1
|
Bin C, Zhang C. The association between vitamin D consumption and gallstones in US adults: A cross-sectional study from the national health and nutrition examination survey. J Formos Med Assoc 2024:S0929-6646(24)00430-3. [PMID: 39261120 DOI: 10.1016/j.jfma.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Gallstone disease is common in the US and Europe. Gallstones are associated with factors such as age, sex, weight, and serum cholesterol levels. A complex relationship exists between vitamin D levels and cholesterol metabolism. However, the relationship between vitamin D level and gallstones remains unclear. This study aimed to investigate whether gallstones are associated with dietary vitamin D (D2+D3) consumption (VDC) in American adults. METHODS This cross-sectional study used data from people who participated in the National Health and Nutrition Examination Survey between March 2017 and March 2020. Multivariate logistic regression models were used to determine the association between vitamin D intake and the presence of gallstones. Stratified and interaction analyses were performed to determine whether the relationship was stable across different subgroups. RESULTS 6873 participants were included. VDC (per 1 SD) was positively associated with gallstones in the crude model (OR: 1.11, 95% Confidence Interval (CI): (1.05-1.17); p < 0.001), Further adjustment did not affect the results. When vitamin D was analyzed using quartiles, with increased quartile of VDC, the incidence of gallstones increased, and the OR of Q2 (OR: 1.08, 95% CI: 0.89-1.32, p = 0.436) and Q3 (OR: 1.55, 95% CI: 1.28-1.87, p < 0.001) was higher than that of Q1 in crude model. After adjusting for covariates, there is a positive association between VDC and incidence of gallstones without statistical significance. CONCLUSION VDC was positively associated with the incidence of gallstones, however, further studies are required to gather additional evidence.
Collapse
Affiliation(s)
- Chuxuan Bin
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Address: No. 1, Dongjiaomin Road, Dongcheng District, Beijing, China.
| | - Chuan Zhang
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Address: No. 1, Dongjiaomin Road, Dongcheng District, Beijing, China.
| |
Collapse
|
2
|
Yang G, Mason AM, Gill D, Schooling CM, Burgess S. Multi-biobank Mendelian randomization analyses identify opposing pathways in plasma low-density lipoprotein-cholesterol lowering and gallstone disease. Eur J Epidemiol 2024; 39:857-867. [PMID: 39009924 PMCID: PMC11410903 DOI: 10.1007/s10654-024-01141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Plasma low-density lipoprotein (LDL)-cholesterol is positively associated with coronary artery disease risk while biliary cholesterol promotes gallstone formation. Different plasma LDL-cholesterol lowering pathways may have distinct effects on biliary cholesterol and thereby gallstone disease risk. We conducted a Mendelian randomization (MR) study using data from the UK Biobank (30,547 gallstone disease cases/336,742 controls), FinnGen (34,461 cases/301,383 controls) and Biobank Japan (9,305 cases/168,253 controls). We first performed drug-target MR analyses substantiated by colocalization to investigate the effects of plasma LDL-cholesterol lowering therapies on gallstone disease risk. We then performed clustered MR analyses and pathway analyses to identify distinct mechanisms underlying the association of plasma LDL-cholesterol with gallstone disease risk. For a 1-standard deviation reduction in plasma LDL-cholesterol, genetic mimics of statins were associated with lower gallstone disease risk (odds ratio 0.72 [95% confidence interval 0.62, 0.83]), but genetic mimics of PCSK9 inhibitors and targeting apolipoprotein B were associated with higher risk (1.11 [1.03, 1.19] and 1.23 [1.13, 1.35]). The association for statins was supported by colocalization (posterior probability 98.7%). Clustered MR analyses identified variant clusters showing opposing associations of plasma LDL-cholesterol with gallstone disease risk, with some evidence for ancestry-and sex-specific associations. Among variants lowering plasma LDL-cholesterol, those associated with lower gallstone disease risk were mapped to glycosphingolipid biosynthesis pathway, while those associated with higher risk were mapped to pathways relating to plasma lipoprotein assembly, remodelling, and clearance and ATP-binding cassette transporters. This MR study provides genetic evidence that different plasma LDL-cholesterol lowering pathways have opposing effects on gallstone disease risk.
Collapse
Affiliation(s)
- Guoyi Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
| | - Amy M Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Graduate School of Public Health and Health Policy, City University of New York, New York City, NY, USA
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Manolis AA, Manolis TA, Mikhailidis DP, Manolis AS. Are We Using Ezetimibe As Much As We Should? Biomark Insights 2024; 19:11772719241257410. [PMID: 38827240 PMCID: PMC11143858 DOI: 10.1177/11772719241257410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Lipid-lowering therapies, particularly non-statin regimens, are underutilized as ~2/3 of patients with atherosclerotic cardiovascular (CV) disease (CVD) are not optimally managed, and do not attain target low-density lipoprotein cholesterol (LDL-C) concentrations, despite statin treatment. Statins have been the mainstay of hypolipidemic therapies; however, they are plagued by adverse effects, which have partly hindered their more widespread use. Ezetimibe is often the first added mode of treatment to attain LDL-C goals as it is efficacious and also allows the use of a smaller dose of statin, while the need for more expensive therapies is obviated. We herein provide a comprehensive review of the effects of ezetimibe in lipid lowering and reducing CV events and improving outcomes. Of the hypolipidemic therapies, oral ezetimibe, in contrast to newer agents, is the most convenient and/or affordable regimen to be utilized as mono- or combined therapy supported by data from CV outcomes studies attesting to its efficacy in reducing CVD risk and events. When combined with a statin, the statin dose could be lower, thus curtailing side-effects, while the hypolipidemic effect is enhanced (by ~20%) as the percentage of patients with target level LDL-C (<70 mg/dL) is higher with combined treatment versus a high-intensity statin. Ezetimibe could also serve as an alternative treatment in cases of statin intolerance. In conclusion, ezetimibe has an excellent safety/tolerability profile; it is the first added treatment to a statin that can attain LDL-C targets. In the combined therapy, the hypolipidemic effect is enhanced while the dose of statin could be lower, thus limiting the occurrence of side-effects. Ezetimibe could also serve as an alternative mode of treatment in cases of statin intolerance.
Collapse
Affiliation(s)
| | | | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | | |
Collapse
|
4
|
Zhang C, Dai W, Yang S, Wu S, Kong J. Resistance to Cholesterol Gallstone Disease: Hepatic Cholesterol Metabolism. J Clin Endocrinol Metab 2024; 109:912-923. [PMID: 37668355 DOI: 10.1210/clinem/dgad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Cholesterol gallstone disease (CGD) is one of the most common digestive diseases, and it is closely associated with hepatic cholesterol metabolism. Cholesterol gallstones may be caused by abnormal hepatic cholesterol metabolism, such as excessive cholesterol biosynthesis within the liver, interfering with the uptake or export of cholesterol in the liver, and abnormal hepatic cholesterol esterification. In this review, we begin with a brief overview of the clinical diagnosis and treatment of gallstone disease (GSD). Then, we briefly describe the major processes of hepatic cholesterol metabolism and summarize the key molecular expression changes of hepatic cholesterol metabolism in patients with gallstones. We review and analyze the recent advances in elucidating the relationships between these key molecules and CGD, and some targets significantly impacting on CGD via hepatic cholesterol metabolism are also listed. We also provide a significant discussion on the relationship between CGD and nonalcoholic fatty liver disease (NAFLD). Finally, the new discoveries of some therapeutic strategies associated with hepatic cholesterol metabolism to prevent and treat CGD are summarized.
Collapse
Affiliation(s)
- Chenghao Zhang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang 110122, P.R. China
| | - Shaojie Yang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuodong Wu
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jing Kong
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
5
|
Chen L, Qiu W, Sun X, Gao M, Zhao Y, Li M, Fan Z, Lv G. Novel insights into causal effects of serum lipids and lipid-modifying targets on cholelithiasis. Gut 2024; 73:521-532. [PMID: 37945330 DOI: 10.1136/gutjnl-2023-330784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Different serum lipids and lipid-modifying targets should affect the risk of cholelithiasis differently, however, whether such effects are causal is still controversial and we aimed to answer this question. DESIGN We prospectively estimated the associations of four serum lipids with cholelithiasis in UK Biobank using the Cox proportional hazard model, including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG). Furthermore, we estimated the causal associations of the genetically predicted serum lipids with cholelithiasis in Europeans using the Mendelian randomisation (MR) design. Finally, both drug-target MR and colocalisation analyses were performed to estimate the lipid-modifying targets' effects on cholelithiasis, including HMGCR, NPC1L1, PCSK9, APOB, LDLR, ACLY, ANGPTL3, MTTP, PPARA, PPARD and PPARG. RESULTS We found that serum levels of LDL-C and HDL-C were inversely associated with cholelithiasis risk and such associations were linear. However, the serum level of TC was non-linearly associated with cholelithiasis risk where lower TC was associated with higher risk of cholelithiasis, and the serum TG should be in an inverted 'U-shaped' relationship with it. The MR analyses supported that lower TC and higher TG levels were two independent causal risk factors. The drug-target MR analysis suggested that HMGCR inhibition should reduce the risk of cholelithiasis, which was corroborated by colocalisation analysis. CONCLUSION Lower serum TC can causally increase the risk of cholelithiasis. The cholelithiasis risk would increase with the elevation of serum TG but would decrease when exceeding 2.57 mmol/L. The use of HMGCR inhibitors should prevent its risk.
Collapse
Affiliation(s)
- Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuexuan Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Dong H, Chen R, Xu F, Cheng F. Can Lipid-Lowering Drugs Reduce the Risk of Cholelithiasis? A Mendelian Randomization Study. Clin Epidemiol 2024; 16:131-141. [PMID: 38410417 PMCID: PMC10896097 DOI: 10.2147/clep.s439642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Background and Aims Cholelithiasis etiology intricately involves lipid metabolism. We sought to investigate the plausible causal link between genetically proxied lipid-lowering medications-specifically HMGCR inhibitors, PCSK9 inhibitors, and NPC1L1 inhibitors-and cholelithiasis risk. Methods Our study utilized two genetic instruments for exposure to lipid-lowering drugs. These instruments encompassed genetic variants linked to low-density lipoprotein (LDL) cholesterol within or in proximity to drug target genes, along with loci governing gene expression traits of these targets. Effect estimates were derived through Inverse-variance-weighted MR (IVW-MR) and summary-data-based MR (SMR) methods. Results Higher HMGCR-mediated LDL cholesterol levels (IVW-MR, OR = 2.15, 95% CI = 1.58-2.94; P = 0.000) and increased HMGCR expression (SMR, OR = 1.19, 95% CI = 1.04-1.37; P = 0.014) are linked to elevated cholelithiasis risk, suggesting potential benefits of HMGCR inhibition. In contrast, higher PCSK9-mediated LDL cholesterol levels (IVW-MR, OR = 0.72, 95% CI = 0.56-0.94; P = 0.015) and increased PCSK9 expression (SMR, OR = 0.90, 95% CI = 0.82-0.99; P = 0.035) both correlate with lower cholelithiasis risk, indicating that PCSK9 inhibition may elevate this risk. Nevertheless, no substantial link emerged between NPC1L1-mediated LDL cholesterol or NPC1L1 expression and cholelithiasis in both IVW-MR and SMR analyses. Conclusion This MR investigation affirms the causal link between the utilization of HMGCR inhibitors and a diminished risk of cholelithiasis. Additionally, it indicates a causal link between PCSK9 inhibitors use and increased cholelithiasis risk. However, no significant correlation was found between NPC1L1 inhibitors use and cholelithiasis risk.
