1
|
Zhang H, Zhou X, Li Z, Bartlam M, Wang Y. Anthropogenic original DOM is a critical factor affecting LNA bacterial community assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166169. [PMID: 37562635 DOI: 10.1016/j.scitotenv.2023.166169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
We investigated the geographical and environmental distance-decay relationships for both of the two bacteria in the Haihe River, Tianjin, China. HNA bacteria exhibited a stronger geographical variation-dependent pattern while LNA bacteria exhibited a stronger environmental variation-dependent pattern. Variance partition analysis (VPA), Mantel test, and partial mantel test validated the discrepant impacts of geographical distance and environmental factors on their two communities. The heterogeneous selection dominated community assembly of LNA bacteria demonstrates their greater sensitivity to environmental conditions. As the deterministic environmental factor, anthropogenic original dissolved organic matter (DOM) functions exclusively on LNA bacteria, and it is the critical factor leading to the discrepant biogeographical patterns of LNA and HNA bacteria. LNA bacteria interact with HNA bacteria and mediate the DOM driving total bacteria assembly. The LNA keystone taxa, Pseudomonas, Rheinheimera, Candidatus Aquiluna, and hgcl clade are capable to compete with HNA bacteria for anthropogenic original DOM, and are potential indicators of anthropogenic pollution. Our research reveals the non-negligible effect of the LNA bacteria in regulating the ecological response of total bacteria.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Xinzhu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Zun Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Luo M, Yang H, Wang K, Song F, He Y, Zhang Y, Zhong C. Coupling iron-carbon micro-electrolysis with persulfate advanced oxidation for hydraulic fracturing return fluid treatment. CHEMOSPHERE 2023; 313:137415. [PMID: 36464016 DOI: 10.1016/j.chemosphere.2022.137415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Improving the sustainability of the hydraulic fracturing water cycle of unconventional oil and gas development needs an advanced water treatment that can efferently treat flowback and produced water (FPW). In this study, we developed a robust two-stage process that combines flocculation, and iron-carbon micro-electrolysis plus sodium persulfate (ICEPS) advanced oxidation to treat field-based FPW from the Sulige tight gas field, China. Influencing factors and optimal conditions of the flocculation-ICEPS process were investigated. The flocculation-ICEPS system at optimal conditions sufficiently removed the total organic contents (95.71%), suspended solids (92.4%), and chroma (97.5%), but the reaction stoichiometric efficiency (RSE) value was generally less than 5%. The particles and chroma were effectively removed by flocculation, and the organic contents was mainly removed by the ICEPS system. Fourier-transform infrared spectroscopy (FTIR) analysis was performed to track the changes in FPW chemical compositions through the oxidation of the ICEPS process. Multiple analyses demonstrated that PS was involved in the activation of Fe oxides and hydroxides accreted on the surface of the ICE system for FPW treatment, which led to increasing organics removal rate of the ICEPS system compared to the conventional ICE system. Our study suggests that the flocculation-ICEPS system is a promising FPW treatment process, which provides technical and mechanistic foundations for further field application.
Collapse
Affiliation(s)
- Mina Luo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China.
| | - Hanchao Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - Kuntai Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - Fang Song
- Chengdu Xiyouhuawei Science & Technology Co., Ltd. Chengdu, 610500, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China
| | - Cheng Zhong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
3
|
Zhou S, Li Z, Peng S, Jiang J, Han X, Chen X, Jin X, Zhang D, Lu P. River water influenced by shale gas wastewater discharge for paddy irrigation has limited effects on soil properties and microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114552. [PMID: 36652741 DOI: 10.1016/j.ecoenv.2023.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The processes of hydraulic fracturing to extract shale gas generate a large amount of wastewater, and the potential impacts of wastewater discharge after treatment are concerning. In this field study, we investigated the effects of the irrigation of paddy fields for 2 consecutive years by river water that has been influenced by shale gas wastewater discharge on soil physicochemical properties, microbial community structure and function, and rice grain quality. The results showed that conductivity, chloride and sulfate ions in paddy soils downstream of the outfall showed an accumulative trend after two years of irrigation, but these changes occurred on a small scale (<500 m). Two-year irrigation did not cause the accumulation of trace metals (barium, cadmium, chromium, copper, lead, strontium, zinc, nickel, and uranium) in soil and rice grains. Among all soil parameters, the accumulation of chloride ions was the most pronounced, with concentrations in the paddy soil at the discharge site 13.3 times higher than at the upstream control site. The use of influenced river water for paddy irrigation positively increased the soil microbial diversity, but these changes occurred after two years of irrigation and did not occur after one year of irrigation. Overall, the use of river water affected by shale gas wastewater discharge for agricultural irrigation has limited effects on agroecosystems over a short period. Nevertheless, the possible negative effects of contaminant accumulation in soil and rice caused by longer-term irrigation should be seriously considered.
