1
|
Tariq U, Gupta M, Pathak S, Patil R, Dohare A, Misra SK. Role of Biomaterials in Cardiac Repair and Regeneration: Therapeutic Intervention for Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3271-3298. [PMID: 35867701 DOI: 10.1021/acsbiomaterials.2c00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heart failure or myocardial infarction (MI) is one of the world's leading causes of death. Post MI, the heart can develop pathological conditions such as ischemia, inflammation, fibrosis, and left ventricular dysfunction. However, current surgical approaches are sufficient for enhancing myocardial perfusion but are unable to reverse the pathological changes. Tissue engineering and regenerative medicine approaches have shown promising effects in the repair and replacement of injured cardiomyocytes. Additionally, biomaterial scaffolds with or without stem cells are established to provide an effective environment for cardiac regeneration. Excipients loaded with growth factors, cytokines, oligonucleotides, and exosomes are found to help in such cardiac eventualities by promoting angiogenesis, cardiomyocyte proliferation, and reducing fibrosis, inflammation, and apoptosis. Injectable hydrogels, nanocarriers, cardiac patches, and vascular grafts are some excipients that can help the self-renewal in the damaged heart but are not understood well yet, in the context of used biomaterials. This review focuses on the use of various biomaterial-based approaches for the regeneration and repair of cardiac tissue postoccurrence of MI. It also discusses the outlines of cardiac remodeling and current therapeutic approaches after myocardial infarction, which are translationally important with respect to used biomaterials. It provides comprehensive details of the biomaterial-based regenerative approaches, which are currently the focus of the research for cardiac repair and regeneration and can provide a broad outline for further improvements.
Collapse
Affiliation(s)
- Ubaid Tariq
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Mahima Gupta
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Subhajit Pathak
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Ruchira Patil
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Akanksha Dohare
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| |
Collapse
|
2
|
Pluripotent stem cell-derived mesenchymal stromal cells improve cardiac function and vascularity after myocardial infarction. Cytotherapy 2021; 23:1074-1084. [PMID: 34588150 DOI: 10.1016/j.jcyt.2021.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have been shown to improve cardiac function after injury and are the subject of ongoing clinical trials. In this study, the authors tested the cardiac regenerative potential of an induced pluripotent stem cell-derived MSC (iPSC-MSC) population (Cymerus MSCs) in a rat model of myocardial ischemia-reperfusion (I/R). Furthermore, the authors compared this efficacy with bone marrow-derived MSCs (BM-MSCs), which are the predominant cell type in clinical trials. METHODS Four days after myocardial I/R injury, rats were randomly assigned to (i) a Cymerus MSC group (n = 15), (ii) a BM-MSC group (n = 15) or (iii) a vehicle control group (n = 14). For cell-treated animals, a total of 5 × 106 cells were injected at three sites within the infarcted left ventricular (LV) wall. RESULTS One month after cell transplantation, Cymerus MSCs improved LV function (assessed by echocardiography) compared with vehicle and BM-MSCs. Interestingly, Cymerus MSCs enhanced angiogenesis without sustained engraftment or significant impact on infarct scar size. Suggesting safety, Cymerus MSCs had no effect on inducible tachycardia or the ventricular scar heterogeneity that provides a substrate for cardiac re-entrant circuits. CONCLUSIONS The authors here demonstrate that intra-myocardial administration of iPSC-MSCs (Cymerus MSCs) provide better therapeutic effects compared with conventional BM-MSCs in a rodent model of myocardial I/R. Because of its manufacturing scalability, iPSC-MSC therapy offers an exciting opportunity for an "off-the-shelf" stem cell therapy for cardiac repair.
Collapse
|
3
|
Abstract
For therapeutic materials to be successfully delivered to the heart, several barriers need to be overcome, including the anatomical challenges of access, the mechanical force of the blood flow, the endothelial barrier, the cellular barrier and the immune response. Various vectors and delivery methods have been proposed to improve the cardiac-specific uptake of materials to modify gene expression. Viral and non-viral vectors are widely used to deliver genetic materials, but each has its respective advantages and shortcomings. Adeno-associated viruses have emerged as one of the best tools for heart-targeted gene delivery. In addition, extracellular vesicles, including exosomes, which are secreted by most cell types, have gained popularity for drug delivery to several organs, including the heart. Accumulating evidence suggests that extracellular vesicles can carry and transfer functional proteins and genetic materials into target cells and might be an attractive option for heart-targeted delivery. Extracellular vesicles or artificial carriers of non-viral and viral vectors can be bioengineered with immune-evasive and cardiotropic properties. In this Review, we discuss the latest strategies for targeting and delivering therapeutic materials to the heart and how the knowledge of different vectors and delivery methods could successfully translate cardiac gene therapy into the clinical setting.
