1
|
Tao P, Zhang HF, Zhou P, Wang YL, Tan YZ, Wang HJ. Growth differentiation factor 11 alleviates oxidative stress-induced senescence of endothelial progenitor cells via activating autophagy. Stem Cell Res Ther 2024; 15:370. [PMID: 39420391 PMCID: PMC11488219 DOI: 10.1186/s13287-024-03975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Stem cell transplantation has been regarded as a promising therapeutic strategy for myocardial regeneration after myocardial infarction (MI). However, the survival and differentiation of the transplanted stem cells in the hostile ischaemic and inflammatory microenvironment are poor. Recent studies have focused on enhancing the survival and differentiation of the stem cells, while strategies to suppress the senescence of the transplanted stem cells is unknown. Therefore, we investigated the effect of growth differentiation factor 11 (GDF11) on attenuating oxidative stress-induced senescence in the engrafted endothelial progenitor cells (EPCs). METHODS Rat models of oxidative stress were established by hydrogen peroxide conditioning. Oxidative stress-induced senescence was assessed through senescence-associated β-galactosidase expression and lipofuscin accumulation. The effects of GDF11 treatment on senescence and autophagy of EPCs were evaluated 345, while improvement of myocardial regeneration, neovascularization and cardiac function were examined following transplantation of the self-assembling peptide (SAP) loaded EPCs and GDF11 in the rat MI models. RESULTS Following hydrogen peroxide conditioning, the level of ROS in EPCs decreased significantly upon treatment with GDF11. This resulted in reduction in the senescent cells and lipofuscin particles, as well as the damaged mitochondria and rough endoplasmic reticula. Concurrently, there was a significant increase in LC3-II expression, LC3-positive puncta and the presence of autophagic ultrastructures were increased significantly. The formulated SAP effectively adhered to EPCs and sustained the release of GDF11. Transplantation of SAP-loaded EPCs and GDF11 into the ischaemic abdominal pouch or myocardium resulted in a decreased number of the senescent EPCs. At four weeks after transplantation into the myocardium, neovascularization and myocardial regeneration were enhanced, reverse myocardial remodeling was attenuated, and cardiac function was improved effectively. CONCLUSIONS This study provides novel evidence suggesting that oxidative stress could induce senescence of the transplanted EPCs in the ischemic myocardium. GDF11 demonstrates the ability to mitigate oxidative stress-induced senescence in the transplanted EPCs within the myocardium by activating autophagy.
Collapse
Affiliation(s)
- Ping Tao
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
- Department of Laboratory Medicine, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200086, People's Republic of China
| | - Hai-Feng Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Pei Zhou
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China.
- Rehabilitation Therapy Department, School of Health Sciences, West Yunnan University of Applied Sciences, Dali, Yunnan Province, 671000, People's Republic of China.
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China.
- Rehabilitation Therapy Department, School of Health Sciences, West Yunnan University of Applied Sciences, Dali, Yunnan Province, 671000, People's Republic of China.
