1
|
Schultz H, Zhou X, Alonso CAI, Ongaro L, Lin YF, Loka M, Brabletz T, Brabletz S, Stemmler MP, Boehm U, Bernard DJ. ZEB1 Inhibits LHβ Subunit Transcription When Overexpressed, but Is Dispensable for LH Synthesis in Mice. Endocrinology 2024; 165:bqae116. [PMID: 39248143 PMCID: PMC11422717 DOI: 10.1210/endocr/bqae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Luteinizing hormone (LH), a heterodimeric glycoprotein produced by pituitary gonadotrope cells, regulates gonadal function. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates LH synthesis and secretion. GnRH induces LHβ subunit (Lhb) expression via the transcription factor, early growth response 1 (EGR1), acting on the Lhb promoter. In contrast, overexpression of zinc finger E-box binding homeobox 1 (ZEB1) represses LH production in mice, but the underlying mechanism was not previously elucidated. Here, we observed that ZEB1 inhibited GnRH-stimulated but not basal Lhb mRNA expression in homologous murine LβT2 cells. Moreover, ZEB1 blocked GnRH and/or EGR1 induction of murine Lhb but not human LHB promoter-reporter activity in these cells. Using chimeric reporters, we mapped the species-specific ZEB1 sensitivity to sequence differences, including in Z- and E-boxes, in the proximal Lhb/LHB promoters, immediately upstream of the transcription start sites. ZEB1 bound to the murine Lhb promoter with higher affinity than to the human LHB promoter in this region. To examine ZEB1's physiological role in LH synthesis, we characterized gonadotrope-specific Zeb1 knockout mice. Loss of ZEB1 in gonadotropes did not affect LH production or secretion. Collectively, the data suggest that ZEB1, when overexpressed, can inhibit GnRH/EGR1 induction of murine Lhb transcription but does not play a necessary role in LH synthesis in mice.
Collapse
Affiliation(s)
- Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Mary Loka
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg 66421, Germany
| | - Daniel J Bernard
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3G 1Y6, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
2
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
3
|
Kwak YT, Montalbano AP, Kelleher AM, Colon-Caraballo M, Kraus WL, Mahendroo M, Mendelson CR. Decline in corepressor CNOT1 in the pregnant myometrium near term impairs progesterone receptor function and increases contractile gene expression. J Biol Chem 2024; 300:107484. [PMID: 38897566 PMCID: PMC11301068 DOI: 10.1016/j.jbc.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Progesterone (P4), acting via its nuclear receptor (PR), is critical for pregnancy maintenance by suppressing proinflammatory and contraction-associated protein (CAP)/contractile genes in the myometrium. P4/PR partially exerts these effects by tethering to NF-κB bound to their promot-ers, thereby decreasing NF-κB transcriptional activity. However, the underlying mechanisms whereby P4/PR interaction blocks proinflammatory and CAP gene expression are not fully understood. Herein, we characterized CCR-NOT transcription complex subunit 1 (CNOT1) as a corepressor that also interacts within the same chromatin complex as PR-B. In mouse myome-trium increased expression of CAP genes Oxtr and Cx43 at term coincided with a marked decline in expression and binding of CNOT1 to NF-κB-response elements within the Oxtr and Cx43 promoters. Increased CAP gene expression was accompanied by a pronounced decrease in enrichment of repressive histone marks and increase in enrichment of active histone marks to this genomic region. These changes in histone modification were associated with changes in expression of corresponding histone modifying enzymes. Myometrial tissues from P4-treated 18.5 dpc pregnant mice manifested increased Cnot1 expression at 18.5 dpc, compared to vehicle-treated controls. P4 treatment of PR-expressing hTERT-HM cells enhanced CNOT1 expression and its recruitment to PR bound NF-κB-response elements within the CX43 and OXTR promoters. Furthermore, knockdown of CNOT1 significantly increased expression of contractile genes. These novel findings suggest that decreased expression and DNA-binding of the P4/PR-regulated transcriptional corepressor CNOT1 near term and associated changes in histone modifications at the OXTR and CX43 promoters contribute to the induction of myometrial contractility leading to parturition.
Collapse
Affiliation(s)
- Youn-Tae Kwak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alina P Montalbano
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew M Kelleher
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Mariano Colon-Caraballo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mala Mahendroo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Carole R Mendelson
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Wang D, Du G, Chen X, Wang J, Liu K, Zhao H, Cheng C, He Y, Jing N, Xu P, Bao W, Xi X, Zhang Y, Wang N, Liu Y, Sun Y, Zhang K, Zhang P, Gao WQ, Zhu HH. Zeb1-controlled metabolic plasticity enables remodeling of chromatin accessibility in the development of neuroendocrine prostate cancer. Cell Death Differ 2024; 31:779-791. [PMID: 38654072 PMCID: PMC11164927 DOI: 10.1038/s41418-024-01295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Cell plasticity has been found to play a critical role in tumor progression and therapy resistance. However, our understanding of the characteristics and markers of plastic cellular states during cancer cell lineage transition remains limited. In this study, multi-omics analyses show that prostate cancer cells undergo an intermediate state marked by Zeb1 expression with epithelial-mesenchymal transition (EMT), stemness, and neuroendocrine features during the development of neuroendocrine prostate cancer (NEPC). Organoid-formation assays and in vivo lineage tracing experiments demonstrate that Zeb1+ epithelioid cells are putative cells of origin for NEPC. Mechanistically, Zeb1 transcriptionally regulates the expression of several key glycolytic enzymes, thereby predisposing tumor cells to utilize glycolysis for energy metabolism. During this process, lactate accumulation-mediated histone lactylation enhances chromatin accessibility and cellular plasticity including induction of neuro-gene expression, which promotes NEPC development. Collectively, Zeb1-driven metabolic rewiring enables the epigenetic reprogramming of prostate cancer cells to license the adeno-to-neuroendocrine lineage transition.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Genyu Du
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Xinyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Jinming Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Kaiyuan Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Huifang Zhao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Chaping Cheng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Yuman He
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Na Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Penghui Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wei Bao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Xialian Xi
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Yingchao Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Nan Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Yiyun Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Yujiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Kai Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Pengcheng Zhang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, 201210, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China.
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Helen He Zhu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China.
| |
Collapse
|
5
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
6
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Larsen LA, Hitz MP. Human Genetics of Atrial Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:467-480. [PMID: 38884726 DOI: 10.1007/978-3-031-44087-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.
Collapse
Affiliation(s)
- Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marc-Phillip Hitz
- Institute of Medical Genetics, University Medicine Oldenburg, Oldenburg, Germany.
- Department for Paediatric Cardiology, University Hospital Kiel, Kiel, Germany.
| |
Collapse
|
8
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
9
|
Saitoh M. Transcriptional regulation of EMT transcription factors in cancer. Semin Cancer Biol 2023; 97:21-29. [PMID: 37802266 DOI: 10.1016/j.semcancer.2023.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is one of the processes by which epithelial cells transdifferentiate into mesenchymal cells in the developmental stage, known as "complete EMT." In epithelial cancer, EMT, also termed "partial EMT," is associated with invasion, metastasis, and resistance to therapy, and is elicited by several transcription factors, frequently referred to as EMT transcription factors. Among these transcription factors that regulate EMT, ZEB1/2 (ZEB1 and ZEB2), SNAIL, and TWIST play a prominent role in driving the EMT process (hereafter referred to as "EMT-TFs"). Among these, ZEB1/2 show positive correlation with both expression of mesenchymal marker proteins and the aggressiveness of various carcinomas. On the other hand, TWIST and SNAIL are also correlated with the aggressiveness of carcinomas, but are not highly correlated with mesenchymal marker protein expression. Interestingly, these EMT-TFs are not detected simultaneously in any studied cases of aggressive cancers, except for sarcoma. Thus, only one or some of the EMT-TFs are expressed at high levels in cells of aggressive carcinomas. Expression of EMT-TFs is regulated by transforming growth factor-β (TGF-β), a well-established inducer of EMT, in cooperation with other signaling molecules, such as active RAS signals. The focus of this review is the molecular mechanisms by which EMT-TFs are transcriptionally sustained at sufficiently high levels in cells of aggressive carcinomas and upregulated by TGF-β during cancer progression.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan.
