1
|
Shi Y, Feng Y, Wang Q, Dong G, Xia W, Jiang F. The Role of tRNA-Centered Translational Regulatory Mechanisms in Cancer. Cancers (Basel) 2023; 16:77. [PMID: 38201505 PMCID: PMC10778012 DOI: 10.3390/cancers16010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. While numerous factors have been identified as contributing to the development of malignancy, our understanding of the mechanisms involved remains limited. Early cancer detection and the development of effective treatments are therefore critical areas of research. One class of molecules that play a crucial role in the transmission of genetic information are transfer RNAs (tRNAs), which are the most abundant RNA molecules in the human transcriptome. Dysregulated synthesis of tRNAs directly results in translation disorders and diseases, including cancer. Moreover, various types of tRNA modifications and the enzymes responsible for these modifications have been implicated in tumor biology. Furthermore, alterations in tRNA modification can impact tRNA stability, and impaired stability can prompt the cleavage of tRNAs into smaller fragments known as tRNA fragments (tRFs). Initially believed to be random byproducts lacking any physiological function, tRFs have now been redefined as non-coding RNA molecules with distinct roles in regulating RNA stability, translation, target gene expression, and other biological processes. In this review, we present recent findings on translational regulatory models centered around tRNAs in tumors, providing a deeper understanding of tumorigenesis and suggesting new directions for cancer treatment.
Collapse
Affiliation(s)
- Yuanjian Shi
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Qinglin Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
2
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
3
|
Huang Y, Zhen Y, Chen Y, Sui S, Zhang L. Unraveling the interplay between RAS/RAF/MEK/ERK signaling pathway and autophagy in cancer: From molecular mechanisms to targeted therapy. Biochem Pharmacol 2023; 217:115842. [PMID: 37802240 DOI: 10.1016/j.bcp.2023.115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
RAS/RAF/MEK/ERK signaling pathway is one of the most important pathways of Mitogen-activated protein kinases (MAPK), which widely participate in regulating cell proliferation, differentiation, apoptosis and signaling transduction. Autophagy is an essential mechanism that maintains cellular homeostasis by degrading aged and damaged organelles. Recently, some studies revealed RAS/RAF/MEK/ERK signaling pathway is closely related to autophagy regulation and has a dual effect in tumor cells. However, the specific mechanism by which RAS/RAF/MEK/ERK signaling pathway participates in autophagy regulation is not fully understood. This article provides a comprehensive review of the research progress with regard to the RAS/RAF/MEK/ERK signaling pathway and autophagy, as well as their interplay in cancer therapy. The impact of small molecule inhibitors that target the RAS/RAF/MEK/ERK signaling pathway on autophagy is discussed in this study. The advantages and limitations of the clinical combination of these small molecule inhibitors with autophagy inhibitors are also explored. The findings from this study may provide additional perspectives for future cancer treatment strategies.
Collapse
Affiliation(s)
- Yunli Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yongqi Zhen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanmei Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shaoguang Sui
- Emergency Department, The Second Hospital, Dalian Medical University, Dalian 116000, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
4
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
5
|
Bahmad HF, Gogola S, Rejzer M, Stoyanov K, Gomez AS, Valencia AK, Cummings A, Skerry T, Alloush F, Aljamal AA, Deb A, Alghamdi S, Poppiti R. Unraveling the Mysteries of Perineural Invasion in Benign and Malignant Conditions. Curr Oncol 2023; 30:8948-8972. [PMID: 37887547 PMCID: PMC10605475 DOI: 10.3390/curroncol30100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Perineural invasion (PNI) is defined as the dissemination of neoplastic cells within the perineural space. PNI can be a strong indicator of malignancy and is linked to poor prognosis and adverse outcomes in various malignant neoplasms; nevertheless, it can also be seen in benign pathologic conditions. In this review article, we discuss various signaling pathways and neurotrophic factors implicated in the development and progression of PNI. We also describe the methodology, benefits, and limitations of different in vitro, ex vivo, and in vivo models of PNI. The spectrum of presentation for PNI can range from diffuse spread within large nerves ("named" nerves) all the way through localized spread into unnamed microscopic nerves. Therefore, the clinical significance of PNI is related to its extent rather than its mere presence or absence. In this article, we discuss the guidelines for the identification and quantification of PNI in different malignant neoplasms based on the College of American Pathologists (CAP) and World Health Organization (WHO) recommendations. We also describe benign pathologic conditions and neoplasms demonstrating PNI and potential mimics of PNI. Finally, we explore avenues for the future development of targeted therapy options via modulation of signaling pathways involved in PNI.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
| | - Samantha Gogola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Michael Rejzer
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Kalin Stoyanov
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Aaron S. Gomez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Ann-Katrin Valencia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Adonicah Cummings
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Timothy Skerry
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Ferial Alloush
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
| | - Abed A. Aljamal
- Department of Medicine, Division of Hematology Oncology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Arunima Deb
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
| | - Sarah Alghamdi
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Lari A, Glaunsinger BA. Murine Gammaherpesvirus 68 ORF45 Stimulates B2 Retrotransposon and Pre-tRNA Activation in a Manner Dependent on Mitogen-Activated Protein Kinase (MAPK) Signaling. Microbiol Spectr 2023; 11:e0017223. [PMID: 36752632 PMCID: PMC10100704 DOI: 10.1128/spectrum.00172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/09/2023] Open
Abstract
RNA polymerase III (RNAPIII) transcribes a variety of noncoding RNAs, including tRNA (tRNA) and the B2 family of short interspersed nuclear elements (SINEs). B2 SINEs are noncoding retrotransposons that possess tRNA-like promoters and are normally silenced in healthy somatic tissue. Infection with the murine gammaherpesvirus MHV68 induces transcription of both SINEs and tRNAs, in part through the activity of the viral protein kinase ORF36. Here, we identify the conserved MHV68 tegument protein ORF45 as an additional activator of these RNAPIII loci. MHV68 ORF45 and ORF36 form a complex, resulting in an additive induction RNAPIII and increased ORF45 expression. ORF45-induced RNAPIII transcription is dependent on its activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway, which in turn increases the abundance of the RNAPIII transcription factor Brf1. Other viral and nonviral activators of MAPK/ERK signaling also increase the levels of Brf1 protein, B2 SINE RNA, and tRNA, suggesting that this is a common strategy to increase RNAPIII activity. IMPORTANCE Gammaherpesviral infection alters the gene expression landscape of a host cell, including through the induction of noncoding RNAs transcribed by RNA polymerase III (RNAPIII). Among these are a class of repetitive genes known as retrotransposons, which are normally silenced elements and can copy and spread throughout the genome, and transfer RNAs (tRNAs), which are fundamental components of protein translation machinery. How these loci are activated during infection is not well understood. Here, we identify ORF45 from the model murine gammaherpesvirus MHV68 as a novel activator of RNAPIII transcription. To do so, it engages the MAPK/ERK signaling pathway, which is a central regulator of cellular response to environmental stimuli. Activation of this pathway leads to the upregulation of a key factor required for RNAPIII activity, Brf1. These findings expand our understanding of the regulation and dysregulation of RNAPIII transcription and highlight how viral cooption of key signaling pathways can impact host gene expression.