| |
Collapse
|
2
|
de Lima EP, Tanaka M, Lamas CB, Quesada K, Detregiachi CRP, Araújo AC, Guiguer EL, Catharin VMCS, de Castro MVM, Junior EB, Bechara MD, Ferraz BFR, Catharin VCS, Laurindo LF, Barbalho SM. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024; 12:2096. [PMID: 39335609 PMCID: PMC11428869 DOI: 10.3390/biomedicines12092096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The triad of vascular impairment, muscle atrophy, and cognitive decline represents critical age-related conditions that significantly impact health. Vascular impairment disrupts blood flow, precipitating the muscle mass reduction seen in sarcopenia and the decline in neuronal function characteristic of neurodegeneration. Our limited understanding of the intricate relationships within this triad hinders accurate diagnosis and effective treatment strategies. This review analyzes the interrelated mechanisms that contribute to these conditions, with a specific focus on oxidative stress, chronic inflammation, and impaired nutrient delivery. The aim is to understand the common pathways involved and to suggest comprehensive therapeutic approaches. Vascular dysfunctions hinder the circulation of blood and the transportation of nutrients, resulting in sarcopenia characterized by muscle atrophy and weakness. Vascular dysfunction and sarcopenia have a negative impact on physical function and quality of life. Neurodegenerative diseases exhibit comparable pathophysiological mechanisms that affect cognitive and motor functions. Preventive and therapeutic approaches encompass lifestyle adjustments, addressing oxidative stress, inflammation, and integrated therapies that focus on improving vascular and muscular well-being. Better understanding of these links can refine therapeutic strategies and yield better patient outcomes. This study emphasizes the complex interplay between vascular dysfunction, muscle degeneration, and cognitive decline, highlighting the necessity for multidisciplinary treatment approaches. Advances in this domain promise improved diagnostic accuracy, more effective therapeutic options, and enhanced preventive measures, all contributing to a higher quality of life for the elderly population.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Claudia Rucco P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Edgar Baldi Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17525-902, SP, Brazil
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Research Coordination, UNIMAR Charity Hospital (HBU), University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
3
|
Krishnaraj A, Dennis F, Teoh H, Verma S, Hess DA. Vascular regenerative cell content in South Asians: the key learnings. Curr Opin Cardiol 2024; 39:444-450. [PMID: 38847610 DOI: 10.1097/hco.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
PURPOSE OF REVIEW We aim to provide a comprehensive examination of the literature linking elevated rates of cardiovascular disease (CVD) in individuals of South Asian ethnicity with the severity of circulating vascular regenerative cell exhaustion. RECENT FINDINGS Recent findings have demonstrated reduced bioavailability of pro-vascular progenitor cell subsets in individuals with T2D and obesity. Depletion of vascular regenerative cells in the bone marrow - coupled with decreased mobilization into circulation - can negatively impact the capacity for vascular repair and exacerbate CVD risk. Several recent studies have established that although South Asian individuals possess similar inflammatory cell burden compared with other ethnicities, they exhibit marked decreases in vessel regenerative hematopoietic progenitor cells and monocyte subsets. Validation of these findings and investigation the functional capacity of vascular regenerative cell subsets to mediate vessel repair is highly warranted. SUMMARY Vascular regenerative cells play a key role coordinating angiogenic and arteriogenic vessel remodelling. Recent studies have demonstrated that South Asian individuals with T2D show severe depletion in circulating vascular regenerative cell subsets. Because the reversal of vascular regenerative cell exhaustion by current glucose-lowering pharmaceutical agents has recently been documented, early intervention to bolster vascular regenerative cell content may prevent CVD co-morbidities in South Asian individuals with cardiometabolic disease.
Collapse
Affiliation(s)
- Aishwarya Krishnaraj
- Division of Cardiac Surgery
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital
- Department of Pharmacology and Toxicology, University of Toronto
| | - Fallon Dennis
- Division of Cardiac Surgery
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital
- Department of Pharmacology and Toxicology, University of Toronto
| | - Hwee Teoh
- Division of Cardiac Surgery
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital
- Division of Endocrinology and Metabolism, St. Michael's Hospital
| | - Subodh Verma
- Division of Cardiac Surgery
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital
- Department of Pharmacology and Toxicology, University of Toronto
- Department of Surgery, University of Toronto, Toronto
| | - David A Hess
- Division of Cardiac Surgery
