1
|
Tomazelli D, Klauberg-Filho O, Mendes LW, Goss-Souza D. The impact of land-use changes and management intensification on bacterial communities in the last decade: a review. Appl Environ Microbiol 2024; 90:e0030924. [PMID: 38874336 PMCID: PMC11267915 DOI: 10.1128/aem.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
In the last decade, advances in soil bacterial ecology have contributed to increasing agricultural production. Brazil is the world leading agriculture producer and leading soil biodiversity reservoir. Meanwhile, there is still a significant gap in the knowledge regarding the soil microscopic life and its interactions with agricultural practices, and the replacement of natural vegetation by agroecosystems is yet to be unfolded. Through high throughput DNA sequencing, scientists are now exploring the complexity of soil bacterial communities and their relationship with soil and environmental characteristics. This study aimed to investigate the progress of bacterial ecology studies in Brazil over the last 10 years, seeking to understand the effect of the conversion of natural vegetation in agricultural systems on the diversity and structure of the soil microbial communities. We conducted a systematic search for scientific publication databases. Our systematic search has matched 62 scientific articles from three different databases. Most of the studies were placed in southeastern and northern Brazil, with no records of studies about microbial ecology in 17 out of 27 Brazilian states. Out of the 26 studies that examined the effects of replacing natural vegetation with agroecosystems, most authors concluded that changes in soil pH and vegetation cover replacement were the primary drivers of shifts in microbial communities. Understanding the ecology of the bacteria inhabiting Brazilian soils in agroecosystems is paramount for developing more efficient soil management strategies and cleaner agricultural technologies.
Collapse
Affiliation(s)
- Daniela Tomazelli
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, Santa Catarina, Brazil
| | - Osmar Klauberg-Filho
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, Santa Catarina, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Dennis Goss-Souza
- College of Agronomy, Federal Institute of Paraná, Palmas, Paraná, Brazil
| |
Collapse
|
2
|
Maimone NM, Apaza-Castillo GA, Quecine MC, de Lira SP. Accessing the specialized metabolome of actinobacteria from the bulk soil of Paullinia cupana Mart. on the Brazilian Amazon: a promising source of bioactive compounds against soybean phytopathogens. Braz J Microbiol 2024; 55:1863-1882. [PMID: 38421597 PMCID: PMC11153476 DOI: 10.1007/s42770-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
The Amazon rainforest, an incredibly biodiverse ecosystem, has been increasingly vulnerable to deforestation. Despite its undeniable importance and potential, the Amazonian microbiome has historically received limited study, particularly in relation to its unique arsenal of specialized metabolites. Therefore, in this study our aim was to assess the metabolic diversity and the antifungal activity of actinobacterial strains isolated from the bulk soil of Paullinia cupana, a native crop, in the Brazilian Amazon Rainforest. Extracts from 24 strains were subjected to UPLC-MS/MS analysis using an integrative approach that relied on the Chemical Structural and Compositional Similarity (CSCS) metric, GNPS molecular networking, and in silico dereplication tools. This procedure allowed the comprehensive understanding of the chemical space encompassed by these actinobacteria, which consists of features belonging to known bioactive metabolite classes and several unannotated molecular families. Among the evaluated strains, five isolates exhibited bioactivity against a panel of soybean fungal phytopathogens (Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). A focused inspection led to the annotation of pepstatins, oligomycins, hydroxamate siderophores and dorrigocins as metabolites produced by these bioactive strains, with potentially unknown compounds also comprising their metabolomes. This study introduces a pragmatic protocol grounded in established and readily available tools for the annotation of metabolites and the prioritization of strains to optimize further isolation of specialized metabolites. Conclusively, we demonstrate the relevance of the Amazonian actinobacteria as sources for bioactive metabolites useful for agriculture. We also emphasize the importance of preserving this biome and conducting more in-depth studies on its microbiota.
Collapse
Affiliation(s)
- Naydja Moralles Maimone
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Gladys Angélica Apaza-Castillo
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Simone Possedente de Lira
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
3
|
Sun Z, Sun C, Zhang T, Liu J, Wang X, Feng J, Li S, Tang S, Jin K. Soil microbial community variation among different land use types in the agro-pastoral ecotone of northern China is likely to be caused by anthropogenic activities. Front Microbiol 2024; 15:1390286. [PMID: 38841072 PMCID: PMC11150776 DOI: 10.3389/fmicb.2024.1390286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
There are various types of land use in the agricultural and pastoral areas of northern China, including natural grassland and artificial grassland, scrub land, forest land and farmland, may change the soil microbial community However, the soil microbial communities in these different land use types remain poorly understood. In this study, we compared soil microbial communities in these five land use types within the agro-pastoral ecotone of northern China. Our results showed that land use has had a considerable impact on soil bacterial and fungal community structures. Bacterial diversity was highest in shrubland and lowest in natural grassland; fungal diversity was highest in woodland. Microbial network structural complexity also differed significantly among land use types. The lower complexity of artificial grassland and farmland may be a result of the high intensity of anthropogenic activities in these two land-use types, while the higher structural complexity of the shrubland and woodland networks characterised by low-intensity management may be a result of low anthropogenic disturbance. Correlation analysis of soil properties (e.g., soil physicochemical properties, soil nutrients, and microbiomass carbon and nitrogen levels) and soil microbial communities demonstrated that although microbial taxa were correlated to some extent with soil environmental factors, these factors did not sufficiently explain the microbial community differences among land use types. Understanding variability among soil microbial communities within agro-pastoral areas of northern China is critical for determining the most effective land management strategies and conserving microbial diversity at the regional level.