Collapse
Affiliation(s)
- Hao Dong
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Rong Chen
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Fang Xu
- Clinical Medical Laboratory Center, Taizhou People’s Hospital, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Fang Cheng
- Department of Gastroenterology, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, People’s Republic of China
| |
Collapse
|
7
|
Emanuelsson F, Afzal S, Jørgensen NR, Nordestgaard BG, Benn M. Hyperglycaemia, diabetes and risk of fragility fractures: observational and Mendelian randomisation studies. Diabetologia 2024; 67:301-311. [PMID: 38095658 PMCID: PMC10789835 DOI: 10.1007/s00125-023-06054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/12/2023] [Indexed: 01/16/2024]
Abstract
AIMS/HYPOTHESIS Fragility fractures may be a complication of diabetes, partly caused by chronic hyperglycaemia. We hypothesised that: (1) individuals with hyperglycaemia and diabetes have increased risk of fragility fracture; (2) hyperglycaemia is causally associated with increased risk of fragility fracture; and (3) diabetes and fragility fracture jointly associate with the highest risk of all-cause mortality. METHODS In total, 117,054 individuals from the Copenhagen City Heart Study and the Copenhagen General Population Study (the Copenhagen studies) and 390,374 individuals from UK Biobank were included for observational and one-sample Mendelian randomisation (MR) analyses. Fragility fractures were defined as fractures at the hip, spine and arm (humerus/wrist), collected from national health registries. Summary data for fasting glucose and HbA1c concentrations from 196,743 individuals in the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) were combined with data on fragility fractures from the Copenhagen studies in two-sample MR analyses. RESULTS Higher fasting and non-fasting glucose and HbA1c concentrations were associated with higher risk of any fragility fracture (p<0.001). Individuals with vs without diabetes had HRs for fragility fracture of 1.50 (95% CI 1.19, 1.88) in type 1 diabetes and 1.22 (1.13, 1.32) in type 2 diabetes. One-sample MR supported a causal association between high non-fasting glucose concentrations and increased risk of arm fracture in the Copenhagen studies and UK Biobank combined (RR 1.41 [1.11, 1.79], p=0.004), with similar results for fasting glucose and HbA1c in two-sample MR analyses (ORs 1.50 [1.03, 2.18], p=0.03; and 2.79 [1.12, 6.93], p=0.03, respectively). The corresponding MR estimates for any fragility fracture were 1.18 (1.00, 1.41), p=0.06; 1.36 (0.89, 2.09), p=0.15; and 2.47 (0.95, 6.43), p=0.06, respectively. At age 80 years, cumulative death was 27% in individuals with fragility fracture only, 54% in those with diabetes only, 67% in individuals with both conditions and 17% in those with neither. CONCLUSIONS/INTERPRETATION Hyperglycaemia and diabetes are risk factors for fragility fracture and one- and two-sample MR analyses supported a causal effect of hyperglycaemia on arm fractures. Diabetes and previous fragility fracture jointly conferred the highest risk of death in the general population.
Collapse
Affiliation(s)
- Frida Emanuelsson
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Centre of Diagnostic Investigation, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Centre of Diagnostic Investigation, Glostrup, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Marianne Benn
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Centre of Diagnostic Investigation, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- The Copenhagen General Population Study, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark.
| |
Collapse
|
8
|
Li Y, Li J, Tang X, Xu J, Liu R, Jiang L, Tian J, Zhang Y, Wang D, Sun K, Xu B, Zhao W, Hui R, Gao R, Song L, Yuan J, Zhao X. Association of NPC1L1 and HMGCR gene polymorphisms with coronary artery calcification in patients with premature triple-vessel coronary disease. BMC Med Genomics 2024; 17:22. [PMID: 38233830 PMCID: PMC10795340 DOI: 10.1186/s12920-024-01802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Coronary artery calcification (CAC) is a highly specific marker of atherosclerosis. Niemann-Pick C1-like 1 (NPC1L1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) are the therapeutic targets of ezetimibe and statins, respectively, which are important for the progression of atherosclerosis. However, CAC's genetic susceptibility with above targets is still unknown. We aimed to investigate the association of NPC1L1 and HMGCR gene polymorphisms with CAC in patients with premature triple-vessel disease (PTVD). METHODS Four single nucleotide polymorphisms (SNPs) (rs11763759, rs4720470, rs2072183, rs2073547) of NPC1L1, and three SNPs (rs12916, rs2303151, rs4629571) of HMGCR were genotyped in 872 PTVD patients. According to the coronary angiography results, patients were divided into low-degree CAC group and high-degree CAC group. RESULTS A total of 872 PTVD patients (mean age, 47.71 ± 6.12; male, 72.8%) were finally included for analysis. Multivariate logistic regression analysis showed no significant association between the SNPs of NPC1L1 and HMGCR genes and high-degree CAC in the total population (P > 0.05). Subgroup analysis by gender revealed that the variant genotype (TT/CT) of rs4720470 on NPC1L1 gene was associated with increased risk for high-degree CAC in male patients only (OR = 1.505, 95% CI: 1.008-2.249, P = 0.046) in dominant model, but no significant association was found in female population, other SNPs of NPC1L1 and HMGCR genes (all P > 0.05). CONCLUSIONS We reported for the first time that the rs4720470 on NPC1L1 gene was associated with high-degree CAC in male patients with PTVD. In the future, whether therapies related to this target could reduce CAC and cardiovascular events deserves further investigation.
Collapse
Affiliation(s)
- Yulong Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiawen Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Xiaofang Tang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jingjing Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Ru Liu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Lin Jiang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jian Tian
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yin Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Dong Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Kai Sun
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Bo Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Wei Zhao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Rutai Hui
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Runlin Gao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Lei Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Xueyan Zhao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
9
|
Larsson SC, Butterworth AS, Burgess S. Mendelian randomization for cardiovascular diseases: principles and applications. Eur Heart J 2023; 44:4913-4924. [PMID: 37935836 PMCID: PMC10719501 DOI: 10.1093/eurheartj/ehad736] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Large-scale genome-wide association studies conducted over the last decade have uncovered numerous genetic variants associated with cardiometabolic traits and risk factors. These discoveries have enabled the Mendelian randomization (MR) design, which uses genetic variation as a natural experiment to improve causal inferences from observational data. By analogy with the random assignment of treatment in randomized controlled trials, the random segregation of genetic alleles when DNA is transmitted from parents to offspring at gamete formation is expected to reduce confounding in genetic associations. Mendelian randomization analyses make a set of assumptions that must hold for valid results. Provided that the assumptions are well justified for the genetic variants that are employed as instrumental variables, MR studies can inform on whether a putative risk factor likely has a causal effect on the disease or not. Mendelian randomization has been increasingly applied over recent years to predict the efficacy and safety of existing and novel drugs targeting cardiovascular risk factors and to explore the repurposing potential of available drugs. This review article describes the principles of the MR design and some applications in cardiovascular epidemiology.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Zhang L, Zhang W, He L, Cui H, Wang Y, Wu X, Zhao X, Yan P, Yang C, Xiao C, Tang M, Chen L, Xiao C, Zou Y, Liu Y, Yang Y, Zhang L, Yao Y, Li J, Liu Z, Yang C, Jiang X, Zhang B. Impact of gallstone disease on the risk of stroke and coronary artery disease: evidence from prospective observational studies and genetic analyses. BMC Med 2023; 21:353. [PMID: 37705021 PMCID: PMC10500913 DOI: 10.1186/s12916-023-03072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Despite epidemiological evidence associating gallstone disease (GSD) with cardiovascular disease (CVD), a dilemma remains on the role of cholecystectomy in modifying the risk of CVD. We aimed to characterize the phenotypic and genetic relationships between GSD and two CVD events - stroke and coronary artery disease (CAD). METHODS We first performed a meta-analysis of cohort studies to quantify an overall phenotypic association between GSD and CVD. We then investigated the genetic relationship leveraging the largest genome-wide genetic summary statistics. We finally examined the phenotypic association using the comprehensive data from UK Biobank (UKB). RESULTS An overall significant effect of GSD on CVD was found in meta-analysis (relative risk [RR] = 1.26, 95% confidence interval [CI] = 1.19-1.34). Genetically, a positive shared genetic basis was observed for GSD with stroke ([Formula: see text]=0.16, P = 6.00 × 10-4) and CAD ([Formula: see text]=0.27, P = 2.27 × 10-15), corroborated by local signals. The shared genetic architecture was largely explained by the multiple pleiotropic loci identified in cross-phenotype association study and the shared gene-tissue pairs detected by transcriptome-wide association study, but not a causal relationship (GSD to CVD) examined through Mendelian randomization (MR) (GSD-stroke: odds ratio [OR] = 1.00, 95%CI = 0.97-1.03; GSD-CAD: OR = 1.01, 95%CI = 0.98-1.04). After a careful adjustment of confounders or considering lag time using UKB data, no significant phenotypic effect of GSD on CVD was detected (GSD-stroke: hazard ratio [HR] = 0.95, 95%CI = 0.83-1.09; GSD-CAD: HR = 0.98, 95%CI = 0.91-1.06), further supporting MR findings. CONCLUSIONS Our work demonstrates a phenotypic and genetic relationship between GSD and CVD, highlighting a shared biological mechanism rather than a direct causal effect. These findings may provide insight into clinical and public health applications.
Collapse
Affiliation(s)
- Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Lin He
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Xunying Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Changfeng Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Yanfang Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Ling Zhang
- Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China.
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China.
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Simonen P, Öörni K, Sinisalo J, Strandberg TE, Wester I, Gylling H. High cholesterol absorption: A risk factor of atherosclerotic cardiovascular diseases? Atherosclerosis 2023; 376:53-62. [PMID: 37290267 DOI: 10.1016/j.atherosclerosis.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Lowering elevated low-density lipoprotein cholesterol (LDL-C) concentrations reduces the risk of atherosclerotic cardiovascular diseases (ASCVDs). However, increasing evidence suggests that cholesterol metabolism may also be involved in the risk reduction of ASCVD events. In this review, we discuss if the different profiles of cholesterol metabolism, with a focus on high cholesterol absorption, are atherogenic, and what could be the possible mechanisms. The potential associations of cholesterol metabolism and the risk of ASCVDs are evaluated from genetic, metabolic, and population-based studies and lipid-lowering interventions. According to these studies, loss-of-function genetic variations in the small intestinal sterol transporters ABCG5 and ABCG8 result in high cholesterol absorption associated with low cholesterol synthesis, low cholesterol elimination from the body, and a high risk of ASCVDs. In contrast, loss-of-function genetic variations in another intestinal sterol transporter, NPC1L1 result in low cholesterol absorption associated with high cholesterol synthesis, elevated cholesterol elimination from the body, and low risk of ASCVDs. Statin monotherapy is not sufficient to reduce the ASCVD risk in cases of high cholesterol absorption, and these individuals need combination therapy of statin with cholesterol absorption inhibition. High cholesterol absorption, i.e., >60%, is estimated to occur in approximately one third of a population, so taking it into consideration is important to optimise lipid-lowering therapy to prevent atherosclerosis and reduce the risk of ASCVD events.