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital
- Department of Pharmacology and Toxicology, University of Toronto
- Department of Physiology and Pharmacology, Western University
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
4
|
Xiong S, Gou R, Liang X, Wu H, Qin S, Li B, Luo C, Chen J. Adverse Events of Oral GLP-1 Receptor Agonist (Semaglutide Tablets): A Real-World Study Based on FAERS from 2019 to 2023. Diabetes Ther 2024; 15:1717-1733. [PMID: 38776037 PMCID: PMC11263519 DOI: 10.1007/s13300-024-01594-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/19/2024] [Indexed: 07/24/2024] Open
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have attracted much attention because of their significant hypoglycemic and weight-loss effects. Previous preparations can only be subcutaneously injected. Oral administration of GLP-1RAs semaglutide helps to broaden treatment options, but its safety in the real world still needs to be observed. This study is based on FDA adverse event reporting system (FAERS) database to mine adverse drug events (ADE) of oral semaglutide, and provide references for the clinical safe use of this drug. METHODS To analyze the signal quality of oral semaglutide, which is a drug used in the FAERS database from the third quarter of 2019 to the third quarter of 2023, we collected ADE data and performed data mining by using disproportionate analysis. Then, we standardized the data and used a variety of signal-quantification techniques, including reported odds ratio (ROR), proportional reporting ratio (PRR), Bayesian belief propagation neural network (BCPNN), and multiple empirical Bayesian gamma Poisson contractions (MGPS), for further analysis. RESULTS We screened 2398 reports on the use of semaglutide tablets, involving a total of 5653 ADE. These reports were mainly submitted by consumers, and the reporting country was mainly the United States. A total of 23 system organ classes (SOC) and 93 preferred terms (PT) were mined for the signals of semaglutide tablets. The three most common SOC were gastrointestinal disorders, general disorders and administration site conditions, and investigations. At the PT level, metabolism and nutrition disorders exhibit the highest number of signals, with the top three being thyroid cyst, acute cholecystitis, and ketosis. Gastrointestinal disorders rank second, primarily involving eructation, pancreatitis, impaired gastric emptying, and regurgitation. In addition, vith nerve paralysis occurs and the signal intensity is high. CONCLUSIONS Our study provides a deeper and broader understanding of the safety of oral semaglutide. The results of the ROR, PRR, BCPNN, and MGPS algorithms exhibit high consistency, with metabolism and nutrition-related disorders having the highest number of signals. The conclusions align with the technical specifications of the product. Notably, other unexpected effects are reported, including acute cholecystitis, paralysis of the abducens nerve, and positional vertigo.
Collapse
Affiliation(s)
- Si Xiong
- Department of Ultrasonography, Affiliated Liutie Central Hospital of Guangxi Medical University, Feie Road Limin District 14, Liuzhou, 545007, Guangxi, China
| | - Ruoyu Gou
- School of Public Health, Ningxia Medical University, Shengli Road 1160, Yinchuan, 750003, Ningxia, China
| | - Xudong Liang
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Feie Road Limin District 14, Liuzhou, 545007, Guangxi, China
| | - Hao Wu
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Feie Road Limin District 14, Liuzhou, 545007, Guangxi, China
| | - Shuitao Qin
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Feie Road Limin District 14, Liuzhou, 545007, Guangxi, China
| | - Bing Li
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Feie Road Limin District 14, Liuzhou, 545007, Guangxi, China
| | - Changjun Luo
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Feie Road Limin District 14, Liuzhou, 545007, Guangxi, China.
| | - Junan Chen
- Department of Endocrinology, Affiliated Liutie Central Hospital of Guangxi Medical University, Feie Road Limin District 14, Liuzhou, 545007, Guangxi, China.
| |
Collapse
|
5
|
Park B, Krishnaraj A, Teoh H, Bakbak E, Dennis F, Quan A, Hess DA, Verma S. GLP-1RA therapy increases circulating vascular regenerative cell content in people living with type 2 diabetes. Am J Physiol Heart Circ Physiol 2024; 327:H370-H376. [PMID: 38874618 DOI: 10.1152/ajpheart.00257.