Collapse
Affiliation(s)
- Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Howard Hughes Medical Institute, Berkeley, California, USA
| |
Collapse
|
7
|
Wang J, Chen Q, Wang X, Zhao S, Deng H, Guo B, Zhang C, Song X, Deng W, Zhang T, Ni H. TFIIB-related factor 1 is a nucleolar protein that promotes RNA polymerase I-directed transcription and tumour cell growth. Hum Mol Genet 2023; 32:104-121. [PMID: 35925837 DOI: 10.1093/hmg/ddac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) products play fundamental roles in ribosomal assembly, protein synthesis, metabolism and cell growth. Abnormal expression of both Pol I transcription-related factors and Pol I products causes a range of diseases, including ribosomopathies and cancers. However, the factors and mechanisms governing Pol I-dependent transcription remain to be elucidated. Here, we report that transcription factor IIB-related factor 1 (BRF1), a subunit of transcription factor IIIB required for RNA polymerase III (Pol III)-mediated transcription, is a nucleolar protein and modulates Pol I-mediated transcription. We showed that BRF1 can be localized to the nucleolus in several human cell types. BRF1 expression correlates positively with Pol I product levels and tumour cell growth in vitro and in vivo. Pol III transcription inhibition assays confirmed that BRF1 modulates Pol I-directed transcription in an independent manner rather than through a Pol III product-to-45S pre-rRNA feedback mode. Mechanistically, BRF1 binds to the Pol I transcription machinery components and can be recruited to the rDNA promoter along with them. Additionally, alteration of BRF1 expression affects the recruitment of Pol I transcription machinery components to the rDNA promoter and the expression of TBP and TAF1A. These findings indicate that BRF1 modulates Pol I-directed transcription by controlling the expression of selective factor 1 subunits. In summary, we identified a novel role of BRF1 in Pol I-directed transcription, suggesting that BRF1 can independently regulate both Pol I- and Pol III-mediated transcription and act as a key coordinator of Pol I and Pol III.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.,School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tongcun Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hongwei Ni
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
8
|
Saneyasu T, Nakamura T, Honda K, Kamisoyama H. IGF-1 knockdown inhibits phosphorylation of Akt and ERK in chicken embryonic myotubes. Growth Horm IGF Res 2022; 65:101478. [PMID: 35717687 DOI: 10.1016/j.ghir.2022.101478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE We examined whether auto/paracrine insulin-like growth factor-1 (IGF-1) contributes to the phosphorylation of Akt and ERK in chicken myotubes. METHODS Chicken myotubes were treated with IGF-1 siRNA, and then total RNA and protein were harvested for real-time PCR and western blot analysis. RESULTS Treatment with IGF-1 siRNA inhibited the phosphorylation of Akt and ERK, but not of ribosomal protein S6, in chicken myotubes. Interestingly, IGF-1 siRNA downregulated the expression of IGF-2. CONCLUSIONS The results of this study suggest that auto/paracrine IGF-1 contributes to Akt and ERK phosphorylation in chicken myotubes.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Tomonori Nakamura
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
9
|
MAP kinases are involved in RNA polymerase III regulation upon LPS treatment in macrophages. Gene 2022; 831:146548. [PMID: 35569767 DOI: 10.1016/j.gene.2022.146548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Macrophages are transcriptionally highly dynamic cell type, rapidly adapting to a changing environment to execute innate immune functions. Activation of macrophages with lipopolysaccharides (LPS), a major component of the outer membrane of most Gram-negative bacteria, induces rapid transcriptional changes and within a few hours transcription of several hundred genes is altered. Within these genes are tRNAs, which are synthesised by RNA Polymerase (Pol) III, and whose expression is rapidly upregulated in response to LPS. However, the mechanisms that govern Pol III activation are not fully elucidated. LPS engage the Toll-like receptor (TLR) 4 and induce various signalling pathways, including mitogen-activated protein kinases (MAPK). MAPKs are serine/threonine kinases that catalyse the phosphorylation of transcription factors, protein kinases, and many other substrates including functional proteins, play a central role in mediating cellular responses to extracellular signals, including inflammatory cues. Here we show that ERK and p38 MAP kinases contribute to the activation of Pol III in macrophages stimulated with LPS. We also demonstrate that MAP kinases effector MSK1/2 kinases are involved in tRNA upregulation. Our data show that ERK, p38, and MSK kinases are required for upregulation of Pol III activity in macrophages stimulated by LPS. The possible modes of their action are discussed.
Collapse
|
10
|
Busschers E, Ahmad N, Sun L, Iben JR, Walkey CJ, Rusin A, Yuen T, Rosen CJ, Willis IM, Zaidi M, Johnson DL. MAF1, a repressor of RNA polymerase III-dependent transcription, regulates bone mass. eLife 2022; 11:74740. [PMID: 35611941 PMCID: PMC9212997 DOI: 10.7554/elife.74740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
MAF1, a key repressor of RNA polymerase (pol) III-mediated transcription, has been shown to promote mesoderm formation in vitro. Here, we show that MAF1 plays a critical role in regulating osteoblast differentiation and bone mass. Global deletion of MAF1 (Maf1-/- mice) produced a high bone mass phenotype. However, osteoblasts isolated from Maf1-/- mice showed reduced osteoblastogenesis ex vivo. Therefore, we determined the phenotype of mice overexpressing MAF1 in cells from the mesenchymal lineage (Prx1-Cre;LSL-MAF1 mice). These mice showed increased bone mass. Ex vivo, cells from these mice showed enhanced osteoblastogenesis concordant with their high bone mass phenotype. Thus, the high bone mass phenotype in Maf1-/- mice is likely due to confounding effects from the global absence of MAF1. MAF1 overexpression promoted osteoblast differentiation of ST2 cells while MAF1 downregulation inhibited differentiation, indicating MAF1 enhances osteoblast formation. However, other perturbations used to repress RNA pol III transcription, inhibited osteoblast differentiation. However, decreasing RNA pol III transcription through these perturbations enhanced adipogenesis in ST2 cells. RNA-seq analyzed the basis for these opposing actions on osteoblast differentiation. The different modalities used to perturb RNA pol III transcription resulted in distinct gene expression changes, indicating that this transcription process is highly sensitive and triggers diverse gene expression programs and phenotypic outcomes. Specifically, MAF1 induced genes known to promote osteoblast differentiation. Furthermore, genes that are induced during osteoblast differentiation displayed codon bias. Together, these results reveal a novel role for MAF1 and RNA pol III-mediated transcription in osteoblast fate determination, differentiation, and bone mass regulation.
Collapse
Affiliation(s)
- Ellen Busschers
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Naseer Ahmad
- Department of Medicine, Ican School of Medicine at Mount Sinai, New York, United States
| | - Li Sun
- Department of Medicine, Ican School of Medicine at Mount Sinai, New York, United States
| | - James R Iben
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Christopher J Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Tony Yuen
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, United States
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Mone Zaidi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Deborah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
11
|
Kovalski JR, Kuzuoglu‐Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J 2022; 41:e109823. [PMID: 35315941 PMCID: PMC9016353 DOI: 10.15252/embj.2021109823] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Duygu Kuzuoglu‐Ozturk
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
12
|
Surya A, Sarinay-Cenik E. Cell autonomous and non-autonomous consequences of deviations in translation machinery on organism growth and the connecting signalling pathways. Open Biol 2022; 12:210308. [PMID: 35472285 PMCID: PMC9042575 DOI: 10.1098/rsob.210308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023] Open
Abstract
Translation machinery is responsible for the production of cellular proteins; thus, cells devote the majority of their resources to ribosome biogenesis and protein synthesis. Single-copy loss of function in the translation machinery components results in rare ribosomopathy disorders, such as Diamond-Blackfan anaemia in humans and similar developmental defects in various model organisms. Somatic copy number alterations of translation machinery components are also observed in specific tumours. The organism-wide response to haploinsufficient loss-of-function mutations in ribosomal proteins or translation machinery components is complex: variations in translation machinery lead to reduced ribosome biogenesis, protein translation and altered protein homeostasis and cellular signalling pathways. Cells are affected both autonomously and non-autonomously by changes in translation machinery or ribosome biogenesis through cell-cell interactions and secreted hormones. We first briefly introduce the model organisms where mutants or knockdowns of protein synthesis and ribosome biogenesis are characterized. Next, we specifically describe observations in Caenorhabditis elegans and Drosophila melanogaster, where insufficient protein synthesis in a subset of cells triggers cell non-autonomous growth or apoptosis responses that affect nearby cells and tissues. We then cover the characterized signalling pathways that interact with ribosome biogenesis/protein synthesis machinery with an emphasis on their respective functions during organism development.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elif Sarinay-Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Koltowska K, Okuda KS, Gloger M, Rondon-Galeano M, Mason E, Xuan J, Dudczig S, Chen H, Arnold H, Skoczylas R, Bower NI, Paterson S, Lagendijk AK, Baillie GJ, Leshchiner I, Simons C, Smith KA, Goessling W, Heath JK, Pearson RB, Sanij E, Schulte-Merker S, Hogan BM. The RNA helicase Ddx21 controls Vegfc-driven developmental lymphangiogenesis by balancing endothelial cell ribosome biogenesis and p53 function. Nat Cell Biol 2021; 23:1136-1147. [PMID: 34750583 DOI: 10.1038/s41556-021-00784-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marleen Gloger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Mason
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stefanie Dudczig
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Hannah Arnold
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne Karine Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ignaty Leshchiner
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Wolfram Goessling
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Joan K Heath
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Medical Faculty, WWU Münster, Münster, Germany.,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia. .,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Fabbri L, Chakraborty A, Robert C, Vagner S. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer 2021; 21:558-577. [PMID: 34341537 DOI: 10.1038/s41568-021-00380-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Translational control of mRNAs during gene expression allows cells to promptly and dynamically adapt to a variety of stimuli, including in neoplasia in response to aberrant oncogenic signalling (for example, PI3K-AKT-mTOR, RAS-MAPK and MYC) and microenvironmental stress such as low oxygen and nutrient supply. Such translational rewiring allows rapid, specific changes in the cell proteome that shape specific cancer phenotypes to promote cancer onset, progression and resistance to anticancer therapies. In this Review, we illustrate the plasticity of mRNA translation. We first highlight the diverse mechanisms by which it is regulated, including by translation factors (for example, eukaryotic initiation factor 4F (eIF4F) and eIF2), RNA-binding proteins, tRNAs and ribosomal RNAs that are modulated in response to aberrant intracellular pathways or microenvironmental stress. We then describe how translational control can influence tumour behaviour by impacting on the phenotypic plasticity of cancer cells as well as on components of the tumour microenvironment. Finally, we highlight the role of mRNA translation in the cellular response to anticancer therapies and its promise as a key therapeutic target.
