1
|
Shoji Y, Hayashida S, Masuda H, Tachibana E, Okumura Y. A case report of familial catecholaminergic polymorphic ventricular tachycardia with a novel mutation in the ryanodine receptor 2. Eur Heart J Case Rep 2024; 8:ytae652. [PMID: 39687539 PMCID: PMC11647922 DOI: 10.1093/ehjcr/ytae652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is suspected by clinical characteristics involving fatal arrhythmic events in childhood and adolescence. On the other hand, genetic testing is also important because the mutation site in the specific genes of CPVT is related to the risk of ventricular arrhythmias and gene penetrance. Case summary We present a case of a 15-year-old male with a familial history of CPVT and a history of syncope at the age of 5. He experienced a cardiac arrest prompting out-of-hospital cardiopulmonary resuscitation, and his circulatory dynamics recovered. Multiple premature ventricular contractions inducted by a treadmill exercise test disappeared after a dosage of verapamil, flecainide, and nadolol, and a subcutaneous implantable cardioverter defibrillator was implanted. The novel pathogenic mutation with an insertion of histidine near the C-terminus of the RYR2 protein was identified by genetic testing in this case and his mother. Discussion The RYR2 mutation in this case has not been previously reported and may be an intractable phenotype of CPVT associated with a strong familial history and fatal cardiac events even under adequate medical therapy.
Collapse
Affiliation(s)
- Yoshikuni Shoji
- Division of Cardiology, Kawaguchi Municipal Medical Center, 180 Nishiaraijyuku, Kawaguchi-shi, Saitama, 333-0833, Japan
| | - Satoshi Hayashida
- Division of Cardiology, Kawaguchi Municipal Medical Center, 180 Nishiaraijyuku, Kawaguchi-shi, Saitama, 333-0833, Japan
| | - Hikaru Masuda
- Division of Cardiology, Kawaguchi Municipal Medical Center, 180 Nishiaraijyuku, Kawaguchi-shi, Saitama, 333-0833, Japan
| | - Eizo Tachibana
- Division of Cardiology, Kawaguchi Municipal Medical Center, 180 Nishiaraijyuku, Kawaguchi-shi, Saitama, 333-0833, Japan
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Ohyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
2
|
Chai Y, Li S, Wu H, Meng Y, Fu Y, Li H, Wu G, Jiang J, Chen T, Jiao Y, Chen Q, Du L, Li L, Man C, Chen S, Gao H, Zhang W, Wang F. The genome landscape of the Xinglong buffalo. BMC Genomics 2024; 25:1054. [PMID: 39511485 PMCID: PMC11542305 DOI: 10.1186/s12864-024-10941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Xinglong buffalo, as an indigenous breed in Hainan province of China, possesses characteristics such as high humidity tolerance, disease resistance and high reproductive capacity. Combined with whole genome sequencing technology, comprehensive investigation can be undertaken to elucidate the genomic characteristics, functions and genetic variation of Xinglong buffalo population. RESULTS Xinglong buffalo has the highest genetic diversity, lowest runs of homozygosity average length, and fasted decay of linkage disequilibrium in our study population. Phylogenetic tree results revealed that Xinglong buffalo was gathered together with Fuzhong buffalo firstly. The population genetic structure analysis indicates that at K = 3, the Xinglong buffalo for the first time showed a distinct ancestral origin from other water buffalo. Furthermore, compared to different populations, candidate genes displaying significantly distinct patterns of single nucleotide polymorphisms (SNPs) (e.g., RYR2, COX15, PCDH9, DTWD2, FCRL5) distribution have been identified in the Xinglong buffalo. CONCLUSIONS Based on the whole genome sequencing data, this study identified a substantial number of SNPs and assessed the genetic diversity and selection signatures within the Xinglong buffalo population. These results contribute to understanding the genomic characteristics of Xinglong buffalo and their genetic evolutionary status. However, the practical significance of these signatures for genetic enhancement still requires confirmation through additional samples and further experimental validation.