Collapse
Affiliation(s)
- Piia Simonen
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo E Strandberg
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Center for Life-Course Health Research, University of Oulu, Oulu, Finland
| | | | - Helena Gylling
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Mo P, Chen H, Jiang X, Hu F, Zhang F, Shan G, Chen W, Li S, Xu G. Effect of hepatic NPC1L1 on cholesterol gallstone disease and its mechanism. Heliyon 2023; 9:e15757. [PMID: 37159680 PMCID: PMC10163659 DOI: 10.1016/j.heliyon.2023.e15757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Cholesterol gallstone disease (CGD) is associated with bile cholesterol supersaturation. The Niemann-Pick C1-like 1 (NPC1L1), the inhibitory target of ezetimibe (EZE), is a critical sterol transporter of cholesterol absorption. Intestinal NPC1L1 facilitates the absorption of cholesterol, whereas hepatic NPC1L1 promotes cholesterol uptake by hepatocytes and reduces bile cholesterol supersaturation. The potential of hepatic NPC1L1 to prevent CGD has yet to be established due to its absence in the mice model. In this study, we generated mice expressing hepatic NPC1L1 using adeno-associated virus (AAV) gene delivery. The biliary cholesterol saturations and gallstone formations were explored under chow diet and lithogenic diet (LD) with or without EZE treatment. The long-term (8-week) LD-fed AAV-mNPC1L1 mice exhibited no significant differences in biliary cholesterol saturation and gallstone formation compared to WT mice. EZE effectively prevented CGD in both WT and AAV-mNPC1L1 mice. Mechanistically, prolonged LD feeding induced the degradation of hepatic NPC1L1, whereas short-term (2-week) LD feeding preserved the expression of hepatic NPC1L1. In conclusion, our findings suggest that hepatic NPC1L1 is unable to prevent CGD, whereas EZE functions as an efficient bile cholesterol desaturator during CGD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqiang Xu
- Corresponding author. Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
13
|
Harlow CE, Patel VV, Waterworth DM, Wood AR, Beaumont RN, Ruth KS, Tyrrell J, Oguro-Ando A, Chu AY, Frayling TM. Genetically proxied therapeutic prolyl-hydroxylase inhibition and cardiovascular risk. Hum Mol Genet 2023; 32:496-505. [PMID: 36048866 PMCID: PMC9851745 DOI: 10.1093/hmg/ddac215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023] Open
Abstract
Prolyl hydroxylase (PHD) inhibitors are in clinical development for anaemia in chronic kidney disease. Epidemiological studies have reported conflicting results regarding safety of long-term therapeutic haemoglobin (Hgb) rises through PHD inhibition on risk of cardiovascular disease. Genetic variation in genes encoding PHDs can be used as partial proxies to investigate the potential effects of long-term Hgb rises. We used Mendelian randomization to investigate the effect of long-term Hgb level rises through genetically proxied PHD inhibition on coronary artery disease (CAD: 60 801 cases; 123 504 controls), myocardial infarction (MI: 42 561 cases; 123 504 controls) or stroke (40 585 cases; 406 111 controls). To further characterize long-term effects of Hgb level rises, we performed a phenome-wide association study (PheWAS) in up to 451 099 UK Biobank individuals. Genetically proxied therapeutic PHD inhibition, equivalent to a 1.00 g/dl increase in Hgb levels, was not associated (at P < 0.05) with increased odds of CAD; odd ratio (OR) [95% confidence intervals (CI)] = 1.06 (0.84, 1.35), MI [OR (95% CI) = 1.02 (0.79, 1.33)] or stroke [OR (95% CI) = 0.91 (0.66, 1.24)]. PheWAS revealed associations with blood related phenotypes consistent with EGLN's role, relevant kidney- and liver-related biomarkers like estimated glomerular filtration rate and microalbuminuria, and non-alcoholic fatty liver disease (Bonferroni-adjusted P < 5.42E-05) but these were not clinically meaningful. These findings suggest that long-term alterations in Hgb through PHD inhibition are unlikely to substantially increase cardiovascular disease risk; using large disease genome-wide association study data, we could exclude ORs of 1.35 for cardiovascular risk with a 1.00 g/dl increase in Hgb.
Collapse
Affiliation(s)
- Charli E Harlow
- College of Medicine and Health, University of Exeter, Exeter, Devon EX2 5DW, UK
| | - Vickas V Patel
- GlaxoSmithKline, Collegeville, PA 19426, USA
- Spark Therapeutics, Inc., Philadelphia, PA 19104, USA
| | - Dawn M Waterworth
- GlaxoSmithKline, Collegeville, PA 19426, USA
- Immunology Translational Sciences, Janssen, Spring House, PA 19044, USA
| | - Andrew R Wood
- College of Medicine and Health, University of Exeter, Exeter, Devon EX2 5DW, UK
| | - Robin N Beaumont
- College of Medicine and Health, University of Exeter, Exeter, Devon EX2 5DW, UK
| | - Katherine S Ruth
- College of Medicine and Health, University of Exeter, Exeter, Devon EX2 5DW, UK
| | - Jessica Tyrrell
- College of Medicine and Health, University of Exeter, Exeter, Devon EX2 5DW, UK
| | - Asami Oguro-Ando
- College of Medicine and Health, University of Exeter, Exeter, Devon EX2 5DW, UK
| | | | - Timothy M Frayling
- College of Medicine and Health, University of Exeter, Exeter, Devon EX2 5DW, UK
| |
Collapse
|
14
|
Su W, Zhu JG, Li WP, Chen H, Li HW. Gallstone disease and the risk of cardiac mortality in patients with acute coronary syndrome. Front Cardiovasc Med 2022; 9:1033959. [PMID: 36505391 PMCID: PMC9730328 DOI: 10.3389/fcvm.2022.1033959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Gallstone disease is a common gastrointestinal disorder, which has previously been reported to be associated with the incidence of cardiovascular disease. We aimed to investigate the association between gallstone disease and long-term outcomes in patients with acute coronary syndrome (ACS). Materials and methods A total of consecutive 13,975 ACS patients were included in this analysis. Gallstone disease in our study included both gallstones and cholecystectomy. The primary endpoint was cardiac mortality. The secondary outcome was all-cause mortality. Relative risks were estimated using Cox proportional hazards regression. Results During a median follow-up period of 2.96 years, 518 (4.2%) patients without gallstone disease and 62 (3.6%) patients in those with gallstone disease suffered cardiac death. After multivariable adjustment for established risk factors, subjects with gallstone disease had decreased risks of both cardiac mortality and all-cause mortality [hazard rate ratios (HR) = 0.72, 95% CI: 0.55-0.95 and HR = 0.75, 95% CI: 0.62-0.90, respectively]. In patients with performed cholecystectomy, the associations between gallstones and risks for cardiac mortality and all-cause mortality turned out to be non-significant. HRs varied across subgroups depending on the presence of selected established risk factors. Conclusion Presence of gallstone disease was associated with a significantly decreased risk of follow-up mortality in patients with ACS.
Collapse
Affiliation(s)
- Wen Su
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie-Gao Zhu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China,*Correspondence: Jie-Gao Zhu,
| | - Wei-Ping Li
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Chen
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong-Wei Li
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Mo P, Chen H, Jiang X, Hu F, Zhang F, Shan G, Chen W, Li S, Li Y, Xu G. FGF15 promotes hepatic NPC1L1 degradation in lithogenic diet-fed mice. Lipids Health Dis 2022; 21:97. [PMID: 36209166 PMCID: PMC9547418 DOI: 10.1186/s12944-022-01709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cholesterol gallstone disease (CGD) is accompanied by biliary cholesterol supersaturation. Hepatic Niemann-Pick C1-like 1 (NPC1L1), which is present in humans but not in wild-type (WT) mice, promotes hepatocyte cholesterol uptake and decreases biliary cholesterol supersaturation. In contrast, intestinal NPC1L1 promotes intestinal cholesterol absorption, increasing biliary cholesterol supersaturation. Ezetimibe (EZE) can inhibit both hepatic and intestinal NPC1L1. However, whether hepatic NPC1L1 can affect CGD progress remains unknown. METHODS Mice expressing hepatic NPC1L1 (NPC1L1hepatic-OE mice) were generated using Adeno-associated viruses (AAV) gene delivery. The protein level and function of hepatic NPC1L1 were examined under chow diet, high fat-cholesterol diet (HFCD), and lithogenic diet (LD) feeding. Gallstone formation rates were examined with or without EZE treatment. Fibroblast growth factor 15 (FGF15) treatment and inhibition of fibroblast growth factor receptor 4 (FGFR4) were applied to verify the mechanism of hepatic NPC1L1 degradation. RESULTS The HFCD-fed NPC1L1hepatic-OE mice retained the biliary cholesterol desaturation function of hepatic NPC1L1, whereas EZE treatment decreased biliary cholesterol saturation and did not cause CGD. The ubiquitination and degradation of hepatic NPC1L1 were discovered in LD-fed NPC1L1hepatic-OE mice. Treatment of FGF15 during HFCD feeding and inhibition of FGFR4 during LD feeding could affect the protein level and function of hepatic NPC1L1. CONCLUSIONS LD induces the ubiquitination and degradation of hepatic NPC1L1 via the FGF15-FGFR4 pathway. EZE may act as an effective preventative agent for CGD.
Collapse
Affiliation(s)
- Pingfan Mo
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Hongtan Chen
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Xin Jiang
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Fengling Hu
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Fenming Zhang
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Guodong Shan
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Wenguo Chen
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Sha Li
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Yiqiao Li
- Urology& Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| | - Guoqiang Xu
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
16
|
Factors Influencing Gallstone Formation: A Review of the Literature. Biomolecules 2022; 12:biom12040550. [PMID: 35454138 PMCID: PMC9026518 DOI: 10.3390/biom12040550] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Gallstone disease is a common pathology of the digestive system with nearly a 10–20% incidence rate among adults. The mainstay of treatment is cholecystectomy, which is commonly associated with physical pain and may also seriously affect a patient’s quality of life. Clinical research suggests that cholelithiasis is closely related to the age, gender, body mass index, and other basic physical characteristics of patients. Clinical research further suggests that the occurrence of cholelithiasis is related to obesity, diabetes, non-alcoholic fatty liver, and other diseases. For this reason, we reviewed the following: genetic factors; excessive liver cholesterol secretion (causing cholesterol supersaturation in gallbladder bile); accelerated growth of cholesterol crystals and solid cholesterol crystals; gallbladder motility impairment; and cardiovascular factors. Herein, we summarize and analyze the causes and mechanisms of cholelithiasis, discuss its correlation with the pathogenesis of related diseases, and discuss possible mechanisms.