Collapse
Affiliation(s)
- Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France.
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
15
|
Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer 2021; 7:863-877. [PMID: 34052137 DOI: 10.1016/j.trecan.2021.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Replication stress results from obstacles to replication fork progression, including ongoing transcription, which can cause transcription-replication conflicts. Oncogenic signaling can promote global increases in transcription activity, also termed hypertranscription. Despite the widely accepted importance of oncogene-induced hypertranscription, its study remains neglected compared with other causes of replication stress and genomic instability in cancer. A growing number of recent studies are reporting that oncogenes, such as RAS, and targeted cancer treatments, such as bromodomain and extraterminal motif (BET) bromodomain inhibitors, increase global transcription, leading to R-loop accumulation, transcription-replication conflicts, and the activation of replication stress responses. Here we discuss our mechanistic understanding of hypertranscription-induced replication stress and the resulting cellular responses, in the context of oncogenes and targeted cancer therapies.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard D W Kelly
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
16
|
Rashidieh B, Molakarimi M, Mohseni A, Tria SM, Truong H, Srihari S, Adams RC, Jones M, Duijf PHG, Kalimutho M, Khanna KK. Targeting BRF2 in Cancer Using Repurposed Drugs. Cancers (Basel) 2021; 13:cancers13153778. [PMID: 34359683 PMCID: PMC8345145 DOI: 10.3390/cancers13153778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary BRF2, a subunit of the RNA polymerase III transcription complex, is upregulated in a wide variety of cancers and is a potential therapeutic target; however, no effective drugs are available to target BRF2. The upregulation of BRF2 in cancer cells confers survival via the prevention of oxidative stress-induced apoptosis. In this manuscript, we report the identification of potential BRF2 inhibitors through in silico drug repurposing screening. We further characterized bexarotene as a hit compound for the development of selective BRF2 inhibitors and provide experimental validation to support the repurposing of this FDA-approved drug as an agent to reduce the cellular levels of ROS and consequent BRF2 expression in cancers with elevated levels of oxidative stress. Abstract The overexpression of BRF2, a selective subunit of RNA polymerase III, has been shown to be crucial in the development of several types of cancers, including breast cancer and lung squamous cell carcinoma. Predominantly, BRF2 acts as a central redox-sensing transcription factor (TF) and is involved in rescuing oxidative stress (OS)-induced apoptosis. Here, we showed a novel link between BRF2 and the DNA damage response. Due to the lack of BRF2-specific inhibitors, through virtual screening and molecular dynamics simulation, we identified potential drug candidates that interfere with BRF2-TATA-binding Protein (TBP)-DNA complex interactions based on binding energy, intermolecular, and torsional energy parameters. We experimentally tested bexarotene as a potential BRF2 inhibitor. We found that bexarotene (Bex) treatment resulted in a dramatic decline in oxidative stress and Tert-butylhydroquinone (tBHQ)-induced levels of BRF2 and consequently led to a decrease in the cellular proliferation of cancer cells which may in part be due to the drug pretreatment-induced reduction of ROS generated by the oxidizing agent. Our data thus provide the first experimental evidence that BRF2 is a novel player in the DNA damage response pathway and that bexarotene can be used as a potential inhibitor to treat cancers with the specific elevation of oxidative stress.
Collapse
Affiliation(s)
- Behnam Rashidieh
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
- Correspondence: (B.R.); (K.K.K.)
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Nasr Bridge, Tehran 14115-154, Iran; (M.M.); (A.M.)
| | - Ammar Mohseni
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Nasr Bridge, Tehran 14115-154, Iran; (M.M.); (A.M.)
| | - Simon Manuel Tria
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Hein Truong
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Sriganesh Srihari
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Rachael C. Adams
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Mathew Jones
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia;
| | - Pascal H. G. Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Data Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Murugan Kalimutho
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
- Correspondence: (B.R.); (K.K.K.)
| |
Collapse
|
17
|
Beznosková P, Bidou L, Namy O, Valášek LS. Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines. Nucleic Acids Res 2021; 49:5202-5215. [PMID: 34009360 PMCID: PMC8136774 DOI: 10.1093/nar/gkab315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Regulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles. In contrast, our recent yeast work identified several endogenous tRNAs implicated in the regulation of SC-RT. Swiftly emerging studies of human tRNA-ome also advocate that tRNAs have unprecedented regulatory potential. Here, we developed a universal U6 promotor-based system expressing various human endogenous tRNA iso-decoders to study consequences of their increased dosage on SC-RT employing various reporter systems in vivo. This system combined with siRNA-mediated downregulations of selected aminoacyl-tRNA synthetases demonstrated that changing levels of human tryptophan and tyrosine tRNAs do modulate efficiency of SC-RT. Overall, our results suggest that tissue-to-tissue specific levels of selected near-cognate tRNAs may have a vital potential to fine-tune the final landscape of the human proteome, as well as that of its viral pathogens.
Collapse
Affiliation(s)
- Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Laure Bidou
- Sorbonne Universités, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| |
Collapse
|
18
|
Cerezo EL, Houles T, Lié O, Sarthou MK, Audoynaud C, Lavoie G, Halladjian M, Cantaloube S, Froment C, Burlet-Schiltz O, Henry Y, Roux PP, Henras AK, Romeo Y. RIOK2 phosphorylation by RSK promotes synthesis of the human small ribosomal subunit. PLoS Genet 2021; 17:e1009583. [PMID: 34125833 PMCID: PMC8224940 DOI: 10.1371/journal.pgen.1009583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.