Collapse
Affiliation(s)
- Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Taro Kariya
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Mikrani R, Li C, Naveed M, Li C, Baig MMFA, Zhang Q, Wang Y, Peng J, Zhao L, Zhou X. Pharmacokinetic Advantage of ASD Device Promote Drug Absorption through the Epicardium. Pharm Res 2020; 37:173. [DOI: 10.1007/s11095-020-02898-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 01/03/2023]
|
5
|
Das P, Santos S, Park GK, Hoseok I, Choi HS. Real-Time Fluorescence Imaging in Thoracic Surgery. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 52:205-220. [PMID: 31403028 PMCID: PMC6687041 DOI: 10.5090/kjtcs.2019.52.4.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Near-infrared (NIR) fluorescence imaging provides a safe and cost-efficient method for immediate data acquisition and visualization of tissues, with technical advantages including minimal autofluorescence, reduced photon absorption, and low scattering in tissue. In this review, we introduce recent advances in NIR fluorescence imaging systems for thoracic surgery that improve the identification of vital tissues and facilitate the resection of tumorous tissues. When coupled with appropriate NIR fluorophores, NIR fluorescence imaging may transform current intraoperative thoracic surgery methods by enhancing the precision of surgical procedures and augmenting postoperative outcomes through improvements in diagnostic accuracy and reductions in the remission rate.
Collapse
Affiliation(s)
- Priyanka Das
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sheena Santos
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - I Hoseok
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Brychtova M, Thiele JA, Lysak D, Holubova M, Kralickova M, Vistejnova L. Mesenchymal stem cells as the near future of cardiology medicine - truth or wish? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:8-18. [PMID: 30439932 DOI: 10.5507/bp.2018.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022] Open
Abstract
Cardiac damage is one of major cause of worldwide morbidity and mortality. Despite the development in pharmacotherapy, cardiosurgery and interventional cardiology, many patients remain at increased risk of developing adverse cardiac remodeling. An alternative treatment approach is the application of stem cells. Mesenchymal stem cells are among the most promising cell types usable for cardiac regeneration. Their homing to the damaged area, differentiation into cardiomyocytes, paracrine and/or immunomodulatory effect on cardiac tissue was investigated extensively. Despite promising preclinical reports, clinical trials on human patients are not convincing. Meta-analyses of these trials open many questions and show that routine clinical application of mesenchymal stem cells as a cardiac treatment may be not as helpful as expected. This review summarizes contemporary knowledge about mesenchymal stem cells role in cardiac tissue repair and discusses the problems and perspectives of this experimental therapeutical approach.
Collapse
Affiliation(s)
- Michaela Brychtova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jana-Aletta Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Daniel Lysak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Monika Holubova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
7
|
Abstract
Objective: Gliomas are the most common neoplasm of the central nervous system (CNS); however, traditional imaging techniques do not show the boundaries of tumors well. Some researchers have found a new therapeutic mode to combine nanoparticles, which are nanosized particles with various properties for specific therapeutic purposes, and stem cells for tracing gliomas. This review provides an introduction of the basic understanding and clinical applications of the combination of stem cells and nanoparticles as a contrast agent for glioma imaging. Data Sources: Studies published in English up to and including 2017 were extracted from the PubMed database with the selected key words of “stem cell,” “glioma,” “nanoparticles,” “MRI,” “nuclear imaging,” and “Fluorescence imaging.” Study Selection: The selection of studies focused on both preclinical studies and basic studies of tracking glioma with nanoparticle-labeled stem cells. Results: Studies have demonstrated successful labeling of stem cells with multiple types of nanoparticles. These labeled stem cells efficiently migrated to gliomas of varies models and produced signals sensitively captured by different imaging modalities. Conclusion: The use of nanoparticle-labeled stem cells is a promising imaging platform for the tracking and treatment of gliomas.
Collapse
Affiliation(s)
- Shuang-Lin Deng
- Department of Neurosurgical Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yun-Qian Li
- Department of Neurosurgical Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Gang Zhao
- Department of Neurosurgical Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
8
|
Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol Ther 2018; 26:1610-1623. [PMID: 29807782 DOI: 10.1016/j.ymthe.2018.05.009] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies. To reach this goal, novel cell-based therapeutic approaches are needed. Ongoing studies include cell combinations, incorporation of MSCs into biomaterials, or pre-conditioning or genetic manipulation of MSCs to boost their release of paracrine factors, such as exosomes, growth factors, microRNAs, etc. All of these approaches can augment therapeutic efficacy. Further study of the optimal route of administration, the correct dose, the best cell population(s), and timing for treatment are parameters that still need to be addressed in order to achieve the goal of complete cardiac regeneration. Despite significant progress, many challenges remain.
Collapse
Affiliation(s)
- Luiza Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
9
|
Haider KH, Aziz S, Al-Reshidi MA. Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models. Regen Med 2017; 12:969-982. [PMID: 29215316 DOI: 10.2217/rme-2017-0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results. Our literature review is a compilation of the lessons learned from the use of EPCs in experimental animal models with emphasis on the in vitro manipulation and delivery strategies to enhance their retention, survival and functioning post-engraftment in the heart.