| |
Collapse
|
10
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
11
|
Ninfali C, Siles L, Esteve-Codina A, Postigo A. The mesodermal and myogenic specification of hESCs depend on ZEB1 and are inhibited by ZEB2. Cell Rep 2023; 42:113222. [PMID: 37819755 DOI: 10.1016/j.celrep.2023.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Human embryonic stem cells (hESCs) can differentiate into any cell lineage. Here, we report that ZEB1 and ZEB2 promote and inhibit mesodermal-to-myogenic specification of hESCs, respectively. Knockdown and/or overexpression experiments of ZEB1, ZEB2, or PAX7 in hESCs indicate that ZEB1 is required for hESC Nodal/Activin-mediated mesodermal specification and PAX7+ human myogenic progenitor (hMuP) generation, while ZEB2 inhibits these processes. ZEB1 downregulation induces neural markers, while ZEB2 downregulation induces mesodermal/myogenic markers. Mechanistically, ZEB1 binds to and transcriptionally activates the PAX7 promoter, while ZEB2 binds to and activates the promoter of the neural OTX2 marker. Transplanting ZEB1 or ZEB2 knocked down hMuPs into the muscles of a muscular dystrophy mouse model, showing that hMuP engraftment and generation of dystrophin-positive myofibers depend on ZEB1 and are inhibited by ZEB2. The mouse model results suggest that ZEB1 expression and/or downregulating ZEB2 in hESCs may also enhance hESC regenerative capacity for human muscular dystrophy therapy.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | | | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain; Molecular Targets Program, J.G. Brown Center, Louisville University Healthcare Campus, Louisville, KY 40202, USA; ICREA, 08010 Barcelona, Spain.
| |
Collapse
|
12
|
Sánchez-Tilló E, Pedrosa L, Vila I, Chen Y, Győrffy B, Sánchez-Moral L, Siles L, Lozano JJ, Esteve-Codina A, Darling DS, Cuatrecasas M, Castells A, Maurel J, Postigo A. The EMT factor ZEB1 paradoxically inhibits EMT in BRAF-mutant carcinomas. JCI Insight 2023; 8:e164629. [PMID: 37870961 PMCID: PMC10619495 DOI: 10.1172/jci.insight.164629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
Despite being in the same pathway, mutations of KRAS and BRAF in colorectal carcinomas (CRCs) determine distinct progression courses. ZEB1 induces an epithelial-to-mesenchymal transition (EMT) and is associated with worse progression in most carcinomas. Using samples from patients with CRC, mouse models of KrasG12D and BrafV600E CRC, and a Zeb1-deficient mouse, we show that ZEB1 had opposite functions in KRAS- and BRAF-mutant CRCs. In KrasG12D CRCs, ZEB1 was correlated with a worse prognosis and a higher number of larger and undifferentiated (mesenchymal or EMT-like) tumors. Surprisingly, in BrafV600E CRC, ZEB1 was associated with better prognosis; fewer, smaller, and more differentiated (reduced EMT) primary tumors; and fewer metastases. ZEB1 was positively correlated in KRAS-mutant CRC cells and negatively in BRAF-mutant CRC cells with gene signatures for EMT, cell proliferation and survival, and ERK signaling. On a mechanistic level, ZEB1 knockdown in KRAS-mutant CRC cells increased apoptosis and reduced clonogenicity and anchorage-independent growth; the reverse occurred in BRAFV600E CRC cells. ZEB1 is associated with better prognosis and reduced EMT signature in patients harboring BRAF CRCs. These data suggest that ZEB1 can function as a tumor suppressor in BRAF-mutant CRCs, highlighting the importance of considering the KRAS/BRAF mutational background of CRCs in therapeutic strategies targeting ZEB1/EMT.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Group of Gastrointestinal and Pancreatic Oncology, Department of Liver, Digestive System and Metabolism, IDIBAPS, Barcelona, Spain
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
| | - Leire Pedrosa
- Group of Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, and Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Ingrid Vila
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Yongxu Chen
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Balázs Győrffy
- Cancer Biomarker Research Group, Research Centre for Natural Sciences (TKK), and Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Lidia Sánchez-Moral
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Siles
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan J. Lozano
- Bioinformatics Platform, CIBEREHD, ISCIII, Barcelona, Spain
| | - Anna Esteve-Codina
- National Centre for Genomic Analysis (CNAG) Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Medicine and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Douglas S. Darling
- Department of Oral Immunology, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Miriam Cuatrecasas
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Group of Molecular Pathology of Inflammatory Conditions and Solid Tumours, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
- Department of Pathology, Hospital Clínic and University of Barcelona School of Medicine, Barcelona, Spain
| | - Antoni Castells
- Group of Gastrointestinal and Pancreatic Oncology, Department of Liver, Digestive System and Metabolism, IDIBAPS, Barcelona, Spain
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic and University of Barcelona School of Medicine, Barcelona, Spain
| | - Joan Maurel
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Group of Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, and Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Molecular Targets Program, Department of Medicine, J.G. Brown Cancer Center, Louisville, Kentucky, USA
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
13
|
Genetta T, Hurwitz J, Clark E, Herold B, Khalil S, Abbas T, Larner J. ZEB1 promotes non-homologous end joining double-strand break repair. Nucleic Acids Res 2023; 51:9863-9879. [PMID: 37665026 PMCID: PMC10570029 DOI: 10.1093/nar/gkad723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Repair of DSB induced by IR is primarily carried out by Non-Homologous End Joining (NHEJ), a pathway in which 53BP1 plays a key role. We have discovered that the EMT-inducing transcriptional repressor ZEB1 (i) interacts with 53BP1 and that this interaction occurs rapidly and is significantly amplified following exposure of cells to IR; (ii) is required for the localization of 53BP1 to a subset of double-stranded breaks, and for physiological DSB repair; (iii) co-localizes with 53BP1 at IR-induced foci (IRIF); (iv) promotes NHEJ and inhibits Homologous Recombination (HR); (v) depletion increases resection at DSBs and (vi) confers PARP inhibitor (PARPi) sensitivity on BRCA1-deficient cells. Lastly, ZEB1's effects on repair pathway choice, resection, and PARPi sensitivity all rely on its homeodomain. In contrast to the well-characterized therapeutic resistance of high ZEB1-expressing cancer cells, the novel ZEB1-53BP1-shieldin resection axis described here exposes a therapeutic vulnerability: ZEB1 levels in BRCA1-deficient tumors may serve as a predictive biomarker of response to PARPis.
Collapse
Affiliation(s)
- Thomas L Genetta
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Joshua C Hurwitz
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Evan A Clark
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Benjamin T Herold
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Shadi Khalil
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Tarek Abbas
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
- Dept. of Biochemistry and Molecular Genetics University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James M Larner
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| |
Collapse
|
14
|
Jain SM, Deka D, Das A, Paul S, Pathak S, Banerjee A. Role of Interleukins in Inflammation-Mediated Tumor Immune Microenvironment Modulation in Colorectal Cancer Pathogenesis. Dig Dis Sci 2023:10.1007/s10620-023-07972-8. [PMID: 37277647 DOI: 10.1007/s10620-023-07972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Tumor cells invade and spread through a procedure termed as epithelial-to-mesenchymal cell transition (EMT). EMT is triggered by any alterations in the genes that encode the extracellular matrix (ECM) proteins, the enzymes that break down the ECM, and the activation of the genes that causes the epithelial cell to change into a mesenchymal type. The transcription factors NF-κB, Smads, STAT3, Snail, Zeb, and Twist are activated by inflammatory cytokines, for instance, Tumor Necrosis Factor, Tumor Growth Factors, Interleukin-1, Interleukin-8, and Interleukin-6, which promotes EMT. MATERIALS The current piece of work has been reviewed from the literature works published in last 10 years on the role interleukins in inflammation-mediated tumor immune microenvironment modulation in colorectal cancer pathogenesis utilizing the databases like Google Scholar, PubMed, Science Direct. RESULTS Recent studies have demonstrated that pathological situations, such as epithelial malignancies, exhibit EMT characteristics, such as the downregulation of epithelial markers and the overexpression of mesenchymal markers. Several growing evidence have also proved its existence in the human colon during the carcinogenesis of colorectal cancer. Most often, persistent inflammation is thought to be one factor contributing to the initiation of human cancers, such as colorectal cancer (CRC). Therefore, according to epidemiologic and clinical research, people with ulcerative colitis and Crohn's disease have a greater probability of developing CRC. CONCLUSION A substantial amount of data points to the involvement of the NF-κB system, SMAD/STAT3 signaling cascade, microRNAs, and the Ras-mitogen-activated protein kinase/Snail/Slug in the epithelial-to-mesenchymal transition-mediated development of colorectal malignancies. As a result, EMT is reported to play an active task in the pathogenesis of colorectal cancer, and therapeutic interventions targeting the inflammation-mediated EMT might serve as a novel strategy for treating CRC. The illustration depicts the relationship between interleukins and their receptors as a driver of CRC development and the potential therapeutic targets.
