundamental process during early embryogenesis for Bilaterians . Midline patterning in nonamniotes can occur without mitosis, through Planar Cell Polarity (PCP) signaling. By contrast, amniotes utilize both cell proliferation and PCP signaling for patterning early midline landmark, the primitive streak (PS). This study examined their roles for midline patterning at post PS-extension. Results In contrast to PS extension stages, embryos under mitotic arrest during the post PS-extension preserved notochord (NC) extension and Hensen's node (HN)/PS regression judged by both morphology and marker genes, although they became shorter, and laterality was lost. Remarkably, no or background level of expression was detected for the majority of PCP core components in the NC-HN-PS area at post PS-extension stages, except for robustly detected prickle-1 . Morpholino knockdown of Prickle-1 showed little influence on midline patterning, except for suppressed embryonic growth. Lastly, associated with mitotic arrest-induced size reduction, midline tissue cells displayed hypertrophy. Conclusion Thus, the study has identified at least two distinct mitosis sensitivity phases during early midline pattering: One is PS extension that requires both mitosis and PCP, and the other is mitotic arrest-resistant midline patterning with little influence by PCP at post PS-extension stages.
Collapse
|
2
|
Shi DL. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. J Dev Biol 2024; 12:20. [PMID: 39189260 PMCID: PMC11348223 DOI: 10.3390/jdb12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left-right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell-cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
3
|
Montserrat-Gomez M, Gogl G, Carrasco K, Betzi S, Durbesson F, Cousido-Siah A, Kostmann C, Essig DJ, Strømgaard K, Østergaard S, Morelli X, Trave G, Vincentelli R, Bailly E, Borg JP. PDZome-wide and structural characterization of the PDZ-binding motif of VANGL2. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140989. [PMID: 38142947 DOI: 10.1016/j.bbapap.2023.140989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
VANGL2 is a core component of the non-canonical Wnt/Planar Cell Polarity signaling pathway that uses its highly conserved carboxy-terminal type 1 PDZ-binding motif (PBM) to bind a variety of PDZ proteins. In this study, we characterize and quantitatively assess the largest VANGL2 PDZome-binding profile documented so far, using orthogonal methods. The results of our holdup approach support VANGL2 interactions with a large panel of both long-recognized and unprecedented PDZ domains. Truncation and point mutation analyses of the VANGL2 PBM establish that, beyond the strict requirement of the P-0 / V521 and P-2 / T519 amino acids, upstream residues, including E518, Q516 and R514 at, respectively, P-3, P-5 and P-7 further contribute to the robustness of VANGL2 interactions with two distinct PDZ domains, SNX27 and SCRIBBLE-PDZ3. In agreement with these data, incremental amino-terminal deletions of the VANGL2 PBM causes its overall affinity to progressively decline. Moreover, the holdup data establish that the PDZome binding repertoire of VANGL2 starts to diverge significantly with the truncation of E518. A structural analysis of the SYNJ2BP-PDZ/VANGL2 interaction with truncated PBMs identifies a major conformational change in the binding direction of the PBM peptide after the P-2 position. Finally, we report that the PDZome binding profile of VANGL2 is dramatically rearranged upon phosphorylation of S517, T519 and S520. Our crystallographic approach illustrates how SYNJ2BP accommodates a S520-phosphorylated PBM peptide through the ideal positioning of two basic residues, K48 and R86. Altogether our data provides a comprehensive view of the VANGL2 PDZ network and how this network specifically responds to the post-translation modification of distinct PBM residues. These findings should prove useful in guiding future functional and molecular studies of the key PCP component VANGL2.
Collapse
Affiliation(s)
- Marta Montserrat-Gomez
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Marseille, France
| | - Gergo Gogl
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Kendall Carrasco
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Integrative Structural & Chemical Biology, Marseille, France
| | - Stephane Betzi
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Integrative Structural & Chemical Biology, Marseille, France
| | - Fabien Durbesson
- Aix Marseille Université, CNRS, Architecture et fonction des macromolécules biologiques (AFMB), Marseille, France
| | - Alexandra Cousido-Siah
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Camille Kostmann
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Dominic J Essig
- Center for Biopharmaceuticals, Jagtvej 162, 2100 Copenhagen, Denmark; Global Research Technologies, Novo Nordisk Research Park, 2760 Maaloev, Denmark
| | | | - Søren Østergaard
- Global Research Technologies, Novo Nordisk Research Park, 2760 Maaloev, Denmark
| | - Xavier Morelli
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Integrative Structural & Chemical Biology, Marseille, France
| | - Gilles Trave
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Renaud Vincentelli
- Aix Marseille Université, CNRS, Architecture et fonction des macromolécules biologiques (AFMB), Marseille, France.
| | - Eric Bailly
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Marseille, France.
| | - Jean-Paul Borg
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Marseille, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
4
|
Walton A, Thomé V, Revinski D, Marchetto S, Puvirajesinghe TM, Audebert S, Camoin L, Bailly E, Kodjabachian L, Borg JP. A vertebrate Vangl2 translational variant required for planar cell polarity. J Biol Chem 2024; 300:106792. [PMID: 38403249 PMCID: PMC11065751 DOI: 10.1016/j.jbc.2024.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
First described in the milkweed bug Oncopeltus fasciatus, planar cell polarity (PCP) is a developmental process essential for embryogenesis and development of polarized structures in Metazoans. This signaling pathway involves a set of evolutionarily conserved genes encoding transmembrane (Vangl, Frizzled, Celsr) and cytoplasmic (Prickle, Dishevelled) molecules. Vangl2 is of major importance in embryonic development as illustrated by its pivotal role during neural tube closure in human, mouse, Xenopus, and zebrafish embryos. Here, we report on the molecular and functional characterization of a Vangl2 isoform, Vangl2-Long, containing an N-terminal extension of about 50 aa, which arises from an alternative near-cognate AUA translation initiation site, lying upstream of the conventional start codon. While missing in Vangl1 paralogs and in all invertebrates, including Drosophila, this N-terminal extension is conserved in all vertebrate Vangl2 sequences. We show that Vangl2-Long belongs to a multimeric complex with Vangl1 and Vangl2. Using morpholino oligonucleotides to specifically knockdown Vangl2-Long in Xenopus, we found that this isoform is functional and required for embryo extension and neural tube closure. Furthermore, both Vangl2 and Vangl2-Long must be correctly expressed for the polarized distribution of the PCP molecules Pk2 and Dvl1 and for centriole rotational polarity in ciliated epidermal cells. Altogether, our study suggests that Vangl2-Long significantly contributes to the pool of Vangl2 molecules present at the plasma membrane to maintain PCP in vertebrate tissues.
Collapse
Affiliation(s)
- Alexandra Walton
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell Polarity, Cell Signaling And Cancer', Marseille, France
| | - Virginie Thomé
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Diego Revinski
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Sylvie Marchetto
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell Polarity, Cell Signaling And Cancer', Marseille, France
| | - Tania M Puvirajesinghe
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell Polarity, Cell Signaling And Cancer', Marseille, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Eric Bailly
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell Polarity, Cell Signaling And Cancer', Marseille, France.
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France.
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell Polarity, Cell Signaling And Cancer', Marseille, France; Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
5
|
Martins-Costa C, Wilson V, Binagui-Casas A. Neuromesodermal specification during head-to-tail body axis formation. Curr Top Dev Biol 2024; 159:232-271. [PMID: 38729677 DOI: 10.1016/bs.ctdb.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/β-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.
Collapse
Affiliation(s)
- C Martins-Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - V Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - A Binagui-Casas
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
6
|
MacGowan J, Cardenas M, Williams MK. Vangl2 deficient zebrafish exhibit hallmarks of neural tube closure defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566412. [PMID: 37986956 PMCID: PMC10659374 DOI: 10.1101/2023.11.09.566412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Neural tube defects (NTDs) are among the most devastating and common congenital anomalies worldwide, and the ability to model these conditions in vivo is essential for identifying causative genetic and environmental factors. Although zebrafish are ideal for rapid candidate testing, their neural tubes develop primarily via a solid neural keel rather that the fold-and-fuse method employed by mammals, raising questions about their suitability as an NTD model. Here, we demonstrate that despite outward differences, zebrafish anterior neurulation closely resembles that of mammals. For the first time, we directly observe fusion of the bilateral neural folds to enclose a lumen in zebrafish embryos. The neural folds fuse by zippering between multiple distinct but contiguous closure sites. Embryos lacking vangl2, a core planar cell polarity and NTD risk gene, exhibit delayed neural fold fusion and abnormal neural groove formation, yielding distinct openings and midline bifurcations in the developing neural tube. These data provide direct evidence for fold-and-fuse neurulation in zebrafish and its disruption upon loss of an NTD risk gene, highlighting conservation of vertebrate neurulation and the utility of zebrafish for modeling NTDs.