Collapse
Affiliation(s)
- Zhaokai Sun
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chongzhi Sun
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Tongrui Zhang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jia Liu
- School of Grass Academy, Qingdao Agriculture University, Qingdao, China
| | - Xinning Wang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jing Feng
- School of Grass Academy, Qingdao Agriculture University, Qingdao, China
| | - Shucheng Li
- Anhui Science and Technology University, College of Agriculture, Huainan, China
| | - Shiming Tang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ke Jin
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Department of International Cooperation, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Bieluczyk W, Asselta FO, Navroski D, Gontijo JB, Venturini AM, Mendes LW, Simon CP, Camargo PBD, Tadini AM, Martin-Neto L, Bendassolli JA, Rodrigues RR, van der Putten WH, Tsai SM. Linking above and belowground carbon sequestration, soil organic matter properties, and soil health in Brazilian Atlantic Forest restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118573. [PMID: 37459811 DOI: 10.1016/j.jenvman.2023.118573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/17/2023]
Abstract
Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 μg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.
Collapse
Affiliation(s)
- Wanderlei Bieluczyk
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil; University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Fernanda Ometto Asselta
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Deisi Navroski
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Júlia Brandão Gontijo
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Andressa Monteiro Venturini
- Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, USA; Department of Biology, Stanford University, Stanford, CA, USA.
| | - Lucas William Mendes
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Carla Penha Simon
- University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Plínio Barbosa de Camargo
- University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Amanda Maria Tadini
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos, SP, 13560-970, Brazil.
| | - Ladislau Martin-Neto
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos, SP, 13560-970, Brazil.
| | - José Albertino Bendassolli
- University of São Paulo, Center for Nuclear Energy in Agriculture, Stable Isotope Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Ricardo Ribeiro Rodrigues
- University of São Paulo, "Luiz de Queiroz" College of Agriculture, Laboratory of Ecology and Forest Restoration, 11 Pádua Dias Avenue, Piracicaba, SP, 13418-900, Brazil.
| | - Wim H van der Putten
- Netherlands Institute of Ecology, NIOO-KNAW, Department of Terrestrial Ecology, 6708, PB, Wageningen, Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700, ES, Wageningen, the Netherlands.
| | - Siu Mui Tsai
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| |
Collapse
|
5
|
Thompson CC, Tschoeke D, Coutinho FH, Leomil L, Garcia GD, Otsuki K, Turcq BJ, Moreira LS, Turcq PFM, Cordeiro RC, Asp NE, Thompson FL. Diversity of Microbiomes Across a 13,000-Year-Old Amazon Sediment. MICROBIAL ECOLOGY 2023; 86:2202-2209. [PMID: 37017718 DOI: 10.1007/s00248-023-02202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
The microbiome is fundamental for understanding bacterial activities in sediments. However, only a limited number of studies have addressed the microbial diversity of Amazonian sediments. Here, we studied the microbiome of sediments from a 13,000-year BP core retrieved in a floodplain lake in Amazonia using metagenomics and biogeochemistry. Our aim was to evaluate the possible environmental influence over a river to a lake transition using a core sample. To this end, we sampled a core in the Airo Lake, a floodplain lake in the Negro River basin. The Negro River is the largest tributary of the Amazon River. The obtained core was divided into three strata: (i) surface, almost complete separation of the Airo Lake from the Negro River when the environment becomes more lentic with greater deposition of organic matter (black-colored sediment); (ii) transitional environment (reddish brown); and (iii) deep, environment with a tendency for greater past influence of the Negro River (brown color). The deepest sample possibly had the greatest influence of the Negro River as it represented the bottom of this river in the past, while the surface sample is the current Airo Lake bottom. In total, six metagenomes were obtained from the three different depth strata (total number of reads: 10.560.701; sequence length: 538 ± 24, mean ± standard deviation). The older (deeper) sediment strata contained a higher abundance of Burkholderia, Chitinophaga, Mucilaginibacter, and Geobacter, which represented ~ 25% of the metagenomic sequences. On the other hand, the more recent sediment strata had mainly Thermococcus, Termophilum, Sulfolobus, Archaeoglobus, and Methanosarcina (in total 11% of the metagenomic sequences). The sequence data were binned into metagenome-assembled genomes (MAGs). The majority of the obtained MAGs (n = 16) corresponded to unknown taxa, suggesting they may belong to new species. The older strata sediment microbiome was enriched with sulfur cycle genes, TCA cycle, YgfZ, and ATP-dependent proteolysis in bacteria. Meanwhile, serine-glyoxylate cycle, stress response genes, bacterial cell division, cell division-ribosomal stress protein cluster, and oxidative stress increased in the younger strata. Metal resistance and antimicrobial resistance genes were found across the entire core, including genes coding for fluoroquinolones, polymyxin, vancomycin, and multidrug resistance transporters. These findings depict the possible microbial diversity during the depositional past events and provided clues of the past microbial metabolism throughout time.