Collapse
Affiliation(s)
- Samatha M Jain
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No.500 Fracc. San Pablo, 76130, Querétaro, CP, Mexico
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India.
| |
Collapse
|
15
|
Akhmetkaliyev A, Alibrahim N, Shafiee D, Tulchinsky E. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin? Mol Cancer 2023; 22:90. [PMID: 37259089 DOI: 10.1186/s12943-023-01793-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) and mesenchymal epithelial transition (MET) are genetic determinants of cellular plasticity. These programs operate in physiological (embryonic development, wound healing) and pathological (organ fibrosis, cancer) conditions. In cancer, EMT and MET interfere with various signalling pathways at different levels. This results in gross alterations in the gene expression programs, which affect most, if not all hallmarks of cancer, such as response to proliferative and death-inducing signals, tumorigenicity, and cell stemness. EMT in cancer cells involves large scale reorganisation of the cytoskeleton, loss of epithelial integrity, and gain of mesenchymal traits, such as mesenchymal type of cell migration. In this regard, EMT/MET plasticity is highly relevant to the Go-or-Grow concept, which postulates the dichotomous relationship between cell motility and proliferation. The Go-or-Grow decisions are critically important in the processes in which EMT/MET plasticity takes the central stage, mobilisation of stem cells during wound healing, cancer relapse, and metastasis. Here we outline the maintenance of quiescence in stem cell and metastatic niches, focusing on the implication of EMT/MET regulatory networks in Go-or-Grow switches. In particular, we discuss the analogy between cells residing in hybrid quasi-mesenchymal states and GAlert, an intermediate phase allowing quiescent stem cells to enter the cell cycle rapidly.
Collapse
Affiliation(s)
- Azamat Akhmetkaliyev
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | | | - Darya Shafiee
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Eugene Tulchinsky
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
16
|
Luo S, Kong C, Zhao S, Tang X, Wang Y, Zhou X, Li R, Liu X, Tang X, Sun S, Xie W, Zhang ZR, Jing Q, Gu A, Chen F, Wang D, Wang H, Han Y, Xie L, Ji Y. Endothelial HDAC1-ZEB2-NuRD Complex Drives Aortic Aneurysm and Dissection Through Regulation of Protein S-Sulfhydration. Circulation 2023; 147:1382-1403. [PMID: 36951067 DOI: 10.1161/circulationaha.122.062743] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Aortic aneurysm and aortic dissection (AAD) are life-threatening vascular diseases, with endothelium being the primary target for AAD treatment. Protein S-sulfhydration is a newly discovered posttranslational modification whose role in AAD has not yet been defined. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates AAD and its underlying mechanism. METHODS Protein S-sulfhydration in endothelial cells (ECs) during AAD was detected and hub genes regulating homeostasis of the endothelium were identified. Clinical data of patients with AAD and healthy controls were collected, and the level of the cystathionine γ lyase (CSE)/hydrogen sulfide (H2S) system in plasma and aortic tissue were determined. Mice with EC-specific CSE deletion or overexpression were generated, and the progression of AAD was determined. Unbiased proteomics and coimmunoprecipitation combined with mass spectrometry analysis were conducted to determine the upstream regulators of the CSE/H2S system and the findings were confirmed in transgenic mice. RESULTS Higher plasma H2S levels were associated with a lower risk of AAD, after adjustment for common risk factors. CSE was reduced in the endothelium of AAD mouse and aorta of patients with AAD. Protein S-sulfhydration was reduced in the endothelium during AAD and protein disulfide isomerase (PDI) was the main target. S-sulfhydration of PDI at Cys343 and Cys400 enhanced PDI activity and mitigated endoplasmic reticulum stress. EC-specific CSE deletion was exacerbated, and EC-specific overexpression of CSE alleviated the progression of AAD through regulating the S-sulfhydration of PDI. ZEB2 (zinc finger E-box binding homeobox 2) recruited the HDAC1-NuRD complex (histone deacetylase 1-nucleosome remodeling and deacetylase) to repress the transcription of CTH, the gene encoding CSE, and inhibited PDI S-sulfhydration. EC-specific HDAC1 deletion increased PDI S-sulfhydration and alleviated AAD. Increasing PDI S-sulfhydration with the H2S donor GYY4137 or pharmacologically inhibiting HDAC1 activity with entinostat alleviated the progression of AAD. CONCLUSIONS Decreased plasma H2S levels are associated with an increased risk of aortic dissection. The endothelial ZEB2-HDAC1-NuRD complex transcriptionally represses CTH, impairs PDI S-sulfhydration, and drives AAD. The regulation of this pathway effectively prevents AAD progression.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Chuiyu Kong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Yu Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xuechun Zhou
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Rui Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xingeng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xinlong Tang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (Xinlong Tang, W.X., D.W.)
| | - Shixiu Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Wei Xie
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (Xinlong Tang, W.X., D.W.)
| | - Zhi-Ren Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
- NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China (Q.J.)
| | - Aihua Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Feng Chen
- Department of Forensic Medicine (F.C.), Nanjing Medical University, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (Xinlong Tang, W.X., D.W.)
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA (H.W.)
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
- NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
| |
Collapse
|
17
|
Gómez R, Barter MJ, Alonso-Pérez A, Skelton AJ, Proctor C, Herrero-Beaumont G, Young DA. DNA methylation analysis identifies key transcription factors involved in mesenchymal stem cell osteogenic differentiation. Biol Res 2023; 56:9. [PMID: 36890579 PMCID: PMC9996951 DOI: 10.1186/s40659-023-00417-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Knowledge about regulating transcription factors (TFs) for osteoblastogenesis from mesenchymal stem cells (MSCs) is limited. Therefore, we investigated the relationship between genomic regions subject to DNA-methylation changes during osteoblastogenesis and the TFs known to directly interact with these regulatory regions. RESULTS The genome-wide DNA-methylation signature of MSCs differentiated to osteoblasts and adipocytes was determined using the Illumina HumanMethylation450 BeadChip array. During adipogenesis no CpGs passed our test for significant methylation changes. Oppositely, during osteoblastogenesis we identified 2462 differently significantly methylated CpGs (adj. p < 0.05). These resided outside of CpGs islands and were significantly enriched in enhancer regions. We confirmed the correlation between DNA-methylation and gene expression. Accordingly, we developed a bioinformatic tool to analyse differentially methylated regions and the TFs interacting with them. By overlaying our osteoblastogenesis differentially methylated regions with ENCODE TF ChIP-seq data we obtained a set of candidate TFs associated to DNA-methylation changes. Among them, ZEB1 TF was highly related with DNA-methylation. Using RNA interference, we confirmed that ZEB1, and ZEB2, played a key role in adipogenesis and osteoblastogenesis processes. For clinical relevance, ZEB1 mRNA expression in human bone samples was evaluated. This expression positively correlated with weight, body mass index, and PPARγ expression. CONCLUSIONS In this work we describe an osteoblastogenesis-associated DNA-methylation profile and, using these data, validate a novel computational tool to identify key TFs associated to age-related disease processes. By means of this tool we identified and confirmed ZEB TFs as mediators involved in the MSCs differentiation to osteoblasts and adipocytes, and obesity-related bone adiposity.