Collapse
|
17
|
Pirillo A, Catapano AL. New insights into the role of bempedoic acid and ezetimibe in the treatment of hypercholesterolemia. Curr Opin Endocrinol Diabetes Obes 2022; 29:161-166. [PMID: 34980867 PMCID: PMC8915986 DOI: 10.1097/med.0000000000000706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW A number of new cholesterol-lowering drugs have been recently developed and approved, enriching the pharmacological armamentarium beyond and above statins. Ezetimibe, available since two decades, and bempedoic acid, a new drug inhibiting the same biosynthetic pathway targeted by statins but at an early step, represent valuable tools for the treatment of hypercholesterolemia, particularly in specific groups of patients. RECENT FINDINGS Bempedoic acid, either alone or in combination with ezetimibe, appears to reduce significantly LDL-C levels, an effect that has been observed also in patients with statin intolerance. A Mendelian randomization study has anticipated a protective cardiovascular effect of bempedoic acid; a randomized clinical trial is currently assessing whether the pharmacological control of hypercholesterolemia with bempedoic acid translates into a clinical benefit. Bempedoic acid, as well as ezetimibe, does not appear to induce adverse events in muscles; moreover, whereas statins are associated with a modest, although significant, increased risk of new-onset diabetes, bempedoic acid does not, at least based on the available evidence. SUMMARY On the basis of available data, and while awaiting the results of the outcome trial, bempedoic acid appears to represent a valuable approach for the treatment of hypercholesterolemia, either alone or in combination in ezetimibe.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo
- IRCCS MultiMedica, Sesto S. Giovanni
| | - Alberico L. Catapano
- IRCCS MultiMedica, Sesto S. Giovanni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Nordestgaard LT, Christoffersen M, Lauridsen BK, Afzal S, Nordestgaard BG, Frikke-Schmidt R, Tybjærg-Hansen A. Long-term Benefits and Harms Associated With Genetic Cholesteryl Ester Transfer Protein Deficiency in the General Population. JAMA Cardiol 2022; 7:55-64. [PMID: 34613338 PMCID: PMC8495609 DOI: 10.1001/jamacardio.2021.3728] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance The balance between the potential long-term clinical benefits and harms associated with genetic cholesteryl ester transfer protein (CETP) deficiency, mimicking pharmacologic CETP inhibition, is unknown. Objective To assess the relative benefits and harms associated with genetic CETP deficiency. Design, Setting, and Participants This study examined 2 similar prospective cohorts of the Danish general population, with data on a total of 102 607 participants collected from October 10, 1991, through December 7, 2018. Exposures Weighted CETP allele scores. Main Outcomes and Measures Incident cardiovascular mortality, ischemic heart disease, myocardial infarction, ischemic stroke, peripheral arterial disease, vascular dementia, Alzheimer disease, all-cause mortality, and age-related macular degeneration (AMD). The study first tested whether a CETP allele score was associated with morbidity and mortality, when scaled to genetically lower levels of non-high-density lipoprotein (HDL) cholesterol (ie, 17 mg/dL), corresponding to the reduction observed for anacetrapib vs placebo in the Randomized Evaluation of the Effects of Anacetrapib Through Lipid-Modification (REVEAL) trial. Second, the study assessed how much of the change in morbidity and mortality was associated with genetically lower levels of non-HDL cholesterol. Finally, the balance between the potential long-term clinical benefits and harms associated with genetic CETP deficiency was quantified. For AMD, the analyses also included higher levels of HDL cholesterol associated with genetic CETP deficiency. Results Of 102 607 individuals in the study, 56 559 (55%) were women (median age, 58 years [IQR, 47-67 years]). Multivariable adjusted hazard ratios showed that a genetically lower level of non-HDL cholesterol (ie, 17 mg/dL) was associated with a lower risk of cardiovascular mortality (hazard ratio [HR], 0.77 [95% CI, 0.62-0.95]), ischemic heart disease (HR, 0.80 [95% CI, 0.68-0.95]), myocardial infarction (HR, 0.72 [95% CI, 0.55-0.93]), peripheral arterial disease (HR, 0.80 [95% CI, 0.63-1.02]), and vascular dementia (HR, 0.38 [95% CI, 0.18-0.80]) and an increased risk of AMD (HR, 2.33 [95% CI, 1.63-3.30]) but was not associated with all-cause mortality (HR, 0.91 [95% CI, 0.81-1.02]), ischemic stroke (HR, 1.05 [95% CI, 0.81-1.36]), or Alzheimer disease (HR, 1.25 [95% CI, 0.89-1.76]). When scaled to a higher level of HDL cholesterol, the increased risk of AMD was even larger. A considerable fraction of the lower risk of cardiovascular end points was associated with genetically lower levels of non-HDL cholesterol, while the higher risk of AMD was associated with genetically higher levels of HDL cholesterol. Per 1 million person-years, the projected 1916 more AMD events associated with genetically higher levels of HDL cholesterol was similar to the 1962 fewer events of cardiovascular mortality and myocardial infarction combined associated with genetically lower levels of non-HDL cholesterol. Conclusions and Relevance This study suggests that genetic CETP deficiency, mimicking pharmacologic CETP inhibition, was associated with a lower risk of cardiovascular morbidity and mortality, but with a markedly higher risk of AMD.
Collapse
Affiliation(s)
- Liv Tybjærg Nordestgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bo Kobberø Lauridsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
19
|
Liu J, Li DD, Dong W, Liu YQ, Wu Y, Tang DX, Zhang FC, Qiu M, Hua Q, He JY, Li J, Du B, Du TH, Niu LL, Jiang XJ, Cui B, Chen JB, Wang YG, Wang HR, Yu Q, He J, Mao YL, Bin XF, Deng Y, Tian YD, Han QH, Liu DJ, Duan LQ, Zhao MJ, Zhang CY, Dai HY, Li ZH, Xiao Y, Hu YZ, Huang XY, Xing K, Jiang X, Liu CF, An J, Li FC, Tao T, Jiang JF, Yang Y, Dong YR, Zhang L, Fu G, Li Y, Huang SW, Dou LP, Sun LJ, Zhao YQ, Li J, Xia Y, Liu J, Liu F, He WJ, Li Y, Tan JC, Lin Y, Zhou YB, Yang JF, Ma GQ, Chen HJ, Liu HP, Liu ZW, Liu JX, Luo XJ, Bin XH, Yu YN, Dang HX, Li B, Teng F, Qiao WM, Zhu XL, Chen BW, Chen QG, Shen CT, Wang YY, Chen YD, Wang Z. Detection of an anti-angina therapeutic module in the effective population treated by a multi-target drug Danhong injection: a randomized trial. Signal Transduct Target Ther 2021; 6:329. [PMID: 34471087 PMCID: PMC8410855 DOI: 10.1038/s41392-021-00741-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
It’s a challenge for detecting the therapeutic targets of a polypharmacological drug from variations in the responsed networks in the differentiated populations with complex diseases, as stable coronary heart disease. Here, in an adaptive, 31-center, randomized, double-blind trial involving 920 patients with moderate symptomatic stable angina treated by 14-day Danhong injection(DHI), a kind of polypharmacological drug with high quality control, or placebo (0.9% saline), with 76-day following-up, we firstly confirmed that DHI could increase the proportion of patients with clinically significant changes on angina-frequency assessed by Seattle Angina Questionnaire (ΔSAQ-AF ≥ 20) (12.78% at Day 30, 95% confidence interval [CI] 5.86–19.71%, P = 0.0003, 13.82% at Day 60, 95% CI 6.82–20.82%, P = 0.0001 and 8.95% at Day 90, 95% CI 2.06–15.85%, P = 0.01). We also found that there were no significant differences in new-onset major vascular events (P = 0.8502) and serious adverse events (P = 0.9105) between DHI and placebo. After performing the RNA sequencing in 62 selected patients, we developed a systemic modular approach to identify differentially expressed modules (DEMs) of DHI with the Zsummary value less than 0 compared with the control group, calculated by weighted gene co-expression network analysis (WGCNA), and sketched out the basic framework on a modular map with 25 functional modules targeted by DHI. Furthermore, the effective therapeutic module (ETM), defined as the highest correlation value with the phenotype alteration (ΔSAQ-AF, the change in SAQ-AF at Day 30 from baseline) calculated by WGCNA, was identified in the population with the best effect (ΔSAQ-AF ≥ 40), which is related to anticoagulation and regulation of cholesterol metabolism. We assessed the modular flexibility of this ETM using the global topological D value based on Euclidean distance, which is correlated with phenotype alteration (r2: 0.8204, P = 0.019) by linear regression. Our study identified the anti-angina therapeutic module in the effective population treated by the multi-target drug. Modular methods facilitate the discovery of network pharmacological mechanisms and the advancement of precision medicine. (ClinicalTrials.gov identifier: NCT01681316).
Collapse
Affiliation(s)
- Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan-Dan Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Wei Dong
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yu-Qi Liu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yang Wu
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Da-Xuan Tang
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fu-Chun Zhang
- Department of Geratology, Peking University Third Hospital, Beijing, China
| | - Meng Qiu
- Department of Geratology, Peking University Third Hospital, Beijing, China
| | - Qi Hua
- Department of Cardiology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jing-Yu He
- Department of Cardiology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting-Hai Du
- Department of Cardiology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lin-Lin Niu
- Department of Cardiology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xue-Jun Jiang
- Department of Cardiology, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Bo Cui
- Department of Cardiology, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Jiang-Bin Chen
- Department of Cardiology, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Yang-Gan Wang
- Department of Cardiology, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Hai-Rong Wang
- Department of Cardiology, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Qin Yu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Jing He
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yi-Lin Mao
- Department of Cardiology, Second Affiliated Hospital to Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiao-Fang Bin
- Department of Cardiology, Second Affiliated Hospital to Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yue Deng
- Department of Cardiology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu-Dan Tian
- Department of Cardiology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qing-Hua Han
- Department of Cardiology, First Affiliated Hospital to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Da-Jin Liu
- Department of Cardiology, First Affiliated Hospital to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li-Qin Duan
- Department of Cardiology, First Affiliated Hospital to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming-Jun Zhao
- Department of Cardiology, Affiliated Hospital of Shanxi University of Chinese Medicine, Xianyang, Shanxi, China
| | - Cui-Ying Zhang
- Department of Cardiology, Affiliated Hospital of Shanxi University of Chinese Medicine, Xianyang, Shanxi, China
| | - Hai-Ying Dai
- Department of Cardiology, Changsha Central Hospital, Changsha, Hunan, China
| | - Ze-Hua Li
- Department of Cardiology, Changsha Central Hospital, Changsha, Hunan, China
| | - Ying Xiao
- Department of Cardiology, Changsha Central Hospital, Changsha, Hunan, China
| | - You-Zhi Hu
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Xiao-Yu Huang
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Kun Xing
- Department of Cardiology, Shanxi Provincial People's Hospital, Xi'an, Shanxi, China
| | - Xin Jiang
- Department of Cardiology, Shanxi Provincial People's Hospital, Xi'an, Shanxi, China
| | - Chao-Feng Liu
- Department of Cardiology, Shanxi Province Hospital of Traditional Chinese Medicine, Xi'an, Shanxi, China
| | - Jing An
- Department of Cardiology, Shanxi Province Hospital of Traditional Chinese Medicine, Xi'an, Shanxi, China
| | - Feng-Chun Li
- Department of Cardiology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shanxi, China
| | - Tao Tao
- Department of Cardiology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shanxi, China
| | - Jin-Fa Jiang
- Department of Cardiology, Shanghai Tongji Hospital, Shanghai, China
| | - Ying Yang
- Department of Cardiology, Shanghai Tongji Hospital, Shanghai, China
| | - Yao-Rong Dong
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Guang Fu
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Ying Li
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Shu-Wei Huang
- Department of Cardiology, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Li-Ping Dou
- Department of Cardiology, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lan-Jun Sun
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Zengchan Dao, Tianjin, China
| | - Ying-Qiang Zhao
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Zengchan Dao, Tianjin, China
| | - Jie Li
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Zengchan Dao, Tianjin, China
| | - Yun Xia
- Department of Chinese medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jun Liu
- Department of Chinese medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Fan Liu
- Department of Cardiology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Wen-Jin He
- Department of Cardiology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ying Li
- Department of Cardiology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jian-Cong Tan
- Department of Cardiology, Third People's Hospital of Chongqing, Chongqing, China
| | - Yang Lin
- Department of Cardiology, Third People's Hospital of Chongqing, Chongqing, China
| | - Ya-Bin Zhou
- Department of Cardiology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Jian-Fei Yang
- Department of Cardiology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Guo-Qing Ma
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hui-Jun Chen
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - He-Ping Liu
- Department of Cardiology, Jilin Province People's Hospital, Changchun, Jilin, China
| | - Zong-Wu Liu
- Department of Cardiology, Jilin Province People's Hospital, Changchun, Jilin, China
| | - Jian-Xiong Liu
- Department of Cardiology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Xiao-Jia Luo
- Department of Cardiology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Xiao-Hong Bin
- Department of Cardiology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Ya-Nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xia Dang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fei Teng
- Beijing Genomics Institute (Shenzhen), Shenzhen, Guangdong, China
| | - Wang-Min Qiao
- Beijing Genomics Institute (Shenzhen), Shenzhen, Guangdong, China
| | - Xiao-Long Zhu
- Beijing Genomics Institute (Shenzhen), Shenzhen, Guangdong, China
| | - Bing-Wei Chen
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Qi-Guang Chen
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Chun-Ti Shen
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Yong-Yan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yun-Dai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
Kessler T, Schunkert H. Coronary Artery Disease Genetics Enlightened by Genome-Wide Association Studies. JACC Basic Transl Sci 2021; 6:610-623. [PMID: 34368511 PMCID: PMC8326228 DOI: 10.1016/j.jacbts.2021.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Many cardiovascular diseases are facilitated by strong inheritance. For example, large-scale genetic studies identified hundreds of genomic loci that affect the risk of coronary artery disease. At each of these loci, common variants are associated with disease risk with robust statistical evidence but individually small effect sizes. Only a minority of candidate genes found at these loci are involved in the pathophysiology of traditional risk factors, but experimental research is making progress in identifying novel, and, in part, unexpected mechanisms. Targets identified by genome-wide association studies have already led to the development of novel treatments, specifically in lipid metabolism. This review summarizes recent genetic and experimental findings in this field. In addition, the development and possible clinical usefulness of polygenic risk scores in risk prediction and individualization of treatment, particularly in lipid metabolism, are discussed.