Collapse
Affiliation(s)
- Cristiane C Thompson
- Institute of Biology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Diogo Tschoeke
- Institute of Biology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Biomedical Engineer Program, COPPE (UFRJ), Rio de Janeiro, Brazil
| | - Felipe H Coutinho
- Institute of Biology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Luciana Leomil
- Institute of Biology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gizele D Garcia
- Institute of Biology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto de Ciências Médicas, Centro Multidisciplinar UFRJ Macae, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Macae, Brazil
| | - Koko Otsuki
- Institute of Biology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno J Turcq
- Institute de Recherche pour Le Dévelopment-Sorbonne, Université (UPMC, CNRS, IRD, MNHN) LOCEAN - Centre IRD France Nord, Bondy, France
| | - Luciane S Moreira
- Programa de Geoquímica, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil
| | - Patrícia F M Turcq
- Institute de Recherche pour Le Dévelopment-Sorbonne, Université (UPMC, CNRS, IRD, MNHN) LOCEAN - Centre IRD France Nord, Bondy, France
| | - Renato C Cordeiro
- Programa de Geoquímica, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil
| | - Nils E Asp
- Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará (UFPA), Bragança, Brazil
| | - Fabiano L Thompson
- Institute of Biology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Santos DS, Pontes PVM, Leite AMDO, Ferreira AL, de Souza M, Araujo TDSS, dos Santos HF, de Oliveira GC, Bitencourt JA, Cavalcanti AB, Martins RL, Esteves FDA. Bioprospecting for Isoetes cangae Endophytes with Potential to Promote Plant Growth. Int J Microbiol 2023; 2023:5992113. [PMID: 37644978 PMCID: PMC10462435 DOI: 10.1155/2023/5992113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Isoetes cangae is a native plant found only in a permanent pond in Serra dos Carajás in the Amazon region. Plant-associated microbial communities are recognized to be responsible for biological processes essential for the health, growth, and even adaptation of plants to environmental stresses. In this sense, the aims of this work were to isolate, identify, and evaluate the properties of endophytic bacteria isolated from I. cangae. The bioprospecting of potentially growth-promoting endophytes required the following steps to be taken: isolation of endophytic colonies, molecular identification by 16S rDNA sequence analysis, and evaluation of the bacterial potential for nitrogen fixation, production of indole acetic acid and siderophores, as well as phosphate solubilization and mineralization. Bacillus sp., Rhizobium sp., Priestia sp., Acinetobacter sp., Rossellomorea sp., Herbaspirillum sp., Heyndrickxia sp., and Metabacillus sp., among other bacterial species, were identified. The isolates showed to be highly promising, evidencing the physiological importance for the plant and having the potential to promote plant growth.
Collapse
Affiliation(s)
- Danielle Silveira Santos
- Federal University of Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade, Macaé 27965-045, Brazil
| | | | | | - Aline Lemos Ferreira
- Federal University of Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade, Macaé 27965-045, Brazil
| | - Mariana de Souza
- Federal University of Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade, Macaé 27965-045, Brazil
| | | | | | | | | | | | - Rodrigo Lemes Martins
- Federal University of Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade, Macaé 27965-045, Brazil
| | - Francisco De Assis Esteves
- Federal University of Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade, Macaé 27965-045, Brazil
| |
Collapse
|
7
|
Pellegrinetti TA, Cotta SR, Sarmento H, Costa JS, Delbaje E, Montes CR, Camargo PB, Barbiero L, Rezende-Filho AT, Fiore MF. Bacterial Communities Along Environmental Gradients in Tropical Soda Lakes. MICROBIAL ECOLOGY 2023; 85:892-903. [PMID: 35916937 DOI: 10.1007/s00248-022-02086-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.
Collapse
Affiliation(s)
- Thierry A Pellegrinetti
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Simone R Cotta
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Juliana S Costa
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Endrews Delbaje
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Celia R Montes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Plinio B Camargo
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Laurent Barbiero
- The Observatory Midi-Pyrénées, Geoscience Environment Toulouse, Research Institute for Development, The National Center for Research Scientific, Paul Sabatier University, 31400, Toulouse, France
| | - Ary T Rezende-Filho
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, 79070-900, Brazil
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil.
| |
Collapse
|
8
|
Leal ODA, Jiménez-Morillo NT, González-Pérez JA, Knicker H, de Souza Costa F, Jiménez-Morillo PN, de Carvalho Júnior JA, dos Santos JC, Pinheiro Dick D. Soil Organic Matter Molecular Composition Shifts Driven by Forest Regrowth or Pasture after Slash-and-Burn of Amazon Forest. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3485. [PMID: 36834184 PMCID: PMC9962374 DOI: 10.3390/ijerph20043485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Slash-and-burn of Amazon Forest (AF) for pasture establishment has increased the occurrence of AF wildfires. Recent studies emphasize soil organic matter (SOM) molecular composition as a principal driver of post-fire forest regrowth and restoration of AF anti-wildfire ambience. Nevertheless, SOM chemical shifts caused by AF fires and post-fire vegetation are rarely investigated at a molecular level. We employed pyrolysis-gas chromatography-mass spectrometry to reveal molecular changes in SOM (0-10, 40-50 cm depth) of a slash-burn-and-20-month-regrowth AF (BAF) and a 23-year Brachiaria pasture post-AF fire (BRA) site compared to native AF (NAF). In BAF (0-10 cm), increased abundance of unspecific aromatic compounds (UACs), polycyclic aromatic hydrocarbons (PAHs) and lipids (Lip) coupled with a depletion of polysaccharides (Pol) revealed strong lingering effects of fire on SOM. This occurs despite fresh litter deposition on soil, suggesting SOM minimal recovery and toxicity to microorganisms. Accumulation of recalcitrant compounds and slow decomposition of fresh forest material may explain the higher carbon content in BAF (0-5 cm). In BRA, SOM was dominated by Brachiaria contributions. At 40-50 cm, alkyl and hydroaromatic compounds accumulated in BRA, whereas UACs accumulated in BAF. UACs and PAH compounds were abundant in NAF, possibly air-transported from BAF.