Collapse
Affiliation(s)
- Jacalyn MacGowan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Mara Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Margot Kossmann Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
7
|
Christodoulou N, Skourides PA. Somitic mesoderm morphogenesis is necessary for neural tube closure during Xenopus development. Front Cell Dev Biol 2023; 10:1091629. [PMID: 36699010 PMCID: PMC9868421 DOI: 10.3389/fcell.2022.1091629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Neural tube closure is a fundamental process during vertebrate embryogenesis, which leads to the formation of the central nervous system. Defective neural tube closure leads to neural tube defects which are some of the most common human birth defects. While the intrinsic morphogenetic events shaping the neuroepithelium have been studied extensively, how tissues mechanically coupled with the neural plate influence neural tube closure remains poorly understood. Here, using Xenopus laevis embryos, live imaging in combination with loss of function experiments and morphometric analysis of fixed samples we explore the reciprocal mechanical communication between the neural plate and the somitic mesoderm and its impact on tissue morphogenesis. We show that although somitic mesoderm convergent extension occurs independently from neural plate morphogenesis neural tube closure depends on somitic mesoderm morphogenesis. Specifically, impaired somitic mesoderm remodelling results in defective apical constriction within the neuroepithelium and failure of neural tube closure. Last, our data reveal that mild abnormalities in somitic mesoderm and neural plate morphogenesis have a synergistic effect during neurulation, leading to severe neural tube closure defects. Overall, our data reveal that defective morphogenesis of tissues mechanically coupled with the neural plate can not only drastically exacerbate mild neural tube defects that may arise from abnormalities within the neural tissue but can also elicit neural tube defects even when the neural plate is itself free of inherent defects.
Collapse
|
8
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. .,Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
9
|
Shiraki T, Hayashi T, Ozue J, Watanabe M. Appropriate Amounts and Activity of the Wilms' Tumor Suppressor Gene, wt1, Are Required for Normal Pronephros Development of Xenopus Embryos. J Dev Biol 2022; 10:jdb10040046. [PMID: 36412640 PMCID: PMC9680428 DOI: 10.3390/jdb10040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
The Wilms' tumor suppressor gene, wt1, encodes a zinc finger-containing transcription factor that binds to a GC-rich motif and regulates the transcription of target genes. wt1 was first identified as a tumor suppressor gene in Wilms' tumor, a pediatric kidney tumor, and has been implicated in normal kidney development. The WT1 protein has transcriptional activation and repression domains and acts as a transcriptional activator or repressor, depending on the target gene and context. In Xenopus, an ortholog of wt1 has been isolated and shown to be expressed in the developing embryonic pronephros. To investigate the role of wt1 in pronephros development in Xenopus embryos, we mutated wt1 by CRISPR/Cas9 and found that the expression of pronephros marker genes was reduced. In reporter assays in which known WT1 binding sequences were placed upstream of the luciferase gene, WT1 activated transcription of the luciferase gene. The injection of wild-type or artificially altered transcriptional activity of wt1 mRNA disrupted the expression of pronephros marker genes in the embryos. These results suggest that the appropriate amounts and activity of WT1 protein are required for normal pronephros development in Xenopus embryos.
Collapse
Affiliation(s)
- Taisei Shiraki
- Graduate School of Sciences and Technology for Innovation, Tokushima University, 1-1 Minamijosanjima-Cho, Tokushima 770-8054, Japan
| | - Takuma Hayashi
- Graduate School of Sciences and Technology for Innovation, Tokushima University, 1-1 Minamijosanjima-Cho, Tokushima 770-8054, Japan
| | - Jotaro Ozue
- Graduate School of Sciences and Technology for Innovation, Tokushima University, 1-1 Minamijosanjima-Cho, Tokushima 770-8054, Japan
| | - Minoru Watanabe
- Graduate School of Sciences and Technology for Innovation, Tokushima University, 1-1 Minamijosanjima-Cho, Tokushima 770-8054, Japan
- Institute of Liberal Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-Cho, Tokushima 770-8054, Japan
- Correspondence: ; Tel.: +81-088-656-7253
| |
Collapse
|
10
|
Olbertová K, Hrčkulák D, Kříž V, Jesionek W, Kubovčiak J, Ešner M, Kořínek V, Buchtová M. Role of LGR5-positive mesenchymal cells in craniofacial development. Front Cell Dev Biol 2022; 10:810527. [PMID: 36133922 PMCID: PMC9484000 DOI: 10.3389/fcell.2022.810527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5), a Wnt pathway member, has been previously recognised as a stem cell marker in numerous epithelial tissues. In this study, we used Lgr5-EGFP-CreERT2 mice to analyse the distribution of LGR5-positive cells during craniofacial development. LGR5 expressing cells were primarily located in the mesenchyme adjacent to the craniofacial epithelial structures undergoing folding, such as the nasopharyngeal duct, lingual groove, and vomeronasal organ. To follow the fate of LGR5-positive cells, we performed lineage tracing using an inducible Cre knock-in allele in combination with Rosa26-tdTomato reporter mice. The slight expansion of LGR5-positive cells was found around the vomeronasal organ, in the nasal cavity, and around the epithelium in the lingual groove. However, most LGR5 expressing cells remained in their original location, possibly supporting their signalling function for adjacent epithelium rather than exerting their role as progenitor cells for the craniofacial structures. Moreover, Lgr5 knockout mice displayed distinct defects in LGR5-positive areas, especially in the reduction of the nasopharyngeal duct, the alteration of the palatal shelves shape, abnormal epithelial folding in the lingual groove area, and the disruption of salivary gland development. The latter defect manifested as an atypical number and localisation of the glandular ducts. The gene expression of several Wnt pathway members (Rspo1-3, Axin2) was altered in Lgr5-deficient animals. However, the difference was not found in sorted EGFP-positive cells obtained from Lgr5 +/+ and Lgr5 -/- animals. Expression profiling of LGR5-positive cells revealed the expression of several markers of mesenchymal cells, antagonists, as well as agonists, of Wnt signalling, and molecules associated with the basal membrane. Therefore, LGR5-positive cells in the craniofacial area represent a very specific population of mesenchymal cells adjacent to the epithelium undergoing folding or groove formation. Our results indicate a possible novel role of LGR5 in the regulation of morphogenetic processes during the formation of complex epithelial structures in the craniofacial areas, a role which is not related to the stem cell properties of LGR5-positive cells as was previously defined for various epithelial tissues.
Collapse
Affiliation(s)
- Kristýna Olbertová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Dušan Hrčkulák
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Vítězslav Kříž
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Wojciech Jesionek
- Cellular Imaging Core Facility, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Jan Kubovčiak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Milan Ešner
- Cellular Imaging Core Facility, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
11
|
Huang Y, Winklbauer R. Cell cortex regulation by the planar cell polarity protein Prickle1. J Cell Biol 2022; 221:e202008116. [PMID: 35512799 PMCID: PMC9082893 DOI: 10.1083/jcb.202008116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2022] [Accepted: 04/09/2022] [Indexed: 01/07/2023] Open
Abstract
The planar cell polarity pathway regulates cell polarity, adhesion, and rearrangement. Its cytoplasmic core components Prickle (Pk) and Dishevelled (Dvl) often localize as dense puncta at cell membranes to form antagonizing complexes and establish cell asymmetry. In vertebrates, Pk and Dvl have been implicated in actomyosin cortex regulation, but the mechanism of how these proteins control cell mechanics is unclear. Here we demonstrate that in Xenopus prechordal mesoderm cells, diffusely distributed, cytoplasmic Pk1 up-regulates the F-actin content of the cortex. This counteracts cortex down-regulation by Dvl2. Both factors act upstream of casein kinase II to increase or decrease cortical tension. Thus, cortex modulation by Pk1 and Dvl2 is translated into mechanical force and affects cell migration and rearrangement during radial intercalation in the prechordal mesoderm. Pk1 also forms puncta and plaques, which are associated with localized depletion of cortical F-actin, suggesting opposite roles for diffuse and punctate Pk1.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Christodoulou N, Skourides PA. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure. Development 2022; 149:275604. [PMID: 35662330 PMCID: PMC9340557 DOI: 10.1242/dev.200358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Neural tube closure (NTC) is a fundamental process during vertebrate development and is indispensable for the formation of the central nervous system. Here, using Xenopus laevis embryos, live imaging, single-cell tracking, optogenetics and loss-of-function experiments, we examine the roles of convergent extension and apical constriction, and define the role of the surface ectoderm during NTC. We show that NTC is a two-stage process with distinct spatiotemporal contributions of convergent extension and apical constriction at each stage. Convergent extension takes place during the first stage and is spatially restricted at the posterior tissue, whereas apical constriction occurs during the second stage throughout the neural plate. We also show that the surface ectoderm is mechanically coupled with the neural plate and its movement during NTC is driven by neural plate morphogenesis. Finally, we show that an increase in surface ectoderm resistive forces is detrimental for neural plate morphogenesis. Summary: Detailed characterization of the contribution of distinct morphogenetic processes and mechanical tissue coupling during neural tube closure, a process indispensable for central nervous system formation in vertebrates.