Collapse
Affiliation(s)
- Shangbo Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiqiang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Shuchan Peng
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China.
| | - Jiawei Jiang
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xu Han
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiangyu Chen
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xicheng Jin
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
4
|
In-situ growth of ZIF-8 nanocrystals on biochar for boron adsorption. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Zhong C, Nesbø CL, von Gunten K, Zhang Y, Shao X, Jin R, Konhauser KO, Goss GG, Martin JW, He Y, Qian PY, Lanoil BD, Alessi DS. Complex impacts of hydraulic fracturing return fluids on soil microbial community respiration, structure, and functional potentials. Environ Microbiol 2022; 24:4108-4123. [PMID: 35416402 DOI: 10.1111/1462-2920.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
The consequences of soils exposed to hydraulic fracturing (HF) return fluid, often collectively termed flowback and produced water (FPW), are poorly understood, even though soils are a common receptor of FPW spills. Here, we investigate the impacts on soil microbiota exposed to FPW collected from the Montney Formation of western Canada. We measured soil respiration, microbial community structure, and functional potentials under FPW exposure across a range of concentrations, exposure time, and soil types (luvisol and chernozem). We find that soil type governs microbial community response upon FPW exposure. Within each soil, FPW exposure led to reduced biotic soil respiration, and shifted microbial community structure and functional potentials. We detect substantially higher species richness and more unique functional genes in FPW-exposed soils than in FPW-unexposed soils, with metagenome-assembled genomes (e.g., Marinobacter persicus) from luvisol soil exposed to concentrated FPW being most similar to genomes from HF/FPW sites. Our data demonstrate the complex impacts of microbial communities following FPW exposure, and highlight the site-specific effects in evaluation of spills and agricultural reuse of FPW on the normal soil functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.,Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangzhou, China
| | - Camilla L Nesbø
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Konstantin von Gunten
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaoqing Shao
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Rong Jin
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Greg G Goss
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangzhou, China
| | - Brian D Lanoil
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
6
|
Xiong J, Zhao Z, Sun W, Liu W. Foam Stabilization Mechanism of a Novel Non-cross-linked Foam Fracturing Fluid. ACS OMEGA 2021; 6:32863-32868. [PMID: 34901636 PMCID: PMC8655894 DOI: 10.1021/acsomega.1c04861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/10/2021] [Indexed: 05/31/2023]
Abstract
Traditional foam hydraulic fracturing fluids used guar cross-linking technology. However, major production problems, such as high friction and difficulty to accurately control the cross-linking time, have influenced the large-scale application of cross-linked guar foam fracturing fluids. In this study, we developed a novel non-cross-linked foam fracturing fluid using a series of polymers synthesized with acrylamide and hexadecyl trimethylallyl ammonium chloride as monomers and improved the stability of foam by forming structures in solution through association. The results showed that the hydrophobic groups were the key factors that affect the foam stability, and the hydrolysis degree had a significant effect on the elasticity of the polymer solution. The model association polymer with 0.75% hydrophobic group content and 56% hydrolytic degree was optimal. The stability of our proposed foam was comparable to that of the cross-linked guar gum foam. The adsorption of associating polymers on the gas and water interface resulted in a high-stability foam. Our study demonstrates a new avenue to develop high-stability foams to satisfy the current hydraulic fracturing scheme.
Collapse
Affiliation(s)
- Junjie Xiong
- Petroleum
Engineering College, Yangtze University, Wuhan 430100, Hubei, China
- CNOOC
EnerTech-Drilling & Production Co., Tianjin 300452, China
| | - Zhongcong Zhao
- Petroleum
Engineering College, Yangtze University, Wuhan 430100, Hubei, China
| | - Wenan Sun
- Petroleum
Engineering College, Yangtze University, Wuhan 430100, Hubei, China
| | - Wei Liu
- Petroleum
Engineering Technology Research Institute, Sinopec Jianghan Oilfield Company, Wuhan 430035, Hubei, China
| |
Collapse
|
7
|
Factors Influencing the Bacterial Bioremediation of Hydrocarbon Contaminants in the Soil: Mechanisms and Impacts. J CHEM-NY 2021. [DOI: 10.1155/2021/9823362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discharge of hydrocarbons and their derivatives to environments due to human and/or natural activities cause environmental pollution (soil, water, and air) and affect the natural functioning of an ecosystem. To minimize or eradicate environmental pollution by hydrocarbon contaminants, studies showed strategies including physical, chemical, and biological approaches. Among those strategies, the use of biological techniques (especially bacterial biodegradation) is critically important to remove hydrocarbon contaminants. The current review discusses the insights of major factors that enhance or hinder the bacterial bioremediation of hydrocarbon contaminants (aliphatic, aromatic, and polyaromatic hydrocarbons) in the soil. The key factors limiting the overall hydrocarbon biodegradation are generally categorized as biotic factors and abiotic factors. Among various environmental factors, temperature range from 30 to 40°C, pH range from 5 to 8, moisture availability range from 30 to 90%, carbon/nitrogen/phosphorous (C/N/P; 100:20:1) ratio, and 10–40% of oxygen for aerobic degradation are the key factors that show positive correlation for greatest hydrocarbon biodegradation rate by altering the activities of the microbial and degradative enzymes in soil. In addition, the formation of biofilm and production of biosurfactants in hydrocarbon-polluted soil environments increase microbial adaptation to low bioavailability of hydrophobic compounds, and genes that encode for hydrocarbon degradative enzymes are critical for the potential of microbes to bioremediate soils contaminated with hydrocarbon pollutants. Therefore, this review works on the identification of factors for effective hydrocarbon biodegradation, understanding, and optimization of those factors that are essential and critical.