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 (SGLT2) inhibitors are guideline-recommended therapies for the management of type 2 diabetes (T2D), atherosclerotic cardiovascular disease, heart failure, and chronic kidney disease. We previously observed in people living with T2D and coronary artery disease that circulating vascular regenerative (VR) progenitor cell content increased following 6-mo use of the SGLT2 inhibitor empagliflozin. In this post hoc subanalysis of the ORIGINS-RCE CardioLink-13 study (ClinicalTrials.gov Identifier NCT05253521), we analyzed the circulating VR progenitor cell content of 92 individuals living with T2D, among whom 20 were on a GLP-1RA, 42 were on an SGLT2 inhibitor but not a GLP-1RA, and 30 were on neither of these vascular protective therapies. In the GLP-1RA group, the mean absolute count of circulating VR progenitor cells defined by high aldehyde dehydrogenase (ALDH) activity (ALDHhiSSClow) and VR progenitor cells further characterized by surface expression of the proangiogenic marker CD133 (ALDHhiSSClowCD133+) was higher than the group receiving neither a GLP-1RA nor an SGLT2 inhibitor (P = 0.02) and comparable with that in the SGLT2 inhibitor group (P = 0.25). The absolute count of proinflammatory, granulocyte-restricted precursor cells (ALDHhiSSChi) was significantly lower in the GLP-1RA group compared with the group on neither therapy (P = 0.031). Augmented vessel repair initiated by VR cells with previously documented proangiogenic activity, alongside a reduction in systemic, granulocyte precursor-driven inflammation, may represent novel mechanisms responsible for the cardiovascular-metabolic benefits of GLP-1RA therapy. Prospective, randomized clinical trials are now warranted to establish the value of recovering circulating VR progenitor cell content with blood vessel regenerative functions.NEW & NOTEWORTHY In this post hoc subanalysis of 92 individuals living with T2D and at high cardiovascular risk, the authors summarize the differences in circulating vascular regenerative (VR) progenitor cell content between those on GLP-1RA therapy, on SGLT2 inhibitor without GLP-1RA therapy, and on neither therapy. Those on GLP-1RA therapy demonstrated greater circulating VR progenitor cell content and reduced proinflammatory granulocyte precursor content. These results offer novel mechanistic insights into the cardiometabolic benefits associated with GLP-1RA therapy.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - David A Hess
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Bakbak E, Krishnaraj A, Bhatt DL, Quan A, Park B, Bakbak AI, Bari B, Terenzi KA, Pan Y, Fry EJ, Terenzi DC, Puar P, Khan TS, Rotstein OD, Mazer CD, Leiter LA, Teoh H, Hess DA, Verma S. Icosapent ethyl modulates circulating vascular regenerative cell content: The IPE-PREVENTION CardioLink-14 trial. MED 2024; 5:718-734.e4. [PMID: 38552629 DOI: 10.1016/j.medj.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) showed that icosapent ethyl (IPE) reduced major adverse cardiovascular events by 25%. Since the underlying mechanisms for these benefits are not fully understood, the IPE-PREVENTION CardioLink-14 trial (ClinicalTrials.gov: NCT04562467) sought to determine if IPE regulates vascular regenerative (VR) cell content in people with mild to moderate hypertriglyceridemia. METHODS Seventy statin-treated individuals with triglycerides ≥1.50 and <5.6 mmol/L and either atherosclerotic cardiovascular disease or type 2 diabetes with additional cardiovascular risk factors were randomized to IPE (4 g/day) or usual care. VR cells with high aldehyde dehydrogenase activity (ALDHhi) were isolated from blood collected at the baseline and 3-month visits and characterized with lineage-specific cell surface markers. The primary endpoint was the change in frequency of pro-vascular ALDHhiside scatter (SSC)lowCD133+ progenitor cells. Change in frequencies of ALDHhiSSCmid monocyte and ALDHhiSSChi granulocyte precursor subsets, reactive oxygen species production, serum biomarkers, and omega-3 levels were also evaluated. FINDINGS Baseline characteristics, cardiovascular risk factors, and medications were balanced between the groups. Compared to usual care, IPE increased the mean frequency of ALDHhiSSClowCD133+ cells (-1.00% ± 2.45% vs. +7.79% ± 1.70%; p = 0.02), despite decreasing overall ALDHhiSSClow cell frequency. IPE assignment also reduced oxidative stress in ALDHhiSSClow progenitors and increased ALDHhiSSChi granulocyte precursor cell content. CONCLUSIONS IPE-PREVENTION CardioLink-14 provides the first translational evidence that IPE can modulate VR cell content and suggests a novel mechanism that may underlie the cardioprotective effects observed with IPE in REDUCE-IT. FUNDING HLS Therapeutics provided the IPE in kind and had no role in the study design, conduct, analyses, or interpretation.
Collapse
Affiliation(s)
- Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Basel Bari
- Markham Health+ Plex, Markham, ON, Canada
| | | | - Yi Pan
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | | | | | - Pankaj Puar
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tayyab S Khan
- Division of Endocrinology and Metabolism, St. Joseph's Healthcare Centre, London, ON, Canada; Department of Medicine, Western University, London, ON, Canada
| | - Ori D Rotstein
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Division of General Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - C David Mazer
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Anesthesia, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Lawrence A Leiter
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology and Metabolism, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology and Metabolism, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada
| | - David A Hess
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada; Molecular Medicine Research Labs, Robarts Research Institute, London, ON, Canada.