Collapse
Affiliation(s)
- Emilie L. Cerezo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thibault Houles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Oriane Lié
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Kerguelen Sarthou
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Audoynaud
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Maral Halladjian
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvain Cantaloube
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Yves Henry
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Anthony K. Henras
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
19
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
20
|
Zhang Z, Zhang J, Diao L, Han L. Small non-coding RNAs in human cancer: function, clinical utility, and characterization. Oncogene 2021; 40:1570-1577. [PMID: 33452456 DOI: 10.1038/s41388-020-01630-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Small non-coding RNAs (sncRNAs) play critical roles in multiple regulatory processes, including transcription, post-transcription, and translation. Emerging evidence reveals the critical roles of sncRNAs in cancer development and their potential role as biomarkers and/or therapeutic targets. In this paper, we review recent research on four sncRNA species with functional significance in cancer: small nucleolar RNAs, transfer RNA, small nuclear RNAs, and piwi-interacting RNAs. We introduce their functional roles in tumorigenesis and discuss the potential utility of sncRNAs as prognostic and diagnostic biomarkers and therapeutic targets. We further summarize approaches to characterize sncRNAs in a high-throughput manner, including the specific library construction and computational framework. Our review provides a perspective of the functions, clinical utility, and characterization of sncRNAs in cancer.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Aharon-Hefetz N, Frumkin I, Mayshar Y, Dahan O, Pilpel Y, Rak R. Manipulation of the human tRNA pool reveals distinct tRNA sets that act in cellular proliferation or cell cycle arrest. eLife 2020; 9:e58461. [PMID: 33357381 PMCID: PMC7781600 DOI: 10.7554/elife.58461] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Different subsets of the tRNA pool in human cells are expressed in different cellular conditions. The 'proliferation-tRNAs' are induced upon normal and cancerous cell division, while the 'differentiation-tRNAs' are active in non-dividing, differentiated cells. Here we examine the essentiality of the various tRNAs upon cellular growth and arrest. We established a CRISPR-based editing procedure with sgRNAs that each target a tRNA family. We measured tRNA essentiality for cellular growth and found that most proliferation-tRNAs are essential compared to differentiation- tRNAs in rapidly growing cell lines. Yet in more slowly dividing lines, the differentiation-tRNAs were more essential. In addition, we measured the essentiality of each tRNA family upon response to cell cycle arresting signals. Here we detected a more complex behavior with both proliferation-tRNAs and differentiation tRNAs showing various levels of essentiality. These results provide the so-far most comprehensive functional characterization of human tRNAs with intricate roles in various cellular states.
Collapse
Affiliation(s)
- Noa Aharon-Hefetz
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Idan Frumkin
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Rak
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
22
|
Expression of transgenes enriched in rare codons is enhanced by the MAPK pathway. Sci Rep 2020; 10:22166. [PMID: 33335127 PMCID: PMC7746698 DOI: 10.1038/s41598-020-78453-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
The ability to translate three nucleotide sequences, or codons, into amino acids to form proteins is conserved across all organisms. All but two amino acids have multiple codons, and the frequency that such synonymous codons occur in genomes ranges from rare to common. Transcripts enriched in rare codons are typically associated with poor translation, but in certain settings can be robustly expressed, suggestive of codon-dependent regulation. Given this, we screened a gain-of-function library for human genes that increase the expression of a GFPrare reporter encoded by rare codons. This screen identified multiple components of the mitogen activated protein kinase (MAPK) pathway enhancing GFPrare expression. This effect was reversed with inhibitors of this pathway and confirmed to be both codon-dependent and occur with ectopic transcripts naturally coded with rare codons. Finally, this effect was associated, at least in part, with enhanced translation. We thus identify a potential regulatory module that takes advantage of the redundancy in the genetic code to modulate protein expression.
Collapse
|
23
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 532] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
24
|
Yang J, Smith DK, Ni H, Wu K, Huang D, Pan S, Sathe AA, Tang Y, Liu ML, Xing C, Zhang CL, Zhuge Q. SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells. Proc Natl Acad Sci U S A 2020; 117:5782-5790. [PMID: 32123087 PMCID: PMC7084149 DOI: 10.1073/pnas.1920200117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transfer RNAs (tRNAs) are products of RNA polymerase III (Pol III) and essential for mRNA translation and ultimately cell growth and proliferation. Whether and how individual tRNA genes are specifically regulated is not clear. Here, we report that SOX4, a well-known Pol II-dependent transcription factor that is critical for neurogenesis and reprogramming of somatic cells, also directly controls, unexpectedly, the expression of a subset of tRNA genes and therefore protein synthesis and proliferation of human glioblastoma cells. Genome-wide location analysis through chromatin immunoprecipitation-sequencing uncovers specific targeting of SOX4 to a subset of tRNA genes, including those for tRNAiMet Mechanistically, sequence-specific SOX4-binding impedes the recruitment of TATA box binding protein and Pol III to tRNA genes and thereby represses their expression. CRISPR/Cas9-mediated down-regulation of tRNAiMet greatly inhibits growth and proliferation of human glioblastoma cells. Conversely, ectopic tRNAiMet partially rescues SOX4-mediated repression of cell proliferation. Together, these results uncover a regulatory mode of individual tRNA genes to control cell behavior. Such regulation may coordinate codon usage and translation efficiency to meet the demands of diverse tissues and cell types, including cancer cells.
Collapse
Affiliation(s)
- Jianjing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Haoqi Ni
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ke Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| | - Dongdong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| | - Sishi Pan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adwait A Sathe
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Tang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meng-Lu Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chao Xing
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000;
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| |
Collapse
|
25
|
Liko D, Mitchell L, Campbell KJ, Ridgway RA, Jones C, Dudek K, King A, Bryson S, Stevenson D, Blyth K, Strathdee D, Morton JP, Bird TG, Knight JRP, Willis AE, Sansom OJ. Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death Differ 2019; 26:2535-2550. [PMID: 30858608 PMCID: PMC6861133 DOI: 10.1038/s41418-019-0316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.
Collapse
Affiliation(s)
- Dritan Liko
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Carolyn Jones
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Kate Dudek
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Ayala King
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Stevenson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Douglas Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - John R P Knight
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
26
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
27
|
Zhang Z, Ye Y, Gong J, Ruan H, Liu CJ, Xiang Y, Cai C, Guo AY, Ling J, Diao L, Weinstein JN, Han L. Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers. Commun Biol 2018; 1:234. [PMID: 30588513 PMCID: PMC6303286 DOI: 10.1038/s42003-018-0239-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
The protein translational system, including transfer RNAs (tRNAs) and several categories of enzymes, plays a key role in regulating cell proliferation. Translation dysregulation also contributes to cancer development, though relatively little is known about the changes that occur to the translational system in cancer. Here, we present global analyses of tRNAs and three categories of enzymes involved in translational regulation in ~10,000 cancer patients across 31 cancer types from The Cancer Genome Atlas. By analyzing the expression levels of tRNAs at the gene, codon, and amino acid levels, we identified unequal alterations in tRNA expression, likely due to the uneven distribution of tRNAs decoding different codons. We find that overexpression of tRNAs recognizing codons with a low observed-over-expected ratio may overcome the translational bottleneck in tumorigenesis. We further observed overall overexpression and amplification of tRNA modification enzymes, aminoacyl-tRNA synthetases, and translation factors, which may play synergistic roles with overexpression of tRNAs to activate the translational systems across multiple cancer types.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Jing Gong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Chun-Jie Liu
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, 430074 Hubei, People’s Republic of China
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Chunyan Cai
- Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, 430074 Hubei, People’s Republic of China
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- Center for Precision Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|
28
|
Wang F, Zhao K, Yu S, Xu A, Han W, Mei Y. RNF12 catalyzes BRF1 ubiquitination and regulates RNA polymerase III-dependent transcription. J Biol Chem 2018; 294:130-141. [PMID: 30413534 DOI: 10.1074/jbc.ra118.004524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
RNA polymerase III (Pol III) is responsible for the production of small noncoding RNA species, including tRNAs and 5S rRNA. Pol III-dependent transcription is generally enhanced in transformed cells and tumors, but the underlying mechanisms remain not well-understood. It has been demonstrated that the BRF1 subunit of TFIIIB is essential for the accurate initiation of Pol III-dependent transcription. However, it is not known whether BRF1 undergoes ubiquitin modification and whether BRF1 ubiquitination regulates Pol III-dependent transcription. Here, we show that RNF12, a RING domain-containing ubiquitin E3 ligase, physically interacts with BRF1. Via direct interaction, RNF12 catalyzes Lys27- and Lys33-linked polyubiquitination of BRF1. Furthermore, RNF12 is able to negatively regulate Pol III-dependent transcription and cell proliferation via BRF1. These findings uncover a novel mechanism for the regulation of BRF1 and reveal RNF12 as an important regulator of Pol III-dependent transcription.