Collapse
Affiliation(s)
- Otávio dos Anjos Leal
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Nicasio T. Jiménez-Morillo
- Mediterranean Institute for Agriculture, Environment and Development-MED, Universidade de Évora, Ap 94, 7002-554 Évora, Portugal
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Seville, Spain
| | - José A. González-Pérez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Seville, Spain
| | - Heike Knicker
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Seville, Spain
| | | | - Pedro N. Jiménez-Morillo
- Departamento de Sistemas Físicos, Químicos y Biológicos, Universidad Pablo de Olavide, Ctra. Utrera, 1, 41013 Seville, Spain
| | - João Andrade de Carvalho Júnior
- Departamento de Energia, Universidade Estadual Paulista, Av. Ariberto Pereira da Cunha, 333, Portal das Colinas, Guaratinguetá 12516-410, Brazil
| | - José Carlos dos Santos
- Laboratório Associado de Combustão e Propulsão, Instituto Nacional de Pesquisas Espaciais (INPE), Rodovia Presidente Dutra, km 40, Cachoeira Paulista 12630-00, Brazil
| | - Deborah Pinheiro Dick
- Departamento de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
9
|
Tang S, Rao Y, Huang S, Xu Y, Zeng K, Liang X, Ling Q, Liu K, Ma J, Yu F, Li Y. Impact of environmental factors on the ammonia-oxidizing and denitrifying microbial community and functional genes along soil profiles from different ecologically degraded areas in the Siding mine. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116641. [PMID: 36343494 DOI: 10.1016/j.jenvman.2022.116641] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Ammonia oxidizers (ammonia-oxidizing bacteria (AOB amoA) and ammonia-oxidizing archaea (AOA amoA)) and denitrifiers (encoded by nirS, nirK and nosZ) in the soil nitrogen cycle exist in a variety of natural ecosystems. However, little is known about the contribution of these five N-related functional genes to nitrification and denitrification in the soil profile in severely ecologically degraded areas. Therefore, in the present study, the abundance, diversity and community composition of AOA, AOB, nirS, nirK and nosZ were investigated in the soil profiles of different ecologically degraded areas in the Siding mine. The results indicated that, at the phylum level, the dominant archaea were Crenarchaeota and Thaumarchaeota and the dominant bacteria were Proteobacteria. Heavy metal contents had a great impact on AOA amoA, nirS and nirK gene abundances. AOA amoA contributed more during the ammonia oxidation process and was better adapted for survival in heavy metal-contaminated environments. In addition to heavy metals, the soil organic matter (SOM) content and C/N ratio had strong effects on the AOA and AOB community diversity and structure. In addition, variations in the net ammonification and nitrification rates were proportional to AOA amoA abundance along the soil profile. The soil C/N ratio, soil available phosphorus content and soil moisture influenced the denitrification process. Both soil available phosphorus and moisture were more strongly related to nosZ than to nirS and nirK. In addition, nosZ presented a higher correlation with the nosZ/(nirS + nirK) ratio. Moreover, nosZ/(nirS + nirK) was the key functional gene group that drove the major processes for NH4+-N and NO3--N transformation. This study demonstrated the role and importance of soil property impacts on N-related microbes in the soil profile and provided a better understanding of the role and importance of N-related functional genes and their contribution to soil nitrification and denitrification processes in highly degraded areas in the Siding mine.
Collapse
Affiliation(s)
- Shuting Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yin Rao
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shulian Huang
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yue Xu
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Kaiyue Zeng
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Xin Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Qiujie Ling
- College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Life Science, Guangxi Normal University, 541004, Guilin, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Life Science, Guangxi Normal University, 541004, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
10
|
Goss-Souza D, Tsai SM, Rodrigues JLM, Klauberg-Filho O, Sousa JP, Baretta D, Mendes LW. Biogeographic responses and niche occupancy of microbial communities following long-term land-use change. Antonie Van Leeuwenhoek 2022; 115:1129-1150. [DOI: 10.1007/s10482-022-01761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
11
|
The Effect of the Conversion from Natural Broadleaved Forests into Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) Plantations on Soil Microbial Communities and Nitrogen Functional Genes. FORESTS 2022. [DOI: 10.3390/f13020158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The conversion of forests could change soil characteristics and, in turn, impact the microbial community. However, the long-term effect of forest transformation on bacterial and archaeal composition and diversity, especially on nitrogen functional communities, is poorly understood. This study aimed to explore the response of soil bacterial and archaeal communities, as well as nitrogen functional groups, to the conversion from natural broadleaved forests to Chinese fir (Cunninghamia lanceolate (Lamb.) Hook.) plantations in subtropical China by 16S rRNA amplicon sequencing. Except for soil bulk density (BD) and ammonium nitrogen (NH4+–N) content, other soil properties all decreased with the conversion from natural forests to plantations. Alpha diversity of bacteria and archaea declined with the transformation from natural forests to plantations. The composition of bacteria and archaea was significantly different between natural forests and plantations, which could be mainly attributed to the change in the content of soil organic carbon (SOC), total nitrogen (TN), nitrate nitrogen (NO3−–N), and available phosphorus (AP). The conversion of natural forests to plantations decreased the gene copies of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nifH (nitrogen fixation function) but increased denitrification gene copies (i.e., nirS, nirK, and nosZ). In summary, our study emphasizes the long-term negative effect of the conversion from natural broadleaved forests into Chinese fir plantations on the diversity and richness of soil microbial communities, thereby deeply impacting the cycling of soil nitrogen.