Collapse
Affiliation(s)
| | - Salim Aziz
- Department of CV Surgery, George Washington University, 2440 M Street NW, Suite 505, Washington DC 20037, USA
| | - Mateq Ali Al-Reshidi
- Department of Basic Sciences, Sulaiman Al Rajhi Colleges, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Sharp TE, Schena GJ, Hobby AR, Starosta T, Berretta RM, Wallner M, Borghetti G, Gross P, Yu D, Johnson J, Feldsott E, Trappanese DM, Toib A, Rabinowitz JE, George JC, Kubo H, Mohsin S, Houser SR. Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction. Circ Res 2017; 121:1263-1278. [PMID: 28912121 DOI: 10.1161/circresaha.117.311174] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. OBJECTIVE To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. METHODS AND RESULTS Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×107 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU+ cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CONCLUSIONS CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve. These effects reduce those processes that can lead to heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Thomas E Sharp
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Giana J Schena
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Alexander R Hobby
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Timothy Starosta
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Remus M Berretta
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Markus Wallner
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Giulia Borghetti
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Polina Gross
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Daohai Yu
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Jaslyn Johnson
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Eric Feldsott
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Danielle M Trappanese
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Amir Toib
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Joseph E Rabinowitz
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Jon C George
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Hajime Kubo
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Sadia Mohsin
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.)
| | - Steven R Houser
- From the Department of Physiology, Cardiovascular Research Center (T.E.S., G.J.S., A.R.H., T.S., R.M.B., M.W., G.B., P.G., J.J., E.F., D.M.T., A.T., J.C.G., H.K., S.M., S.R.H.), Department of Clinical Sciences, Temple Clinical Research Institute (D.Y.), and Department of Pharmacology, Center for Translational Medicine (J.E.R.), Temple University Lewis Katz School of Medicine, Philadelphia, PA; Department of Cardiology, Temple University Hospital, Philadelphia, PA (J.C.G.); Section of Pediatric Cardiology, St. Christopher's Hospital for Children, Philadelphia, PA (A.T.); and Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (T.S.).
| |
Collapse
|
11
|
Uitterdijk A, Groenendijk BCW, Gorsse-Bakker C, Panasewicz A, Sneep S, Tempel D, van de Kamp EH, Merkus D, van der Giessen WJ, Duncker DJ. Time course of VCAM-1 expression in reperfused myocardial infarction in swine and its relation to retention of intracoronary administered bone marrow-derived mononuclear cells. PLoS One 2017. [PMID: 28628621 PMCID: PMC5476248 DOI: 10.1371/journal.pone.0178779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Intracoronary infusion of autologous bone marrow-derived mononuclear cells (BMMNC), after acute myocardial infarction (AMI), has been shown to improve myocardial function. However, therapeutic efficacy is limited, possibly because cell retention rates are low, suggesting that optimization of cell retention might increase therapeutic efficacy. Since retention of injected BMMNC is observed only within infarcted, but not remote, myocardium, we hypothesized that adhesion molecules on activated endothelium following reperfusion are essential. Consequently, we investigated the role of vascular cell adhesion molecule 1 (VCAM-1) in BMMNC retention in swine undergoing reperfused AMI produced by 120 min of percutaneous left circumflex coronary occlusion. Methods and results VCAM-1 expression in the infarct and remote region was quantified at 1, 3, 7, 14, and 35 days, post-reperfusion (n≥6 swine per group). Since expression levels were significantly higher at 3 days (2.41±0.62%) than at 7 days (0.98±0.28%; p<0.05), we compared the degree of cell retention at those time points in a follow-up study, in which an average of 43·106 autologous BMMNCs were infused intracoronary at 3, or 7 days, post-reperfusion (n = 6 swine per group) and retention was histologically quantified one hour after intracoronary infusion of autologous BMMNCs. Although VCAM-1 expression correlated with retention of BMMNC within each time point, overall BMMNC retention was similar at day 3 and day 7 (2.3±1.3% vs. 3.1±1.4%, p = 0.72). This was not due to the composition of infused bone marrow cell fractions (analyzed with flow cytometry; n = 5 per group), as cell composition of the infused BMMNC fractions was similar. Conclusion These findings suggest that VCAM-1 expression influences to a small degree, but is not the principal determinant of, BMMNC retention.
Collapse
Affiliation(s)
- André Uitterdijk
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Anna Panasewicz
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Stefan Sneep
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Dennie Tempel
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Daphne Merkus
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Dirk J. Duncker
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
12
|
Park GK, Hoseok, Kim GS, Hwang NS, Choi HS. Optical spectroscopic imaging for cell therapy and tissue engineering. APPLIED SPECTROSCOPY REVIEWS 2017; 53:360-375. [PMID: 29563664 PMCID: PMC5858719 DOI: 10.1080/05704928.2017.1328428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Cell-based therapies hold great potential to treat a wide range of human diseases, yet the mechanisms responsible for cell migration and homing are not fully understood. Emerging molecular imaging technology enables in vivo tracking of transplanted cells and their therapeutic efficacy, which together will improve the clinical outcome of cell-based therapy. Particularly, optical imaging provides highly sensitive, safe (non-radioactive), cost-effective, and fast solutions for real-time cellular trafficking compared to other conventional molecular imaging modalities. This review provides a comprehensive overview of current advances in optical imaging for cell-based therapy and tissue engineering. We discuss different types of fluorescent probes and their labeling methods with a special focus on cardiovascular disease, cancer immunotherapy, and tissue regeneration. In addition, advantages and limitations of optical imaging-based cell tracking strategies along with the future perspectives to translate this imaging technique for a clinical realm are discussed.