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Chen Y, Gialeli C, Shen J, Dunér P, Walse B, Duelli A, Caing-Carlsson R, Blom AM, Zibert JR, Nilsson AH, Alenfall J, Liang C, Nilsson J. Identification of an osteopontin-derived peptide that binds neuropilin-1 and activates vascular repair responses and angiogenesis. Pharmacol Res 2024; 205:107259. [PMID: 38871237 DOI: 10.1016/j.phrs.2024.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The osteopontin-derived peptide FOL-005 stimulates hair growth. Using ligand-receptor glyco-capture technology we identified neuropilin-1 (NRP-1), a known co-receptor for vascular endothelial growth factor (VEGF) receptors, as the most probable receptor for FOL-005 and the more stable analogue FOL-026. X-ray diffraction and microscale thermophoresis analysis revealed that FOL-026 shares binding site with VEGF in the NRP-1 b1-subdomain. Stimulation of human umbilical vein endothelial cells with FOL-026 resulted in phosphorylation of VEGFR-2, ERK1/2 and AKT, increased cell growth and migration, stimulation of endothelial tube formation and inhibition of apoptosis in vitro. FOL-026 also promoted angiogenesis in vivo as assessed by subcutaneous Matrigel plug and hind limb ischemia models. NRP-1 knock-down or treatment of NRP-1 antagonist EG00229 blocked the stimulatory effects of FOL-026 on endothelial cells. Exposure of human coronary artery smooth muscle cells to FOL-026 stimulated cell growth, migration, inhibited apoptosis, and induced VEGF gene expression and VEGFR-2/AKT phosphorylation by an NRP-1-dependent mechanism. RNA sequencing showed that FOL-026 activated pathways involved in tissue repair. These findings identify NRP-1 as the receptor for FOL-026 and show that its biological effects mimic that of growth factors binding to the VEGF receptor family. They also suggest that FOL-026 may have therapeutical potential in conditions that require vascular repair and/or enhanced angiogenesis.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China; Department of Experimental Medical Science, Lund University, Sweden
| | | | - Junyan Shen
- Department of Experimental Medical Science, Lund University, Sweden; Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pontus Dunér
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | | | | | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Sweden
| | | | | | - Jan Alenfall
- Department of Clinical Sciences Malmö, Lund University, Sweden; Coegin Pharma AB, Lund, Sweden
| | - Chun Liang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China.
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden.
| |
Collapse
|
8
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Terenzi DC, Bakbak E, Teoh H, Krishnaraj A, Puar P, Rotstein OD, Cosentino F, Goldenberg RM, Verma S, Hess DA. Restoration of blood vessel regeneration in the era of combination SGLT2i and GLP-1RA therapy for diabetes and obesity. Cardiovasc Res 2024; 119:2858-2874. [PMID: 38367275 DOI: 10.1093/cvr/cvae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2024] Open
Abstract
Ischaemic cardiovascular diseases, including peripheral and coronary artery disease, myocardial infarction, and stroke, remain major comorbidities for individuals with type 2 diabetes (T2D) and obesity. During cardiometabolic chronic disease (CMCD), hyperglycaemia and excess adiposity elevate oxidative stress and promote endothelial damage, alongside an imbalance in circulating pro-vascular progenitor cells that mediate vascular repair. Individuals with CMCD demonstrate pro-vascular 'regenerative cell exhaustion' (RCE) characterized by excess pro-inflammatory granulocyte precursor mobilization into the circulation, monocyte polarization towards pro-inflammatory vs. anti-inflammatory phenotype, and decreased pro-vascular progenitor cell content, impairing the capacity for vessel repair. Remarkably, targeted treatment with the sodium-glucose cotransporter-2 inhibitor (SGLT2i) empagliflozin in subjects with T2D and coronary artery disease, and gastric bypass surgery in subjects with severe obesity, has been shown to partially reverse these RCE phenotypes. SGLT2is and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have reshaped the management of individuals with T2D and comorbid obesity. In addition to glucose-lowering action, both drug classes have been shown to induce weight loss and reduce mortality and adverse cardiovascular outcomes in landmark clinical trials. Furthermore, both drug families also act to reduce systemic oxidative stress through altered activity of overlapping oxidase and antioxidant pathways, providing a putative mechanism to augment circulating pro-vascular progenitor cell content. As SGLT2i and GLP-1RA combination therapies are emerging as a novel therapeutic opportunity for individuals with poorly controlled hyperglycaemia, potential additive effects in the reduction of oxidative stress may also enhance vascular repair and further reduce the ischaemic cardiovascular comorbidities associated with T2D and obesity.