Collapse
Affiliation(s)
- Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Laboratorio 18, Edificio B, Planta -2, 15706, Santiago de Compostela, Spain.
| | - Matt J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Laboratorio 18, Edificio B, Planta -2, 15706, Santiago de Compostela, Spain
| | - Andrew J Skelton
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Carole Proctor
- Campus for Ageing and Vitality, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, 28040, Madrid, Avda Reyes Católicos, Spain
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
18
|
Jaiswal A, Singh R. CtBP: A global regulator of balancing acts and homeostases. Biochim Biophys Acta Rev Cancer 2023; 1878:188886. [PMID: 37001619 DOI: 10.1016/j.bbcan.2023.188886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The classical role of C-terminal binding protein (CtBP) is that of a global corepressor. However, its exact mechanism of repression is not known. In this review, we elucidate the repression motif used by CtBP. Further, we provide other unifying features of its mechanism of action. For example, in the presence of a high NADH/NAD+ ratio in the cell, causing a low glycolytic condition, the NADH-bound dimeric form of CtBP causes global repression, maintaining balances and homeostases of many cellular processes, under the cell surveillance of p53 and NFkB. In contrast, in the presence of a low NADH/NAD+ ratio, causing a high glycolytic condition, the NADH-free monomeric form of CtBP blocks p53 function and NFkB-mediated transcription. Further, a low NADH/NAD+ ratio upsets the homeostases and balances in the absence of the cell surveillances of p53 and NFkB, causing global instability, the dominant outcome of CtBP's action in carcinogenesis, in cells in a high glycolytic state.
Collapse
|
19
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
20
|
Peng J, Yu Z, Xiao R, Hu X, Xia Y. Exosomal ZEB1 Derived from Neural Stem Cells Reduces Inflammation Injury in OGD/R-Treated Microglia via the GPR30-TLR4-NF-κB Axis. Neurochem Res 2023; 48:1811-1821. [PMID: 36717511 DOI: 10.1007/s11064-023-03866-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
Ischemic stroke (IS) is the most common type of stroke and the second leading cause of death overall. Neural stem cells play protective roles in IS, but the underlying mechanism remains to be determined. Neural stem cells (NSC) were obtained from the fetal brain tissue of C57BL/6J mice. NSC-derived exosomes (NSC-Exos) were identified in the conditioned medium. Internalization of NSC-Exos was analyzed by fluorescence microscopy. In vitro microglia ischemic stroke injury model was induced using oxygen glucose deprivation/re-oxygenation (OGD/R) method. Cell viability and inflammation were analyzed by MTT, qPCR, ELISA and Western blotting assay. Interaction between ZEB1 and the promoter of GPR30 was verified by luciferase assay and chromatin immunoprecipitation. NSC-Exos prevented OGD/R-mediated inhibition of cell survival and the production of inflammatory cytokines in microglia cells. NSC-Exos increased ZEB1 expression in OGD/R-treated microglia. Down-regulation of ZEB1 expression in NSC-Exos abolished NSC-Exos' protective effects on OGD/R-treated microglia. ZEB1 bound to the promoter region of GPR30 and promoted its expression. Inhibiting GPR30 reversed NSC-Exos effects on cell viability and inflammation injury in OGD/R-treated microglia. Our study demonstrated that NSC exerted cytoprotective roles through release of exosomal ZEB1,which transcriptionally upregulated GPR30 expression, resulting in a reduction in TLR4/NF-κB pathway-induced inflammation. These findings shed light on NSC-Exos' cytoprotective mechanism and highlighted its potential application in the treatment of IS.
Collapse
Affiliation(s)
- Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Zhengtao Yu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Rongjun Xiao
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
21
|
Kumar S, Fan X, Rasouly HM, Sharma R, Salant DJ, Lu W. ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis. JCI Insight 2023; 8:e158418. [PMID: 36445780 PMCID: PMC9870089 DOI: 10.1172/jci.insight.158418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
FOXD1+ cell-derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific conditional knockout of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2-cKO mouse kidneys. Zeb2-deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers, including PDGFRβ, CSPG4, desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development, whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.
Collapse
|
22
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|
23
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
24
|
Post-Translational Modification of ZEB Family Members in Cancer Progression. Int J Mol Sci 2022; 23:ijms232315127. [PMID: 36499447 PMCID: PMC9737314 DOI: 10.3390/ijms232315127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Post-translational modification (PTM), the essential regulatory mechanisms of proteins, play essential roles in physiological and pathological processes. In addition, PTM functions in tumour development and progression. Zinc finger E-box binding homeobox (ZEB) family homeodomain transcription factors, such as ZEB1 and ZEB2, play a pivotal role in tumour progression and metastasis by induction epithelial-mesenchymal transition (EMT), with activation of stem cell traits, immune evasion and epigenetic reprogramming. However, the relationship between ZEB family members' post-translational modification (PTM) and tumourigenesis remains largely unknown. Therefore, we focussed on the PTM of ZEBs and potential therapeutic approaches in cancer progression. This review provides an overview of the diverse functions of ZEBs in cancer and the mechanisms and therapeutic implications that target ZEB family members' PTMs.
Collapse
|
25
|
Poonaki E, Kahlert UD, Meuth SG, Gorji A. The role of the ZEB1–neuroinflammation axis in CNS disorders. J Neuroinflammation 2022; 19:275. [PMCID: PMC9675144 DOI: 10.1186/s12974-022-02636-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a master modulator of the epithelial–mesenchymal transition (EMT), a process whereby epithelial cells undergo a series of molecular changes and express certain characteristics of mesenchymal cells. ZEB1, in association with other EMT transcription factors, promotes neuroinflammation through changes in the production of inflammatory mediators, the morphology and function of immune cells, and multiple signaling pathways that mediate the inflammatory response. The ZEB1–neuroinflammation axis plays a pivotal role in the pathogenesis of different CNS disorders, such as brain tumors, multiple sclerosis, cerebrovascular diseases, and neuropathic pain, by promoting tumor cell proliferation and invasiveness, formation of the hostile inflammatory micromilieu surrounding neuronal tissues, dysfunction of microglia and astrocytes, impairment of angiogenesis, and dysfunction of the blood–brain barrier. Future studies are needed to elucidate whether the ZEB1–neuroinflammation axis could serve as a diagnostic, prognostic, and/or therapeutic target for CNS disorders.
Collapse
Affiliation(s)
- Elham Poonaki
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany ,grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany
| | - Ulf Dietrich Kahlert
- grid.5807.a0000 0001 1018 4307Molecular and Experimental Surgery, Faculty of Medicine, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Gorji
- grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany ,grid.512981.60000 0004 0612 1380Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran ,grid.411583.a0000 0001 2198 6209Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Opposing roles of ZEB1 in the cytoplasm and nucleus control cytoskeletal assembly and YAP1 activity. Cell Rep 2022; 41:111452. [DOI: 10.1016/j.celrep.2022.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
|
27
|
Lee JH, Massagué J. TGF-β in Developmental and Fibrogenic EMTs. Semin Cancer Biol 2022; 86:136-145. [PMID: 36183999 PMCID: PMC10155902 DOI: 10.1016/j.semcancer.2022.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
TGF-β plays a prominent role as an inducer of epithelial-mesenchymal transitions (EMTs) during development and wound healing and in disease conditions such as fibrosis and cancer. During these processes EMT occurs together with changes in cell proliferation, differentiation, communication, and extracellular matrix remodeling that are orchestrated by multiple signaling inputs besides TGF-β. Chief among these inputs is RAS-MAPK signaling, which is frequently required for EMT induction by TGF-β. Recent work elucidated the molecular basis for the cooperation between the TGF-β-SMAD and RAS-MAPK pathways in the induction of EMT in embryonic, adult and carcinoma epithelial cells. These studies also provided direct mechanistic links between EMT and progenitor cell differentiation during gastrulation or intra-tumoral fibrosis during cancer metastasis. These insights illuminate the nature of TGF-β driven EMTs as part of broader processes during development, fibrogenesis and metastasis.
Collapse
Affiliation(s)
- Jun Ho Lee
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
28
|
Sirtuins and Hypoxia in EMT Control. Pharmaceuticals (Basel) 2022; 15:ph15060737. [PMID: 35745656 PMCID: PMC9228842 DOI: 10.3390/ph15060737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIF-independent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach.