Collapse
Affiliation(s)
- Yuan Chai
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- College of Agronomy, Animal Husbandry and Bioengineering, Xing An Vocational and Technical College, Wulanhote, 137400, People's Republic of China
| | - Shiyuan Li
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Hui Wu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Yong Meng
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Yujing Fu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Hong Li
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Guansheng Wu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Junming Jiang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Taoyu Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Yuqing Jiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Qiaoling Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Li Du
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Lianbin Li
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Churiga Man
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Si Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Hongyan Gao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China.
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| | - Fengyang Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
3
|
Xu F, Li JJ, Yang E, Zhang Y, Xie W. Assaying sarcoplasmic reticulum Ca 2+-leak in mouse atrial myocytes. BIOPHYSICS REPORTS 2024; 10:297-303. [PMID: 39539281 PMCID: PMC11554581 DOI: 10.52601/bpr.2023.230044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 11/16/2024] Open
Abstract
More and more studies have suggested an essential role of sarcoplasmic reticulum (SR) Ca2+ leak of atrial myocytes in atrial diseases such as atrial fibrillation (AF). The increasing interest in atrial Ca2+ signaling makes it necessary to develop a more accurate approach for Ca2+ measurement in atrial myocytes due to obvious differences between atrial and ventricular Ca2+ handling. In the present study, we proposed a new approach for quantifying total SR Ca2+ leak in atrial myocytes with confocal line-scan Ca2+ images. With a very precious approximation of the histogram of normalized line-scan Ca2+ images by using a modified Gaussian distribution, we separated the signal pixel components from noisy pixels and extracted two new dimensionless parameters, F signals and R signals, to reflect the summation of signal pixels and their release components, respectively. In the presence of tetracaine blocking SR Ca2+ leak, the two parameters were very close to 0, and in atrial myocytes under normal conditions, the two parameters are well positive correlative with Ca2+ spark frequency and total signal mass, the two classic readouts for SR Ca2+ leak. Consistent with Ca2+ Spark readouts, the two parameters quantified a significant increase of SR Ca2+ leak in atrial myocytes from mice harboring a leaky type 2 ryanodine receptor mutation (RyR2-R2474S+/-) compared to the WT group. Collectively, this study proposed a simple and effective approach to quantify SR Ca2+ leak in atrial myocytes, which may benefit research on calcium signaling in atrial physiology and diseases.
Collapse
Affiliation(s)
- Fan Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing-Jing Li
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, China
| | - Eric Yang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wenjun Xie
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
4
|
Chen W, Aminu AJ, Yin Z, Karaesmen I, Atkinson AJ, Kuniewicz M, Holda M, Walocha J, Perde F, Molenaar P, Dobrzynski H. Profiling Reduced Expression of Contractile and Mitochondrial mRNAs in the Human Sinoatrial Node vs. Right Atrium and Predicting Their Suppressed Expression by Transcription Factors and/or microRNAs. Int J Mol Sci 2024; 25:10402. [PMID: 39408732 PMCID: PMC11477614 DOI: 10.3390/ijms251910402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
(1) Background: The sinus node (SN) is the main pacemaker of the heart. It is characterized by pacemaker cells that lack mitochondria and contractile elements. We investigated the possibility that transcription factors (TFs) and microRNAs (miRs) present in the SN can regulate gene expression that affects SN morphology and function. (2) Methods: From human next-generation sequencing data, a list of mRNAs that are expressed at lower levels in the SN compared with the right atrium (RA) was compiled. The mRNAs were then classified into contractile, mitochondrial or glycogen mRNAs using bioinformatic software, RStudio and Ingenuity Pathway Analysis. The mRNAs were combined with TFs and miRs to predict their interactions. (3) Results: From a compilation of the 1357 mRNAs, 280 contractile mRNAs and 198 mitochondrial mRNAs were identified to be expressed at lower levels in the SN compared with RA. TFs and miRs were shown to interact with contractile and mitochondrial function-related mRNAs. (4) Conclusions: In human SN, TFs (MYCN, SOX2, NUPR1 and PRDM16) mainly regulate mitochondrial mRNAs (COX5A, SLC25A11 and NDUFA8), while miRs (miR-153-3p, miR-654-5p, miR-10a-5p and miR-215-5p) mainly regulate contractile mRNAs (RYR2, CAMK2A and PRKAR1A). TF and miR-mRNA interactions provide a further understanding of the complex molecular makeup of the SN and potential therapeutic targets for cardiovascular treatments.