Collapse
Affiliation(s)
- Neophytos Christodoulou
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| | - Paris A. Skourides
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| |
Collapse
|
13
|
Abstract
The molecular complexes underlying planar cell polarity (PCP) were first identified in Drosophila through analysis of mutant phenotypes in the adult cuticle and the orientation of associated polarized protrusions such as wing hairs and sensory bristles. The same molecules are conserved in vertebrates and are required for the localization of polarized protrusions such as primary or sensory cilia and the orientation of hair follicles. Not only is PCP signaling required to align cellular structures across a tissue, it is also required to coordinate movement during embryonic development and adult homeostasis. PCP signaling allows cells to interpret positional cues within a tissue to move in the appropriate direction and to coordinate this movement with their neighbors. In this review we outline the molecular basis of the core Wnt-Frizzled/PCP pathway, and describe how this signaling orchestrates collective motility in Drosophila and vertebrates. Here we cover the paradigms of ommatidial rotation and border cell migration in Drosophila, and convergent extension in vertebrates. The downstream cell biological processes that underlie polarized motility include cytoskeletal reorganization, and adherens junctional and extracellular matrix remodeling. We discuss the contributions of these processes in the respective cell motility contexts. Finally, we address examples of individual cell motility guided by PCP factors during nervous system development and in cancer disease contexts.
Collapse
|
14
|
Chuykin I, Itoh K, Kim K, Sokol SY. Frizzled3 inhibits Vangl2-Prickle3 association to establish planar cell polarity in the vertebrate neural plate. J Cell Sci 2021; 134:jcs258864. [PMID: 34806749 PMCID: PMC8729781 DOI: 10.1242/jcs.258864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
The orientation of epithelial cells in the plane of the tissue, known as planar cell polarity (PCP), is regulated by interactions of asymmetrically localized PCP protein complexes. In the Xenopus neural plate, Van Gogh-like2 (Vangl2) and Prickle3 (Pk3) proteins form a complex at the anterior cell boundaries, but how this complex is regulated in vivo remains largely unknown. Here, we use proximity biotinylation and crosslinking approaches to show that Vangl2-Pk3 association is inhibited by Frizzled3 (Fz3, also known as Fzd3), a core PCP protein that is specifically expressed in the neuroectoderm and is essential for the establishment of PCP in this tissue. This inhibition required Fz3-dependent Vangl2 phosphorylaton. Consistent with our observations, the complex of Pk3 with nonphosphorylatable Vangl2 did not polarize in the neural plate. These findings provide evidence for in vivo regulation of Vangl2-Pk3 complex formation and localization by a Frizzled receptor.
Collapse
Affiliation(s)
| | | | | | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Bell IJ, Horn MS, Van Raay TJ. Bridging the gap between non-canonical and canonical Wnt signaling through Vangl2. Semin Cell Dev Biol 2021; 125:37-44. [PMID: 34736823 DOI: 10.1016/j.semcdb.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/β-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/β-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/β-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/β-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.
Collapse
Affiliation(s)
- Ian James Bell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Matthew Sheldon Horn
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Terence John Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
16
|
Feng D, Wang J, Yang W, Li J, Lin X, Zha F, Wang X, Ma L, Choi NT, Mii Y, Takada S, Huen MSY, Guo Y, Zhang L, Gao B. Regulation of Wnt/PCP signaling through p97/VCP-KBTBD7-mediated Vangl ubiquitination and endoplasmic reticulum-associated degradation. SCIENCE ADVANCES 2021; 7:7/20/eabg2099. [PMID: 33990333 PMCID: PMC8121430 DOI: 10.1126/sciadv.abg2099] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 05/12/2023]
Abstract
The four-pass transmembrane proteins Vangl1 and Vangl2 are dedicated core components of Wnt/planar cell polarity (Wnt/PCP) signaling that critically regulate polarized cell behaviors in many morphological and physiological processes. Here, we found that the abundance of Vangl proteins is tightly controlled by the ubiquitin-proteasome system through endoplasmic reticulum-associated degradation (ERAD). The key ERAD component p97/VCP directly binds to Vangl at a highly conserved VCP-interacting motif and recruits the E3 ligase KBTBD7 via its UBA-UBX adaptors to promote Vangl ubiquitination and ERAD. We found that Wnt5a/CK1 prevents Vangl ubiquitination and ERAD by inducing Vangl phosphorylation, which facilitates Vangl export from the ER to the plasma membrane. We also provide in vivo evidence that KBTBD7 regulates convergent extension during zebrafish gastrulation and functions as a tumor suppressor in breast cancer by promoting Vangl degradation. Our findings reveal a previously unknown regulatory mechanism of Wnt/PCP signaling through the p97/VCP-KBTBD7-mediated ERAD pathway.
Collapse
Affiliation(s)
- Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jingyu Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fangzi Zha
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Luyao Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nga Ting Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
17
|
Kakebeen AD, Huebner RJ, Shindo A, Kwon K, Kwon T, Wills AE, Wallingford JB. A temporally resolved transcriptome for developing "Keller" explants of the Xenopus laevis dorsal marginal zone. Dev Dyn 2021; 250:717-731. [PMID: 33368695 DOI: 10.1002/dvdy.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Explanted tissues from vertebrate embryos reliably develop in culture and have provided essential paradigms for understanding embryogenesis, from early embryological investigations of induction, to the extensive study of Xenopus animal caps, to the current studies of mammalian gastruloids. Cultured explants of the Xenopus dorsal marginal zone ("Keller" explants) serve as a central paradigm for studies of convergent extension cell movements, yet we know little about the global patterns of gene expression in these explants. RESULTS In an effort to more thoroughly develop this important model system, we provide here a time-resolved bulk transcriptome for developing Keller explants. CONCLUSIONS The dataset reported here provides a useful resource for those using Keller explants for studies of morphogenesis and provide genome-scale insights into the temporal patterns of gene expression in an important tissue when explanted and grown in culture.
Collapse
Affiliation(s)
- Anneke D Kakebeen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Robert J Huebner
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| | - Asako Shindo
- Division of Biological Science, Nagoya University, Nagoya, Japan
| | - Kujin Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, (UNIST), Ulsan, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, (UNIST), Ulsan, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| |
Collapse
|
18
|
Kowalczyk I, Lee C, Schuster E, Hoeren J, Trivigno V, Riedel L, Görne J, Wallingford JB, Hammes A, Feistel K. Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds. Development 2021; 148:dev195008. [PMID: 33500317 PMCID: PMC7860117 DOI: 10.1242/dev.195008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Pathogenic mutations in the endocytic receptor LRP2 in humans are associated with severe neural tube closure defects (NTDs) such as anencephaly and spina bifida. Here, we have combined analysis of neural tube closure in mouse and in the African Clawed Frog Xenopus laevis to elucidate the etiology of Lrp2-related NTDs. Lrp2 loss of function impaired neuroepithelial morphogenesis, culminating in NTDs that impeded anterior neural plate folding and neural tube closure in both model organisms. Loss of Lrp2 severely affected apical constriction as well as proper localization of the core planar cell polarity (PCP) protein Vangl2, demonstrating a highly conserved role of the receptor in these processes, which are essential for neural tube formation. In addition, we identified a novel functional interaction of Lrp2 with the intracellular adaptor proteins Shroom3 and Gipc1 in the developing forebrain. Our data suggest that, during neurulation, motifs within the intracellular domain of Lrp2 function as a hub that orchestrates endocytic membrane removal for efficient apical constriction, as well as PCP component trafficking in a temporospatial manner.