Collapse
|
12
|
Araujo ASF, de Pereira APDA, Antunes JEL, Oliveira LMDS, de Melo WJ, Rocha SMB, do Amorim MR, Araujo FF, Melo VMM, Mendes LW. Dynamics of bacterial and archaeal communities along the composting of tannery sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64295-64306. [PMID: 34304356 DOI: 10.1007/s11356-021-15585-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The process of composting has been proposed as a biological alternative to improve the quality of tannery sludge (TS) by the action of microbial communities. However, there is limited knowledge about the dynamic of these microbial communities during the composting process. This study assessed the responses of bacterial and archaeal communities during TS composting using the 16S rRNA sequencing. The composting process occurred within 90 days, and samples of compost were collected on day 7 (d7; mesophilic stage), 30 (d30; thermophilic stage), 60 (d60; cooling stage), and 90 (d90; maturation stage). The results showed a succession of microbial phyla during the composting with enrichment of Synergistetes, WS1, and Euryarchaeota at the mesophilic stage, while at the thermophilic stage, there was an enrichment of Hydrogenedentes, WPS-2, Chloroflexi, and Deinococcus-Thermus. At the cooling stage, there was an enrichment of Kiritimatiellaeota, and at the maturation stage, there was an enrichment of Entotheonellaeota, Dadabacteria, Nitrospirae, Dependiatiae, and Fibrobacteres. When analyzing the drivers influencing microbial communities, Cr and pH presented more negative correlations with general phyla. In contrast, S, C, K, temperature, and N presented more positive correlations, while Ni, Cd, and P showed fewer correlations. According to niche occupancy, we observed a decreased proportion of generalists with a consequently increased proportion of specialists following the composting process. This study showed that different stages of the composting present a specific microbial community structure and dynamics, which are related to some specific composting characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Wanderley José de Melo
- Technology Department, São Paulo State University, Jaboticabal, SP, Brazil
- Graduate Program in Environmental Science, Campus of Descalvado, Brazil University, Descalvado, SP, Brazil
| | | | | | | | - Vania Maria Maciel Melo
- Laboratory of Microbial Ecology and Biotechnology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lucas William Mendes
- Cellular and Molecular Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
13
|
Silva-Olaya AM, Mora-Motta DA, Cherubin MR, Grados D, Somenahally A, Ortiz-Morea FA. Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region. PLoS One 2021; 16:e0255669. [PMID: 34407107 PMCID: PMC8372923 DOI: 10.1371/journal.pone.0255669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
Soil enzymes mediate key processes and functions of the soils, such as organic matter decomposition and nutrient cycling in both natural and agricultural ecosystems. Here, we studied the activity of five extracellular soil enzymes involved in the C, N, and P-mineralizing process in both litter and surface soil layer of rainforest in the northwest region of the Colombian Amazon and the response of those soil enzymes to land use change. The experimental study design included six study sites for comparing long-term pasture systems to native forest and regeneration practices after pasture, within the main landscapes of the region, mountain and hill landscapes separately. Results showed considerable enzymatic activity in the litter layer of the forest, highlighting the vital role of this compartment in the nutrient cycling of low fertility soils from tropical regions. With the land use transition to pastures, changes in soil enzymatic activities were driven by the management of pastures, with SOC and N losses and reduced absolute activity of soil enzymes in long-term pastures under continuous grazing (25 years). However, the enzyme activities expressed per unit of SOC did not show changes in C and N-acquiring enzymes, suggesting a higher mineralization potential in pastures. Enzymatic stoichiometry analysis indicated a microbial P limitation that could lead to a high catabolic activity with a potential increase in the use of SOC by microbial communities in the search for P, thus affecting soil C sequestration, soil quality and the provision of soil-related ecosystem services.