Collapse
Affiliation(s)
- Weixuan Chen
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Abimbola J. Aminu
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Zeyuan Yin
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Irem Karaesmen
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Andrew J. Atkinson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Marcin Kuniewicz
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Mateusz Holda
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- HEART-Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Jerzy Walocha
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Filip Perde
- National Institute of Legal Medicine, 042122 Bucharest, Romania;
| | - Peter Molenaar
- Northside Clinical School of Medicine, The University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4072, Australia
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| |
Collapse
|
5
|
Guo Q, Huo Y, Liu Q, Zhou S, Xiao Y. Ruxolitinib as a CaMKII inhibitor for treatment of cardiac arrhythmias: Applications and prospects. Heart Rhythm 2024:S1547-5271(24)03096-0. [PMID: 39111609 DOI: 10.1016/j.hrthm.2024.07.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Recent studies have highlighted the critical role of calcium/calmodulin-dependent protein kinase II (CaMKII) overactivation in the pathogenesis of various cardiac arrhythmias. Ruxolitinib, a Janus kinase inhibitor widely used for the treatment of myelofibrosis and acute graft-vs-host disease, has expanded its research horizons to include its potential as a CaMKII inhibitor in the treatment of cardiac arrhythmias. This article reviews the basic pharmacologic properties of ruxolitinib and delves into the role of CaMKII in cardiac arrhythmias, including its structural fundamentals, activation mechanisms, and association with arrhythmic conditions. Furthermore, the current state of CaMKII inhibitor research is discussed, with a special focus on the advances and clinical potential of ruxolitinib in this field. Studies indicate that ruxolitinib effectively inhibits CaMKII activity and has therapeutic potential against cardiac arrhythmias in animal models and at the cellular level. In addition, we address the critical issues that need to be resolved before the clinical application of ruxolitinib in arrhythmia treatment, including dosage concerns, long-term inhibitory effects, potential impacts on the nervous system, and efficacy across different types of arrhythmias. Future research directions involve further exploration of the clinical application potential of ruxolitinib, particularly in diseases such as heart failure, hypertrophic cardiomyopathy, dilated cardiomyopathy, and ischemic arrhythmias. In summary, the efficacy, low toxicity, and safety profile of ruxolitinib as a CaMKII inhibitor in the treatment of cardiac arrhythmias suggest a promising future for its development as a therapeutic drug in this domain.
Collapse
Affiliation(s)
- Qingbo Guo
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Yiran Huo
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
6
|
Cao M, Yang W, Yang J, Zhao Y, Hu X, Xu X, Tian J, Chen Y, Jiang H, Ren R, Li C. Minocycline Inhibits Tick-Borne Encephalitis Virus and Protects Infected Cells via Multiple Pathways. Viruses 2024; 16:1055. [PMID: 39066217 PMCID: PMC11281541 DOI: 10.3390/v16071055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Tick-borne Encephalitis (TBE) is a zoonotic disease caused by the Tick-borne Encephalitis virus (TBEV), which affects the central nervous system of both humans and animals. Currently, there is no specific therapy for patients with TBE, with symptomatic treatment being the primary approach. In this study, the effects of minocycline (MIN), which is a kind of tetracycline antibiotic, on TBEV propagation and cellular protection in TBEV-infected cell lines were evaluated. Indirect immunofluorescence, virus titers, and RT-qPCR results showed that 48 h post-treatment with MIN, TBEV replication was significantly inhibited in a dose-dependent manner. In addition, the inhibitory effect of MIN on different TBEV multiplicities of infection (MOIs) in Vero cells was studied. Furthermore, the transcriptomic analysis and RT-qPCR results indicate that after incubation with MIN, the levels of TBEV and CALML4 were decreased, whereas the levels of calcium channel receptors, such as RYR2 and SNAP25, were significantly increased. MIN also regulated MAPK-ERK-related factors, including FGF2, PDGFRA, PLCB2, and p-ERK, and inhibited inflammatory responses. These data indicate that administering MIN to TBEV-infected cells can reduce the TBEV level, regulate calcium signaling pathway-associated proteins, and inhibit the MAPK-ERK signaling pathway and inflammatory responses. This research offers innovative strategies for the advancement of anti-TBEV therapy.