Collapse
Affiliation(s)
- Izabela Kowalczyk
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Elisabeth Schuster
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Josefine Hoeren
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Valentina Trivigno
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Levin Riedel
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Jessica Görne
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annette Hammes
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Kerstin Feistel
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| |
Collapse
|
19
|
Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:3585-3599. [PMID: 32855169 PMCID: PMC7534437 DOI: 10.1534/g3.120.401476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biological tube formation underlies organ development and, when disrupted, can cause severe birth defects. To investigate the genetic basis of tubulogenesis, we study the formation of Drosophila melanogaster eggshell structures, called dorsal appendages, which are produced by epithelial tubes. Previously we found that precise levels of Drosophila Chitinase-Like Proteins (CLPs), encoded by the Imaginal disc growth factor (Idgf) gene family, are needed to regulate dorsal-appendage tube closure and tube migration. To identify factors that act in the Idgf pathway, we developed a genetic modifier screen based on the finding that overexpressing Idgf3 causes dorsal appendage defects with ∼50% frequency. Using a library of partially overlapping heterozygous deficiencies, we scanned chromosome 3L and found regions that enhanced or suppressed the Idgf3-overexpression phenotype. Using smaller deletions, RNAi, and mutant alleles, we further mapped five regions and refined the interactions to 58 candidate genes. Importantly, mutant alleles identified combover (cmb), a substrate of Rho-kinase (Rok) and a component of the Planar Cell Polarity (PCP) pathway, as an Idgf3-interacting gene: loss of function enhanced while gain of function suppressed the dorsal appendage defects. Since PCP drives cell intercalation in other systems, we asked if cmb/+ affected cell intercalation in our model, but we found no evidence of its involvement in this step. Instead, we found that loss of cmb dominantly enhanced tube defects associated with Idgf3 overexpression by expanding the apical area of dorsal appendage cells. Apical surface area determines tube volume and shape; in this way, Idgf3 and cmb regulate tube morphology.
Collapse
|
20
|
Humphries AC, Narang S, Mlodzik M. Mutations associated with human neural tube defects display disrupted planar cell polarity in Drosophila. eLife 2020; 9:e53532. [PMID: 32234212 PMCID: PMC7180057 DOI: 10.7554/elife.53532] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Planar cell polarity (PCP) and neural tube defects (NTDs) are linked, with a subset of NTD patients found to harbor mutations in PCP genes, but there is limited data on whether these mutations disrupt PCP signaling in vivo. The core PCP gene Van Gogh (Vang), Vangl1/2 in mammals, is the most specific for PCP. We thus addressed potential causality of NTD-associated Vangl1/2 mutations, from either mouse or human patients, in Drosophila allowing intricate analysis of the PCP pathway. Introducing the respective mammalian mutations into Drosophila Vang revealed defective phenotypic and functional behaviors, with changes to Vang localization, post-translational modification, and mechanistic function, such as its ability to interact with PCP effectors. Our findings provide mechanistic insight into how different mammalian mutations contribute to developmental disorders and strengthen the link between PCP and NTD. Importantly, analyses of the human mutations revealed that each is a causative factor for the associated NTD.
Collapse
Affiliation(s)
- Ashley C Humphries
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| | - Sonali Narang
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| |
Collapse
|
21
|
Kaissi AA, Kenis V, Shboul M, Grill F, Ganger R, Kircher SG. Tomographic Study of the Malformation Complex in Correlation With the Genotype in Patients With Robinow Syndrome: Review Article. J Investig Med High Impact Case Rep 2020; 8:2324709620911771. [PMID: 32172608 PMCID: PMC7074505 DOI: 10.1177/2324709620911771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/26/2020] [Indexed: 11/17/2022] Open
Abstract
We aimed to understand the etiology behind the abnormal craniofacial contour and other clinical presentations in a number of children with Robinow syndrome. Seven children with Robinow syndrome were enrolled in this study (autosomal recessive caused by homozygous mutations in the ROR2 gene on chromosome 9q22, and the autosomal dominant caused by heterozygous mutation in the WNT5A gene on chromosome 3p14). In the autosomal recessive (AR) group, the main clinical presentations were intellectual, disability, poor schooling achievement, episodes of headache/migraine, and poor fine motor coordinative skills, in addition to massive restrictions of the spine biomechanics causing effectively the development of kyposcoliosis and frequent bouts of respiratory infections. Three-dimensional reconstruction computed tomography scan revealed early closure of the metopic and the squamosal sutures of skull bones. Massive spinal malsegmentation and unsegmented spinal bar were noted in the AR group. In addition to severe mesomelia and camptodactyly, in the autosomal dominant (AD) group, no craniosynostosis but few Wormian bones and the spine showed limited malsegemetation, and no mesomelia or camptodactyly have been noted. We wish to stress that little information is available in the literature regarding the exact pathology of the cranial bones, axial, and appendicular malformations in correlation with the variable clinical presentations in patients with the 2 types of Robinow syndrome.
Collapse
Affiliation(s)
- Ali Al Kaissi
- Hanusch Hospital, Vienna, Austria
- Orthopedic Hospital of Speising, Vienna, Austria
| | - Vladimir Kenis
- Pediatric Orthopedic Institute n.a. H. Turner, Saint-Petersburg, Russia
| | | | - Franz Grill
- Orthopedic Hospital of Speising, Vienna, Austria
| | | | | |
Collapse
|
22
|
Abstract
This review is a comprehensive analysis of the cell biology and biomechanics of Convergent Extension in Xenopus.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA, United States.
| | - Ann Sutherland
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
23
|
Sampilo NF, Stepicheva NA, Zaidi SAM, Wang L, Wu W, Wikramanayake A, Song JL. Inhibition of microRNA suppression of Dishevelled results in Wnt pathway-associated developmental defects in sea urchin. Development 2018; 145:dev167130. [PMID: 30389855 PMCID: PMC6288383 DOI: 10.1242/dev.167130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene expressions by binding to the 3' untranslated region of target mRNAs thereby silencing translation. Some miRNAs are key regulators of the Wnt signaling pathways, which impact developmental processes. This study investigates miRNA regulation of different isoforms of Dishevelled (Dvl/Dsh), which encode a key component in the Wnt signaling pathway. The sea urchin Dvl mRNA isoforms have similar spatial distribution in early development, but one isoform is distinctively expressed in the larval ciliary band. We demonstrated that Dvl isoforms are directly suppressed by miRNAs. By blocking miRNA suppression of Dvl isoforms, we observed dose-dependent defects in spicule length, patterning of the primary mesenchyme cells, gut morphology, and cilia. These defects likely result from increased Dvl protein levels, leading to perturbation of Wnt-dependent signaling pathways and additional Dvl-mediated processes. We further demonstrated that overexpression of Dvl isoforms recapitulated some of the Dvl miRNATP-induced phenotypes. Overall, our results indicate that miRNA suppression of Dvl isoforms plays an important role in ensuring proper development and function of primary mesenchyme cells and cilia.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Wei Wu
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | | | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
24
|
Beloussov LV, Troshina TG, Glagoleva NS, Kremnyov SV. Local and global dynamics in collective movements of embryonic cells. Biosystems 2018; 173:36-51. [PMID: 30300678 DOI: 10.1016/j.biosystems.2018.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
Several important morphogenetic processes belong to the category of collective cell movements (CCM), by which we mean coordinated rearrangements of many neighboring cells. The causes of the dynamic order established during CCM are still unclear. We performed statistical studies of rates and angular orientations of cell rearrangements in two kinds of embryonic tissues, which we categorized as "committed" (in the sense of being capable of autonomous CCM) as opposed to "naïve" tissues, which are those that require external forces in order to exhibit full scale CCM. In addition, we distinguished two types of cell rearrangements: first, those in which mutual cell-cell shifts characterizing the local dynamics (LD); and, second, those which moved in reference to common external coordinates (global dynamics, GD). We observed that in most cases LD rates deviated from normal distributions and do so by creating excesses of extensively converging and moderately diverging cells. In contrast, GD was characterized by nearly random behavior of slowly moving cells, combined with increased angular focusing of the fast cells trajectories as well as bimodal distribution of cell rates. When committed tissues were opposed by external mechanical forces, then they tended to preserve the inherent CCM patterns. On the other hand, the naïve ones reacted by creating two orthogonal cells flows, one of these coinciding with the force direction. We consider CCM as a self-organizing process based on feedbacks between converging and diverging cell shifts, which is able to focus the trajectories imposed by external forces.