Collapse
|
29
|
Zhang Z, Feng F, Liu J. Characterizing collaborative transcription regulation with a graph-based deep learning approach. PLoS Comput Biol 2022; 18:e1010162. [PMID: 35666736 PMCID: PMC9203014 DOI: 10.1371/journal.pcbi.1010162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/16/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023] Open
Abstract
Human epigenome and transcription activities have been characterized by a number of sequence-based deep learning approaches which only utilize the DNA sequences. However, transcription factors interact with each other, and their collaborative regulatory activities go beyond the linear DNA sequence. Therefore leveraging the informative 3D chromatin organization to investigate the collaborations among transcription factors is critical. We developed ECHO, a graph-based neural network, to predict chromatin features and characterize the collaboration among them by incorporating 3D chromatin organization from 200-bp high-resolution Micro-C contact maps. ECHO predicted 2,583 chromatin features with significantly higher average AUROC and AUPR than the best sequence-based model. We observed that chromatin contacts of different distances affected different types of chromatin features’ prediction in diverse ways, suggesting complex and divergent collaborative regulatory mechanisms. Moreover, ECHO was interpretable via gradient-based attribution methods. The attributions on chromatin contacts identify important contacts relevant to chromatin features. The attributions on DNA sequences identify TF binding motifs and TF collaborative binding. Furthermore, combining the attributions on contacts and sequences reveals important sequence patterns in the neighborhood which are relevant to a target sequence’s chromatin feature prediction.
Collapse
Affiliation(s)
- Zhenhao Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fan Feng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bhome R, Emaduddin M, James V, House LM, Thirdborough SM, Mellone M, Tulkens J, Primrose JN, Thomas GJ, De Wever O, Mirnezami AH, Sayan AE. Epithelial to mesenchymal transition influences fibroblast phenotype in colorectal cancer by altering miR-200 levels in extracellular vesicles. J Extracell Vesicles 2022; 11:e12226. [PMID: 35595718 PMCID: PMC9122835 DOI: 10.1002/jev2.12226] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) with a mesenchymal gene expression signature has the greatest propensity for distant metastasis and is characterised by the accumulation of cancer‐associated fibroblasts in the stroma. We investigated whether the epithelial to mesenchymal transition status of CRC cells influences fibroblast phenotype, with a focus on the transfer of extracellular vesicles (EVs), as a controlled means of cell–cell communication. Epithelial CRC EVs suppressed TGF‐β‐driven myofibroblast differentiation, whereas mesenchymal CRC EVs did not. This was driven by miR‐200 (miR‐200a/b/c, ‐141), which was enriched in epithelial CRC EVs and transferred to recipient fibroblasts. Ectopic miR‐200 expression or ZEB1 knockdown, in fibroblasts, similarly suppressed myofibroblast differentiation. Supporting these findings, there was a strong negative correlation between miR‐200 and myofibroblastic markers in a cohort of CRC patients in the TCGA dataset. This was replicated in mice, by co‐injecting epithelial or mesenchymal CRC cells with fibroblasts and analysing stromal markers of myofibroblastic phenotype. Fibroblasts from epithelial tumours contained more miR‐200 and expressed less ACTA2 and FN1 than those from mesenchymal tumours. As such, these data provide a new mechanism for the development of fibroblast heterogeneity in CRC, through EV‐mediated transfer of miRNAs, and provide an explanation as to why CRC tumours with greater metastatic potential are CAF rich.
Collapse
Affiliation(s)
- Rahul Bhome
- Cancer Sciences Unit, University of Southampton, Southampton, UK.,University Surgery, University of Southampton, Southampton, UK
| | | | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Louise M House
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | | | | | - Joeri Tulkens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - John N Primrose
- University Surgery, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Alex H Mirnezami
- Cancer Sciences Unit, University of Southampton, Southampton, UK.,University Surgery, University of Southampton, Southampton, UK
| | - A Emre Sayan
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| |
Collapse
|
31
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
32
|
Perez-Oquendo M, Gibbons DL. Regulation of ZEB1 Function and Molecular Associations in Tumor Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14081864. [PMID: 35454770 PMCID: PMC9031734 DOI: 10.3390/cancers14081864] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a pleiotropic transcription factor frequently expressed in carcinomas. ZEB1 orchestrates the transcription of genes in the control of several key developmental processes and tumor metastasis via the epithelial-to-mesenchymal transition (EMT). The biological function of ZEB1 is regulated through pathways that influence its transcription and post-transcriptional mechanisms. Diverse signaling pathways converge to induce ZEB1 activity; however, only a few studies have focused on the molecular associations or functional changes of ZEB1 by post-translational modifications (PTMs). Due to the robust effect of ZEB1 as a transcription repressor of epithelial genes during EMT, the contribution of PTMs in the regulation of ZEB1-targeted gene expression is an active area of investigation. Herein, we review the pivotal roles that phosphorylation, acetylation, ubiquitination, sumoylation, and other modifications have in regulating the molecular associations and behavior of ZEB1. We also outline several questions regarding the PTM-mediated regulation of ZEB1 that remain unanswered. The areas of research covered in this review are contributing to new treatment strategies for cancer by improving our mechanistic understanding of ZEB1-mediated EMT.
Collapse
Affiliation(s)
- Mabel Perez-Oquendo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-6363
| |
Collapse
|
33
|
Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci 2022; 79:182. [PMID: 35278142 PMCID: PMC8918127 DOI: 10.1007/s00018-022-04199-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
The dynamic transition between epithelial-like and mesenchymal-like cell states has been a focus for extensive investigation for decades, reflective of the importance of Epithelial-Mesenchymal Transition (EMT) through development, in the adult, and the contributing role EMT has to pathologies including metastasis and fibrosis. Not surprisingly, regulation of the complex genetic networks that underlie EMT have been attributed to multiple transcription factors and microRNAs. What is surprising, however, are the sheer number of different regulators (hundreds of transcription factors and microRNAs) for which critical roles have been described. This review seeks not to collate these studies, but to provide a perspective on the fundamental question of whether it is really feasible that so many regulators play important roles and if so, what does this tell us about EMT and more generally, the genetic machinery that controls complex biological processes.
Collapse
|
34
|
Jiang H, Wei H, Wang H, Wang Z, Li J, Ou Y, Xiao X, Wang W, Chang A, Sun W, Zhao L, Yang S. Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer. Cell Death Dis 2022; 13:206. [PMID: 35246504 PMCID: PMC8897397 DOI: 10.1038/s41419-022-04632-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 12/22/2022]
Abstract
Aerobic glycolysis (the Warburg effect) has been demonstrated to facilitate tumor progression by producing lactate, which has important roles as a proinflammatory and immunosuppressive mediator. However, how aerobic glycolysis is directly regulated is largely unknown. Here, we show that ectopic Zeb1 directly increases the transcriptional expression of HK2, PFKP, and PKM2, which are glycolytic rate-determining enzymes, thus promoting the Warburg effect and breast cancer proliferation, migration, and chemoresistance in vitro and in vivo. In addition, Zeb1 exerts its biological effects to induce glycolytic activity in response to hypoxia via the PI3K/Akt/HIF-1α signaling axis, which contributes to fostering an immunosuppressive tumor microenvironment (TME). Mechanistically, breast cancer cells with ectopic Zeb1 expression produce lactate in the acidic tumor milieu to induce the alternatively activated (M2) macrophage phenotype through stimulation of the PKA/CREB signaling pathway. Clinically, the expression of Zeb1 is positively correlated with dysregulation of aerobic glycolysis, accumulation of M2-like tumor-associated macrophages (TAMs) and a poor prognosis in breast cancer patients. In conclusion, these findings identify a Zeb1-dependent mechanism as a driver of breast cancer progression that acts by stimulating tumor–macrophage interplay, which could be a viable therapeutic target for the treatment of advanced human cancers.
Collapse
Affiliation(s)
- Huimin Jiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China.,Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Huimin Wei
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Zhaoyang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Jianjun Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Xuechun Xiao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Wenhao Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Antao Chang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Wei Sun
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China.
| |
Collapse
|
35
|
The Epithelial-Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. Int J Mol Sci 2022; 23:ijms23020800. [PMID: 35054987 PMCID: PMC8776206 DOI: 10.3390/ijms23020800] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial–mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal–epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression. In this review, we describe the complex interaction between EMT and metabolism during tumor progression. First, we outline the main connections between the two processes, with particular emphasis on the role of cancer stem cells and LncRNAs. Then, we focus on some specific cancers, such as breast, lung, and thyroid cancer.