Collapse
Affiliation(s)
- Mengtao Cao
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Jintao Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Yanli Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Xiaoyu Hu
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoli Xu
- Instrument Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China;
| | - Jing Tian
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| | - Yue Chen
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| | - Hongxia Jiang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Ruiwen Ren
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| | - Chunyuan Li
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| |
Collapse
|
7
|
Wang Y, Yang Y, Xu N, Xiao Y, Zuo C, Chen Z. Clinical characteristics and follow-up of complex arrhythmias associated with RYR2 gene mutations in children. Front Genet 2024; 15:1405437. [PMID: 38859939 PMCID: PMC11163129 DOI: 10.3389/fgene.2024.1405437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
Objective The aim of this study was to analyze the diagnosis, treatment, and follow-up of six cases of complex arrhythmias associated with RYR2 gene mutations in children. Method A retrospective analysis was conducted on six children diagnosed with complex arrhythmias associated with RYR2 gene mutations. The study included an analysis of the age of onset, initial symptoms, electrocardiographic characteristics, genetic results, treatment course, and follow-up outcomes. Results Among the six cases included in the study, there were four males and two females, with an average age of 3.5 ± 0.5 years. The average time from initial symptoms to diagnosis was 2.7 ± 1.3 years. The most common clinical manifestation was syncope, with exercise and emotions being the main triggers. All six children had de novo missense mutations in the RYR2 gene identified through whole-exome sequencing. In Holter electrocardiogram, atrial arrhythmias and sinoatrial node dysfunction were commonly observed in younger children. Four patients underwent exercise stress testing, with two experiencing bidirectional ventricular premature contractions and two experiencing bidirectional ventricular tachycardia and polymorphic ventricular tachycardia. Initial treatment involved oral propranolol or metoprolol. If arrhythmias persisted, flecainide or propafenone was added as adjunctive therapy. Two patients received permanent cardiac pacemaker treatment (single chamber ventricular pacemaker, VVI). All patients survived, with three experiencing occasional syncope during treatment. The follow-up period ranged from 12 to 37 months, with an average follow-up time of 24.3 ± 3.7 months. Conclusion Complex arrhythmias associated with RYR2 gene mutations in children can present with various clinical manifestations. Atrial arrhythmias combined with sinoatrial node dysfunction are commonly observed in younger children, and the combination of pharmacological therapy and cardiac pacemaker treatment yields favourable treatment outcomes.
Collapse
Affiliation(s)
- Yefeng Wang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Yufan Yang
- Department of Pediatric Intensive Care Unit, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Ningan Xu
- Department of Children Health, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Yunbin Xiao
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Chao Zuo
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Zhi Chen
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| |
Collapse
|
8
|
Lerman BB, Markowitz SM, Cheung JW, Thomas G, Ip JE. Ventricular Tachycardia Due to Triggered Activity: Role of Early and Delayed Afterdepolarizations. JACC Clin Electrophysiol 2024; 10:379-401. [PMID: 38127010 DOI: 10.1016/j.jacep.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023]
Abstract
Most forms of sustained ventricular tachycardia (VT) are caused by re-entry, resulting from altered myocardial conduction and refractoriness secondary to underlying structural heart disease. In contrast, VT caused by triggered activity (TA) is unrelated to an abnormal structural substrate and is often caused by molecular defects affecting ion channel function or regulation of intracellular calcium cycling. This review summarizes the cellular and molecular bases underlying TA and exemplifies their clinical relevance with selective representative scenarios. The underlying basis of TA caused by delayed afterdepolarizations is related to sarcoplasmic reticulum calcium overload, calcium waves, and diastolic sarcoplasmic reticulum calcium leak. Clinical examples of TA caused by delayed afterdepolarizations include sustained right and left ventricular outflow tract tachycardia and catecholaminergic polymorphic VT. The other form of afterpotentials, early afterdepolarizations, are systolic events and inscribe early afterdepolarizations during phase 2 or phase 3 of the action potential. The fundamental defect is a decrease in repolarization reserve with associated increases in late plateau inward currents. Malignant ventricular arrhythmias in the long QT syndromes are initiated by early afterdepolarization-mediated TA. An understanding of the molecular and cellular bases of these arrhythmias has resulted in generally effective pharmacologic-based therapies, but these are nonspecific agents that have off-target effects. Therapeutic efficacy may need to be augmented with an implantable defibrillator. Next-generation therapies will include novel agents that rescue arrhythmogenic abnormalities in cellular signaling pathways and gene therapy approaches that transfer or edit pathogenic gene variants or silence mutant messenger ribonucleic acid.