Collapse
Affiliation(s)
| | - Dúber A. Mora-Motta
- Amazonian Research Center CIMAZ-MACAGUAL, University of the Amazon, Florencia, Colombia
| | - Maurício R. Cherubin
- Department of Soil Science, ‘‘Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel Grados
- Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n Chucuito, Callao, Perú
| | - Anil Somenahally
- Department of Soil and Crop Sciences, Texas A&M University, Overton, Texas, United States of America
| | - Fausto A. Ortiz-Morea
- Amazonian Research Center CIMAZ-MACAGUAL, University of the Amazon, Florencia, Colombia
| |
Collapse
|
14
|
Lammel DR, Nüsslein K, Cerri CEP, Veresoglou SD, Rillig MC. Soil biota shift with land use change from pristine rainforest and Savannah (Cerrado) to agriculture in southern Amazonia. Mol Ecol 2021; 30:4899-4912. [PMID: 34297871 DOI: 10.1111/mec.16090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Southern Amazonia is currently experiencing extensive land use change from forests to agriculture caused by increased local and global demand for agricultural products. However, little is known about the impacts of deforestation and land use change on soil biota. We investigated two regions in southern Amazonia (rainforest and Savannah/Cerrado biomes), analysing soil biota community turnover based on 16S (Archaea and Bacteria) and 18S rRNA genes (Eukaryotes, including Fungi, Protists and Animalia) and correlating them with soil chemistry and land use intensity. We found that soil biota community structure is driven by land use change in both Cerrado and rainforest. Crop fields approximatively doubled the richness of soil Archaea, Bacteria and Protists. We propose that crop systems not only increase soil pH and fertility, but also create continued disturbance (crop seasons) that stimulates soil diversity, as predicted by the dynamic equilibrium model (DEM) and the intermediate disturbance hypothesis (IDH). Even though agricultural fields had higher soil biota richness, some taxa were suppressed by agriculture (6/31 operational taxonomic units of Archaea, 245/1790 of Bacteria, 12/74 of Animalia, 20/144 of Fungi and 25/310 of Protists). Consequently, land use change in this region should proceed with caution. In the southern Amazonia region of Brazil, current laws require farmers to keep 20%-80% pristine vegetation areas on their property. Our data support the relevance of this law: since there are unique soil taxa under native vegetation, keeping these pristine areas adjacent to the agricultural fields should maximize soil biodiversity protection in these regions.
Collapse
Affiliation(s)
- Daniel R Lammel
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.,Department of Microbiology, University of Massachusetts, Amherst, MA, USA.,ESALQ&CENA, University of São Paulo, Piracicaba, Brazil
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | | | - Stavros D Veresoglou
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
15
|
Becerra-Lucio AA, Labrín-Sotomayor NY, Becerra-Lucio PA, Trujillo-Elisea FI, Chávez-Bárcenas AT, Machkour-M'Rabet S, Peña-Ramírez YJ. Diversity and Interactomics of Bacterial Communities Associated with Dominant Trees During Tropical Forest Recovery. Curr Microbiol 2021; 78:3417-3429. [PMID: 34244846 DOI: 10.1007/s00284-021-02603-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Bacterial communities have been identified as functional key members in soil ecology. A deep relation with these communities maintains forest coverture. Trees harbor particular bacteriomes in the rhizosphere, endosphere, or phyllosphere, different from bulk-soil representatives. Moreover, the plant microbiome appears to be specific for the plant-hosting species, varies through season, and responsive to several environmental factors. This work reports the changes in bacterial communities associated with dominant pioneer trees [Tabebuia rosea and Handroanthus chrysanthus [(Bignoniaceae)] during tropical forest recovery chronosequence in the Mayan forest in Campeche, Mexico. Massive 16S sequencing approach leads to identifying phylotypes associated with rhizosphere, bulk-soil, or recovery stage. Lotka-Volterra interactome modeling suggests the presence of putative regulatory roles of some phylotypes over the rest of the community. Our results may indicate that bacterial communities associated with pioneer trees may establish more complex regulatory networks than those found in bulk-soil. Moreover, modeled regulatory networks predicted from rhizosphere samples resulted in a higher number of nodes and interactions than those found in the analysis of bulk-soil samples.
Collapse
Affiliation(s)
- Angel A Becerra-Lucio
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México
| | - Natalia Y Labrín-Sotomayor
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México
| | - Patricia A Becerra-Lucio
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México
| | - Flor I Trujillo-Elisea
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México
| | - Ana T Chávez-Bárcenas
- Agrobiologia School, Universidad Michoacana de San Nicolás de Hidalgo, CP 6017, Uruapan, Michoacán, México
| | - Salima Machkour-M'Rabet
- Department of Biodiversity Conservation, El Colegio de la Frontera Sur Unidad Chetumal, Av. Centenario km 5.5, CP 77014, Chetumal, Quintana Roo, México
| | - Yuri J Peña-Ramírez
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México.
| |
Collapse
|
16
|
Wu J, Buckley HL, Curry L, Stevenson BA, Schipper LA, Lear G. Livestock exclusion reduces the spillover effects of pastoral agriculture on soil bacterial communities in adjacent forest fragments. Environ Microbiol 2021; 23:2919-2936. [PMID: 33734554 DOI: 10.1111/1462-2920.15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Forest-to-pasture conversion is known to cause global losses in plant and animal diversity, yet impacts of livestock management after such conversion on vital microbial communities in adjoining natural ecosystems remain poorly understood. We examined how pastoral land management practices impact soil microorganisms in adjacent native forest fragments, by comparing bacterial communities sampled along 21 transects bisecting pasture-forest boundaries. Our results revealed greater bacterial taxon richness in grazed pasture soils and the reduced dispersal of pasture-associated taxa into adjacent forest soils when land uses were separated by a boundary fence. Relative abundance distributions of forest-associated taxa (i.e., Proteobacteria and Nitrospirae) and a pasture-associated taxon (i.e., Firmicutes) also suggest a greater impact of pastoral land uses on forest fragment soil bacterial communities when no fence is present. Bacterial community richness and composition were most related to changes in soil physicochemical variables commonly associated with agricultural fertilization, including concentrations of Olsen P, total P, total Cd, delta 15 N and the ratio of C:P and N:P. Overall, our findings demonstrate clear, and potentially detrimental effects of agricultural disturbance on bacterial communities in forest soils adjacent to pastoral land. We provide evidence that simple land management decisions, such as livestock exclusion, can mitigate the effects of agriculture on adjacent soil microbial communities.