Collapse
|
36
|
Rogers MP, Mi Z, Li NY, Wai PY, Kuo PC. Tumor: Stroma Interaction and Cancer. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:59-87. [PMID: 35165860 DOI: 10.1007/978-3-030-91311-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The understanding of how normal cells transform into tumor cells and progress to invasive cancer and metastases continues to evolve. The tumor mass is comprised of a heterogeneous population of cells that include recruited host immune cells, stromal cells, matrix components, and endothelial cells. This tumor microenvironment plays a fundamental role in the acquisition of hallmark traits, and has been the intense focus of current research. A key regulatory mechanism triggered by these tumor-stroma interactions includes processes that resemble epithelial-mesenchymal transition, a physiologic program that allows a polarized epithelial cell to undergo biochemical and cellular changes and adopt mesenchymal cell characteristics. These cellular adaptations facilitate enhanced migratory capacity, invasiveness, elevated resistance to apoptosis, and greatly increased production of ECM components. Indeed, it has been postulated that cancer cells undergo epithelial-mesenchymal transition to invade and metastasize.In the following discussion, the physiology of chronic inflammation, wound healing, fibrosis, and tumor invasion will be explored. The key regulatory cytokines, transforming growth factor β and osteopontin, and their roles in cancer metastasis will be highlighted.
Collapse
Affiliation(s)
- Michael P Rogers
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Zhiyong Mi
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Neill Y Li
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Philip Y Wai
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Paul C Kuo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
37
|
Zhang X, Tanwar VS, Jose CC, Lee HW, Cuddapah S. Transcriptional repression of E-cadherin in nickel-exposed lung epithelial cells mediated by loss of Sp1 binding at the promoter. Mol Carcinog 2022; 61:99-110. [PMID: 34727382 PMCID: PMC8665052 DOI: 10.1002/mc.23364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
E-cadherin plays a central role in the stability of epithelial tissues by facilitating cell-cell adhesion. Loss of E-cadherin expression is a hallmark of epithelial-mesenchymal transition (EMT), a major event in the pathogenesis of several lung diseases. Our earlier studies showed that nickel, a ubiquitous environmental toxicant, induced EMT by persistently downregulating E-cadherin expression in human lung epithelial cells and that the EMT remained irreversible postexposure. However, the molecular basis of persistent E-cadherin downregulation by nickel exposure is not understood. Here, our studies show that the binding of transcription factor Sp1 to the promoter of E-cadherin encoding gene, CDH1, is essential for its expression. Nickel exposure caused a loss of Sp1 binding at the CDH1 promoter, resulting in its downregulation and EMT induction. Loss of Sp1 binding at the CDH1 promoter was associated with an increase in the binding of ZEB1 adjacent to the Sp1 binding site. ZEB1, an EMT master regulator persistently upregulated by nickel exposure, is a negative regulator of CDH1. CRISPR-Cas9-mediated knockout of ZEB1 restored Sp1 binding at the CDH1 promoter. Furthermore, ZEB1 knockout rescued E-cadherin expression and re-established the epithelial phenotype. Since EMT is associated with a number of nickel-exposure-associated chronic inflammatory lung diseases including asthma, fibrosis and cancer and metastasis, our findings provide new insights into the mechanisms associated with nickel pathogenesis.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Vinay Singh Tanwar
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| |
Collapse
|
38
|
He L, Chen IW, Zhang Z, Zheng W, Sayadi A, Wang L, Sang W, Ji R, Lei J, Arnqvist G, Lei C, Zhu-Salzman K. In silico promoter analysis and functional validation identify CmZFH, the co-regulator of hypoxia-responsive genes CmScylla and CmLPCAT. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103681. [PMID: 34800642 DOI: 10.1016/j.ibmb.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Oxygen (O2) plays an essential role in aerobic organisms including terrestrial insects. Under hypoxic stress, the cowpea bruchid (Callosobruchus maculatus) ceases feeding and growth. However, larvae, particularly 4th instar larvae exhibit very high tolerance to hypoxia and can recover normal growth once brought to normoxia. To better understand the molecular mechanism that enables insects to cope with low O2 stress, we performed RNA-seq to distinguish hypoxia-responsive genes in midguts and subsequently identified potential common cis-elements in promoters of hypoxia-induced and -repressed genes, respectively. Selected elements were subjected to gel-shift and transient transfection assays to confirm their cis-regulatory function. Of these putative common cis-elements, AREB6 appeared to regulate the expression of CmLPCAT and CmScylla, two hypoxia-induced genes. CmZFH, the putative AREB6-binding protein, was hypoxia-inducible. Transient expression of CmZFH in Drosophila S2 cells activated CmLPCAT and CmScylla, and their induction was likely through interaction of CmZFH with AREB6. Binding to AREB6 was further confirmed by bacterially expressed CmZFH recombinant protein. Deletion analyses indicated that the N-terminal zinc-finger cluster of CmZFH was the key AREB6-binding domain. Through in silico and experimental exploration, we discovered novel transcriptional regulatory components associated with gene expression dynamics under hypoxia that facilitated insect survival.
Collapse
Affiliation(s)
- Li He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ivy W Chen
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Zan Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, 75236, Sweden
| | - Lei Wang
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Wen Sang
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Rui Ji
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, 75236, Sweden
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
39
|
The Transcription Factors Zeb1 and Snail Induce Cell Malignancy and Cancer Stem Cell Phenotype in Prostate Cells, Increasing Androgen Synthesis Capacity and Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:51-64. [PMID: 36587301 DOI: 10.1007/978-3-031-12974-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prostate cancer (PCa) incidence has increased during the last decades, becoming one of the leading causes of death by cancer in men worldwide. During an extended period of prostate cancer, malignant cells are androgen-sensitive being testosterone the main responsible for tumor growth. Accordingly, treatments blocking production and action of testosterone are mostly used. However, during disease progression, PCa cells become androgen insensitive producing a castration-resistant stage with a worse prognosis. Overcoming castration-resistant prostate cancer (CRPC) has become a great challenge in the management of this disease. In the search for molecular pathways leading to therapy resistance, the epithelial-mesenchymal transition (EMT), and particularly the transcription factors zinc finger E-box-binding homeobox 1 (Zeb1) and zinc finger protein SNAI1 (Snail), master genes of the EMT, have shown to have pivotal roles. Also, the discovery that cancer stem cells (CSCs) can be generated de novo from their non-CSCs counterpart has led to the question whereas these EMT transcription factors could be implicated in this dynamic conversion between non-CSC and CSC. In this review, we analyze evidence supporting the idea that Zeb1 and Snail induce cell malignancy and cancer stem cell phenotype in prostate cells, increasing androgen synthesis capacity and therapy resistance.
Collapse
|
40
|
Ong CH, Tham CL, Harith HH, Firdaus N, Israf DA. TGF-β-induced fibrosis: A review on the underlying mechanism and potential therapeutic strategies. Eur J Pharmacol 2021; 911:174510. [PMID: 34560077 DOI: 10.1016/j.ejphar.2021.174510] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-beta (TGF-β) plays multiple homeostatic roles in the regulation of inflammation, proliferation, differentiation and would healing of various tissues. Many studies have demonstrated that TGF-β stimulates activation and proliferation of fibroblasts, which result in extracellular matrix deposition. Its increased expression can result in many fibrotic diseases, and the level of expression is often correlated with disease severity. On this basis, inhibition of TGF-β and its activity has great therapeutic potential for the treatment of various fibrotic diseases such as pulmonary fibrosis, renal fibrosis, systemic sclerosis and etc. By understanding the molecular mechanism of TGF-β signaling and activity, researchers were able to develop different strategies in order to modulate the activity of TGF-β. Antisense oligonucleotide was developed to target the mRNA of TGF-β to inhibit its expression. There are also neutralizing monoclonal antibodies that can target the TGF-β ligands or αvβ6 integrin to prevent binding to receptor or activation of latent TGF-β respectively. Soluble TGF-β receptors act as ligand traps that competitively bind to the TGF-β ligands. Many small molecule inhibitors have been developed to inhibit the TGF-β receptor at its cytoplasmic domain and also intracellular signaling molecules. Peptide aptamer technology has been used to target downstream TGF-β signaling. Here, we summarize the underlying mechanism of TGF-β-induced fibrosis and also review various strategies of inhibiting TGF-β in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Chun Hao Ong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Nazmi Firdaus
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia.