Collapse
Affiliation(s)
- Bruce B Lerman
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA.
| | - Steven M Markowitz
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - Jim W Cheung
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - George Thomas
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - James E Ip
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Schulze-Bahr E, Dittmann S. Human Genetics of Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:1033-1055. [PMID: 38884768 DOI: 10.1007/978-3-031-44087-8_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inherited forms of cardiac arrhythmias mostly are rare diseases (prevalence <1:2000) and considered to be either "primary electrical heart disorders" due to the absence of structural heart abnormalities or "cardiac ion channel disorders" due to the myocellular structures involved. Precise knowledge of the electrocardiographic features of these diseases and their genetic classification will enable early disease recognition and prevention of cardiac events including sudden cardiac death.The genetic background of these diseases is complex and heterogeneous. In addition to the predominant "private character" of a mutation in each family, locus heterogeneity involving many ion channel genes for the same familial arrhythmia syndrome is typical. Founder pathogenic variants or mutational hot spots are uncommon. Moreover, phenotypes may vary and overlap even within the same family and mutation carriers. For the majority of arrhythmias, the clinical phenotype of an ion channel mutation is restricted to cardiac tissue, and therefore, the disease is nonsyndromic.Recent and innovative methods of parallel DNA analysis (so-called next-generation sequencing, NGS) will enhance further mutation and other variant detection as well as arrhythmia gene identification.
Collapse
Affiliation(s)
- Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany.
| | - Sven Dittmann
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| |
Collapse
|
10
|
Pupaza A, Cinteza E, Vasile CM, Nicolescu A, Vatasescu R. Assessment of Sudden Cardiac Death Risk in Pediatric Primary Electrical Disorders: A Comprehensive Overview. Diagnostics (Basel) 2023; 13:3551. [PMID: 38066791 PMCID: PMC10706572 DOI: 10.3390/diagnostics13233551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 06/30/2024] Open
Abstract
Sudden cardiac death (SCD) in children is a devastating event, often linked to primary electrical diseases (PED) of the heart. PEDs, often referred to as channelopathies, are a group of genetic disorders that disrupt the normal ion channel function in cardiac cells, leading to arrhythmias and sudden cardiac death. This paper investigates the unique challenges of risk assessment and stratification for channelopathy-related SCD in pediatric patients-Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, long QT syndrome, Anderson-Tawil syndrome, short QT syndrome, and early repolarization syndrome. We explore the intricate interplay of genetic, clinical, and electrophysiological factors that contribute to the complex nature of these conditions. Recognizing the significance of early identification and tailored management, this paper underscores the need for a comprehensive risk stratification approach specifically designed for pediatric populations. By integrating genetic testing, family history, and advanced electrophysiological evaluation, clinicians can enhance their ability to identify children at the highest risk for SCD, ultimately paving the way for more effective preventive strategies and improved outcomes in this vulnerable patient group.