Collapse
Affiliation(s)
- Fang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Kailiang Zhao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Sixiang Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - An Xu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Yide Mei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
29
|
Graczyk D, Cieśla M, Boguta M. Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:320-329. [DOI: 10.1016/j.bbagrm.2018.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 01/03/2023]
|
30
|
Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res 2018; 138:99-142. [PMID: 29551131 DOI: 10.1016/bs.acr.2018.02.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.
Collapse
Affiliation(s)
- Scott T Eblen
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
31
|
Durrieu-Gaillard S, Dumay-Odelot H, Boldina G, Tourasse NJ, Allard D, André F, Macari F, Choquet A, Lagarde P, Drutel G, Leste-Lasserre T, Petitet M, Lesluyes T, Lartigue-Faustin L, Dupuy JW, Chibon F, Roeder RG, Joubert D, Vagner S, Teichmann M. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements. Cell Cycle 2018; 17:605-615. [PMID: 29171785 DOI: 10.1080/15384101.2017.1405881] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.
Collapse
Affiliation(s)
- Stéphanie Durrieu-Gaillard
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France
| | - Hélène Dumay-Odelot
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France
| | - Galina Boldina
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France.,c Institut Gustave Roussy , INSERM U981 , F-94805 Villejuif , France
| | - Nicolas J Tourasse
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France
| | - Delphine Allard
- c Institut Gustave Roussy , INSERM U981 , F-94805 Villejuif , France
| | - Fabrice André
- c Institut Gustave Roussy , INSERM U981 , F-94805 Villejuif , France
| | - Françoise Macari
- d Institut de Génomique Fonctionnelle , UMR 5203 CNRS , F-34000 Montpellier , France
| | - Armelle Choquet
- d Institut de Génomique Fonctionnelle , UMR 5203 CNRS , F-34000 Montpellier , France
| | - Pauline Lagarde
- e Department of Biopathology , Institut Bergonié , Molecular Pathology Unit , F-33000 Bordeaux , France.,f Génétique et Biologie des Sarcomes- INSERM U916 , F- 33000 Bordeaux , France.,g Université de Bordeaux , F-33076 Bordeaux , France
| | - Guillaume Drutel
- h NeuroCentre François Magendie , INSERM U862 , F-33077 Bordeaux , France
| | | | - Marion Petitet
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France
| | - Tom Lesluyes
- e Department of Biopathology , Institut Bergonié , Molecular Pathology Unit , F-33000 Bordeaux , France.,f Génétique et Biologie des Sarcomes- INSERM U916 , F- 33000 Bordeaux , France
| | - Lydia Lartigue-Faustin
- e Department of Biopathology , Institut Bergonié , Molecular Pathology Unit , F-33000 Bordeaux , France.,f Génétique et Biologie des Sarcomes- INSERM U916 , F- 33000 Bordeaux , France
| | - Jean-William Dupuy
- i Université de Bordeaux , Plateforme Protéome - Centre Génomique Fonctionnelle Bordeaux , 33076 Bordeaux , France
| | - Frédéric Chibon
- e Department of Biopathology , Institut Bergonié , Molecular Pathology Unit , F-33000 Bordeaux , France.,f Génétique et Biologie des Sarcomes- INSERM U916 , F- 33000 Bordeaux , France
| | - Robert G Roeder
- j The Rockefeller University , 1230 York Avenue, New York , NY 10065 , USA
| | - Dominique Joubert
- d Institut de Génomique Fonctionnelle , UMR 5203 CNRS , F-34000 Montpellier , France
| | - Stéphan Vagner
- c Institut Gustave Roussy , INSERM U981 , F-94805 Villejuif , France.,k Institut Curie , CNRS UMR 3348, F-91405 Orsay , France
| | - Martin Teichmann
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France
| |
Collapse
|
32
|
Cannizzo CM, Adonopulos AA, Solly EL, Ridiandries A, Vanags LZ, Mulangala J, Yuen SCG, Tsatralis T, Henriquez R, Robertson S, Nicholls SJ, Di Bartolo BA, Ng MKC, Lam YT, Bursill CA, Tan JTM. VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia. FASEB J 2018; 32:2911-2922. [PMID: 29401597 DOI: 10.1096/fj.201700617r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-density lipoproteins augment hypoxia-induced angiogenesis by inducing the key angiogenic vascular endothelial growth factor A (VEGFA) and total protein levels of its receptor 2 (VEGFR2). The activation/phosphorylation of VEGFR2 is critical for mediating downstream, angiogenic signaling events. This study aimed to determine whether reconstituted high-density lipoprotein (rHDL) activates VEGFR2 phosphorylation and the downstream signaling events and the importance of VEGFR2 in the proangiogenic effects of rHDL in hypoxia. In vitro, rHDL increased VEGFR2 activation and enhanced phosphorylation of downstream, angiogenic signaling proteins ERK1/2 and p38 MAPK in hypoxia. Incubation with a VEGFR2-neutralizing antibody attenuated rHDL-induced phosphorylation of VEGFR2, ERK1/2, p38 MAPK, and tubule formation. In a murine model of ischemia-driven neovascularization, rHDL infusions enhanced blood perfusion and augmented capillary and arteriolar density. Infusion of a VEGFR2-neutralizing antibody ablated those proangiogenic effects of rHDL. Circulating Sca1+/CXCR4+ angiogenic progenitor cell levels, important for neovascularization in response to ischemia, were higher in rHDL-infused mice 3 d after ischemic induction, but that did not occur in mice that also received the VEGFR2-neutralizing antibody. In summary, VEGFR2 has a key role in the proangiogenic effects of rHDL in hypoxia/ischemia. These findings have therapeutic implications for angiogenic diseases associated with an impaired response to tissue ischemia.-Cannizzo, C. M., Adonopulos, A. A., Solly, E. L., Ridiandries, A., Vanags, L. Z., Mulangala, J., Yuen, S. C. G., Tsatralis, T., Henriquez, R., Robertson, S., Nicholls, S. J., Di Bartolo, B. A., Ng, M. K. C., Lam, Y. T., Bursill, C. A., Tan, J. T. M. VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia.
Collapse
Affiliation(s)
- Carla M Cannizzo
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Aaron A Adonopulos
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Emma L Solly
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anisyah Ridiandries
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Laura Z Vanags
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jocelyne Mulangala
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Sui Ching G Yuen
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Tania Tsatralis
- The Heart Research Institute, Newtown, New South Wales, Australia
| | - Rodney Henriquez
- The Heart Research Institute, Newtown, New South Wales, Australia
| | - Stacy Robertson
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Belinda A Di Bartolo
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Martin K C Ng
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Yuen Ting Lam
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Christina A Bursill
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Joanne T M Tan
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| |
Collapse
|
33
|
Song W, Filonov GS, Kim H, Hirsch M, Li X, Moon JD, Jaffrey SR. Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex. Nat Chem Biol 2017; 13:1187-1194. [PMID: 28945233 PMCID: PMC5679246 DOI: 10.1038/nchembio.2477] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/09/2017] [Indexed: 11/09/2022]
Abstract
Quantitative measurement of transcription rates in live cells is important for revealing mechanisms of transcriptional regulation. This is particularly challenging when measuring the activity of RNA polymerase III (Pol III), which transcribes growth-promoting small RNAs. To address this issue, we developed Corn, a genetically encoded fluorescent RNA reporter suitable for quantifying RNA transcription in cells. Corn binds and induces fluorescence of 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime, which resembles the fluorophore found in red fluorescent protein (RFP). Notably, Corn shows high photostability, enabling quantitative fluorescence imaging of mTOR-dependent Pol III transcription. We found that, unlike actinomycin D, mTOR inhibitors resulted in heterogeneous transcription suppression in individual cells. Quantitative imaging of Corn-tagged Pol III transcript levels revealed distinct Pol III transcription 'trajectories' elicited by mTOR inhibition. Together, these studies provide an approach for quantitative measurement of Pol III transcription by direct imaging of Pol III transcripts containing a photostable RNA-fluorophore complex.