Collapse
Affiliation(s)
- Jieyun Wu
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.,Plant Health & Environment Laboratory, Ministry for Primary Industries, PO Box 2095, Auckland, 1140, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Liz Curry
- Tonkin and Taylor, 711 Victoria Street, Hamilton, 3204, New Zealand
| | - Bryan A Stevenson
- Manaaki Whenua-Landcare Research, Private Bag 3127, Hamilton, 3240, New Zealand
| | - Louis A Schipper
- Environmental Research Institute, School of Science, The University of Waikato, Hamilton, 3240, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| |
Collapse
|
17
|
Rocha FI, Ribeiro TG, Fontes MA, Schwab S, Coelho MRR, Lumbreras JF, da Motta PEF, Teixeira WG, Cole J, Borsanelli AC, Dutra IDS, Howe A, de Oliveira AP, Jesus EDC. Land-Use System and Forest Floor Explain Prokaryotic Metacommunity Structuring and Spatial Turnover in Amazonian Forest-to-Pasture Conversion Areas. Front Microbiol 2021; 12:657508. [PMID: 33967996 PMCID: PMC8097146 DOI: 10.3389/fmicb.2021.657508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
Advancing extensive cattle production is a major threat to biodiversity conservation in Amazonia. The dominant vegetation cover has a drastic impact on soil microbial communities, affecting their composition, structure, and ecological services. Herein, we explored relationships between land-use, soil types, and forest floor compartments on the prokaryotic metacommunity structuring in Western Amazonia. Soil samples were taken in sites under high anthropogenic pressure and distributed along a ±800 km gradient. Additionally, the litter and a root layer, characteristic of the forest environment, were sampled. DNA was extracted, and metacommunity composition and structure were assessed through 16S rRNA gene sequencing. Prokaryotic metacommunities in the bulk soil were strongly affected by pH, base and aluminum saturation, Ca + Mg concentration, the sum of bases, and silt percentage, due to land-use management and natural differences among the soil types. Higher alpha, beta, and gamma diversities were observed in sites with higher soil pH and fertility, such as pasture soils or fertile soils of the state of Acre. When taking litter and root layer communities into account, the beta diversity was significantly higher in the forest floor than in pasture bulk soil for all study regions. Our results show that the forest floor's prokaryotic metacommunity performs a spatial turnover hitherto underestimated to the regional scale of diversity.
Collapse
Affiliation(s)
- Fernando Igne Rocha
- Department of Soil, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | | | | | - Stefan Schwab
- National Agrobiology Research Center, Embrapa Agrobiologia, Seropédica, Brazil
| | | | | | | | | | - James Cole
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - Iveraldo dos Santos Dutra
- Department of Support, Production and Animal Health, Universidade Estadual Paulista, Araçatuba, Brazil
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | | | | |
Collapse
|
18
|
Kroeger ME, Meredith LK, Meyer KM, Webster KD, de Camargo PB, de Souza LF, Tsai SM, van Haren J, Saleska S, Bohannan BJM, Rodrigues JLM, Berenguer E, Barlow J, Nüsslein K. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. THE ISME JOURNAL 2021; 15:658-672. [PMID: 33082572 PMCID: PMC8027882 DOI: 10.1038/s41396-020-00804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 01/30/2023]
Abstract
The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.
Collapse
Affiliation(s)
- Marie E. Kroeger
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA ,grid.148313.c0000 0004 0428 3079Present Address: Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Laura K. Meredith
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA
| | - Kyle M. Meyer
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA ,grid.47840.3f0000 0001 2181 7878Department of Integrative Biology, University of California–Berkeley, Berkeley, CA USA
| | - Kevin D. Webster
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, Tucson, AZ USA
| | - Plinio Barbosa de Camargo
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Leandro Fonseca de Souza
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Siu Mui Tsai
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Joost van Haren
- grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XHonors College, University of Arizona, Tucson, AZ USA
| | - Scott Saleska
- grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Brendan J. M. Bohannan
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Jorge L. Mazza Rodrigues
- grid.27860.3b0000 0004 1936 9684Department of Land, Air and Water Resources, University of California, Davis, CA USA
| | - Erika Berenguer
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK ,grid.4991.50000 0004 1936 8948Environmental Change Institute, University of Oxford, Oxford, UK
| | - Jos Barlow
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Klaus Nüsslein
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA
| |
Collapse
|
19
|
Hermans SM, Taylor M, Grelet G, Curran-Cournane F, Buckley HL, Handley KM, Lear G. From pine to pasture: land use history has long-term impacts on soil bacterial community composition and functional potential. FEMS Microbiol Ecol 2020; 96:5807072. [PMID: 32175557 DOI: 10.1093/femsec/fiaa041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities are crucial to soil ecosystems and are known to be sensitive to environmental changes. However, our understanding of how present-day soil bacterial communities remain impacted by historic land uses is limited; implications for their functional potential are especially understudied. Through 16S rRNA gene amplicon and shotgun metagenomic sequencing, we characterized the structure and functional potential of soil bacterial communities after land use conversion. Sites converted from pine plantations to dairy pasture were sampled five- and eight-years post conversion. The bacterial community composition and functional potential at these sites were compared to long-term dairy pastures and pine forest reference sites. Bacterial community composition and functional potential at the converted sites differed significantly from those at reference sites (P = 0.001). On average, they were more similar to those in the long-term dairy sites and showed gradual convergence (P = 0.001). Differences in composition and functional potential were most strongly related to nutrients such as nitrogen, Olsen P and the carbon to nitrogen ratio. Genes related to the cycling of nitrogen, especially denitrification, were underrepresented in converted sites compared to long-term pasture soils. Together, our study highlights the long-lasting impacts land use conversion can have on microbial communities, and the implications for future soil health and functioning.