Collapse
Affiliation(s)
- Adelina Pupaza
- Department of Cardiology, Clinic Emergency Hospital Bucharest, 050098 Bucharest, Romania;
| | - Eliza Cinteza
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Cardiology, “Marie Curie” Emergency Children’s Hospital, 041451 Bucharest, Romania;
| | - Corina Maria Vasile
- Pediatric and Adult Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, 33600 Bordeaux, France;
| | - Alin Nicolescu
- Department of Pediatric Cardiology, “Marie Curie” Emergency Children’s Hospital, 041451 Bucharest, Romania;
| | - Radu Vatasescu
- Department of Cardiology, Clinic Emergency Hospital Bucharest, 050098 Bucharest, Romania;
- Cardio-Thoracic Department, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
11
|
Jang EJ, Kim JS, Choi SA, Yee J, Song TJ, Park J, Gwak HS. Construction of a risk scoring system using clinical factors and RYR2 polymorphisms for bleeding complications in patients on direct oral anticoagulants. Front Pharmacol 2023; 14:1290785. [PMID: 38034995 PMCID: PMC10684747 DOI: 10.3389/fphar.2023.1290785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Bleeding is one of the most undesirable complications of direct oral anticoagulants (DOACs). While the ryanodine receptor (RYR2) has been related to cardiac diseases, research on bleeding complications is lacking. This study aimed to elucidate the association between RYR2 and bleeding risk to develop the risk scoring system in patients treated with DOACs. Methods: This study was a retrospective analysis of prospectively collected samples. We selected ten SNPs within the RYR2 gene, and two models were constructed (Model I: demographic factors only, Model II: demographic and genetic factors) in multivariable analysis. Independent risk factors for bleeding were used to develop a risk scoring system. Results: A total of 447 patients were included, and 49 experienced either major bleeding or clinically relevant non-major bleeding. In Model I, patients using rivaroxaban and experiencing anemia exhibited an increased bleeding risk after adjusting for covariates. Upon incorporating genetic factors into Model I, a significant association with bleeding was also observed in cases of overdosing on DOACs and in patients with a creatinine clearance (CrCl) < 30 mL/min, in addition to rivaroxaban and anemia (Model II). Among genetic factors, RYR2 rs12594 GG, rs17682073 AA, rs3766871 GG, and rs6678625 T alleles were associated with bleeding complications. The area under the receiver operating characteristic curve (AUROC) of Model I was 0.670, whereas that of Model II increased to 0.803, demonstrating better performance with the inclusion of genetic factors. Using the significant variables in Model II, a risk scoring system was constructed. The predicted bleeding risks for scores of 0, 1-2, 3-4, 5-6, 7-8, and 9-10 points were 0%, 1.2%, 4.6%, 15.7%, 41.7%, and 73.3%, respectively. Conclusion: This study revealed an association between RYR2 and bleeding complications among patients taking DOACs and established a risk scoring system to support individualized DOAC treatment for these patients.
Collapse
Affiliation(s)
- Eun Jeong Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jung Sun Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Seo A. Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Tae-Jin Song
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Junbeom Park
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Toth N, Zhang XH, Zamaro A, Morad M. Calcium Signaling Consequences of RyR2-S4938F Mutation Expressed in Human iPSC-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:15307. [PMID: 37894987 PMCID: PMC10607246 DOI: 10.3390/ijms242015307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Type-2 ryanodine receptor (RyR2) is the major Ca2+ release channel of the cardiac sarcoplasmic reticulum (SR) that controls the rhythm and strength of the heartbeat, but its malfunction may generate severe arrhythmia leading to sudden cardiac death or heart failure. S4938F-RyR2 mutation in the carboxyl-terminal was expressed in human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) using CRISPR/Cas9 gene-editing technique. Ca2+ signaling and electrophysiological properties of beating cardiomyocytes carrying the mutation were studied using total internal reflection fluorescence microscopy (TIRF) and patch clamp technique. In mutant cells, L-type Ca2+ currents (ICa), measured either by depolarizations to zero mV or repolarizations from +100 mV to -50 mV, and their activated Ca2+ transients were significantly smaller, despite their larger caffeine-triggered Ca2+ release signals compared to wild type (WT) cells, suggesting ICa-induced Ca2+ release (CICR) was compromised. The larger SR Ca2+ content of S4938F-RyR2 cells may underlie the higher frequency of spontaneously occurring Ca2+ sparks and Ca2+ transients and their arrhythmogenic phenotype.
Collapse
Affiliation(s)
- Noemi Toth
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA; (N.T.); (X.-H.Z.)
| | - Xiao-Hua Zhang
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA; (N.T.); (X.-H.Z.)
| | - Alexandra Zamaro
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA; (N.T.); (X.-H.Z.)
| | - Martin Morad
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA; (N.T.); (X.-H.Z.)
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|