Collapse
Affiliation(s)
- G. Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Interdisciplinary Program in Bioengineering, School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX Institute, Seoul National University, Seoul, South Korea
| | - Hoseok
- Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Gaon Sandy Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nathaniel S. Hwang
- Interdisciplinary Program in Bioengineering, School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX Institute, Seoul National University, Seoul, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
13
|
Vilahur G, Oñate B, Cubedo J, Béjar MT, Arderiu G, Peña E, Casaní L, Gutiérrez M, Capdevila A, Pons-Lladó G, Carreras F, Hidalgo A, Badimon L. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 2017; 8:52. [PMID: 28279225 PMCID: PMC5345145 DOI: 10.1186/s13287-017-0509-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background Myocardial microvascular loss after myocardial infarction (MI) remains a therapeutic challenge. Autologous stem cell therapy was considered as an alternative; however, it has shown modest benefits due to the impairing effects of cardiovascular risk factors on stem cells. Allogenic adipose-derived stem cells (ASCs) may overcome such limitations, and because of their low immunogenicity and paracrine potential may be good candidates for cell therapy. In the present study we investigated the effects of allogenic ASCs and their released products on cardiac rarefaction post MI. Methods Pig subcutaneous adipose tissue ASCs were isolated, expanded and GFP-labeled. ASC angiogenic function was assessed by the in-vivo chick chorioallantoic membrane (CAM) model. Pigs underwent MI induction and 7 days after were randomized to receive: allogenic ASCs (intracoronary infusion); conditioned media (CM; intravenous infusion); ASCs + CM; or PBS/placebo (control). Cardiac damage and function were monitored by 3-T cardiac magnetic resonance imaging upon infusion (baseline CMR) and 1 and 3 weeks thereafter. We assessed in the myocardium: microvessel density; angiogenic markers (CD105, CD31, TF, VEGFR2, VEGFR1, vWF, eNOS, CD62); collagen deposition; and reparative fibrosis (TGFβ/TβRII/collagen). Differential proteomics of ASCs and CM was performed to characterize the ASC protein signature. Results CAM indicated a significant ASC proangiogenic capacity. In pigs after MI, only PBS/placebo animals displayed an impaired cardiac function 3 weeks after infusion (p < 0.05 vs baseline). Administration of ASCs + CM significantly enhanced neovessel formation and favored cardiac repair post MI (p < 0.05 vs the other groups). Molecular markers of angiogenesis were significantly upregulated both at transcriptional and protein levels (p < 0.05). The in-silico bioinformatics analysis of the ASC and CM proteome (interactome) indicated activation of a coordinated protein network involved in the formation of microvessels and the resolution of rarefaction. Conclusion Coadministration of allogenic ASCs and their CM synergistically contribute to the neovascularization of the infarcted myocardium through a coordinated upregulation of the proangiogenic protein interactome. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0509-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Blanca Oñate
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Maria Teresa Béjar
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Laura Casaní
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | | | | | | | | | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain. .,CIBERCV, ISCIII, Madrid, Spain. .,Cardiovascular Research Chair, UAB (Autonomous University of Barcelona), Barcelona, Spain.
| |
Collapse
|
14
|
Wenzel K, Samal R, Hammer E, Dhople VM, Gross S, Völker U, Felix SB, Könemann S. Pathophysiological aldosterone levels modify the secretory activity of cardiac progenitor cells. Mol Cell Endocrinol 2017; 439:16-25. [PMID: 27742487 DOI: 10.1016/j.mce.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022]
Abstract
Cardiac progenitor cells (CPCs) trigger regenerative processes via paracrine mechanisms in response to changes in their environment. In the present study we explored alterations in the secretory activity of CPCs induced by raised aldosterone levels symptomatic for heart failure. The cytokine profile of the supernatant of CPCs that were treated with the mineralocorticoid showed an induction of interleukin-6 secretion. Mass spectrometric analyses revealed an increase in the abundance of secreted proteins associated with regeneration and cell migration like gelsolin and galectin-1. Differential regulation of proteins associated with the extracellular matrix further points to an activation of cell migration. In response to supernatant, migration and proliferation were induced in CPCs, indicating a potential role of paracrine factors in the activation of CPCs from other regions of the heart or extra-cardiac sources. Changes in the secretory activity of CPCs might aim to compensate for the detrimental actions of aldosterone in heart failure.