Collapse
Affiliation(s)
- Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
21
|
Practical guidance for combination lipid-modifying therapy in high- and very-high-risk patients: A statement from a European Atherosclerosis Society Task Force. Atherosclerosis 2021; 325:99-109. [PMID: 33892925 DOI: 10.1016/j.atherosclerosis.2021.03.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS This European Atherosclerosis Society (EAS) Task Force provides practical guidance for combination therapy for elevated low-density lipoprotein cholesterol (LDL-C) and/or triglycerides (TG) in high-risk and very-high-risk patients. METHODS Evidence-based review. RESULTS Statin-ezetimibe combination treatment is the first choice for managing elevated LDL-C and should be given upfront in very-high-risk patients with high LDL-C unlikely to reach goal with a statin, and in primary prevention familial hypercholesterolaemia patients. A proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor may be added if LDL-C levels remain high. In high and very-high-risk patients with mild to moderately elevated TG levels (>2.3 and < 5.6 mmol/L [>200 and < 500 mg/dL) on a statin, treatment with either a fibrate or high-dose omega-3 fatty acids (icosapent ethyl) may be considered, weighing the benefit versus risks. Combination with fenofibrate may be considered for both macro- and microvascular benefits in patients with type 2 diabetes mellitus. CONCLUSIONS This guidance aims to improve real-world use of guideline-recommended combination lipid modifying treatment.
Collapse
|
22
|
Sheng B, Zhao Q, Ma M, Zhang J. An inverse association of weight and the occurrence of asymptomatic gallbladder stone disease in hypercholesterolemia patients: a case-control study. Lipids Health Dis 2020; 19:228. [PMID: 33097057 PMCID: PMC7585169 DOI: 10.1186/s12944-020-01402-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background Despite the fact that the majority of gallstones formed in the gallbladder are mainly composed of cholesterol, as they are formed from cholesterol-supersaturated bile, and hypercholesterolemia is a common metabolic disorder, which is closely related to cardiac, hepatic, renal and other oxidative damage inflammation and necrosis, there is still no consensus regarding the contribution of blood serum lipids in the pathogenesis of gallbladder stone disease (GSD). This study aimed to investigate the relationship between hypercholesterolemia and the risk of new-onset asymptomatic GSD, and to determine the prevalence of factors associated with new-onset asymptomatic GSD in patients with hypercholesterolemia. Methods In this study, 927 Chinese patients with new-onset asymptomatic gallstone disease and 845 healthy controls were enrolled starting from August 2012. Patients were matched for age, gender, race, occupation, systolic blood pressure, diastolic blood pressure, and fasting blood glucose levels (FBG). Body mass index (BMI), nonalcoholic fatty liver disease (NAFLD) and serum lipids indexes were compared and the relationships between BMI, blood lipid and gallbladder stone hazards were examined by logistic multivariate regression models. Results The result showed a significantly higher morbidity with GSD in hypercholesterolemia than non-hypercholesterolemia patients (Χ2 = 17.211, P < 0.001). Of hypercholesterolemia patients, low density lipoprotein (OR = 1.493, P = 0.029) and NAFLD (OR = 2.723, P = 0.022) were significant risk factors for GSD, while being male (OR = 0.244, P = 0.033), weight (OR = 0.961, P = 0.022), high density lipoprotein (OR = 0.305, P < 0.001), and FBG (OR = 0.687, P = 0.034) were significantly negatively correlated with GSD in univariate analysis. Multivariate logistic regression indicated weakly positive correlations with NAFLD (OR = 3.284, P = 0.054), and significant negative correlations with weight (OR = 0.930, P = 0.018), HDL-c (OR = 0.144, P < 0.001), and GSD. Conclusion Hypercholesterolemia acts as an independent risk factor for new-onset asymptomatic GSD, while obesity and NAFLD are synergistic factors. Interestingly, it is first reported that elevated weight was inversely associated with GSD in patients with hypercholesterolemia. The results of this study suggest that effective control of hyperlipidemia is of greater significance than weight loss, which might make the situation worse, in the prevention of GSD in obese patients with hyperlipidemia.
Collapse
Affiliation(s)
- Binwu Sheng
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Qingbin Zhao
- Department of Geriatric, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Mao Ma
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jianqin Zhang
- Department of Nutrition, The Fourth People's Hospital of Shaanxi, No. 512, Xianning East Road, Xi'an, 710043, China.
| |
Collapse
|
23
|
Churilin MI, Kononov SI, Luneva YV, Kazanov VA, Azarova IE, Klyosova EY, Bykanova MA, Paschoalini G, Kharchenko AV, Zhabin SN, Bushueva OY, Povetkin SV, Mal GS, Kovalev AP, Solodilova MA, Polonikov AV. Polymorphisms of Intracellular Cholesterol Transporters Genes: Relationship to Blood Lipid Levels, Carotid Intima-Media Thickness, and the Development of Coronary Heart Disease. RUSS J GENET+ 2020; 56:234-241. [DOI: 10.1134/s1022795420020040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 07/28/2024]
|
24
|
Han T, Lv Y, Wang S, Hu T, Hong H, Fu Z. Pioglitazone prevents cholesterol gallstone formation through the regulation of cholesterol homeostasis in guinea pigs with a lithogenic diet. Lipids Health Dis 2019; 18:218. [PMID: 31829191 PMCID: PMC6907187 DOI: 10.1186/s12944-019-1159-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background The cholesterol gallstones diseases (CGD) is highly correlated with metabolic syndrome and type 2 diabetes. The present study aimed to investigate preventive effects of pioglitazone (PIO), an antidiabetic drug, on the CGD in guinea pigs fed with a lithogenic diet (LD). Methods The guinea pigs were fed with the LD for 8 weeks. All guinea pigs were grouped as follows: low fat diet; LD; LD plus PIO (4 mg/kg); LD plus PIO (8 mg/kg); LD plus ezetimibe (EZE) (2 mg/kg). Gallbladder stones were observed using microscopy. The profile of biliary composition, and blood glucose, insulin and lipid were analyzed. The liver or ileum was harvested for determinations of hydroxyl-methyl-glutaryl-CoA reductase (HMGCR), sterol regulatory element-binding proteins 2 (SREBP2), 7α-hydroxylase (CYP7A1), adenosine triphosphate-binding cassette (ABC) sterol transporters G5 and G8 (ABCG5, ABCG8), bile salt export pump (BSEP), Niemann-Pick C1-Like 1 (NPC1L1) and acetyl-coenzyme A cholesterol acyltransferase (ACAT2) by Western blot. The gallbladders were used for histological examination. Results The LD successfully induced gallstone. Both pioglitazone and ezetimibe prevented gallstone formation, as well as hepatic and cholecystic damages. Pioglitazone significantly decreased HMGCR and SREBP2, but increased CYP7A1, ABCG5, ABCG8, and BSEP in the liver. Pioglitazone also remarkably decreased NPC1L1 and ACAT2, while increased ABCG5/8 in the intestine. The beneficial alterations of cholesterol and bile acids in the bile, as well as profile of glucose, insulin and lipid in the blood were found in the guinea pigs treated with pioglitazone. Conclusion Pioglitazone has a noticeable benefit towards the CGD, which is involved in changes of synthesis, transformation, absorption, and transportation of cholesterol.
Collapse
Affiliation(s)
- Tao Han
- Department of Intensive Care Unit, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Yangge Lv
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shijia Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Tao Hu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Zan Fu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
25
|
Ahmed O, Littmann K, Gustafsson U, Pramfalk C, Öörni K, Larsson L, Minniti ME, Sahlin S, Camejo G, Parini P, Eriksson M. Ezetimibe in Combination With Simvastatin Reduces Remnant Cholesterol Without Affecting Biliary Lipid Concentrations in Gallstone Patients. J Am Heart Assoc 2019; 7:e009876. [PMID: 30561264 PMCID: PMC6405603 DOI: 10.1161/jaha.118.009876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background In randomized trials (SHARP [Study of Heart and Renal Protection], IMPROVE‐IT [Improved Reduction of Outcomes: Vytorin Efficacy International Trial]), combination of statin and ezetimibe resulted in additional reduction of cardiovascular events. The reduction was greater in patients with type 2 diabetes mellitus (T2DM), where elevated remnant cholesterol and high cardiovascular disease risk is characteristic. To evaluate possible causes behind these results, 40 patients eligible for cholecystectomy, randomized to simvastatin, ezetimibe, combined treatment (simvastatin+ezetimibe), or placebo treatment during 4 weeks before surgery, were studied. Methods and Results Fasting blood samples were taken before treatment start and at the end (just before surgery). Bile samples and liver biopsies were collected during surgery. Hepatic gene expression levels were assessed with qPCR. Lipoprotein, apolipoprotein levels, and content of cholesterol, cholesteryl ester, and triglycerides were measured after lipoprotein fractionation. Lipoprotein subclasses were analyzed by nuclear magnetic resonance. Apolipoprotein affinity for human arterial proteoglycans (PG) was measured. Biomarkers of cholesterol biosynthesis and intestinal absorption and bile lipid composition were analyzed using mass spectrometry. Combined treatment caused a statistically significant decrease in plasma remnant particles and apolipoprotein B (ApoB)/lipoprotein content of cholesterol, cholesteryl esters, and triglycerides. All treatments reduced ApoB‐lipoprotein PG binding. Simvastatin and combined treatment modified the composition of lipoproteins. Changes in biomarkers of cholesterol synthesis and absorption and bile acid synthesis were as expected. No adverse events were found. Conclusions Combined treatment caused atheroprotective changes on ApoB‐lipoproteins, remnant particles, bile components, and in ApoB‐lipoprotein affinity for arterial PG. These effects might explain the decrease of cardiovascular events seen in the SHARP and IMPROVE‐IT trials. Clinical Trial Registration URL: www.clinicaltrialsregister.eu. Unique identifier: 2006‐004839‐30).