Collapse
Affiliation(s)
- Daniella C Terenzi
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ehab Bakbak
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Hwee Teoh
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Pankaj Puar
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ori D Rotstein
- Division of General Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Solnavagen 1, 171 77 Solna, Sweden
| | | | - Subodh Verma
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cells Biology, Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
| |
Collapse
|
10
|
Bakbak E, Verma S, Krishnaraj A, Quan A, Wang CH, Pan Y, Puar P, Mason T, Verma R, Terenzi DC, Rotstein OD, Yan AT, Connelly KA, Teoh H, Mazer CD, Hess DA. Empagliflozin improves circulating vascular regenerative cell content in people without diabetes with risk factors for adverse cardiac remodeling. Am J Physiol Heart Circ Physiol 2023; 325:H1210-H1222. [PMID: 37773589 DOI: 10.1152/ajpheart.00141.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Sodium glucose-cotransporter 2 (SGLT2) inhibitors have been reported to reduce cardiovascular events and heart failure in people with and without diabetes. These medications have been shown to counter regenerative cell exhaustion in the context of prevalent diabetes. This study sought to determine if empagliflozin attenuates regenerative cell exhaustion in people without diabetes. Peripheral blood mononuclear cells were collected at the baseline and 6-mo visits from individuals randomized to receive empagliflozin (10 mg/day) or placebo who were participating in the EMPA-HEART 2 CardioLink-7 trial. Precursor cell phenotypes were characterized by flow cytometry for cell-surface markers combined with high aldehyde dehydrogenase activity to identify precursor cell subsets with progenitor (ALDHhi) versus mature effector (ALDHlow) cell attributes. Samples from individuals assigned to empagliflozin (n = 25) and placebo (n = 21) were analyzed. At baseline, overall frequencies of primitive progenitor cells (ALDHhiSSClow), monocyte (ALDHhiSSCmid), and granulocyte (ALDHhiSSChi) precursor cells in both groups were similar. At 6 mo, participants randomized to empagliflozin demonstrated increased ALDHhiSSClowCD133+CD34+ proangiogenic cells (P = 0.048), elevated ALDHhiSSCmidCD163+ regenerative monocyte precursors (P = 0.012), and decreased ALDHhiSSCmidCD86 + CD163- proinflammatory monocyte (P = 0.011) polarization compared with placebo. Empagliflozin promoted the recovery of multiple circulating provascular cell subsets in people without diabetes suggesting that the cardiovascular benefits of SGLT2 inhibitors may be attributed in part to the attenuation of vascular regenerative cell exhaustion that is independent of diabetes status.NEW & NOTEWORTHY Using an aldehyde dehydrogenase (ALDH) activity-based flow cytometry assay, we found that empagliflozin treatment for 6 mo was associated with parallel increases in circulating vascular regenerative ALDHhi-CD34/CD133-coexpressing progenitors and decreased proinflammatory ALDHhi-CD14/CD86-coexpressing monocyte precursors in individuals without diabetes but with cardiovascular risk factors. The rejuvenation of the vascular regenerative cell reservoir may represent a mechanism via which sodium glucose-cotransporter 2 (SGLT2) inhibitors limit maladaptive repair and delay the development and progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Ehab Bakbak
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Subodh Verma
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi Pan
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Pankaj Puar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamique Mason
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Raj Verma
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Ori D Rotstein
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
| | - Andrew T Yan
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Division of Cardiology, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Division of Cardiology, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
11
|
Bakbak E, Krishnaraj A, Park B, Verma S, Hess DA. Vascular regenerative cells in cardiometabolic disease. Curr Opin Cardiol 2023; 38:546-551. [PMID: 37668181 DOI: 10.1097/hco.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
PURPOSE OF REVIEW This review will provide an overview of the recent literature linking the pathophysiology of cardiometabolic disease with the depletion and dysfunction of circulating vascular regenerative (VR) cell content. Moreover, we provide rationale for the use of VR cells as a biomarker for cardiovascular risk and the use of pharmacological agents to improve VR cell content. RECENT FINDINGS Recent studies demonstrate the potential of VR cells as a biomarker of cardiovascular risk and as a therapeutic target. Notably, lipid-lowering agents, antihyperglycemic therapies such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists, as well as exercise and weight loss, have all been found to improve VR cell content, providing mechanistic evidence supporting a role in mitigating adverse cardiovascular outcomes in people with cardiometabolic-based disease. SUMMARY The importance of VR cells as a biomarker in assessing cardiovascular risk is becoming increasingly apparent. This review highlights recent literature supporting the accurate use of VR cell characterization to monitor the capacity for vessel repair and novel strategies to improve vessel health. Future research is required to validate and optimize these emerging approaches.