Collapse
Affiliation(s)
- Lev V Beloussov
- Laboratory of Developmental Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana G Troshina
- Laboratory of Developmental Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nadezhda S Glagoleva
- Laboratory of Developmental Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Stanislav V Kremnyov
- Laboratory of Developmental Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
25
|
Contribution of the Wnt Pathway to Defining Biology of Glioblastoma. Neuromolecular Med 2018; 20:437-451. [PMID: 30259273 DOI: 10.1007/s12017-018-8514-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM), a highly lethal brain tumor, has been comprehensively characterized at the molecular level with the identification of several potential treatment targets. Data concerning the Wnt pathway are relatively sparse, but apparently very important in defining several aspects of tumor biology. The Wnt ligands are involved in numerous basic biological processes including regulation of embryogenic development, cell fate determination, and organogenesis, but growing amount of data also support the roles of Wnt pathways in the formation of many tumors, including gliomas. Two main Wnt pathways are distinguished: the canonical (β-catenin) and non-canonical (planar cell polarity, Wnt/Ca2+) routes. Wnt signaling regulates glioma stem cells (GSCs), thereby defining invasive potential, recurrence, and treatment resistance of GBM. Some observations suggest that the Wnt pathways are differentially active in molecular subtypes of this tumor, thereby may also guide prognostication and novel therapeutic decisions. In this review, we highlight main elements and biological relevance of the Wnt pathways, primarily focusing on the pathogenesis and subtypes of GBM. Finally, we briefly summarize newer therapeutic strategies targeting networks of the Wnt signaling cascades and their molecular associates that appear to be marked contributors to GBM aggressiveness.
Collapse
|
26
|
Butler MT, Wallingford JB. Spatial and temporal analysis of PCP protein dynamics during neural tube closure. eLife 2018; 7:36456. [PMID: 30080139 PMCID: PMC6115189 DOI: 10.7554/elife.36456] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/25/2018] [Indexed: 12/26/2022] Open
Abstract
Planar cell polarity (PCP) controls convergent extension and axis elongation in all vertebrates. Although asymmetric localization of PCP proteins is central to their function, we understand little about PCP protein localization during convergent extension. Here, we use quantitative live imaging to simultaneously monitor cell intercalation behaviors and PCP protein dynamics in the Xenopus laevis neural plate epithelium. We observed asymmetric enrichment of PCP proteins, but more interestingly, we observed tight correlation of PCP protein enrichment with actomyosin-driven contractile behavior of cell-cell junctions. Moreover, we found that the turnover rates of junctional PCP proteins also correlated with the contractile behavior of individual junctions. All these dynamic relationships were disrupted when PCP signaling was manipulated. Together, these results provide a dynamic and quantitative view of PCP protein localization during convergent extension and suggest a complex and intimate link between the dynamic localization of core PCP proteins, actomyosin assembly, and polarized junction shrinking during cell intercalation in the closing vertebrate neural tube.
Collapse
Affiliation(s)
- Mitchell T Butler
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| |
Collapse
|
27
|
Seo HS, Habas R, Chang C, Wang J. Bimodal regulation of Dishevelled function by Vangl2 during morphogenesis. Hum Mol Genet 2017; 26:2053-2061. [PMID: 28334810 DOI: 10.1093/hmg/ddx095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Convergent extension (CE) is a fundamental morphogenetic mechanism that underlies numerous processes in vertebrate development, and its disruption can lead to human congenital disorders such as neural tube closure defects. The dynamic, oriented cell intercalation during CE is regulated by a group of core proteins identified originally in flies to coordinate epithelial planar cell polarity (PCP). The existing model explains how core PCP proteins, including Van Gogh (Vang) and Dishevelled (Dvl), segregate into distinct complexes on opposing cell cortex to coordinate polarity among static epithelial cells. The action of core PCP proteins in the dynamic process of CE, however, remains an enigma. In this report, we show that Vangl2 (Vang-like 2) exerts dual positive and negative regulation on Dvl during CE in both the mouse and Xenopus. We find that Vangl2 binds to Dvl to cell-autonomously promote efficient Dvl plasma membrane recruitment, a pre-requisite for PCP activation. At the same time, Vangl2 inhibits Dvl from interacting with its downstream effector Daam1 (Dishevelled associated activator of morphogenesis 1), and functionally suppresses Dvl → Daam1 cascade during CE. Our finding uncovers Vangl2-Dvl interaction as a key bi-functional switch that underlies the central logic of PCP signaling during morphogenesis, and provides new insight into PCP-related disorders in humans.
Collapse
Affiliation(s)
- Hwa-Seon Seo
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raymond Habas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
McCord M, Mukouyama YS, Gilbert MR, Jackson S. Targeting WNT Signaling for Multifaceted Glioblastoma Therapy. Front Cell Neurosci 2017; 11:318. [PMID: 29081735 PMCID: PMC5645527 DOI: 10.3389/fncel.2017.00318] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/26/2017] [Indexed: 01/17/2023] Open
Abstract
The WNT signaling pathway has been of great interest to developmental biologists for decades and has more recently become a central topic for study in cancer biology. It is vital for cell growth and regulation of embryogenesis in many organ systems, particularly the CNS and its associated vasculature. We summarize the role of WNT in CNS development and describe how WNT signaling makes key contributions to malignant glioma stemness, invasiveness, therapeutic resistance, and angiogenesis. The role of WNT in these mechanisms, along with creation and maintainance of the blood-brain barrier (BBB), points to the potential of WNT as a multi-faceted target in malignant glioma therapy.
Collapse
Affiliation(s)
- Matthew McCord
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetic and Developmental Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Sadhana Jackson
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
29
|
Abstract
The planar cell polarity (PCP) pathway is best known for its role in polarizing epithelial cells within the plane of a tissue but it also plays a role in a range of cell migration events during development. The mechanism by which the PCP pathway polarizes stationary epithelial cells is well characterized, but how PCP signaling functions to regulate more dynamic cell behaviors during directed cell migration is much less understood. Here, we review recent discoveries regarding the localization of PCP proteins in migrating cells and their impact on the cell biology of collective and individual cell migratory behaviors.
Collapse
Affiliation(s)
- Crystal F Davey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
30
|
hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus. Dev Biol 2017; 430:188-201. [PMID: 28778799 DOI: 10.1016/j.ydbio.2017.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022]
Abstract
Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis.
Collapse
|
31
|
Gentzel M, Schambony A. Dishevelled Paralogs in Vertebrate Development: Redundant or Distinct? Front Cell Dev Biol 2017; 5:59. [PMID: 28603713 PMCID: PMC5445114 DOI: 10.3389/fcell.2017.00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 01/21/2023] Open
Abstract
Dishevelled (DVL) proteins are highly conserved in the animal kingdom and are important key players in β-Catenin-dependent and -independent Wnt signaling pathways. Vertebrate genomes typically comprise three DVL genes, DVL1, DVL2, and DVL3. Expression patterns and developmental functions of the three vertebrate DVL proteins however, are only partially redundant in any given species. Moreover, expression and function of DVL isoforms have diverged between different vertebrate species. All DVL proteins share basic functionality in Wnt signal transduction. Additional, paralog-specific interactions and functions combined with context-dependent availability of DVL isoforms may play a central role in defining Wnt signaling specificity and add selectivity toward distinct downstream pathways. In this review, we recapitulate briefly cellular functions of DVL paralogs, their role in vertebrate embryonic development and congenital disease.
Collapse
Affiliation(s)
- Marc Gentzel
- Molecular Analysis-Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), TU DresdenDresden, Germany
| | - Alexandra Schambony
- Developmental Biology, Biology Department, Friedrich-Alexander University Erlangen-NurembergErlangen, Germany
| |
Collapse
|
32
|
Miles LB, Mizoguchi T, Kikuchi Y, Verkade H. A role for planar cell polarity during early endoderm morphogenesis. Biol Open 2017; 6:531-539. [PMID: 28377456 PMCID: PMC5450312 DOI: 10.1242/bio.021899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The zebrafish endoderm begins to develop at gastrulation stages as a monolayer of cells. The behaviour of the endoderm during gastrulation stages is well understood. However, knowledge of the morphogenic movements of the endoderm during somitogenesis stages, as it forms a mesenchymal rod, is lacking. Here we characterise endodermal development during somitogenesis stages, and describe the morphogenic movements as the endoderm transitions from a monolayer of cells into a mesenchymal endodermal rod. We demonstrate that, unlike the overlying mesoderm, endodermal cells are not polarised during their migration to the midline at early somitogenesis stages. Specifically, we describe the stage at which endodermal cells begin to leave the monolayer, a process we have termed 'midline aggregation'. The planar cell polarity (PCP) signalling pathway is known to regulate mesodermal and ectodermal cell convergence towards the dorsal midline. However, a role for PCP signalling in endoderm migration to the midline during somitogenesis stages has not been established. In this report, we investigate the role for PCP signalling in multiple phases of endoderm development during somitogenesis stages. Our data exclude involvement of PCP signalling in endodermal cells as they leave the monolayer.