Collapse
Affiliation(s)
- Osman Ahmed
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,2 Department of Biochemistry Faculty of Medicine Khartoum University Khartoum Sudan
| | - Karin Littmann
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,3 Function Area Clinical Chemistry Karolinska University Laboratory Function Karolinska University Hospital Stockholm Sweden
| | - Ulf Gustafsson
- 5 Department of Surgery Karolinska Institutet at Danderyd Hospital Stockholm Sweden
| | - Camilla Pramfalk
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | | | - Lilian Larsson
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Mirko E Minniti
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Staffan Sahlin
- 5 Department of Surgery Karolinska Institutet at Danderyd Hospital Stockholm Sweden
| | - German Camejo
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Paolo Parini
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,4 Patient Area Endocrinology and Nephrology, Inflammation and Infection Theme Karolinska University Hospital Stockholm Sweden.,7 Metabolism Unit Department of Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Stockholm Sweden
| | - Mats Eriksson
- 4 Patient Area Endocrinology and Nephrology, Inflammation and Infection Theme Karolinska University Hospital Stockholm Sweden.,7 Metabolism Unit Department of Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Stockholm Sweden
| |
Collapse
|
26
|
Gellert-Kristensen H, Dalila N, Fallgaard Nielsen S, Grønne Nordestgaard B, Tybjaerg-Hansen A, Stender S. Identification and Replication of Six Loci Associated With Gallstone Disease. Hepatology 2019; 70:597-609. [PMID: 30325047 DOI: 10.1002/hep.30313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/06/2018] [Indexed: 12/14/2022]
Abstract
Gallstone disease is a common complex disease that confers a substantial economic burden on society. The genetic underpinnings of gallstone disease remain incompletely understood. We aimed to identify genetic associations with gallstone disease using publicly available data from the UK Biobank and two large Danish cohorts. We extracted genetic associations with gallstone disease from the Global Biobank Engine (GBE), an online browser of genome-wide associations in UK Biobank participants (14,940 cases and 322,268 controls). Significant associations (P < 5 × 10-8 ) were retested in two Copenhagen cohorts (comprising 1,522 cases and 18,266 controls). In the Copenhagen cohorts, we also tested whether a genetic risk score was associated with gallstone disease and whether individual gallstone loci were associated with plasma levels of lipids, lipoproteins, and liver enzymes. We identified 19 loci to be associated with gallstone disease in the GBE. Of these, 12 were replicated in the Copenhagen cohorts, including six previously unknown loci (in hepatocyte nuclear factor 4 alpha [HNF4A], fucosyltransferase 2, serpin family A member 1 [SERPINA1], jumonji domain containing 1C, AC074212.3, and solute carrier family 10A member 2 [SLC10A2]) and six known loci (in adenosine triphosphate binding cassette subfamily G member 8 [ABCG8], sulfotransferase family 2A member 1, cytochrome P450 7A1, transmembrane 4 L six family member 4, ABCB4, and tetratricopeptide repeat domain 39B). Five of the gallstone associations are protein-altering variants, and three (HNF4A p.Thr139Ile, SERPINA1 p.Glu366Lys, and SLC10A2 p.Pro290Ser) conferred per-allele odds ratios for gallstone disease of 1.30-1.36. Individuals with a genetic risk score >2.5 (prevalence 1%) had a 5-fold increased risk of gallstones compared to those with a score <1.0 (11%). Of the 19 lithogenic loci, 11 and ten exhibited distinct patterns of association with plasma levels of lipids and liver enzymes, respectively. Conclusion: We identified six susceptibility loci for gallstone disease.
Collapse
Affiliation(s)
| | - Nawar Dalila
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospitals and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospitals and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
27
|
Drug Treatment of Hyperlipidemia in Chinese Patients: Focus on the Use of Simvastatin and Ezetimibe Alone and in Combination. Am J Cardiovasc Drugs 2019; 19:237-247. [PMID: 30714088 DOI: 10.1007/s40256-018-00317-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elevated serum low-density lipoprotein cholesterol (LDL-C) is a major risk factor for coronary heart disease (CHD). Many guidelines recommend LDL-C as a primary treatment target, and statins represent the cornerstone of treatment for lipid management. Recently revised guidelines recommend even more intense management of LDL-C, especially in patients at moderate and high risk. However, LDL-C levels in the Chinese population differ from those in Western populations, and the benefits and safety of the maximum allowable dose of statins have yet to be determined. Furthermore, in practice, many patients do not achieve the increasingly stringent LDL-C goals. Consequently, alternative approaches to lipid management are required. Combination therapy with ezetimibe and a statin, which have complementary mechanisms of action, is more effective than statin monotherapies, even at high doses. Several clinical studies have consistently shown that combination therapy with ezetimibe and simvastatin lowers LDL-C more potently than statin monotherapies. Moreover, the safety and tolerability profile of the combination therapy appears to be similar to that of low-dose statin monotherapies. This review discusses the role of simvastatin in combination with ezetimibe in controlling dyslipidemia in Chinese patients, particularly the efficacy and safety of combination therapy in light of recently published clinical data.
Collapse
|
28
|
Ma YB, Chan P, Zhang Y, Tomlinson B, Liu Z. Evaluating the efficacy and safety of atorvastatin + ezetimibe in a fixed-dose combination for the treatment of hypercholesterolemia. Expert Opin Pharmacother 2019; 20:917-928. [PMID: 30908086 DOI: 10.1080/14656566.2019.1594776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ya-Bin Ma
- The Department of Pharmacy, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Brian Tomlinson
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhongmin Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia is a genetic condition where low-density lipoprotein (LDL) receptor defects cause severe elevations of LDL cholesterol. As significant LDL-lowering effects are needed, medication is considered the cornerstone of therapy, and dietary therapy has received less emphasis. This review will re-visit older studies of diet intervention and new insights from genetic and mechanistic studies to determine the value of diet management for familial hypercholesterolemia patients. RECENT FINDINGS Saturated fat reduction improves cardiovascular outcomes, particularly in those with genetic predisposition to risk. Secular trends in saturated fat intake may have improved familial hypercholesterolemia outcomes. Dietary mechanisms of LDL cholesterol-lowering complement pharmacologic approaches. SUMMARY Diet treatment adds incremental health benefit to pharmacologic treatment in familial hypercholesterolemia.
Collapse
|
30
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
31
|
Chen YD, Cai HB, Liu P, Peng Y. Non-surgical treatment of cholesterol gallstones: An update on recent developments. Shijie Huaren Xiaohua Zazhi 2018; 26:1511-1516. [DOI: 10.11569/wcjd.v26.i25.1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholesterol gallstones (CS) are a common disease of the digestive system. The imbalance of cholesterol and bile acid metabolism tends to result in the deposition of cholesterol crystals, which is the basis of gallstone formation. Current guidelines recommend cholecystectomy for CS patients with any symptoms. Nevertheless, there are still some patients without surgical indications, surgical conditions, or surgical consent, who may be benefit from non-surgical treatment. However, there are not too many tips for non-surgical treatment of CS in latest guidelines, nor sufficient attention paid form clinicians. This paper reviews the relevant recent literature on non-surgical treatment of CS, with an aim to help clinicians be familiar with non-surgical treatment of CS.
Collapse
Affiliation(s)
- Ya-Dong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan Province, China
| | - Hai-Bin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan Province, China
| | - Peng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan Province, China
| | - Ya Peng
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan Province, China
| |
Collapse
|
32
|
Genetic polymorphism of sterol transporters in children with future gallstones. Dig Liver Dis 2018; 50:954-960. [PMID: 29764733 DOI: 10.1016/j.dld.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Gallstone disease is related to hypersecretion of cholesterol in bile, and low serum phytosterol levels. We examined how genetic polymorphisms of sterol transporters affect childhood cholesterol metabolism trait predicting adult gallstone disease. PATIENTS AND METHODS In retrospective controlled study, we determined D19H polymorphism of ABCG8 gene, genetic variation at Niemann-Pick C1-like 1 (NPC1L1) gene locus (rs41279633, rs17655652, rs2072183, rs217434 and rs2073548), and serum cholesterol, noncholesterol sterols and lipids in children affected by gallstones decades later (n = 66) and controls (n = 126). RESULTS In childhood, phytosterols were lower (9.7%-23.4%) in carriers of risk allele 19H compared to 19D homozygotes. Lowest campesterol/cholesterol tertile consisted of 1.9-times more future gallstone subjects, and 3.7-times more 19H carriers than highest one. Campesterol/cholesterol-ratio was highest in 19D homozygote controls, but ∼11% lower in gallstone 19D homozygotes and ∼25% lower among gallstone and control carriers of 19H. Gallstone subjects with alleles CC of rs41279633 and TT of rs217434 of NPC1L1 had ∼18% lower campesterol/cholesterol-ratio compared to mutation carriers. CONCLUSIONS Risk trait of cholesterol metabolism (low phytosterols) in childhood favouring cholesterol gallstone disease later in adulthood is influenced by risk variant 19H of ABCG8 and obviously also other factors. NPC1L1 variants have minor influence on noncholesterol sterols.
Collapse
|
33
|
Kobberø Lauridsen B, Stender S, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Using genetics to explore whether the cholesterol-lowering drug ezetimibe may cause an increased risk of cancer. Int J Epidemiol 2018; 46:1777-1785. [PMID: 29106532 DOI: 10.1093/ije/dyx096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 11/13/2022] Open
Abstract
Background Results from randomized controlled trials (RCTs) have raised concern that the cholesterol-lowering drug ezetimibe might increase the risk of cancer. We tested the hypothesis that genetic variation in NPC1L1, mimicking treatment with ezetimibe, was associated with an increased risk of cancer. Methods We included 67 257 individuals from the general population. Of these, 8333 developed cancer and 2057 died of cancer from 1968 to 2011. To mimic the effect of ezetimibe, we calculated weighted allele scores based on the low-density lipoprotein (LDL) cholesterol-lowering(= NPC1L1-inhibitory) effect of each variant. We tested the associations of the NPC1L1 allele scores with LDL cholesterol and with risk of any cancer, death from any cancer and 27 site-specific cancers. As a positive control, we tested the association of the NPC1L1 allele scores with risk of ischaemic vascular disease (IVD). Results The NPC1L1 allele scores did not associate with risk of any cancer, death from any cancer or with any of 27 site-specific cancers. Hazard ratios (HRs) for a 1-unit increase in internally weighted allele scores were 1.00 (95% confidence interval: 0.98-1.02) for any cancer, and 1.02 (0.98-1.06) for cancer death. The corresponding HR for IVD was 0.97 (0.94-0.99). Results were similar for an externally weighted allele score and for a simple allele count. Finally, the null association with cancer was robust in sensitivity analyses. Conclusions Lifelong, genetic inhibition of NPC1L1, mimicking treatment with ezetimibe, does not associate with risk of cancer. These results suggest that long-term treatment with ezetimibe is unlikely to increase the risk of cancer, in agreement with the overall evidence from ezetimibe RCTs.