Collapse
Affiliation(s)
- Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Rasmita Samal
- Interfaculty Institute for Genetic and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Elke Hammer
- Interfaculty Institute for Genetic and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Vishnu M Dhople
- Interfaculty Institute for Genetic and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
| | - Stefan Gross
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Uwe Völker
- Interfaculty Institute for Genetic and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| |
Collapse
|
15
|
Abstract
Heart failure remains a major cause of death and disability, requiring rapid development of new therapies. Bone marrow-derived mesenchymal stem cell (MSC)-based therapy is an emerging approach for the treatment of both acute and chronic heart failure. Following successful experimental studies in a range of models, more than 40 clinical trials of MSC-based therapy for heart failure have now been registered, and the results of completed clinical trials so far have shown feasibility and safety of this approach with therapeutic potential suggested (though preliminarily). However, there appear to be several critical issues to be solved before this treatment could become a widespread standard therapy for heart failure. In this review, we comprehensively and systemically summarize a total of 73 preclinical studies and 11 clinical trial reports published to date. By analyzing the data in these reports, (1) improvement in the cell delivery method to the heart in order to enhance donor cell engraftment, (2) elucidation of mechanisms underpinning the therapeutic effects of the treatment differentiation and/or treatment secretion, and (3) validation of the utility of allogeneic MSCs which could enhance the efficacy and expand the application/indication of this therapeutic approach are highlighted as future perspectives. These important respects are further discussed in this review article with referencing latest scientific and clinical information.
Collapse
Affiliation(s)
- Takuya Narita
- Cardiothoracic Surgery, National Heart Centre, Singapore, Singapore
| | | |
Collapse
|
16
|
Abstract
Recent advances in our understanding of the pathophysiology of myocardial dysfunction in the setting of congestive heart failure have created a new opportunity in developing nonpharmacological approaches to treatment. Gene therapy has emerged as a powerful tool in targeting the molecular mechanisms of disease by preventing the ventricular remodeling and improving bioenergetics in heart failure. Refinements in vector technology, including the creation of recombinant adeno-associated viruses, have allowed for safe and efficient gene transfer. These advancements have been coupled with evolving delivery methods that include vascular, pericardial, and direct myocardial approaches. One of the most promising targets, SERCA2a, is currently being used in clinical trials. The recent success of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease phase 2 trials using adeno-associated virus 1-SERCA2a in improving outcomes highlights the importance of gene therapy as a future tool in treating congestive heart failure.
Collapse
|
17
|
Ding Z, Burghoff S, Buchheiser A, Kögler G, Schrader J. Survival, integration, and differentiation of unrestricted somatic stem cells in the heart. Cell Transplant 2014; 22:15-27. [PMID: 23594819 DOI: 10.3727/096368912x640466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unrestricted somatic stem cells (USSCs) derived from human umbilical cord blood represent an attractive cell source to reconstitute the damaged heart. We have analyzed the cardiomyogenic potential and investigated the fate of USSCs after transplantation into rat heart in vivo. USSCs demonstrated cardiomyogenic differentiation properties characterized by the spontaneously beating activity and the robust expression of cardiac α-actinin and troponin T (cTnT) at protein and mRNA level after cocultivation with neonatal rat cardiomyocytes. To study the fate in vivo, eGFP⁺ USSCs were injected transcoronarily into immunosuppressed rats via a catheter-based technique. Nearly 80% USSCs were retained within the myocardium without altering cardiac hemodynamics. After 7 days, 20% of the transplanted cells survived in the host myocardium and showed elongated morphology with weak expression of cardiac-specific markers, while some eGFP⁺ USSCs were found to integrate into the vascular wall. After 21 days, only a small fraction of USSCs were found in the myocardium (0.13%); however, the remaining cells clearly exhibited a sarcomeric structure similar to mature cardiomyocytes. Identical results were also obtained in nude rats. In addition, we found some cells stained positively for activated caspase 3 paralleled by the massive infiltration of CD11b⁺ cells into the myocardium. In summary, USSCs can differentiate into beating cardiomyocytes by cocultivation in vitro. After coronary transplantation in vivo, however, long-term survival of differentiated USSCs was rather low despite a high initial fraction of trapped cells.