Collapse
Affiliation(s)
- Lee B Miles
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical sciences, Chiba University, Chuo-ku 260-8675, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Heather Verkade
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Luxenburg C, Geiger B. Multiscale View of Cytoskeletal Mechanoregulation of Cell and Tissue Polarity. Handb Exp Pharmacol 2017; 235:263-284. [PMID: 27807694 DOI: 10.1007/164_2016_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of cells to generate, maintain, and repair tissues with complex architecture, in which distinct cells function as coherent units, relies on polarity cues. Polarity can be described as an asymmetry along a defined axis, manifested at the molecular, structural, and functional levels. Several types of cell and tissue polarities were described in the literature, including front-back, apical-basal, anterior-posterior, and left-right polarity. Extensive research provided insights into the specific regulators of each polarization process, as well as into generic elements that affect all types of polarities. The actin cytoskeleton and the associated adhesion structures are major regulators of most, if not all, known forms of polarity. Actin filaments exhibit intrinsic polarity and their ability to bind many proteins including the mechanosensitive adhesion and motor proteins, such as myosins, play key roles in cell polarization. The actin cytoskeleton can generate mechanical forces and together with the associated adhesions, probe the mechanical, structural, and chemical properties of the environment, and transmit signals that impact numerous biological processes, including cell polarity. In this article we highlight novel mechanisms whereby the mechanical forces and actin-adhesion complexes regulate cell and tissue polarity in a variety of natural and experimental systems.
Collapse
Affiliation(s)
- Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
34
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
35
|
Schille C, Bayerlová M, Bleckmann A, Schambony A. Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border. Development 2016; 143:3182-94. [DOI: 10.1242/dev.135426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinase Ror2 is a major Wnt receptor that activates β-catenin-independent signaling and plays a conserved role in the regulation of convergent extension movements and planar cell polarity in vertebrates. Mutations in the ROR2 gene cause recessive Robinow syndrome in humans, a short-limbed dwarfism associated with craniofacial malformations. Here, we show that Ror2 is required for local upregulation of gdf6 at the neural plate border in Xenopus embryos. Ror2 morphant embryos fail to upregulate neural plate border genes and show defects in the induction of neural crest cell fate. These embryos lack the spatially restricted activation of BMP signaling at the neural plate border at early neurula stages, which is required for neural crest induction. Ror2-dependent planar cell polarity signaling is required in the dorsolateral marginal zone during gastrulation indirectly to upregulate the BMP ligand Gdf6 at the neural plate border and Gdf6 is sufficient to rescue neural plate border specification in Ror2 morphant embryos. Thereby, Ror2 links Wnt/planar cell polarity signaling to BMP signaling in neural plate border specification and neural crest induction.
Collapse
Affiliation(s)
- Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Michaela Bayerlová
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Annalen Bleckmann
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen 37073, Germany
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
36
|
Davey CF, Mathewson AW, Moens CB. PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration. PLoS Genet 2016; 12:e1005934. [PMID: 26990447 PMCID: PMC4798406 DOI: 10.1371/journal.pgen.1005934] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/24/2016] [Indexed: 11/18/2022] Open
Abstract
The planar cell polarity (PCP) pathway is a cell-contact mediated mechanism for transmitting polarity information between neighboring cells. PCP “core components” (Vangl, Fz, Pk, Dsh, and Celsr) are essential for a number of cell migratory events including the posterior migration of facial branchiomotor neurons (FBMNs) in the plane of the hindbrain neuroepithelium in zebrafish and mice. While the mechanism by which PCP signaling polarizes static epithelial cells is well understood, how PCP signaling controls highly dynamic processes like neuronal migration remains an important outstanding question given that PCP components have been implicated in a range of directed cell movements, particularly during vertebrate development. Here, by systematically disrupting PCP signaling in a rhombomere-restricted manner we show that PCP signaling is required both within FBMNs and the hindbrain rhombomere 4 environment at the time when they initiate their migration. Correspondingly, we demonstrate planar polarized localization of PCP core components Vangl2 and Fzd3a in the hindbrain neuroepithelium, and transient localization of Vangl2 at the tips of retracting FBMN filopodia. Using high-resolution timelapse imaging of FBMNs in genetic chimeras we uncover opposing cell-autonomous and non-cell-autonomous functions for Fzd3a and Vangl2 in regulating FBMN protrusive activity. Within FBMNs, Fzd3a is required to stabilize filopodia while Vangl2 has an antagonistic, destabilizing role. However, in the migratory environment Fzd3a acts to destabilize FBMN filopodia while Vangl2 has a stabilizing role. Together, our findings suggest a model in which PCP signaling between the planar polarized neuroepithelial environment and FBMNs directs migration by the selective stabilization of FBMN filopodia. Planar cell polarity (PCP) is a common feature of many animal tissues. This type of polarity is most obvious in cells that are organized into epithelial sheets, where PCP signaling components act to orient cells in the plane of the tissue. Although, PCP is best understood for its function in polarizing stable epithelia, PCP is also required for the dynamic process of cell migration in animal development and disease. The goal of this study was to determine how PCP functions to control cell migration. We used the migration of facial branchiomotor neurons in the zebrafish hindbrain, which requires almost the entire suite of PCP core components, to address this question. We present evidence that PCP signaling within migrating neurons, and between migrating neurons and cells of their migratory environment promote migration by regulating filopodial dynamics. Our results suggest that broadly conserved interactions between PCP components control the cytoskeleton in motile cells and non-motile epithelia alike.
Collapse
Affiliation(s)
- Crystal F. Davey
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
| | - Andrew W. Mathewson
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
| | - Cecilia B. Moens
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
37
|
Sutherland AE. Tissue morphodynamics shaping the early mouse embryo. Semin Cell Dev Biol 2016; 55:89-98. [PMID: 26820524 DOI: 10.1016/j.semcdb.2016.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo.
Collapse
Affiliation(s)
- Ann E Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, United States.
| |
Collapse
|
38
|
Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun 2016; 7:10318. [PMID: 26754771 PMCID: PMC4729931 DOI: 10.1038/ncomms10318] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022] Open
Abstract
The non-canonical Wnt/planar cell polarity (Wnt/PCP) pathway plays a crucial role in embryonic development. Recent work has linked defects of this pathway to breast cancer aggressiveness and proposed Wnt/PCP signalling as a therapeutic target. Here we show that the archetypal Wnt/PCP protein VANGL2 is overexpressed in basal breast cancers, associated with poor prognosis and implicated in tumour growth. We identify the scaffold p62/SQSTM1 protein as a novel VANGL2-binding partner and show its key role in an evolutionarily conserved VANGL2–p62/SQSTM1–JNK pathway. This proliferative signalling cascade is upregulated in breast cancer patients with shorter survival and can be inactivated in patient-derived xenograft cells by inhibition of the JNK pathway or by disruption of the VANGL2–p62/SQSTM1 interaction. VANGL2–JNK signalling is thus a potential target for breast cancer therapy. Defects in non-canonical Wnt/planar cell polarity signalling have recently been linked to breast cancer aggressiveness. Puvirajesinghe et al. identify VANGL2, p62/SQSTM1 and JNK as important players in this pathway which may be amenable to therapeutic intervention in breast cancer.