Collapse
Affiliation(s)
- Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
| | - Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
- Department of Surgery, University of Toronto, Toronto
| | - David A Hess
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
- Department of Physiology and Pharmacology, Western University, London
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
12
|
Cao J, Zhang Y, Yang Y, Xie J, Su Z, Li F, Li J, Zhang B, Wang Z, Zhang P, Li Z, He L, Liu H, Zheng W, Zhang S, Hong A, Chen X. Turning gray selenium and sublimed sulfur into a nanocomposite to accelerate tissue regeneration by isothermal recrystallization. J Nanobiotechnology 2023; 21:57. [PMID: 36803772 PMCID: PMC9942369 DOI: 10.1186/s12951-023-01796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Globally, millions of patients suffer from regenerative deficiencies, such as refractory wound healing, which is characterized by excessive inflammation and abnormal angiogenesis. Growth factors and stem cells are currently employed to accelerate tissue repair and regeneration; however, they are complex and costly. Thus, the exploration of new regeneration accelerators is of considerable medical interest. This study developed a plain nanoparticle that accelerates tissue regeneration with the involvement of angiogenesis and inflammatory regulation. METHODS Grey selenium and sublimed sulphur were thermalized in PEG-200 and isothermally recrystallised to composite nanoparticles (Nano-Se@S). The tissue regeneration accelerating activities of Nano-Se@S were evaluated in mice, zebrafish, chick embryos, and human cells. Transcriptomic analysis was performed to investigate the potential mechanisms involved during tissue regeneration. RESULTS Through the cooperation of sulphur, which is inert to tissue regeneration, Nano-Se@S demonstrated improved tissue regeneration acceleration activity compared to Nano-Se. Transcriptome analysis revealed that Nano-Se@S improved biosynthesis and ROS scavenging but suppressed inflammation. The ROS scavenging and angiogenesis-promoting activities of Nano-Se@S were further confirmed in transgenic zebrafish and chick embryos. Interestingly, we found that Nano-Se@S recruits leukocytes to the wound surface at the early stage of regeneration, which contributes to sterilization during regeneration. CONCLUSION Our study highlights Nano-Se@S as a tissue regeneration accelerator, and Nano-Se@S may provide new inspiration for therapeutics for regenerative-deficient diseases.