| |
Collapse
|
41
|
Inotani S, Taniguchi Y, Nakamura K, Nishikawa H, Matsumoto T, Horino T, Fujimoto S, Sano S, Yanagita M, Terada Y. Knockout of Zeb2 ameliorates progression of renal tubulointerstitial fibrosis in a mouse model of renal ischemia-reperfusion injury. Nephrol Dial Transplant 2021; 37:454-468. [PMID: 34724064 DOI: 10.1093/ndt/gfab311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Zeb2, a zinc finger E-box-binding homeobox transcription factor, regulates transforming growth factor (TGF)-β signaling pathway. However, its role in the pathogenesis of acute kidney injury (AKI) and AKI to chronic kidney disease (CKD) transition is unclear. METHODS We evaluated Zeb2 function in a bilateral renal ischemia-reperfusion injury (IRI)-induced AKI model using proximal tubule-specific Zeb2 conditional knockout (Zeb2-cKO) and wild-type (WT) mice, and in renal biopsy samples. RESULTS In Zeb2-cKO mice, the levels of plasma creatinine and blood urea nitrogen post-IRI were significantly lower than that in WT mice. Immunohistological analysis revealed mild tubular injury, reduced neutrophil infiltration, less fibrotic changes, and reduced expression of fibrotic proteins (collagen type IV, α-smooth muscle actin [α-SMA], fibronectin, and connective tissue growth factor [CTGF]), at 3-14 days post-IRI. Zeb2 expression was upregulated in proximal tubular cells post-IRI in WT mice. Zeb2 siRNA transfection reduced TGF-β stimulated mRNA and protein expression of collagen type IV, α-SMA, fibronectin, and CTGF in cultured renal tubular cells. Patients with AKI to CKD transition exhibited high Zeb2 expression in renal tubules, as revealed by renal biopsy. Hypoxia and CoCl2-treatment upregulated Zeb2 promoter activity and mRNA and protein expression in cultured renal tubular epithelial cells, suggesting a regulatory role for hypoxia. CONCLUSIONS Zeb2 was upregulated in renal tissues in both mice and humans with AKI. Zeb2 regulates fibrotic pathways in the pathogenesis of AKI and AKI to CKD transition. Therefore, inhibition of Zeb2 could be a potential therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Satoshi Inotani
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Yoshinori Taniguchi
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Keisyun Nakamura
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Hirofumi Nishikawa
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Tatsuki Matsumoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Taro Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| |
Collapse
|
42
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
43
|
Chen YY, Jiang KS, Bai XH, Liu M, Lin SY, Xu T, Wei JY, Li D, Xiong YC, Xin WJ, Li ZY. ZEB1 Induces Ddr1 Promoter Hypermethylation and Contributes to the Chronic Pain in Spinal Cord in Rats Following Oxaliplatin Treatment. Neurochem Res 2021; 46:2181-2191. [PMID: 34032956 DOI: 10.1007/s11064-021-03355-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/22/2021] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
Application of chemotherapeutic oxaliplatin represses gene transcription through induction of DNA methylation, which may contribute to oxaliplatin-induced chronic pain. Here, Ddr1, which showed an increased methylation in the promoter, was screened from the SRA methylation database (PRJNA587622) after oxaliplatin treatment. qPCR and MeDIP assays verified that oxaliplatin treatment increased the methylation in Ddr1 promoter region and decreased the expression of DDR1 in the neurons of spinal dorsal horn. In addition, overexpression of DDR1 by intraspinal injection of AAV-hSyn-Ddr1 significantly alleviated the mechanical allodynia induced by oxaliplatin. Furthermore, we found that oxaliplatin treatment increased the expression of DNMT3b and ZEB1 in dorsal horn neurons, and promoted the interaction between DNMT3b and ZEB1. Intrathecal injection of ZEB1 siRNA inhibited the enhanced recruitment of DNMT3b and the hypermethylation in Ddr1 promoter induced by oxaliplatin. Finally, ZEB1 siRNA rescued the DDR1 downregulation and mechanical allodynia induced by oxaliplatin. In conclusion, these results suggested that the ZEB1 recruited DNMT3b to the Ddr1 promoter, which induced the DDR1 downregulation and contributed to the oxaliplatin-induced chronic pain.
Collapse
Affiliation(s)
- Yi-Ying Chen
- Sun Yat-Sen Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kai-Sheng Jiang
- Sun Yat-Sen Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Hui Bai
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yet-Sen University, Guangzhou, 510080, China
| | - Meng Liu
- Sun Yat-Sen Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Su-Yan Lin
- Sun Yat-Sen Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Xu
- Sun Yat-Sen Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-You Wei
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Dai Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuan-Chang Xiong
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wen-Jun Xin
- Sun Yat-Sen Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhen-Yu Li
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yet-Sen University, 58 Zhongshan Rd. 2, Guangzhou, 510080, China.
| |
Collapse
|
44
|
González-Martínez S, Pérez-Mies B, Pizarro D, Caniego-Casas T, Cortés J, Palacios J. Epithelial Mesenchymal Transition and Immune Response in Metaplastic Breast Carcinoma. Int J Mol Sci 2021; 22:ijms22147398. [PMID: 34299016 PMCID: PMC8306902 DOI: 10.3390/ijms22147398] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Metaplastic breast carcinoma (MBC) is a heterogeneous group of infrequent triple negative (TN) invasive carcinomas with poor prognosis. MBCs have a different clinical behavior from other types of triple negative breast cancer (TNBC), being more resistant to standard chemotherapy. MBCs are an example of tumors with activation of epithelial–mesenchymal transition (EMT). The mechanisms involved in EMT could be responsible for the increase in the infiltrative and metastatic capacity of MBCs and resistance to treatments. In addition, a relationship between EMT and the immune response has been seen in these tumors. In this sense, MBC differ from other TN tumors showing a lower number of tumor-infiltrating lymphocytes (TILS) and a higher percentage of tumor cells expressing programmed death-ligand 1 (PD-L1). A better understanding of the relationship between the immune system and EMT could provide new therapeutic approaches in MBC.
Collapse
Affiliation(s)
| | - Belén Pérez-Mies
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
| | - David Pizarro
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
| | - Tamara Caniego-Casas
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
| | - Javier Cortés
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670 Madrid, Spain
- International Breast Cancer Center (IBCC), Quironsalud Group, 08017 Barcelona, Spain
- Medica Scientia Innovation Research, 08007 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
- Correspondence: (J.C.); (J.P.)
| | - José Palacios
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
- Correspondence: (J.C.); (J.P.)
| |
Collapse
|
45
|
Meng L, Zheng Y, Liu S, Ju Y, Ren S, Sang Y, Zhu Y, Gu L, Liu F, Zhao Y, Zhang X, Sang M. ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-β. Cancer Lett 2021; 519:117-129. [PMID: 34216686 DOI: 10.1016/j.canlet.2021.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
ZEB1 is an important transcription factor that plays a critical role in TGF-β-induced epithelial-mesenchymal transition (EMT) and tumor metastasis. However, the mechanisms by which ZEB1 regulates metastasis in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here, we identified a novel circular RNA, circ-DOCK5, the biogenesis of which is directly regulated by ZEB1 and ZEB1-repressed RNA-binding protein eIF4A3. Tissue microarray analysis identified circ-DOCK5 to be downregulated in ESCC tissues, and its downregulation correlated with poor prognosis. Moreover, circ-DOCK5 increased the stability of miR-627-3p by functioning as a "reservoir" for miR-627-3p to partially reverse the ZEB1-enhanced migration and invasion in ESCC. MiR-627-3p inhibited the expression of TGFB2 and the secretion of TGF-β, which further resulted in downregulation of ZEB1 and suppression of TGF-β-induced EMT. In vivo experiments showed that ZEB1 promoted metastasis in ESCC by regulating expression of circ-DOCK5. Therefore, the present study revealed that ZEB1-mediated downregulation of circ-DOCK5 facilitates metastasis in ESCC by forming a positive feedback loop with TGF-β by altering the miR-627-3p/TGFB2 signaling. Targeting this signaling pathway may help suppress progression in ESCC.