Collapse
|
39
|
Ossipova O, Chu CW, Fillatre J, Brott BK, Itoh K, Sokol SY. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev Biol 2015; 408:316-27. [PMID: 26079437 PMCID: PMC4810801 DOI: 10.1016/j.ydbio.2015.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
Abstract
The planar cell polarity (PCP) pathway orients cells in diverse epithelial tissues in Drosophila and vertebrate embryos and has been implicated in many human congenital defects and diseases, such as ciliopathies, polycystic kidney disease and malignant cancers. During vertebrate gastrulation and neurulation, PCP signaling is required for convergent extension movements, which are primarily driven by mediolateral cell intercalations, whereas the role for PCP signaling in radial cell intercalations has been unclear. In this study, we examine the function of the core PCP proteins Vangl2, Prickle3 (Pk3) and Disheveled in the ectodermal cells, which undergo radial intercalations during Xenopus gastrulation and neurulation. In the epidermis, multiciliated cell (MCC) progenitors originate in the inner layer, but subsequently migrate to the embryo surface during neurulation. We find that the Vangl2/Pk protein complexes are enriched at the apical domain of intercalating MCCs and are essential for the MCC intercalatory behavior. Addressing the underlying mechanism, we identified KIF13B, as a motor protein that binds Disheveled. KIF13B is required for MCC intercalation and acts synergistically with Vangl2 and Disheveled, indicating that it may mediate microtubule-dependent trafficking of PCP proteins necessary for cell shape regulation. In the neural plate, the Vangl2/Pk complexes were also concentrated near the outermost surface of deep layer cells, suggesting a general role for PCP in radial intercalation. Consistent with this hypothesis, the ectodermal tissues deficient in Vangl2 or Disheveled functions contained more cell layers than normal tissues. We propose that PCP signaling is essential for both mediolateral and radial cell intercalations during vertebrate morphogenesis. These expanded roles underscore the significance of vertebrate PCP proteins as factors contributing to a number of diseases, including neural tube defects, tumor metastases, and various genetic syndromes characterized by abnormal migratory cell behaviors.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Fillatre
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara K Brott
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
40
|
Rodrigo Albors A, Tazaki A, Rost F, Nowoshilow S, Chara O, Tanaka EM. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. eLife 2015; 4:e10230. [PMID: 26568310 PMCID: PMC4755742 DOI: 10.7554/elife.10230] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023] Open
Abstract
Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. This dedifferentiation includes the acquisition of rapid cell cycles, the switch from neurogenic to proliferative divisions, and the re-expression of planar cell polarity (PCP) pathway components. We show that PCP induction is essential to reorient mitotic spindles along the anterior-posterior axis of elongation, and orthogonal to the cell apical-basal axis. Disruption of this property results in premature neurogenesis and halts regeneration. Our findings reveal a key role for PCP in coordinating the morphogenesis of spinal cord outgrowth with the switch from a homeostatic to a regenerative stem cell that restores missing tissue. DOI:http://dx.doi.org/10.7554/eLife.10230.001 Stem cells found in adult tissues are vitally important for tissue repair and maintenance. These cells divide in two main ways: equally to create two new stem cells, or unequally to create a stem cell and a cell that can develop into one of the cell types in the tissue. A key challenge for biologists is to understand how these tissue-resident stem cells are activated and organized to regenerate injured or missing tissue. Throughout the life of the axolotl salamander, neural stem cells in the spinal cord occasionally divide to add new nerve cells to the healthy spinal cord. However, the axolotl can also regenerate part of its spinal cord, for example if its tail is lost. Under these conditions, the neural stem cells can convert into a highly regenerative stem cell that can produce all the different cell types needed to regrow the spinal cord. As a stem cell becomes a new cell type, it activates different sets of genes. Therefore, Rodrigo Albors, Tazaki et al. measured gene activity in the neural stem cells involved in axolotl spinal cord regeneration to uncover how these cells develop into a more regenerative form. This revealed that when an axolotl tail is amputated, resident stem cells turn off the genes that are specifically active in neuron-generating cells. In addition, they activate a similar set of genes to that seen in the embryonic cells that form the developing nervous system. These genes speed up cell division and activate an important signaling pathway. This pathway – the Wnt/PCP pathway – fulfils various developmental roles, one being to orient cell divisions, particularly in elongating tissues. In axolotls, this pathway causes the stem cells to divide equally to increase the number of available stem cells, and orients the direction of these divisions to ensure that the regenerating spinal cord elongates correctly. If this pathway is disrupted, the cells return to dividing unequally, generating nerve cells prematurely and halting the growth of the spinal cord. Such insights could help develop methods of repairing damaged nervous tissue in other animals that cannot regenerate to the extent that axolotls can. DOI:http://dx.doi.org/10.7554/eLife.10230.002
Collapse
Affiliation(s)
- Aida Rodrigo Albors
- Deutsche Forschungsgemeinschaft - Center for Regenerative Therapies Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Dresden, Germany
| | - Akira Tazaki
- Deutsche Forschungsgemeinschaft - Center for Regenerative Therapies Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Dresden, Germany
| | - Fabian Rost
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Sergej Nowoshilow
- Deutsche Forschungsgemeinschaft - Center for Regenerative Therapies Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Dresden, Germany
| | - Osvaldo Chara
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany.,Institute of Physics of Liquids and Biological Systems, National Scientific and Technical Research Council, University of La Plata, La Plata, Argentina
| | - Elly M Tanaka
- Deutsche Forschungsgemeinschaft - Center for Regenerative Therapies Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
41
|
Araya C, Ward LC, Girdler GC, Miranda M. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis. Dev Dyn 2015; 245:197-208. [PMID: 26177834 DOI: 10.1002/dvdy.24304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/15/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022] Open
Abstract
The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,UACh Program in Cellular Dynamics and Microscopy.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), UACh
| | - Laura C Ward
- University of Bristol, School of Physiology and Pharmacology, Medical Sciences, University Walk, Bristol, United Kingdom
| | - Gemma C Girdler
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom
| | - Miguel Miranda
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile
| |
Collapse
|
42
|
Ossipova O, Kim K, Sokol SY. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling. Biol Open 2015; 4:722-30. [PMID: 25910938 PMCID: PMC4467192 DOI: 10.1242/bio.201511676] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP) proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP) of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
43
|
Gentzel M, Schille C, Rauschenberger V, Schambony A. Distinct functionality of dishevelled isoforms on Ca2+/calmodulin-dependent protein kinase 2 (CamKII) in Xenopus gastrulation. Mol Biol Cell 2015; 26:966-77. [PMID: 25568338 PMCID: PMC4342031 DOI: 10.1091/mbc.e14-06-1089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CamKII is a novel binding partner of Arrb2/Dvl2 protein complexes and is required for convergent extension movements in Xenopus. CamKII physically and functionally interacts with Dvl2, whereas CamKII activity is antagonistically modulated by Dvl1 and Dvl3. Wnt ligands trigger the activation of a variety of β-catenin–dependent and β-catenin–independent intracellular signaling cascades. Despite the variations in intracellular signaling, Wnt pathways share the effector proteins frizzled, dishevelled, and β-arrestin. It is unclear how the specific activation of individual branches and the integration of multiple signals are achieved. We hypothesized that the composition of dishevelled–β-arrestin protein complexes contributes to signal specificity and identified CamKII as an interaction partner of the dishevelled–β-arrestin protein complex by quantitative functional proteomics. Specifically, we found that CamKII isoforms interact differentially with the three vertebrate dishevelled proteins. Dvl1 is required for the activation of CamKII and PKC in the Wnt/Ca2+ pathway. However, CamKII interacts with Dvl2 but not with Dvl1, and Dvl2 is necessary to mediate CamKII function downstream of Dvl1 in convergent extension movements in Xenopus gastrulation. Our findings indicate that the different Dvl proteins and the composition of dishevelled–β-arrestin protein complexes contribute to the specific activation of individual branches of Wnt signaling.
Collapse
Affiliation(s)
- Marc Gentzel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Verena Rauschenberger
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
44
|
Ossipova O, Chuykin I, Chu CW, Sokol SY. Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development 2014; 142:99-107. [PMID: 25480917 DOI: 10.1242/dev.111161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Core planar cell polarity (PCP) proteins are well known to regulate polarity in Drosophila and vertebrate epithelia; however, their functions in vertebrate morphogenesis remain poorly understood. In this study, we describe a role for PCP signaling in the process of apical constriction during Xenopus gastrulation. The core PCP protein Vangl2 is detected at the apical surfaces of cells at the blastopore lip, and it functions during blastopore formation and closure. Further experiments show that Vangl2, as well as Daam1 and Rho-associated kinase (Rock), regulate apical constriction of bottle cells at the blastopore and ectopic constriction of ectoderm cells triggered by the actin-binding protein Shroom3. At the blastopore lip, Vangl2 is required for the apical accumulation of the recycling endosome marker Rab11. We also show that Rab11 and the associated motor protein Myosin V play essential roles in both endogenous and ectopic apical constriction, and might be involved in Vangl2 trafficking to the cell surface. Overexpression of Rab11 RNA was sufficient to partly restore normal blastopore formation in Vangl2-deficient embryos. These observations suggest that Vangl2 affects Rab11 to regulate apical constriction during blastopore formation.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilya Chuykin
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
45
|
Young T, Poobalan Y, Tan EK, Tao S, Ong S, Wehner P, Schwenty-Lara J, Lim CY, Sadasivam A, Lovatt M, Wang ST, Ali Y, Borchers A, Sampath K, Dunn NR. The PDZ domain protein Mcc is a novel effector of non-canonical Wnt signaling during convergence and extension in zebrafish. Development 2014; 141:3505-16. [DOI: 10.1242/dev.114033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During vertebrate gastrulation, a complex set of mass cellular rearrangements shapes the embryonic body plan and appropriately positions the organ primordia. In zebrafish and Xenopus, convergence and extension (CE) movements simultaneously narrow the body axis mediolaterally and elongate it from head to tail. This process is governed by polarized cell behaviors that are coordinated by components of the non-canonical, β-catenin-independent Wnt signaling pathway, including Wnt5b and the transmembrane planar cell polarity (PCP) protein Vangl2. However, the intracellular events downstream of Wnt/PCP signals are not fully understood. Here, we show that zebrafish mutated in colorectal cancer (mcc), which encodes an evolutionarily conserved PDZ domain-containing putative tumor suppressor, is required for Wnt5b/Vangl2 signaling during gastrulation. Knockdown of mcc results in CE phenotypes similar to loss of vangl2 and wnt5b, whereas overexpression of mcc robustly rescues the depletion of wnt5b, vangl2 and the Wnt5b tyrosine kinase receptor ror2. Biochemical experiments establish a direct physical interaction between Mcc and the Vangl2 cytoplasmic tail. Lastly, CE defects in mcc morphants are suppressed by downstream activation of RhoA and JNK. Taken together, our results identify Mcc as a novel intracellular effector of non-canonical Wnt5b/Vangl2/Ror2 signaling during vertebrate gastrulation.