Collapse
Affiliation(s)
- Zhaoping Ding
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
18
|
Sullivan KE, Quinn KP, Tang KM, Georgakoudi I, Black LD. Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res Ther 2014; 5:14. [PMID: 24460869 PMCID: PMC4055039 DOI: 10.1186/scrt403] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 01/16/2014] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Although stem cell therapy is a promising treatment for myocardial infarction, the minimal functional improvements observed clinically limit its widespread application. A need exists to maximize the therapeutic potential of these stem cells by first understanding what factors within the infarct microenvironment affect their ability to regenerate the necrotic tissue. In this study, we assessed both differentiation capacity and paracrine signaling as a function of extracellular matrix remodeling after myocardial infarction. METHODS Mechanical and compositional changes to the decellularized infarcted myocardium were characterized to understand how the extracellular environment, specifically, was altered as a function of time after coronary artery ligation in Sprague-Dawley rats. These alterations were first modeled in a polyacrylamide gel system to understand how the variables of composition and stiffness drive mesenchymal stem cell differentiation towards a cardiac lineage. Finally, the paracrine secretome was characterized as a function of matrix remodeling through gene and protein expression and conditioned media studies. RESULTS The decellularized infarct tissue revealed significant alterations in both the mechanical and compositional properties of the ECM with remodeling following infarction. This altered microenvironment dynamically regulates the potential for early cardiac differentiation. Whereas Nkx2.5 expression is limited in the presence of chronic remodeled matrix of increased stiffness, GATA4 expression is enhanced. In addition, the remodeled matrix promotes the expression of several proangiogenic, prosurvival, antifibrotic, and immunomodulatory growth factors. In particular, an increase in HGF and SDF1 expression and secretion by mesenchymal stem cells can rescue oxidatively stressed cardiomyocytes in vitro. CONCLUSIONS This study demonstrated that decellularization of diseased tissue allows for the exclusive analysis of the remodeled matrix and its ability to influence significantly the cellular phenotype. Characterization of cell fate as a function of myocardial remodeling following infarction is critical in developing the ideal strategy for cell implantation to maximize tissue regeneration and to ultimately reduce the prevalence and severity of heart failure.
Collapse
|
19
|
Richardson JD, Nelson AJ, Zannettino ACW, Gronthos S, Worthley SG, Psaltis PJ. Optimization of the cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Rev Rep 2014; 9:281-302. [PMID: 22529015 DOI: 10.1007/s12015-012-9366-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite current treatment options, cardiac failure is associated with significant morbidity and mortality highlighting a compelling clinical need for novel therapeutic approaches. Based on promising pre-clinical data, stem cell therapy has been suggested as a possible therapeutic strategy. Of the candidate cell types evaluated, mesenchymal stromal/stem cells (MSCs) have been widely evaluated due to their ease of isolation and ex vivo expansion, potential allogeneic utility and capacity to promote neo-angiogenesis and endogenous cardiac repair. However, the clinical application of MSCs for mainstream cardiovascular use is currently hindered by several important limitations, including suboptimal retention and engraftment and restricted capacity for bona fide cardiomyocyte regeneration. Consequently, this has prompted intense efforts to advance the therapeutic properties of MSCs for cardiovascular disease. In this review, we consider the scope of benefit from traditional plastic adherence-isolated MSCs and the lessons learned from their conventional use in preclinical and clinical studies. Focus is then given to the evolving strategies aimed at optimizing MSC therapy, including discussion of cell-targeted techniques that encompass the preparation, pre-conditioning and manipulation of these cells ex vivo, methods to improve their delivery to the heart and innovative substrate-directed strategies to support their interaction with the host myocardium.
Collapse
Affiliation(s)
- James D Richardson
- Cardiovascular Research Centre, Royal Adelaide Hospital and Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Napp LC, Templin C. What You See is What You Get? Imaging of Cell Therapy for Cardiac Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-013-9243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Donahue M, Quintavalle C, Chiariello GA, Condorelli G, Briguori C. Endothelial progenitor cells in coronary artery disease. Biol Chem 2013; 394:1241-52. [DOI: 10.1515/hsz-2013-0110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 06/20/2013] [Indexed: 02/02/2023]
Abstract
Abstract
In the last two decades a great deal of evidence has been collected on the key role of endothelial progenitor cells (EPC) in the mechanisms of vascular healing. The role of EPC as a marker of vascular health and prognosis of cardiovascular disease is already consolidated. This review aims to examine and evaluate recent data regarding EPC, as biomarkers, prognostic factor and potential therapy in cardiovascular disease.
Collapse
|
22
|
Silvestri A, Boffito M, Sartori S, Ciardelli G. Biomimetic Materials and Scaffolds for Myocardial Tissue Regeneration. Macromol Biosci 2013; 13:984-1019. [DOI: 10.1002/mabi.201200483] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/23/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Antonella Silvestri
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
- CNR-IPCF UOS Pisa; Via Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
23
|
Duran JM, Taghavi S, George JC. The need for standardized protocols for future clinical trials of cell therapy. Transl Res 2012; 160:399-410. [PMID: 22884677 DOI: 10.1016/j.trsl.2012.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 01/08/2023]
Abstract
Multiple clinical trials have been conducted to determine the outcome of stem cell transplantation on cardiac function. However, marked variability in design across these trials has generated ambiguity in interpretation of their results. This review systematically evaluates the currently available protocols to illustrate the need for a standardized protocol for future trials.