Collapse
Affiliation(s)
- Jieqiong Cao
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yibo Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junye Xie
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zijian Su
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Fu Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jingsheng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhixin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Shuixing Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xiaojia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Lechner J, Medina RJ, Lois N, Stitt AW. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Res Ther 2022; 13:388. [PMID: 35907890 PMCID: PMC9338609 DOI: 10.1186/s13287-022-03073-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Diabetic retinopathy, a major complication of diabetes mellitus, is a leading cause of sigh-loss in working age adults. Progressive loss of integrity of the retinal neurovascular unit is a central element in the disease pathogenesis. Retinal ischemia and inflammatory processes drive interrelated pathologies such as blood retinal barrier disruption, fluid accumulation, gliosis, neuronal loss and/or aberrant neovascularisation. Current treatment options are somewhat limited to late-stages of the disease where there is already significant damage to the retinal architecture arising from degenerative, edematous and proliferative pathology. New preventive and interventional treatments to target early vasodegenerative and neurodegenerative stages of the disease are needed to ensure avoidance of sight-loss. MAIN BODY Historically, diabetic retinopathy has been considered a primarily microvascular disease of the retina and clinically it is classified based on the presence and severity of vascular lesions. It is now known that neurodegeneration plays a significant role during the pathogenesis. Loss of neurons has been documented at early stages in pre-clinical models as well as in individuals with diabetes and, in some, even prior to the onset of clinically overt diabetic retinopathy. Recent studies suggest that some patients have a primarily neurodegenerative phenotype. Retinal pigment epithelial cells and the choroid are also affected during the disease pathogenesis and these tissues may also need to be addressed by new regenerative treatments. Most stem cell research for diabetic retinopathy to date has focused on addressing vasculopathy. Pre-clinical and clinical studies aiming to restore damaged vasculature using vasoactive progenitors including mesenchymal stromal/stem cells, adipose stem cells, CD34+ cells, endothelial colony forming cells and induced pluripotent stem cell derived endothelial cells are discussed in this review. Stem cells that could replace dying neurons such as retinal progenitor cells, pluripotent stem cell derived photoreceptors and ganglion cells as well as Müller stem cells are also discussed. Finally, challenges of stem cell therapies relevant to diabetic retinopathy are considered. CONCLUSION Stem cell therapies hold great potential to replace dying cells during early and even late stages of diabetic retinopathy. However, due to the presence of different phenotypes, selecting the most suitable stem cell product for individual patients will be crucial for successful treatment.
Collapse
Affiliation(s)
- Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| | - Reinhold J Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
14
|
Khan F, Gonçalves I, Shore AC, Natali A, Palombo C, Colhoun HM, Östling G, Casanova F, Kennbäck C, Aizawa K, Persson M, Gooding KM, Strain D, Looker H, Dove F, Belch J, Pinnola S, Venturi E, Kozakova M, Nilsson J. Plaque characteristics and biomarkers predicting regression and progression of carotid atherosclerosis. Cell Rep Med 2022; 3:100676. [PMID: 35858591 PMCID: PMC9381367 DOI: 10.1016/j.xcrm.2022.100676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/10/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The factors that influence the atherosclerotic disease process in high-risk individuals remain poorly understood. Here, we used a combination of vascular imaging, risk factor assessment, and biomarkers to identify factors associated with 3-year change in carotid disease severity in a cohort of high-risk subjects treated with preventive therapy (n = 865). The results show that changes in intima-media thickness (IMT) are most pronounced in the carotid bulb. Progression of bulb IMT demonstrates independent associations with baseline bulb IMT, the plaque gray scale median (GSM), and the plasma level of platelet-derived growth factor (PDGF) (standardized β-coefficients and 95% confidence interval [CI] −0.14 [−0.06 to −0.02] p = 0.001, 0.15 [0.02–0.07] p = 0.001, and 0.20 [0.03–0.07] p < 0.001, respectively). Plasma PDGF correlates with the plaque GSM (0.23 [0.15–0.29] p < 0.001). These observations provide insight into the atherosclerotic process in high-risk subjects by showing that progression primarily occurs in fibrotic plaques and is associated with increased levels of PDGF. High age, male gender, and smoking increases risk of carotid disease progression Plaques that progress are more echogenic, indicating an increased degree of fibrosis Progression is associated with high plasma levels of pro-fibrotic growth factors Regression is most common in large, less fibrotic plaques
Collapse
Affiliation(s)
- Faisel Khan
- Division of Systems Medicine, University of Dundee, Dundee, UK
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Angela C Shore
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Palombo
- Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Helen M Colhoun
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Gerd Östling
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Francesco Casanova
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | - Cecilia Kennbäck
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Kunihiko Aizawa
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | | | - Kim M Gooding
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | - David Strain
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | - Helen Looker
- Division of Systems Medicine, University of Dundee, Dundee, UK
| | - Fiona Dove
- Division of Systems Medicine, University of Dundee, Dundee, UK
| | - Jill Belch
- Division of Systems Medicine, University of Dundee, Dundee, UK
| | - Silvia Pinnola
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Venturi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Crea F. New therapeutic targets in the prevention of atherosclerotic cardiovascular disease. Eur Heart J 2022; 43:435-439. [PMID: 35143652 DOI: 10.1093/eurheartj/ehac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|