Collapse
Affiliation(s)
- Teddy Young
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Yogavalli Poobalan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Shijie Tao
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
| | - Sheena Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Peter Wehner
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, GZMB, University of Göttingen, Göttingen 37077, Germany
| | - Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg 35043, Germany
| | - Chin Yan Lim
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Akila Sadasivam
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Matthew Lovatt
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Siew Tein Wang
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Yusuf Ali
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Annette Borchers
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, GZMB, University of Göttingen, Göttingen 37077, Germany
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg 35043, Germany
| | - Karuna Sampath
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
- Division of Biomedical Cell Biology, B040, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - N. Ray Dunn
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| |
Collapse
|
46
|
Iliescu A, Gravel M, Horth C, Gros P. Independent mutations at Arg181 and Arg274 of Vangl proteins that are associated with neural tube defects in humans decrease protein stability and impair membrane targeting. Biochemistry 2014; 53:5356-64. [PMID: 25068569 DOI: 10.1021/bi500400g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In vertebrates, Vangl proteins play important roles during embryogenesis, including establishing planar polarity and coordinating convergent extension movements. In mice, homozygosity for mutations in the Vangl1 and Vangl2 genes or combined heterozygosity for Vangl1/Vangl2 mutations causes the very severe neural tube defect (NTD) craniorachischisis. Recently, a number of patient-specific VANGL1 and VANGL2 protein mutations have been identified in familial and sporadic cases of mild and severe forms of NTDs. The biochemical nature of pathological effects in these mutations remains unknown. Of interest are two arginine residues, R181 and R274, that are highly conserved in Vangl protein homologues and found to be independently mutated in VANGL1 (R181Q and R274Q) and VANGL2 (R177H and R270H) in human cases of NTDs. The cellular and biochemical properties of R181Q and R274Q were established in transfected MDCK kidney epithelial cells and compared to those of wild-type (WT) Vangl1. Compared to that of WT, these mutations displayed impaired targeting to the plasma membrane and were instead detected in an intracellular endomembrane compartment that was positive for the endoplasmic reticulum. R181Q and R274Q showed impaired stability with significant reductions in measured half-lives from >20 h for WT protein to 9 and 5 h, respectively. These mutations have a cellular and biochemical phenotype that is indistinguishable from that of Vangl mutations known to cause craniorachichisis in mice (Lp). These results strongly suggest that R181 and R274 play critical roles in Vangl protein function and that their mutations cause neural tube defects in humans.
Collapse
Affiliation(s)
- Alexandra Iliescu
- Department of Biochemistry and ‡Complex Traits Group, McGill University , Montreal, QC, Canada H3G-0B1
| | | | | | | |
Collapse
|
47
|
Ossipova O, Kim K, Lake BB, Itoh K, Ioannou A, Sokol SY. Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure. Nat Commun 2014; 5:3734. [PMID: 24818582 PMCID: PMC4097039 DOI: 10.1038/ncomms4734] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022] Open
Abstract
Epithelial folding is a critical process underlying many morphogenetic events including vertebrate neural tube closure, however, its spatial regulation is largely unknown. Here we show that during neural tube formation Rab11-positive recycling endosomes acquire bilaterally symmetric distribution in the Xenopus neural plate, being enriched at medial apical cell junctions. This mediolateral polarization was under the control of planar cell polarity (PCP) signalling, was necessary for neural plate folding and was accompanied by the polarization of the exocyst component Sec15. Our further experiments demonstrate that similar PCP-dependent polarization of Rab11 is essential for ectopic apical constriction driven by the actin-binding protein Shroom and during embryonic wound repair. We propose that anisotropic membrane trafficking has key roles in diverse morphogenetic behaviours of individual cells and propagates in a tissue by a common mechanism that involves PCP.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Blue B Lake
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Andriani Ioannou
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
48
|
Williams M, Yen W, Lu X, Sutherland A. Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate. Dev Cell 2014; 29:34-46. [PMID: 24703875 PMCID: PMC4120093 DOI: 10.1016/j.devcel.2014.02.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
The mechanisms of tissue convergence and extension (CE) driving axial elongation in mammalian embryos, and in particular, the cellular behaviors underlying CE in the epithelial neural tissue, have not been identified. Here we show that mouse neural cells undergo mediolaterally biased cell intercalation and exhibit both apical boundary rearrangement and polarized basolateral protrusive activity. Planar polarization and coordination of these two cell behaviors are essential for neural CE, as shown by failure of mediolateral intercalation in embryos mutant for two proteins associated with planar cell polarity signaling: Vangl2 and Ptk7. Embryos with mutations in Ptk7 fail to polarize cell behaviors within the plane of the tissue, whereas Vangl2 mutant embryos maintain tissue polarity and basal protrusive activity but are deficient in apical neighbor exchange. Neuroepithelial cells in both mutants fail to apically constrict, leading to craniorachischisis. These results reveal a cooperative mechanism for cell rearrangement during epithelial morphogenesis.
Collapse
Affiliation(s)
- Margot Williams
- Department of Cell Biology; University of Virginia, Charlottesville, VA 22908, USA
| | - Weiwei Yen
- Department of Cell Biology; University of Virginia, Charlottesville, VA 22908, USA
| | - Xiaowei Lu
- Department of Cell Biology; University of Virginia, Charlottesville, VA 22908, USA
| | - Ann Sutherland
- Department of Cell Biology; University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
49
|
Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish. Mech Dev 2013; 131:1-14. [PMID: 24333599 DOI: 10.1016/j.mod.2013.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/28/2013] [Accepted: 12/01/2013] [Indexed: 01/07/2023]
Abstract
Van gogh-like 2 (Vangl2), a core component of the Wnt/planar cell polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the N-terminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements.
Collapse
|
50
|
Panousopoulou E, Tyson RA, Bretschneider T, Green JBA. The distribution of Dishevelled in convergently extending mesoderm. Dev Biol 2013; 382:496-503. [PMID: 23876427 PMCID: PMC3793869 DOI: 10.1016/j.ydbio.2013.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
Convergent extension (CE) is a conserved morphogenetic movement that drives axial lengthening of the primary body axis and depends on the planar cell polarity (PCP) pathway. In Drosophila epithelia, a polarised subcellular accumulation of PCP core components, such as Dishevelled (Dvl) protein, is associated with PCP function. Dvl has long been thought to accumulate in the mediolateral protrusions in Xenopus chordamesoderm cells undergoing CE. Here we present a quantitative analysis of Dvl intracellular localisation in Xenopus chordamesoderm cells. We find that, surprisingly, accumulations previously observed at mediolateral protrusions of chordamesodermal cells are not protrusion-specific but reflect yolk-free cytoplasm and are quantitatively matched by the distribution of the cytoplasm-filling lineage marker dextran. However, separating cell cortex-associated from bulk Dvl signal reveals a statistical enrichment of Dvl in notochord-somite boundary-(NSB)-directed protrusions, which is dependent upon NSB proximity. Dvl puncta were also observed, but only upon elevated overexpression. These puncta showed no statistically significant spatial bias, in contrast to the strongly posteriorly-enriched GFP-Dvl puncta previously reported in zebrafish. We propose that Dvl distribution is more subtle and dynamic than previously appreciated and that in vertebrate mesoderm it reflects processes other than protrusion as such.
Collapse
Affiliation(s)
- Eleni Panousopoulou
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, Floor 27 Guy's Tower, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | | | | | | |
Collapse
|