Collapse
Affiliation(s)
- Wenjiao Song
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Grigory S. Filonov
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Hyaeyeong Kim
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Markus Hirsch
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Xing Li
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Jared D. Moon
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
34
|
Vaklavas C, Blume SW, Grizzle WE. Translational Dysregulation in Cancer: Molecular Insights and Potential Clinical Applications in Biomarker Development. Front Oncol 2017; 7:158. [PMID: 28798901 PMCID: PMC5526920 DOI: 10.3389/fonc.2017.00158] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/06/2017] [Indexed: 01/04/2023] Open
Abstract
Although transcript levels have been traditionally used as a surrogate measure of gene expression, it is increasingly recognized that the latter is extensively and dynamically modulated at the level of translation (messenger RNA to protein). Over the recent years, significant progress has been made in dissecting the complex posttranscriptional mechanisms that regulate gene expression. This advancement in knowledge came hand in hand with the progress made in the methodologies to study translation both at gene-specific as well as global genomic level. The majority of translational control is exerted at the level of initiation; nonetheless, protein synthesis can be modulated at the level of translation elongation, termination, and recycling. Sequence and structural elements and epitranscriptomic modifications of individual transcripts allow for dynamic gene-specific modulation of translation. Cancer cells usurp the regulatory mechanisms that govern translation to carry out translational programs that lead to the phenotypic hallmarks of cancer. Translation is a critical nexus in neoplastic transformation. Multiple oncogenes and signaling pathways that are activated, upregulated, or mutated in cancer converge on translation and their transformative impact "bottlenecks" at the level of translation. Moreover, this translational dysregulation allows cancer cells to adapt to a diverse array of stresses associated with a hostile microenviroment and antitumor therapies. All elements involved in the process of translation, from the transcriptional template, the components of the translational machinery, to the proteins that interact with the transcriptome, have been found to be qualitatively and/or quantitatively perturbed in cancer. This review discusses the regulatory mechanisms that govern translation in normal cells and how translation becomes dysregulated in cancer leading to the phenotypic hallmarks of malignancy. We also discuss how dysregulated mediators or components of translation can be utilized as biomarkers with potential diagnostic, prognostic, or predictive significance. Such biomarkers have the potential advantage of uniform applicability in the face of inherent tumor heterogeneity and deoxyribonucleic acid instability. As translation becomes increasingly recognized as a process gone awry in cancer and agents are developed to target it, the utility and significance of these potential biomarkers is expected to increase.
Collapse
Affiliation(s)
- Christos Vaklavas
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Scott W Blume
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William E Grizzle
- Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
35
|
Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc Trans 2017; 44:1367-1375. [PMID: 27911719 PMCID: PMC5095917 DOI: 10.1042/bst20160062] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
The highly abundant, small stable RNAs that are synthesized by RNA polymerase III (RNAPIII) have key functional roles, particularly in the protein synthesis apparatus. Their expression is metabolically demanding, and is therefore coupled to changing demands for protein synthesis during cell growth and division. Here, we review the regulatory mechanisms that control the levels of RNAPIII transcripts and discuss their potential physiological relevance. Recent analyses have revealed differential regulation of tRNA expression at all steps on its biogenesis, with significant deregulation of mature tRNAs in cancer cells.
Collapse
|
36
|
Jee YH, Sowada N, Markello TC, Rezvani I, Borck G, Baron J. BRF1 mutations in a family with growth failure, markedly delayed bone age, and central nervous system anomalies. Clin Genet 2016; 91:739-747. [PMID: 27748960 DOI: 10.1111/cge.12887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022]
Abstract
Linear growth failure can be caused by many different genetic abnormalities. In many cases, the genetic defect affects not only the growth plate, causing short stature but also other organs/tissues causing additional clinical abnormalities. A 10-year old boy was evaluated for impaired postnatal linear growth (height 113.3 cm, -4.6 SDS), a bone age that was delayed by 5 years, dysmorphic facies, cognitive impairment, and central nervous system anomalies. His younger brother, presented only with growth failure at 10 months of age. Exome sequencing identified compound heterozygous variants in the gene encoding RNA polymerase III transcription initiation factor 90 kDa subunit (BRF1) in both affected siblings: a missense mutation (c.875 C > G:p.P292R) and a frameshift mutation (c.551delG:p.C184Sfs). The frameshift mutation is expected to lead to nonsense-mediated mRNA decay (NMD) and/or to protein truncation. Expression of BRF1 with the P292R missense mutation failed to rescue yeast lacking BRF1. The findings confirm a previous report showing that biallelic mutations in BRF1 cause cerebellar-facial-dental syndrome. Our findings also help define the growth phenotype, indicating that the linear growth failure can become clinically evident before the neurological abnormalities and that a severely delayed bone age may serve as a diagnostic clue.
Collapse
Affiliation(s)
- Y H Jee
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - N Sowada
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - T C Markello
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - I Rezvani
- Section of Pediatric Endocrinology and Diabetes, Department of Pediatrics, St. Christopher's Hospital of Children, Philadelphia, PA, USA
| | - G Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - J Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Abstract
The past several years have seen dramatic leaps in our understanding of how gene expression is rewired at the translation level during tumorigenesis to support the transformed phenotype. This work has been driven by an explosion in technological advances and is revealing previously unimagined regulatory mechanisms that dictate functional expression of the cancer genome. In this Review we discuss emerging trends and exciting new discoveries that reveal how this translational circuitry contributes to specific aspects of tumorigenesis and cancer cell function, with a particular focus on recent insights into the role of translational control in the adaptive response to oncogenic stress conditions.
Collapse
Affiliation(s)
- Morgan L Truitt
- Department of Urology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
38
|
Koo J, Cabarcas-Petroski S, Petrie JL, Diette N, White RJ, Schramm L. Induction of proto-oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein. BMC Cancer 2015; 15:905. [PMID: 26573593 PMCID: PMC4647806 DOI: 10.1186/s12885-015-1914-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND BRF2 is a transcription factor required for synthesis of a small group of non-coding RNAs by RNA polymerase III. Overexpression of BRF2 can transform human mammary epithelial cells. In both breast and lung cancers, the BRF2 gene is amplified and overexpressed and may serve as an oncogenic driver. Furthermore, elevated BRF2 can be independently prognostic of unfavorable survival. Dietary soy isoflavones increase metastasis to lungs in a model of breast cancer and a recent study reported significantly increased cell proliferation in breast cancer patients who used soy supplementation. The soy isoflavone daidzein is a major food-derived phytoestrogen that is structurally similar to estrogen. The putative estrogenic effect of soy raises concern that high consumption of soy foods by breast cancer patients may increase tumor growth. METHODS Expression of BRF2 RNA and protein was assayed in ER-positive or -negative human breast cancer cells after exposure to daidzein. We also measured mRNA stability, promoter methylation and response to the demethylating agent 5-azacytidine. In addition, expression was compared between mice fed diets enriched or deprived of isoflavones. RESULTS We demonstrate that the soy isoflavone daidzein specifically stimulates expression of BRF2 in ER-positive breast cancer cells, as well as the related factor BRF1. Induction is accompanied by increased levels of non-coding RNAs that are regulated by BRF2 and BRF1. Daidzein treatment stabilizes BRF2 and BRF1 mRNAs and selectively decreases methylation of the BRF2 promoter. Functional significance of demethylation is supported by induction of BRF2 by the methyltransferase inhibitor 5-azacytidine. None of these effects are observed in an ER-negative breast cancer line, when tested in parallel with ER-positive breast cancer cells. In vivo relevance is suggested by the significantly elevated levels of BRF2 mRNA detected in female mice fed a high-isoflavone commercial diet. In striking contrast, BRF2 and BRF1 mRNA levels are suppressed in matched male mice fed the same isoflavone-enriched diet. CONCLUSIONS The BRF2 gene that is implicated in cancer can be induced in human breast cancer cells by the isoflavone daidzein, through promoter demethylation and/or mRNA stabilization. Dietary isoflavones may also induce BRF2 in female mice, whereas the converse occurs in males.