Collapse
|
8
|
Tiburcio SRG, Macrae A, Peixoto RS, da Costa Rachid CTC, Mansoldo FRP, Alviano DS, Alviano CS, Ferreira DF, de Queiroz Venâncio F, Ferreira DF, Vermelho AB. Sulphate-reducing bacterial community structure from produced water of the Periquito and Galo de Campina onshore oilfields in Brazil. Sci Rep 2021; 11:20311. [PMID: 34645885 PMCID: PMC8514479 DOI: 10.1038/s41598-021-99196-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Sulphate-reducing bacteria (SRB) cause fouling, souring, corrosion and produce H2S during oil and gas production. Produced water obtained from Periquito (PQO) and Galo de Campina (GC) onshore oilfields in Brazil was investigated for SRB. Produced water with Postgate B, Postgate C and Baars media was incubated anaerobically for 20 days. DNA was extracted, 16S rDNA PCR amplified and fragments were sequenced using Illumina TruSeq. 4.2 million sequence reads were analysed and deposited at NCBI SAR accession number SRP149784. No significant differences in microbial community composition could be attributed to the different media but significant differences in the SRB were observed between the two oil fields. The dominant bacterial orders detected from both oilfields were Desulfovibrionales, Pseudomonadales and Enterobacteriales. The genus Pseudomonas was found predominantly in the GC oilfield and Pleomorphominas and Shewanella were features of the PQO oilfield. 11% and 7.6% of the sequences at GC and PQO were not classified at the genus level but could be partially identified at the order level. Relative abundances changed for Desulfovibrio from 29.8% at PQO to 16.1% at GC. Clostridium varied from 2.8% at PQO and 2.4% at GC. These data provide the first description of SRB from onshore produced water in Brazil and reinforce the importance of Desulfovibrionales, Pseudomonadales, and Enterobacteriales in produced water globally. Identifying potentially harmful microbes is an important first step in developing microbial solutions that prevent their proliferation.
Collapse
Affiliation(s)
- Samyra Raquel Gonçalves Tiburcio
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andrew Macrae
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Raquel Silva Peixoto
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Felipe Raposo Passos Mansoldo
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy Lab, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniela Sales Alviano
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Celuta Sales Alviano
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Davis Fernandes Ferreira
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | | | - Alane Beatriz Vermelho
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy Lab, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Zhong C, Zolfaghari A, Hou D, Goss GG, Lanoil BD, Gehman J, Tsang DCW, He Y, Alessi DS. Comparison of the Hydraulic Fracturing Water Cycle in China and North America: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7167-7185. [PMID: 33970611 DOI: 10.1021/acs.est.0c06119] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
There is considerable debate about the sustainability of the hydraulic fracturing (HF) water cycle in North America. Recently, this debate has expanded to China, where HF activities continue to grow. Here, we provide a critical review of the HF water cycle in China, including water withdrawal practices and flowback and produced water (FPW) management and their environmental impacts, with a comprehensive comparison to the U.S. and Canada (North America). Water stress in arid regions, as well as water management challenges, FPW contamination of aquatic and soil systems, and induced seismicity are all impacts of the HF water cycle in China, the U.S., and Canada. In light of experience gained in North America, standardized practices for analyzing and reporting FPW chemistry and microbiology in China are needed to inform its efficient and safe treatment, discharge and reuse, and identification of potential contaminants. Additionally, conducting ecotoxicological studies is an essential next step to fully reveal the impacts of accidental FPW releases into aquatic and soil ecosystems in China. From a policy perspective, the development of China's unconventional resources lags behind North America's in terms of overall regulation, especially with regard to water withdrawal, FPW management, and routine monitoring. Our study suggests that common environmental risks exist within the world's two largest HF regions, and practices used in North America may help prevent or mitigate adverse effects in China.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
- School of Environment, Tsinghua University, Beijing, China
| | - Ashkan Zolfaghari
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Brian D Lanoil
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joel Gehman
- Department of Strategy, Entrepreneurship and Management, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Zhong C, Kwan YH, Goss GG, Alessi DS, Qian PY. Hydraulic Fracturing Return Fluids from Offshore Hydrocarbon Extraction Present New Risks to Marine Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4199-4201. [PMID: 33750105 DOI: 10.1021/acs.est.1c00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Cheng Zhong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 510642, China
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 510642, China
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 510642, China
| |
Collapse
|