Collapse
Affiliation(s)
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark.,Copenhagen University Hospitals and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark.,Copenhagen University Hospitals and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry.,Copenhagen City Heart Study, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark.,Copenhagen University Hospitals and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Copenhagen City Heart Study, Frederiksberg Hospital, Frederiksberg, Denmark
| |
Collapse
|
34
|
Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, Hegele RA, Krauss RM, Raal FJ, Schunkert H, Watts GF, Borén J, Fazio S, Horton JD, Masana L, Nicholls SJ, Nordestgaard BG, van de Sluis B, Taskinen MR, Tokgözoglu L, Landmesser U, Laufs U, Wiklund O, Stock JK, Chapman MJ, Catapano AL. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2018; 38:2459-2472. [PMID: 28444290 PMCID: PMC5837225 DOI: 10.1093/eurheartj/ehx144] [Citation(s) in RCA: 2139] [Impact Index Per Article: 356.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
Aims To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). Methods and results We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from genetic studies, prospective epidemiologic cohort studies, Mendelian randomization studies, and randomized trials of LDL-lowering therapies. In clinical studies, plasma LDL burden is usually estimated by determination of plasma LDL cholesterol level (LDL-C). Rare genetic mutations that cause reduced LDL receptor function lead to markedly higher LDL-C and a dose-dependent increase in the risk of ASCVD, whereas rare variants leading to lower LDL-C are associated with a correspondingly lower risk of ASCVD. Separate meta-analyses of over 200 prospective cohort studies, Mendelian randomization studies, and randomized trials including more than 2 million participants with over 20 million person-years of follow-up and over 150 000 cardiovascular events demonstrate a remarkably consistent dose-dependent log-linear association between the absolute magnitude of exposure of the vasculature to LDL-C and the risk of ASCVD; and this effect appears to increase with increasing duration of exposure to LDL-C. Both the naturally randomized genetic studies and the randomized intervention trials consistently demonstrate that any mechanism of lowering plasma LDL particle concentration should reduce the risk of ASCVD events proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. Conclusion Consistent evidence from numerous and multiple different types of clinical and genetic studies unequivocally establishes that LDL causes ASCVD.
Collapse
Affiliation(s)
- Brian A Ference
- Division of Translational Research and Clinical Epidemiology, Division of Cardiovascular Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Henry N Ginsberg
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | | | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College, London, UK
| | - Chris J Packard
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hôpital de la Pitié, Paris, France
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Frederick J Raal
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich 80636, Germany.,Deutsches Zentrum für Herz und Kreislauferkrankungen (DZHK), Partner Site Munich Heart Alliance, Munich 81377, Germany
| | - Gerald F Watts
- Lipid Disorders Clinic, Centre for Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sergio Fazio
- Department of Medicine, Center for Preventive Cardiology of the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Denmark
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen AV 9713, The Netherlands
| | - Marja-Riitta Taskinen
- Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity, Heart and Lung Centre, University of Helsinki, Helsinki, Finland
| | | | - Ulf Landmesser
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.,INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hôpital de la Pitié, Paris, France.,Department of Cardiology, Charité-Universitätsmedizin Berlin (CBF), Hindenburgdamm 30, Berlin 12203, Germany
| | - Ulrich Laufs
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg, Saar, Germany
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jane K Stock
- European Atherosclerosis Society, Gothenburg, Sweden
| | - M John Chapman
- INSERM, Dyslipidemia and Atherosclerosis Research, and University of Pierre and Marie Curie, Pitié-Sâlpetrière University Hospital, Paris, France
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Milan, Italy
| |
Collapse
|
35
|
Rebholz C, Krawczyk M, Lammert F. Genetics of gallstone disease. Eur J Clin Invest 2018; 48:e12935. [PMID: 29635711 DOI: 10.1111/eci.12935] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/31/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gallstone disease (GD) belongs to the most frequent disorders in gastroenterology and causes high costs in our health-care systems. Gallstones are uncommon in children but frequent in adults, in particular in women, and are triggered by exogenous risk factors. Here, we summarize the current knowledge concerning the contribution of inherited predisposition to gallstone risk. DESIGN In this review, we present the current data and recent research on the genetics of gallstone disease. RESULTS Several GD-predisposing gene variants have been reported, with most prominent effects being conferred by a common variant (p.D19H) of the hepatic and intestinal cholesterol transporter ABCG5/G8. A smaller group of patients might develop gallstones primarily due low phosphatidylcholine concentrations in bile as a result of loss-of-function mutations of the ABCB4 transporter (low phospholipid-associated cholelithiasis syndrome). Regardless of the origin, the risk factors for gallstones lead to the supersaturation of bile with insoluble compounds, in particular cholesterol. As result, cholesterol stones develop and present the most frequent type of gallstones. Laparoscopic cholecystectomy with low morbidity and mortality is currently the most common and effective method for the therapy of symptomatic gallbladder stones. CONCLUSIONS Gallstone disease represents a multifactorial condition and previous studies have identified the major genetic contributors to gallstone formation. The increasing knowledge about the pathomechanisms of hepatobiliary metabolism and GD as well as the identification of additional risk factors might help to overcome the current invasive therapy by specific lifestyle intervention and precise molecular treatment.
Collapse
Affiliation(s)
- Charlotte Rebholz
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany.,Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
36
|
Abstract
The use of low-density lipoprotein cholesterol (LDL-C)-lowering medications has led to a significant reduction of cardiovascular risk in both primary and secondary prevention. Statin therapy, one of the cornerstones for the prevention and treatment of cardiovascular disease (CVD), has been demonstrated to be effective in lowering LDL-C levels and in reducing the risk for CVD and is generally well-tolerated. However, compliance with statins remains suboptimal. One of the main reasons is limitations by adverse events, notably myopathies, which can lead to non-compliance with the prescribed statin regimen. Reducing the burden of elevated LDL-C levels is critical in patients with CVD as well as in patients with very high baseline levels of LDL-C (e.g. patients with familial hypercholesterolaemia), as statin therapy is insufficient for optimally reducing LDL-C below target values. In this review, we discuss alternative treatment options after maximally tolerated doses of statin therapy, including ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and cholesteryl ester transfer protein (CETP) inhibitors. Difficult-to-treat patients may benefit from combination therapy with ezetimibe or a PCSK9 inhibitor (evolocumab or alirocumab, which are now available). Updates of treatment guidelines are needed to guide the management of patients who will best benefit from these new treatments.
Collapse
Affiliation(s)
- Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, University Hospital, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | | | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zürich, Zurich, Switzerland
- Zürich Center for Integrative Human Physiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
37
|
Mwinyi J, Boström AE, Pisanu C, Murphy SK, Erhart W, Schafmayer C, Hampe J, Moylan C, Schiöth HB. NAFLD is associated with methylation shifts with relevance for the expression of genes involved in lipoprotein particle composition. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:314-323. [DOI: 10.1016/j.bbalip.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022]
|
38
|
Genetic variation in WRN and ischemic stroke: General population studies and meta-analyses. Exp Gerontol 2017; 89:69-77. [PMID: 28063943 DOI: 10.1016/j.exger.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/07/2016] [Accepted: 01/03/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Werner syndrome, a premature genetic aging syndrome, shares many clinical features reminiscent of normal physiological aging, and ischemic vascular disease is a frequent cause of death. We tested the hypothesis that genetic variation in the WRN gene was associated with risk of ischemic vascular disease in the general population. METHODS We included 58,284 participants from two general population cohorts, the Copenhagen City Heart Study (CCHS) and the Copenhagen General Population Study (CGPS). Of these, 6,312 developed ischemic vascular disease during follow-up. In the CCHS (n=10,250), we genotyped all non-synonymous variants in WRN with reported minor allele frequencies ≥0.5% in Caucasians. Second, variants which were associated with ischemic vascular disease in the CCHS or in previous studies, were genotyped in the CGPS (n=48,034). RESULTS A total of 11 non-synonymous variants were identified in the CCHS. In C1367R (rs1346044) TT homozygotes versus CC/CT, hazard ratios for ischemic stroke were 1.09 (95% confidence interval: 0.95-1.24; P=0.22) in the CCHS, 1.16 (1.00-1.33; P=0.04) in the CGPS, and 1.12 (1.01-1.23; P=0.02) in studies combined (CCHS+CGPS), with similar trends for ischemic cerebrovascular disease (P=0.06). In meta-analyses including 59,190 individuals in 5 studies, the hazard ratio for ischemic stroke for C1367R TT homozygotes versus CC/CT was 1.14 (1.04-1.25; P=0.008). CONCLUSIONS This study suggests that common genetic variation in WRN is associated with increased risk of ischemic stroke in the general population.
Collapse
|
39
|
Jakulj L, van Dijk TH, de Boer JF, Kootte RS, Schonewille M, Paalvast Y, Boer T, Bloks VW, Boverhof R, Nieuwdorp M, Beuers UHW, Stroes ESG, Groen AK. Transintestinal Cholesterol Transport Is Active in Mice and Humans and Controls Ezetimibe-Induced Fecal Neutral Sterol Excretion. Cell Metab 2016; 24:783-794. [PMID: 27818259 DOI: 10.1016/j.cmet.2016.10.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/09/2016] [Accepted: 09/30/2016] [Indexed: 01/10/2023]
Abstract
Except for conversion to bile salts, there is no major cholesterol degradation pathway in mammals. Efficient excretion from the body is therefore a crucial element in cholesterol homeostasis. Yet, the existence and importance of cholesterol degradation pathways in humans is a matter of debate. We quantified cholesterol fluxes in 15 male volunteers using a cholesterol balance approach. Ten participants repeated the protocol after 4 weeks of treatment with ezetimibe, an inhibitor of intestinal and biliary cholesterol absorption. Under basal conditions, about 65% of daily fecal neutral sterol excretion was bile derived, with the remainder being contributed by direct transintestinal cholesterol excretion (TICE). Surprisingly, ezetimibe induced a 4-fold increase in cholesterol elimination via TICE. Mouse studies revealed that most of ezetimibe-induced TICE flux is mediated by the cholesterol transporter Abcg5/Abcg8. In conclusion, TICE is active in humans and may serve as a novel target to stimulate cholesterol elimination in patients at risk for cardiovascular disease.