Collapse
Affiliation(s)
- Lingjiao Meng
- Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China; Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yang Zheng
- Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China; Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Sihua Liu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yingchao Ju
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Shuguang Ren
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yang Sang
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yonggang Zhu
- Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Lina Gu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Fei Liu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yang Zhao
- Research Management Office, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Xiaochong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Meixiang Sang
- Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China; Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China.
| |
Collapse
|
46
|
Han X, Duan X, Liu Z, Long Y, Liu C, Zhou J, Li N, Qin J, Wang Y. ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells. Breast Cancer Res Treat 2021; 188:329-342. [PMID: 34169392 DOI: 10.1007/s10549-021-06301-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Prior studies have noted that zinc finger E-box binding homeobox 1 (ZEB1) is a master transcription regulator, affecting the expression of nearly 2000 genes in breast cancer cells, especially in the epithelial-mesenchymal transition (EMT) process. We now tested the role of ZEB1 on the oxidative stress of cancer cells and explored its possible mechanisms. METHODS Two human breast cancer cell lines MDA-MB-231 and MCF7 were selected for the ROS test, PCR, immunofluorescence, Western blot, chromatin immunoprecipitation assay, luciferase assay, and enzyme assay. Mouse models experiments and bioinformatics analysis were conducted to test the indicated molecules. RESULTS We observed ZEB1 could inhibit GPX4 transcription by binding to the E-box motifs and promote breast cancer progression by accumulating intracellular ROS. From the perspective of ROS clearance, Vitamin E enhanced GPX4 function to consume L-glutathione and eliminated excess intracellular ROS. CONCLUSIONS ZEB1 could not only regulate EMT, but also inhibit GPX4 transcription by binding to the E-box motif. It was important to note that the ZEB1/GPX4 axis had a therapeutic effect on breast cancer metabolism.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Medicinal Chemical Biology & College of Pharmacy, Nankai University, Tianjin, 300354, China
| | - Xianxian Duan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhanzhao Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yaping Long
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Yue Wang
- School of Medicine, Nankai University, Tianjin, 300071, China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, 300041, China.
| |
Collapse
|
47
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
48
|
Xu C, Shi H, Jiang X, Fan Y, Huang D, Qi X, Cheng Q. ZEB1 Mediates Bone Marrow Mesenchymal Stem Cell Osteogenic Differentiation Partly via Wnt/β-Catenin Signaling. Front Mol Biosci 2021; 8:682728. [PMID: 34109218 PMCID: PMC8183571 DOI: 10.3389/fmolb.2021.682728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/14/2021] [Indexed: 01/28/2023] Open
Abstract
Zinc finger E-box-binding homebox 1 (ZEB1) is a zinc-finger transcription factor best known for its role in promoting the epithelial-mesenchymal transition, which is also related to osteogenesis. Here, ZEB1 was investigated for its role in the commitment of bone marrow mesenchymal stem cells (BMSCs) to osteoblasts. In vitro, ZEB1 expression decreased following osteogenic differentiation. Furthermore, silencing of ZEB1 in BMSCs promoted osteogenic activity and mineralization. The increase in osteogenic differentiation induced by si-ZEB1 could be partly rescued by the inhibition of Wnt/β-catenin (si-β-catenin). In vivo, knockdown of ZEB1 in BMSCs inhibited the rapid bone loss of ovariectomized (OVX) mice. ZEB1 expression has also been negatively associated with bone mass and bone formation in postmenopausal women. In conclusion, ZEB1 is an essential transcription factor in BMSC differentiation and may serve as a potential anabolic strategy for treating and preventing postmenopausal osteoporosis (PMOP).
Collapse
Affiliation(s)
- Cuidi Xu
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Hongli Shi
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Xin Jiang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Yongqian Fan
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Donghui Huang
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| |
Collapse
|
49
|
Guo Y, Lu X, Chen Y, Rendon B, Mitchell RA, Cuatrecasas M, Cortés M, Postigo A, Liu Y, Dean DC. Zeb1 induces immune checkpoints to form an immunosuppressive envelope around invading cancer cells. SCIENCE ADVANCES 2021; 7:7/21/eabd7455. [PMID: 34020945 PMCID: PMC8139582 DOI: 10.1126/sciadv.abd7455] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/31/2021] [Indexed: 05/05/2023]
Abstract
The PDL1-PD1 immune checkpoint inhibits T cell activation, and its blockade is effective in a subset of patients. Studies are investigating how checkpoints are hijacked by cancer cells and why most patients remain resistant to immunotherapy. Epithelial mesenchymal transition (EMT), which drives tumor cell invasion via the Zeb1 transcription factor, is linked to immunotherapy resistance. In addition, M2-polarized tumor-associated macrophages (TAMs), which inhibit T cell migration and activation, may also cause immunotherapy resistance. How EMT in invading cancer cells is linked to therapy resistance and events driving TAM M2 polarization are therefore important questions. We show that Zeb1 links these two resistance pathways because it is required for PDL1 expression on invading lung cancer cells, and it also induces CD47 on these invading cells, which drives M2 polarization of adjacent TAMs. Resulting reprogramming of the microenvironment around invading cells shields them from the hostile inflammatory environment surrounding tumors.
Collapse
Affiliation(s)
- Yan Guo
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Xiaoqin Lu
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Yao Chen
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha, China
| | - Beatriz Rendon
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Robert A Mitchell
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Miriam Cuatrecasas
- Department of Pathology, Centro de Diagnóstico Biomédico (CDB) Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Marlies Cortés
- Group of Transcriptional Regulation of Gene Expression, IDIBAPS, and Dept. of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Antonio Postigo
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
- Group of Transcriptional Regulation of Gene Expression, IDIBAPS, and Dept. of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Yongqing Liu
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
| | - Douglas C Dean
- Department of Medicine, Division of Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
| |
Collapse
|
50
|
Hao T, Xu J, Fang S, Jiang J, Chen X, Wu W, Li L, Li M, Zhang C, He Y. Overexpression of ZNF460 predicts worse survival and promotes metastasis through JAK2/STAT3 signaling pathway in patient with colon cancer. J Cancer 2021; 12:3198-3208. [PMID: 33976729 PMCID: PMC8100796 DOI: 10.7150/jca.55079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Zinc finger proteins (ZNFs) are a class of protein containing zinc finger domains, and they play an important role in tumor progression. However, as a member of the ZNFs family, the effect of ZNF460 in colon cancer remains unclear. In this study, we found that the expression of ZNF460 protein were markedly increased in clinical colon cancer tissues compared with para-cancer non-cancerous tissues by tissue immunohistochemistry (IHC) and western blot (WB). We also confirmed this result at the mRNA and protein levels of ZNF460 through bioinformatics analysis. In addition, high expression of ZNF460 was correlated with increased depth of invasion (P<0.05), increased lymph node metastasis (P<0.05), distant metastasis (P<0.05) and high blood serum CA19-9 level (P<0.05). High expression of ZNF460 predicted poor overall survival (OS) and recurrence free survival (RFS) in patients with colon cancer. Moreover, multivariate analyses revealed that ZNF460 was an independent prognostic factor in both OS (hazard ratio [HR]: 1.636; 95% confidence interval [CI], 1.028-2.603; P = 0.038) and RFS (HR: 2.215; 95% CI: 1.227-3.997; P = 0.008). The knockdown of ZNF460 suppressed the invasion and metastasis of colon cancer cells in vitro. Mechanistically, we revealed that ZNF460 promotes the activation of the JAK2/STAT3 signaling pathway in colon cancer cells. Taken together, overexpression of ZNF460 predicted worse survival and promoted metastasis through JAK2/STAT3 signaling pathway in patient with colon cancer, and could be a novel therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Tengfei Hao
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Jiannan Xu
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Sufen Fang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jianlong Jiang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xinyuan Chen
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Wenhui Wu
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Liang Li
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Mingzhe Li
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Changhua Zhang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yulong He
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| |
Collapse
|