Collapse
Affiliation(s)
- Syrie M Hermans
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, New Zealand
| | - Matthew Taylor
- Waikato Regional Council, 401 Grey Street, Hamilton 3216, New Zealand
| | - Gwen Grelet
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, New Zealand
| | - Fiona Curran-Cournane
- Ministry for the Environment - Manatū Mō Te Taiao, 45 Queen Street, Auckland 1010, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, 46 Wakefield St, Auckland, 1010, New Zealand
| | - Kim M Handley
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, New Zealand
| |
Collapse
|
20
|
Effects of Soil Microbes on Forest Recovery to Climax Community through the Regulation of Nitrogen Cycling. FORESTS 2020. [DOI: 10.3390/f11101027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbes, as important regulators of ecosystem processes, play essential roles in ecosystem recovery after disturbances. However, it is not clear how soil microbial communities and functions change and affect forest recovery after clear-cutting. Here, we used metagenome sequencing to systematically analyse the differences in soil microbial community composition, functions, and nitrogen (N) cycling pathways between primary Korean pine forests (PF) and secondary broad-leaved forests (SF) formed after clear-cutting. Our results showed that the dominant phyla of the two forest types were consistent, but the relative abundance of some phyla was significantly different. Meanwhile, at the genus level, the fold-changes of rare genera were larger than the dominant and common genera. The genes related to microbial core metabolic functions, virulence factors, stress response, and defence were significantly enriched in SF. Additionally, based on the relative abundance of functional genes, a schema was proposed to analyse the differences in the whole N cycling processes between the two forest types. In PF, the stronger ammoniation and dissimilatory nitrate reduction (DNRA) and the weaker nitrification provided a genetic explanation for PF dominated by ammonium (NH4+) rather than nitrate (NO3−). In SF, the weaker DNRA, the stronger nitrification and denitrification, the higher soil available phosphorus (AP), and the lower nitrogen to phosphorus ratio (N/P) comprehensively suggested that SF was faced with a greater degree of N limitation. These results offer insights into the potential relationship between soil microbes and forest recovery, and aid in implementing proper forestry management.
Collapse
|
21
|
Venturini AM, Nakamura FM, Gontijo JB, da França AG, Yoshiura CA, Mandro JA, Tsai SM. Robust DNA protocols for tropical soils. Heliyon 2020; 6:e03830. [PMID: 32426533 PMCID: PMC7226647 DOI: 10.1016/j.heliyon.2020.e03830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 09/06/2019] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Studies in the Amazon are being intensified to evaluate the alterations in the microbial communities of soils and sediments in the face of increasing deforestation and land-use changes in the region. However, since these environments present highly heterogeneous physicochemical properties, including contaminants that hinder nucleic acids isolation and downstream techniques, the development of best molecular practices is crucial. This work aimed to optimize standard protocols for DNA extraction and gene quantification by quantitative real-time PCR (qPCR) based on natural and anthropogenic soils and sediments (primary forest, pasture, Amazonian Dark Earth, and várzea, a seasonally flooded area) of the Eastern Amazon. Our modified extraction protocol increased the fluorometric DNA concentration by 48%, reaching twice the original amount for most of the pasture and várzea samples, and the 260/280 purity ratio by 15% to values between 1.8 to 2.0, considered ideal for DNA. The addition of bovine serum albumin in the qPCR reaction improved the quantification of the 16S rRNA genes of Archaea and Bacteria and its precision among technical replicates, as well as allowed their detection in previously non-amplifiable samples. It is concluded that the changes made in the protocols improved the parameters of the DNA samples and their amplification, thus increasing the reliability of microbial communities' analysis and its ecological interpretations.
Collapse
Affiliation(s)
- Andressa Monteiro Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Fernanda Mancini Nakamura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Júlia Brandão Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Aline Giovana da França
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Caio Augusto Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Jéssica Adriele Mandro
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| |
Collapse
|
22
|
Pennanen T, Fritze H, de Boer W, Baldrian P. Editorial: special issue on the ecology of soil microorganisms. FEMS Microbiol Ecol 2019; 95:5628114. [PMID: 31738407 DOI: 10.1093/femsec/fiz154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hannu Fritze
- Natural Resources Institute Finland (Luke), Helsinki
| | | | | |
Collapse
|