Collapse
Affiliation(s)
- Lily Jakulj
- Department of Vascular Medicine, Academic Medical Center, Amsterdam 1105AZ, the Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713ZG, the Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713ZG, the Netherlands
| | - Ruud S Kootte
- Department of Vascular Medicine, Academic Medical Center, Amsterdam 1105AZ, the Netherlands
| | - Marleen Schonewille
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713ZG, the Netherlands
| | - Yared Paalvast
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713ZG, the Netherlands
| | - Theo Boer
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713ZG, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713ZG, the Netherlands
| | - Renze Boverhof
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713ZG, the Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center, Amsterdam 1105AZ, the Netherlands
| | - Ulrich H W Beuers
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam 1105AZ, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam 1105AZ, the Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Academic Medical Center, Amsterdam 1105AZ, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen 9713ZG, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713ZG, the Netherlands; Amsterdam Diabetes Research Center, Academic Medical Center, Amsterdam 1105AZ, the Netherlands; Groningen Center of Systems Biology, University Medical Center Groningen, Groningen 9713ZG, the Netherlands.
| |
Collapse
|
40
|
EASL Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J Hepatol 2016; 65:146-181. [PMID: 27085810 DOI: 10.1016/j.jhep.2016.03.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
|
41
|
Abstract
Genetic factors contribute importantly to the risk of coronary artery disease (CAD), and in the past decade, there has been major progress in this area. The tools applied include genome-wide association studies encompassing >200,000 individuals complemented by bioinformatic approaches, including 1000 Genomes imputation, expression quantitative trait locus analyses, and interrogation of Encyclopedia of DNA Elements, Roadmap, and other data sets. close to 60 common SNPs (minor allele frequency>0.05) associated with CAD risk and reaching genome-wide significance (P<5 × 10(-8)) have been identified. Furthermore, a total of 202 independent signals in 109 loci have achieved a false discovery rate (q<0.05) and together explain 28% of the estimated heritability of CAD. These data have been used successfully to create genetic risk scores that can improve risk prediction beyond conventional risk factors and identify those individuals who will benefit most from statin therapy. Such information also has important applications in clinical medicine and drug discovery by using a Mendelian randomization approach to interrogate the causal nature of many factors found to associate with CAD risk in epidemiological studies. In contrast to genome-wide association studies, whole-exome sequencing has provided valuable information directly relevant to genes with known roles in plasma lipoprotein metabolism but has, thus far, failed to identify other rare coding variants linked to CAD. Overall, recent studies have led to a broader understanding of the genetic architecture of CAD and demonstrate that it largely derives from the cumulative effect of multiple common risk alleles individually of small effect size rather than rare variants with large effects on CAD risk. Despite this success, there has been limited progress in understanding the function of the novel loci; the majority of which are in noncoding regions of the genome.
Collapse
Affiliation(s)
- Ruth McPherson
- From the Department of Medicine, Atherogenomics Laboratory, Division of Cardiology, Ruddy Canadian Cardiovascular Genetics Center, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.T.-H.).
| | - Anne Tybjaerg-Hansen
- From the Department of Medicine, Atherogenomics Laboratory, Division of Cardiology, Ruddy Canadian Cardiovascular Genetics Center, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.M.); and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.T.-H.)
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. RECENT FINDINGS Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1, APOC3, LDLR, APOA5, and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. SUMMARY Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A - 1151 Richmond Street North, London, ON N6A 5B7 Canada
| | - Robert A. Hegele
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A - 1151 Richmond Street North, London, ON N6A 5B7 Canada
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW 'Genetic proxies' are increasingly being used to predict the effects of drugs. We present an up-to-date overview of the use of human genetics to predict effects and adverse effects of lipid-targeting drugs. RECENT FINDINGS LDL cholesterol lowering variants in HMG-Coenzyme A reductase and Niemann-Pick C1-like protein 1, the targets for statins and ezetimibe, protect against ischemic heart disease (IHD). However, HMG-Coenzyme A reductase and Niemann-Pick C1-Like Protein 1-variants also increase the risk of type 2 diabetes and gallstone disease, respectively. Mutations in proprotein convertase subtilisin kexin 9 (PCSK9), apolipoprotein B, and microsomal triglyceride transfer protein cause low LDL cholesterol and protect against IHD. In addition, mutations in apolipoprotein B and microsomal triglyceride transfer protein cause hepatic steatosis, in concordance with drugs that inhibit these targets. Both mutations in PCSK9 and PCSK9-inhibition seem without adverse effects. Mutations in APOC3 cause low triglycerides and protect against IHD, and recent pharmacological APOC3-inhibition reported major reductions in plasma triglycerides. Human genetics support that low lipoprotein(a) protects against IHD, without adverse effects, and the first trial of lipoprotein(a) inhibition reduced lipoprotein(a) up to 78%. SUMMARY Recent genetic studies have confirmed the efficacy of statins and ezetimibe in protecting against IHD. Results from human genetics support that several lipid-lowering drugs currently under development are likely to prove efficacious in protecting against IHD, without major adverse effects.
Collapse
Affiliation(s)
- Stefan Stender
- aDepartment of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA. bDepartment of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
44
|
Wu J, Cui W, Cai Q, Fei J, Zhang SD, Han TQ, Hu H, Jiang ZY. The NPC1L1 Polymorphism 1679C>G Is Associated with Gallstone Disease in Chinese Patients. PLoS One 2016; 11:e0147562. [PMID: 26800364 PMCID: PMC4723254 DOI: 10.1371/journal.pone.0147562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023] Open
Abstract
Niemann Pick Type C1 Like 1 (NPC1L1) protein plays a key role in intestinal and hepatic cholesterol metabolism in humans. Genetic variation in NPC1L1 has been widely studied in recent years. We analyzed NPC1L1 single nucleotide polymorphisms in Chinese gallstone disease patients to investigate their association with gallstone disease. NPC1L1 mRNA expression was also measured in liver biopsies from patients with cholesterol gallstone disease and compared between genotypes. The G allele of the g1679C>G (rs2072183) polymorphism was significantly more prevalent in patients with gallstones compared with gallstone-free subjects. Moreover, patients carrying the G allele had lower hepatic NPC1L1 mRNA expression and higher biliary cholesterol (molar percentages) and cholesterol saturation index. Our study suggests that the G allele of the NPC1L1 polymorphism g1679C>G may be a positive marker of gallstone formation risk.
Collapse
Affiliation(s)
- Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cui
- Department of Surgery, Yijishan Hospital, Wannan Medical College, Jiangsu Province, China
| | - Qu Cai
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Fei
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dao Zhang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Quan Han
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Hu
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (ZYJ); (HH)
| | - Zhao-Yan Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (ZYJ); (HH)
| |
Collapse
|
45
|
Kishikawa N, Kanno K, Sugiyama A, Yokobayashi K, Mizooka M, Tazuma S. Long-term administration of a Niemann-Pick C1-like 1 inhibitor, ezetimibe, does not worsen bile lithogenicity in dyslipidemic patients with hepatobiliary diseases. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 23:125-31. [PMID: 26692575 DOI: 10.1002/jhbp.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/17/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Certain lipid-lowering drugs increase bile lithogenicity. Here we investigated whether long-term administration of ezetimibe, a new class of hypocholesterolemic agents designed to inhibit intestinal cholesterol absorption by inhibiting Niemann-Pick C1-like 1, alters bile lithogenicity in patients with hepatobiliary diseases. METHODS Eleven dyslipidemic patients with gallstones and/or fatty liver diseases were treated with ezetimibe (10 mg/day) for 12 months. Bile samples were collected by nasal endoscopy before and after 3 and 12 months of treatment. Serum and bile lipids and serum metabolic parameters were analyzed. RESULTS Serum levels of campesterol, total cholesterol, and low-density lipoprotein cholesterol were significantly decreased after 3 and 12 months of treatment. In contrast, serum lathosterol levels increased gradually. The lithogenic index of bile was unsaturated and unchanged in patients who were previously and concomitantly receiving ursodeoxycholic acid (UDCA). In patients who were not receiving UDCA, bile was initially supersaturated, but eventually was unsaturated. However, ezetimibe tended to elevate bile lithogenicity in cholecystectomy patients. CONCLUSIONS Long-term treatment with ezetimibe improves lipid metabolism without significantly altering the bile lithogenicity. Therefore, inhibiting intestinal cholesterol absorption in dyslipidemic patients with hepatobiliary diseases is a safe therapeutic strategy without worsening biliary physiology.
Collapse
Affiliation(s)
- Nobusuke Kishikawa
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akiko Sugiyama
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kenichi Yokobayashi
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masafumi Mizooka
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Susumu Tazuma
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Mendelian randomization studies have the potential to transform our understanding of cardiovascular medicine by generating naturally randomized data that can fill evidence gaps when a randomized trial would be either impossible or impractical to conduct. Here, we review recent Mendelian randomization studies evaluating the effect of low-density lipoprotein cholesterol (LDL-C) on the risk of coronary heart disease (CHD). RECENT FINDINGS Mendelian randomization studies consistently demonstrate that LDL-C is causally associated with the risk of CHD. Furthermore, exposure to genetically mediated lower LDL-C appears to be associated with a much greater than expected reduction in CHD risk, thus suggesting that LDL-C has a cumulative effect on the risk of CHD. In addition, genetically mediated lower LDL-C is log-linearly associated with the risk of CHD and the effect of polymorphisms in multiple different genes on the risk of CHD is remarkably consistent when measured per unit lower LDL-C. SUMMARY The naturally randomized genetic evidence suggests that LDL-C has a causal and cumulative effect on the risk of CHD, and that the clinical benefit of exposure to lower LDL-C is determined by the absolute magnitude of exposure to lower LDL-C independent of the mechanism by which LDL-C is lowered.
Collapse
Affiliation(s)
- Brian A Ference
- Division of Translational Research and Clinical Epidemiology, Division of Cardiovascular Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
47
|
Ference BA, Penumetcha R. Reply: Genetic Variation in NPC1L1 and Risk of Gallstone Disease. J Am Coll Cardiol 2015; 66:1086-8. [PMID: 26314541 DOI: 10.1016/j.jacc.2015.06.1311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 11/28/2022]
|
48
|
Aguib Y, Al Suwaidi J. The Copenhagen City Heart Study (Østerbroundersøgelsen). Glob Cardiol Sci Pract 2015; 2015:33. [PMID: 26779513 PMCID: PMC4625209 DOI: 10.5339/gcsp.2015.33] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 12/18/2022] Open
Abstract
The Copenhagen City Heart Study, also known as "Østerbroundersøgelsen", is a large prospective cardio-vascular population study of 20,000 women and men that was launched in 1975 by Dr Peter Schnohr and Dr Gorm Jensen together with statistician Jørgen Nyboe and Prof. A. Tybjærg Hansen. The original purpose of the study was to focus on prevention of coronary heart disease and stroke. During the years many other aspects have been added to the study: pulmonary diseases, heart failure, arrhythmia, alcohol, arthrosis, eye diseases, allergy, epilepsia, dementia, stress, vital exhaustion, social network, sleep-apnoe, ageing and genetics. In this review we highlight unique aspects of the Copenhagen City Heat Study (CCHS) and its outcome in investigations of clinical and molecular aspects of health and disease in the regional and global population. To increase the impact of population studies with a focus on risk and prevention of cardiovascular and related diseases and to maximize the likelihood of identifying disease causes and effective therapeutics, lessons learned from past research should be applied to the design, implementation and interpretation of future studies.
Collapse
|
49
|
|
50
|
Common single nucleotide polymorphisms at the NPC1L1 gene locus significantly predict cardiovascular risk in coronary patients. Atherosclerosis 2015; 242:340-5. [DOI: 10.1016/j.atherosclerosis.2015.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 01/12/2023]
|