Collapse
Affiliation(s)
- Jana Koo
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | | | - John L Petrie
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Nicole Diette
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | - Robert J White
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Laura Schramm
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA.
| |
Collapse
|
39
|
BRF1, a subunit of RNA polymerase III transcription factor TFIIIB, is essential for cell growth of Trypanosoma brucei. Parasitology 2015; 142:1563-73. [PMID: 26337955 DOI: 10.1017/s0031182015001122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
RNA polymerase III (Pol III) synthesizes small RNA molecules that are essential for cell viability. Accurate initiation of transcription by Pol III requires general transcription factor TFIIIB, which is composed of three subunits: TFIIB-related factor BRF1, TATA-binding protein and BDP1. Here we report the molecular characterization of BRF1 in Trypanosoma brucei (TbBRF1), a parasitic protozoa that shows distinctive transcription characteristics. In silico analysis allowed the detection in TbBRF1 of the three conserved domains located in the N-terminal region of all BRF1 orthologues, namely a zinc ribbon motif and two cyclin repeats. Homology modelling suggested that, similarly to other BRF1 and TFIIB proteins, the TbBRF1 cyclin repeats show the characteristic structure of five α-helices per repeat, connected by a short random-coiled linker. As expected for a transcription factor, TbBRF1 was localized in the nucleus. Knock-down of TbBRF1 by RNA interference (RNAi) showed that this protein is essential for the viability of procyclic forms of T. brucei, since ablation of TbBRF1 led to growth arrest of the parasites. Nuclear run-on and quantitative real-time PCR analyses demonstrated that transcription of all the Pol III-dependent genes analysed was reduced, at different levels, after RNAi induction.
Collapse
|
40
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
41
|
Biggar KK, Wu CW, Tessier SN, Zhang J, Pifferi F, Perret M, Storey KB. Primate Torpor: Regulation of Stress-activated Protein Kinases During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:81-90. [PMID: 26093282 PMCID: PMC4511785 DOI: 10.1016/j.gpb.2015.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/21/2015] [Indexed: 01/19/2023]
Abstract
Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase (MAPK) family members to primate torpor were compared in six organs of control (aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases (ERKs), c-jun NH2-terminal kinases (JNKs), MAPK kinase (MEK), and p38, in addition to stress-related proteins p53 and heat shock protein 27 (HSP27). The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected downstream cellular processes. In response to torpor, each MAPK subfamily responded differently during torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Biochemistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Cheng-Wei Wu
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Surgery & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Jing Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Fabien Pifferi
- UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France
| | - Martine Perret
- UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
42
|
Lee J, Moir RD, Willis IM. Differential Phosphorylation of RNA Polymerase III and the Initiation Factor TFIIIB in Saccharomyces cerevisiae. PLoS One 2015; 10:e0127225. [PMID: 25970584 PMCID: PMC4430316 DOI: 10.1371/journal.pone.0127225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/13/2015] [Indexed: 11/19/2022] Open
Abstract
The production of ribosomes and tRNAs for protein synthesis has a high energetic cost and is under tight transcriptional control to ensure that the level of RNA synthesis is balanced with nutrient availability and the prevailing environmental conditions. In the RNA polymerase (pol) III system in yeast, nutrients and stress affect transcription through a bifurcated signaling pathway in which protein kinase A (PKA) and TORC1 activity directly or indirectly, through downstream kinases, alter the phosphorylation state and function of the Maf1 repressor and Rpc53, a TFIIF-like subunit of the polymerase. However, numerous lines of evidence suggest greater complexity in the regulatory network including the phosphoregulation of other pol III components. To address this issue, we systematically examined all 17 subunits of pol III along with the three subunits of the initiation factor TFIIIB for evidence of differential phosphorylation in response to inhibition of TORC1. A relatively high stoichiometry of phosphorylation was observed for several of these proteins and the Rpc82 subunit of the polymerase and the Bdp1 subunit of TFIIIB were found to be differentially phosphorylated. Bdp1 is phosphorylated on four major sites during exponential growth and the protein is variably dephosphorylated under conditions that inhibit tRNA gene transcription. PKA, the TORC1-regulated kinase Sch9 and protein kinase CK2 are all implicated in the phosphorylation of Bdp1. Alanine substitutions at the four phosphosites cause hyper-repression of transcription indicating that phosphorylation of Bdp1 opposes Maf1-mediated repression. The new findings suggest an integrated regulatory model for signaling events controlling pol III transcription.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (RDM); (IMW)
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (RDM); (IMW)
| |
Collapse
|
43
|
Graczyk D, White RJ, Ryan KM. Involvement of RNA Polymerase III in Immune Responses. Mol Cell Biol 2015; 35:1848-59. [PMID: 25776554 PMCID: PMC4405649 DOI: 10.1128/mcb.00990-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/11/2014] [Accepted: 03/06/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the tumor microenvironment has many tumor-promoting effects. In particular, tumor-associated macrophages (TAMs) produce many cytokines which can support tumor growth by promoting survival of malignant cells, angiogenesis, and metastasis. Enhanced cytokine production by TAMs is tightly coupled with protein synthesis. In turn, translation of proteins depends on tRNAs, short abundant transcripts that are made by RNA polymerase III (Pol III). Here, we connect these facts by showing that stimulation of mouse macrophages with lipopolysaccharides (LPS) from the bacterial cell wall causes transcriptional upregulation of tRNA genes. The transcription factor NF-κB is a key transcription factor mediating inflammatory signals, and we report that LPS treatment causes an increased association of the NF-κB subunit p65 with tRNA genes. In addition, we show that p65 can directly associate with the Pol III transcription factor TFIIIB and that overexpression of p65 induces Pol III-dependent transcription. As a consequence of these effects, we show that inhibition of Pol III activity in macrophages restrains cytokine secretion and suppresses phagocytosis, two key functional characteristics of these cells. These findings therefore identify a radical new function for Pol III in the regulation of macrophage function which may be important for the immune responses associated with both normal and malignant cells.
Collapse
Affiliation(s)
- Damian Graczyk
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Robert J White
- Department of Biology, University of York, York, United Kingdom
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
44
|
Sadeghifar F, Böhm S, Vintermist A, Östlund Farrants AK. The B-WICH chromatin-remodelling complex regulates RNA polymerase III transcription by promoting Max-dependent c-Myc binding. Nucleic Acids Res 2015; 43:4477-90. [PMID: 25883140 PMCID: PMC4482074 DOI: 10.1093/nar/gkv312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/27/2015] [Indexed: 01/11/2023] Open
Abstract
The chromatin-remodelling complex B-WICH, comprised of William syndrome transcription factor, the ATPase SNF2h and nuclear myosin, specifically activates RNA polymerase III transcription of the 5S rRNA and 7SL genes. However, the underlying mechanism is unknown. Using high-resolution MN walking we demonstrate here that B-WICH changes the chromatin structure in the vicinity of the 5S rRNA and 7SL RNA genes during RNA polymerase III transcription. The action of B-WICH is required for the binding of the RNA polymerase machinery and the regulatory factors c-Myc at the 5S rRNA and 7SL RNA genes. In addition to the c-Myc binding site at the 5S genes, we have revealed a novel c-Myc and Max binding site in the intergenic spacer of the 5S rDNA. This region also contains a region remodelled by B-WICH. We demonstrate that c-Myc binds to both sites in a Max-dependent way, and thereby activate transcription by acetylating histone H3. The novel binding patterns of c-Myc and Max link transcription of 5S rRNA to the Myc/Max/Mxd network. Since B-WICH acts prior to c-Myc and other factors, we propose a model in which the B-WICH complex is required to maintain an open chromatin structure at these RNA polymerase III genes. This is a prerequisite for the binding of additional regulatory factors.