Collapse
Affiliation(s)
- Jason M Duran
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
24
|
Transplantation with autologous mesenchymal stem cells after acute myocardial infarction evaluated by magnetic resonance imaging: an experimental study. J Thorac Imaging 2012; 27:125-35. [PMID: 21336180 DOI: 10.1097/rti.0b013e31820446fa] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE The purpose of this study was to track and investigate the effects of autologous bone marrow-derived mesenchymal stem cells (MSCs) transplantation after acute myocardial infarction in swine assessed by magnetic resonance imaging (MRI). MATERIALS AND METHODS Twenty-four Chinese mini-pigs (27±3 kg) were divided into 4 groups, including control groups (groups 1 and 3) and MSCs transplantation groups (group 2, super paramagnetic iron oxide labeled and group 4, 4',6-diamidino-2-phenylindole labeled). Super paramagnetic iron oxide-labeled and 4',6-diamidino-2-phenylindole-labeled MSCs (3.0×10⁶ cells/mL) with a volume of 10 mL were injected into the left anterior descending artery by a catheter at 1 week after acute myocardial infarction, respectively. Cell distribution, cardiac functions, and scar tissue were quantitatively assessed by MRI. RESULTS The reduction of the T2* value in the myocardium, spleen, and liver in group 2 was significantly greater than that in group 1. MRI showed that function and scar size at baseline and 3 days after cell infusion were not significantly different between groups 1 and 2. Six weeks later left ventricular ejection fraction (P<0.0001), end-systolic volume (P<0.05), the number of dyskinetic segments (P<0.0001), left ventricular weight index (P<0.0001), and the infarcted size (P<0.0001) in group 4 were all improved comparing with those in group 3. CONCLUSIONS The majority of MSCs entrapped by the extracardial organs were mainly in the spleen. Catheter-based delivery of autologous bone marrow-derived MSCs into infarcted myocardium is feasible and effective.
Collapse
|
25
|
Abstract
The contribution of stem cells to cure damaged hearts has finally been unraveled. A large number of preclinical and clinical studies have showed beneficial outcomes after myocardial infarction. In this review, the current understanding of stem cell therapy in preclinical and clinical experiences is summarized. Stem cells from bone marrow have shown a potential to improve cardiac performance after myocardial infarction in animal and early clinical studies. Clinical trials from all over the world have provided safety assessments of stem cell therapy with marginal improvement of clinical outcomes. Thus, further investigations should be encouraged to resolve the discrepancies between studies, clinical issues, and unclear translational findings. This review provides information and commentary on key trials for stem cell-based treat-ment of cardiovascular disease.
Collapse
Affiliation(s)
- Yong Sook Kim
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea
| | | |
Collapse
|
26
|
Myocardial restoration: is it the cell or the architecture or both? Cardiol Res Pract 2012; 2012:240497. [PMID: 22400122 PMCID: PMC3286902 DOI: 10.1155/2012/240497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023] Open
Abstract
Myocardial infarction is the leading cause of death in developed countries. Cardiac cell therapy has been introduced to clinical trials for more than ten years but its results are still controversial. Tissue engineering has addressed some limitations of cell therapy and appears to be a promising solution for cardiac regeneration. In this review, we would like to summarize the current understanding about the therapeutic effect of cell therapy and tissue engineering under purview of functional and structural aspects, highlighting actual roles of each therapy towards clinical application.
Collapse
|
27
|
Psaltis PJ, Simari RD, Rodriguez-Porcel M. Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. Eur J Nucl Med Mol Imaging 2011; 39:165-81. [PMID: 21901381 DOI: 10.1007/s00259-011-1925-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 12/20/2022]
Abstract
Despite preclinical promise, the progress of cell-based therapy to clinical cardiovascular practice has been slowed by several challenges and uncertainties that have been highlighted by the conflicting results of human trials. Most telling has been the revelation that current strategies fall short of achieving sufficient retention and engraftment of cells to meet the ambitious objective of myocardial regeneration. This has sparked novel research into the refinement of cell biology and delivery to overcome these shortcomings. Within this context, molecular imaging has emerged as a valuable tool for providing noninvasive surveillance of cell fate in vivo. Direct and indirect labelling of cells can be coupled with clinically relevant imaging modalities, such as radionuclide single photon emission computed tomography and positron emission tomography, and magnetic resonance imaging, to assess their short- and long-term distributions, along with their viability, proliferation and functional interaction with the host myocardium. This review details the strengths and limitations of the different cell labelling and imaging techniques and their potential application to the clinical realm. We also consider the broader, multifaceted utility of imaging throughout the cell therapy process, providing a discussion of its considerable value during cell delivery and its importance during the evaluation of cardiac outcomes in clinical studies.