Collapse
Affiliation(s)
- Fatemeh Sadeghifar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Stefanie Böhm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Anna Vintermist
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | | |
Collapse
|
45
|
Grewal SS. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:898-907. [PMID: 25497380 DOI: 10.1016/j.bbagrm.2014.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Transfer RNAs (tRNAs) are essential for mRNA translation. They are transcribed in the nucleus by RNA polymerase III and undergo many modifications before contributing to cytoplasmic protein synthesis. In this review I highlight our understanding of how tRNA biology may be linked to the regulation of mRNA translation, growth and tumorigenesis. First, I review how oncogenes and tumour suppressor signalling pathways, such as the PI3 kinase/TORC1, Ras/ERK, Myc, p53 and Rb pathways, regulate Pol III and tRNA synthesis. In several cases, this regulation contributes to cell, tissue and body growth, and has implications for our understanding of tumorigenesis. Second, I highlight some recent work, particularly in model organisms such as yeast and Drosophila, that shows how alterations in tRNA synthesis may be not only necessary, but also sufficient to drive changes in mRNA translation and growth. These effects may arise due to both absolute increases in total tRNA levels, but also changes in the relative levels of tRNAs in the overall pool. Finally, I review some recent studies that have revealed how tRNA modifications (amino acid acylation, base modifications, subcellular shuttling, and cleavage) can be regulated by growth and stress cues to selectively influence mRNA translation. Together these studies emphasize the importance of the regulation of tRNA synthesis and modification as critical control points in protein synthesis and growth. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Savraj S Grewal
- Department of Biochemistry and Molecular Biology, Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
46
|
Fok WC, Chen Y, Bokov A, Zhang Y, Salmon AB, Diaz V, Javors M, Wood WH, Zhang Y, Becker KG, Pérez VI, Richardson A. Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS One 2014; 9:e83988. [PMID: 24409289 PMCID: PMC3883653 DOI: 10.1371/journal.pone.0083988] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/11/2013] [Indexed: 11/21/2022] Open
Abstract
Rapamycin was found to increase (11% to 16%) the lifespan of male and female C57BL/6J mice most likely by reducing the increase in the hazard for mortality (i.e., the rate of aging) term in the Gompertz mortality analysis. To identify the pathways that could be responsible for rapamycin's longevity effect, we analyzed the transcriptome of liver from 25-month-old male and female mice fed rapamycin starting at 4 months of age. Few changes (<300 transcripts) were observed in transcriptome of rapamycin-fed males; however, a large number of transcripts (>4,500) changed significantly in females. Using multidimensional scaling and heatmap analyses, the male mice fed rapamycin were found to segregate into two groups: one group that is almost identical to control males (Rapa-1) and a second group (Rapa-2) that shows a change in gene expression (>4,000 transcripts) with more than 60% of the genes shared with female mice fed Rapa. Using ingenuity pathway analysis, 13 pathways were significantly altered in both Rapa-2 males and rapamycin-fed females with mitochondrial function as the most significantly changed pathway. Our findings show that rapamycin has a major effect on the transcriptome and point to several pathways that would likely impact the longevity.
Collapse
Affiliation(s)
- Wilson C. Fok
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yidong Chen
- Department of Epidemiology & Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alex Bokov
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Epidemiology & Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yiqiang Zhang
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Research Service and Geriatric Research Education and Clinical Center, Audie Murphy VA Hospital (STVHCS), San Antonio, Texas, United States of America
| | - Vivian Diaz
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Martin Javors
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - William H. Wood
- National Institute on Aging, Baltimore, Maryland, United States of America
| | - Yongqing Zhang
- National Institute on Aging, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- National Institute on Aging, Baltimore, Maryland, United States of America
| | - Viviana I. Pérez
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Arlan Richardson
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Research Service and Geriatric Research Education and Clinical Center, Audie Murphy VA Hospital (STVHCS), San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Gjidoda A, Henry RW. RNA polymerase III repression by the retinoblastoma tumor suppressor protein. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:385-92. [PMID: 23063750 PMCID: PMC3549324 DOI: 10.1016/j.bbagrm.2012.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 12/29/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein regulates multiple pathways that influence cell growth, and as a key regulatory node, its function is inactivated in most cancer cells. In addition to its canonical roles in cell cycle control, RB functions as a global repressor of RNA polymerase (Pol) III transcription. Indeed, Pol III transcripts accumulate in cancer cells and their heightened levels are implicated in accelerated growth associated with RB dysfunction. Herein we review the mechanisms of RB repression for the different types of Pol III genes. For type 1 and type 2 genes, RB represses transcription through direct contacts with the core transcription machinery, notably Brf1-TFIIIB, and inhibits preinitiation complex formation and Pol III recruitment. A contrasting model for type 3 gene repression indicates that RB regulation involves stable and simultaneous promoter association by RB, the general transcription machinery including SNAPc, and Pol III, suggesting that RB may impede Pol III promoter escape or elongation. Interestingly, analysis of published genomic association data for RB and Pol III revealed added regulatory complexity for Pol III genes both during active growth and during arrested growth associated with quiescence and senescence. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alison Gjidoda
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| |
Collapse
|
48
|
Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:361-75. [PMID: 23165150 DOI: 10.1016/j.bbagrm.2012.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/29/2022]
Abstract
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
49
|
Abstract
Myostatin is an extracellular cytokine mostly expressed in skeletal muscles and known to play a crucial role in the negative regulation of muscle mass. Upon the binding to activin type IIB receptor, myostatin can initiate several different signalling cascades resulting in the upregulation of the atrogenes and downregulation of the important for myogenesis genes. Muscle size is regulated via a complex interplay of myostatin signalling with the insulin-like growth factor 1/phosphatidylinositol 3-kinase/Akt pathway responsible for increase in protein synthesis in muscle. Therefore, the regulation of muscle weight is a process in which myostatin plays a central role but the mechanism of its action and signalling cascades are not fully understood. Myostatin upregulation was observed in the pathogenesis of muscle wasting during cachexia associated with different diseases (i.e. cancer, heart failure, HIV). Characterisation of myostatin signalling is therefore a perspective direction in the treatment development for cachexia. The current review covers the present knowledge about myostatin signalling pathways leading to muscle wasting and the state of therapy approaches via the regulation of myostatin and/or its downstream targets in cachexia.
Collapse
|
50
|
Cabarcas S, Watabe K, Schramm L. Inhibition of U6 snRNA Transcription by PTEN. ONLINE JOURNAL OF BIOLOGICAL SCIENCES 2010; 10:114-125. [PMID: 21479160 PMCID: PMC3071578 DOI: 10.3844/ojbsci.2010.114.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PROBLEM STATEMENT: RNA polymerase III (RNA pol III) is responsible for transcribing many of the small structural RNA molecules involved in RNA processing and protein translation, thereby regulating the growth rate of a cell. RNA pol III transcribes both gene internal (tRNA) and gene external (U6 snRNA) promoters and proper initiation by RNA polymerase III requires the transcription initiation factor TFIIIB. TFIIIB has been shown to be a target of repression by tumor suppressors such as ARF, p53, RB and the RB-related pocket proteins. Also, TFIIIB activity is stimulated by the oncogenes c-Myc and the ERK mitogen-activated protein kinase. Recently, two TFIIIB subunits, BRF1 and BRF2, have been demonstrated to behave as oncogenes, making deregulation of TFIIIB activity and thus RNA pol III transcription an important step in tumor development. PTEN is a commonly mutated tumor suppressor regulating cell growth, proliferation and survival. Thus, we sought to examine the potential role of PTEN in regulating U6 snRNA transcription. APPROACH: We examined the potential for PTEN to regulate U6 snRNA transcription using in vitro RNA pol III luciferase assays, western blotting and deletion analysis in cancer cell lines differing in their PTEN status. RESULTS: Using breast, cervical, prostate and glioblastoma cancer cells we demonstrate: (1) PTEN inhibition of gene external RNA pol III transcription is cell type specific, (2) PTEN-mediated inhibition of U6 transcription occurs via the C2 lipid-binding domain and (3) PTEN repression of U6 transcription occurs, at least in part, through the TFIIIB subunit BRF2. CONCLUSION/RECOMMENDATIONS: Our data demonstrates that regulation of the U6 snRNA gene by PTEN is mediated, in part by the TFIIIB oncogene BRF2, potentially identifying novel targets for chemotherapeutic drug design.
Collapse
Affiliation(s)
- Stephanie Cabarcas
- Department of Biological Sciences, St. John's University, Queens, New York 11439
| | | | | |
Collapse
|