Collapse
Affiliation(s)
- Peter J Psaltis
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
28
|
Cell tracking in cardiac repair: what to image and how to image. Eur Radiol 2011; 22:189-204. [PMID: 21735069 PMCID: PMC3229694 DOI: 10.1007/s00330-011-2190-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/21/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023]
Abstract
Stem cell therapies hold the great promise and interest for cardiac regeneration among scientists, clinicians and patients. However, advancement and distillation of a standard treatment regimen are not yet finalised. Into this breach step recent developments in the imaging biosciences. Thus far, these technical and protocol refinements have played a critical role not only in the evaluation of the recovery of cardiac function but also in providing important insights into the mechanism of action of stem cells. Molecular imaging, in its many forms, has rapidly become a necessary tool for the validation and optimisation of stem cell engrafting strategies in preclinical studies. These include a suite of radionuclide, magnetic resonance and optical imaging strategies to evaluate non-invasively the fate of transplanted cells. In this review, we highlight the state-of-the-art of the various imaging techniques for cardiac stem cell presenting the strengths and limitations of each approach, with a particular focus on clinical applicability.
Collapse
|
29
|
Zhang C, Tan X, Tan L, Liu T, Liu D, Zhang L, Fan S, Su Y, Cheng T, Zhou Y, Shi C. Labeling Stem Cells with a Near-Infrared Fluorescent Heptamethine Dye for Noninvasive Optical Tracking. Cell Transplant 2011; 20:741-51. [DOI: 10.3727/096368910x536536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Near-infrared (NIR) fluorescent agents hold great promise for noninvasive in vivo imaging. We have recently reported that a NIR fluorescent heptamethine dye, IR-780 iodide, exhibits unique optical properties for biomedical imaging. On the basis of this foregoing work, we further describe here the potential application of IR-780 iodide as a novel NIR agent for stem cell labeling and tracking. The labeling efficiency, subcellular localization, and the effects on cell viability and differentiation of IR-780 iodide were investigated. The in vivo distribution of stem cells after intravenous transplantation was traced by whole-body animal NIR imaging. Our results showed that IR-780 iodide exhibited superior labeling efficiency and biocompatibility with unique optical properties. Following whole-body NIR imaging, the pulmonary passage of stem cells was noninvasively visualized in rats after systemic transplantation of IR-780 iodide-labeled stem cells through intravenous delivery. With this NIR imaging method, we further confirmed that pretreatment with sodium nitroprusside (SNP), a vasodilator agent, significantly reduced the cell trapping in the lung and increased the cell passage through the lung capillaries. Our study suggests that IR-780 iodide may represent an effective NIR fluorophore for stem cell labeling and tracking.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xu Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Tao Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Dengqun Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lilong Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Song Fan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Tianmin Cheng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Kedziorek DA, Kraitchman DL. Emerging Approaches for Cardiovascular Stem Cell Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010. [DOI: 10.1007/s12410-010-9057-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 2010; 3:652-62. [PMID: 20559770 DOI: 10.1007/s12265-010-9198-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 05/26/2010] [Indexed: 12/27/2022]
Abstract
Cardiac cell therapy has emerged as a controversial yet promising therapeutic strategy. Both experimental data and clinical applications in this field have shown modest but tangible benefits on cardiac structure and function and underscore that transplanted stem-progenitor cells can attenuate the postinfarct microenvironment. The paracrine factors secreted by these cells represent a pivotal mechanism underlying the benefits of cell-mediated cardiac repair. This article reviews key studies behind the paracrine effect related to the cardiac reparative effects of cardiac cell therapy.
Collapse
|
32
|
Dubois C, Liu X, Claus P, Marsboom G, Pokreisz P, Vandenwijngaert S, Dépelteau H, Streb W, Chaothawee L, Maes F, Gheysens O, Debyser Z, Gillijns H, Pellens M, Vandendriessche T, Chuah M, Collen D, Verbeken E, Belmans A, Van de Werf F, Bogaert J, Janssens S. Differential Effects of Progenitor Cell Populations on Left Ventricular Remodeling and Myocardial Neovascularization After Myocardial Infarction. J Am Coll Cardiol 2010; 55:2232-43. [DOI: 10.1016/j.jacc.2009.10.081] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 12/16/2022]
|
33
|
Kinkaid HYM, Huang XP, Li RK, Weisel RD. What's new in cardiac cell therapy? Allogeneic bone marrow stromal cells as "universal donor cells". J Card Surg 2010; 25:359-66. [PMID: 20149011 DOI: 10.1111/j.1540-8191.2009.00984.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiac cell therapies offer distinct and exciting advantages over current treatments to prevent postinfarction heart failure because they can reverse ventricular remodeling and improve function, but only if the implanted stem cells contribute biological functions and achieve prolonged engraftment within the hostile environment of the damaged heart. Unfortunately, function is diminished in autologous stem cells isolated from older patients and those with comorbidities, and so clinical trials testing the implantation of healthy, allogeneic bone marrow-derived stromal cells (MSCs) isolated from young donors are currently underway. MSCs are unique because, in addition to exerting paracrine effects that restore blood flow and recruit endogenous stem cells to the infarct, they exhibit immune-modulating properties in culture that-if retained after allogeneic implantation-imply the cells may escape immune recognition within the heart. At present, the scope of MSC immune modulation after implantation is unclear.
Collapse
Affiliation(s)
- Heather Y McDonald Kinkaid
- Division of Cardiovascular Surgery and Department of Surgery, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|