1
|
Vigneron A, Guyoneaud R, Goñi-Urriza M. Genome-Centric Metatranscriptomics Reveals Multiple Co-occurring Routes for Hydrocarbon Degradation in Chronically Contaminated Marine Microbial Mats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1551-1562. [PMID: 38197744 DOI: 10.1021/acs.est.3c08386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Long-term hydrocarbon pollution is a devious threat to aquatic and marine ecosystems. However, microbial responses to chronic pollution remain poorly understood. Combining genome-centric metagenomic and metatranscriptomic analyses of microbial mat samples that experienced chronic hydrocarbon pollution for more than 80 years, we analyzed the transcriptomic activity of alkane and aromatic hydrocarbon degradation pathways at the population level. Consistent with the fluctuating and stratified redox conditions of the habitat, both aerobic and anaerobic hydrocarbon degradation pathways were expressed by taxonomically and metabolically contrasted lineages including members of Bacteroidiales, Desulfobacteraceae, Pseudomonadales; Alcanivoraceae and Halieaceae populations with (photo)-heterotrophic, sulfur- and organohalide-based metabolisms, providing evidence for the co-occurrence and activity of aerobic and anaerobic hydrocarbon degradation pathways in shallow marine microbial mats. In addition, our results suggest that aerobic alkane degradation in long-term pollution involved bacterial families that are naturally widely distributed in marine habitats, but hydrocarbon concentration and composition were found to be a strong structuring factor of their intrafamily diversity and transcriptomic activities.
Collapse
Affiliation(s)
- Adrien Vigneron
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Marisol Goñi-Urriza
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| |
Collapse
|
2
|
Ma W, Lian J, Rene ER, Zhang P, Liu X. Enhanced thyroxine removal from micro-polluted drinking water resources in a bio-electrochemical reactor amended with TiO 2@GAC particles: Efficiency, mechanism and energy consumption. ENVIRONMENTAL RESEARCH 2023; 237:116949. [PMID: 37625538 DOI: 10.1016/j.envres.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
A three-dimensional bioelectrochemical system (3D-BES) with both electrocatalytic and biodegradation functions was designed and developed to enhance iodine-containing hormone removal from micro-polluted oligotrophic drinking water sources and to reduce energy consumption. Thyroxine (T4) removal efficiency was 99.0% in the 3D-BES amendment with TiO2@GAC as the particle electrodes, which was 20.5% higher than the total efficiency of single biodegradation (28.7%) plus electrochemical decomposition (49.8%). The high T4 removal efficiency was a result of biochemical synergistic degradation, enhancement of electron transfer and utilization, enrichment of functional microorganisms, and the expression of dehalogenation functional genes. The electron transfer was increased by 1.63 times in 3D-BES compared to the 2D-BES, which contributed to: (i) ∼17.8% enhancement of dehalogenation, (ii) 2.35 times enhancement of the attenuation rate, and (iii) 60% reduction in energy consumption. Moreover, the aggregation of microorganisms and the hydrophobic T4 onto TiO2@GAC shortened the transfer distance of matter and energy, which induced the degradation steps to be shortened and the toxic decay to be accelerated from T4 and its metabolites. These comprehensive functions also enhanced the 31.8% ATPase activity, 7.3% abundance of the functional reductive dehalogenation genera, and 52.3% dehalogenation genes expression for Pseudomonas, Ancylobacter, and Dehalogenimonas, which contributed to an increase in T4 removal. This work provides an environmental-friendly biochemical synergistic method for the detoxification of T4 polluted water.
Collapse
Affiliation(s)
- Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jiangru Lian
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Cimmino L, Duarte AG, Ni D, Ekundayo BE, Pereira IAC, Stahlberg H, Holliger C, Maillard J. Structure of a membrane-bound menaquinol:organohalide oxidoreductase. Nat Commun 2023; 14:7038. [PMID: 37923808 PMCID: PMC10624902 DOI: 10.1038/s41467-023-42927-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Organohalide-respiring bacteria are key organisms for the bioremediation of soils and aquifers contaminated with halogenated organic compounds. The major players in this process are respiratory reductive dehalogenases, corrinoid enzymes that use organohalides as substrates and contribute to energy conservation. Here, we present the structure of a menaquinol:organohalide oxidoreductase obtained by cryo-EM. The membrane-bound protein was isolated from Desulfitobacterium hafniense strain TCE1 as a PceA2B2 complex catalysing the dechlorination of tetrachloroethene. Two catalytic PceA subunits are anchored to the membrane by two small integral membrane PceB subunits. The structure reveals two menaquinone molecules bound at the interface of the two different subunits, which are the starting point of a chain of redox cofactors for electron transfer to the active site. In this work, the structure elucidates how energy is conserved during organohalide respiration in menaquinone-dependent organohalide-respiring bacteria.
Collapse
Affiliation(s)
- Lorenzo Cimmino
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Babatunde E Ekundayo
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Zhang C, Atashgahi S, Bosma TNP, Peng P, Smidt H. Organohalide respiration potential in marine sediments from Aarhus Bay. FEMS Microbiol Ecol 2022; 98:fiac073. [PMID: 35689665 PMCID: PMC9303371 DOI: 10.1093/femsec/fiac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 11/14/2022] Open
Abstract
Organohalide respiration (OHR), catalysed by reductive dehalogenases (RDases), plays an important role in halogen cycling. Natural organohalides and putative RDase-encoding genes have been reported in Aarhus Bay sediments, however, OHR has not been experimentally verified. Here we show that sediments of Aarhus Bay can dehalogenate a range of organohalides, and different organohalides differentially affected microbial community compositions. PCE-dechlorinating cultures were further examined by 16S rRNA gene-targeted quantitative PCR and amplicon sequencing. Known organohalide-respiring bacteria (OHRB) including Dehalococcoides, Dehalobacter and Desulfitobacterium decreased in abundance during transfers and serial dilutions, suggesting the importance of yet uncharacterized OHRB in these cultures. Switching from PCE to 2,6-DBP led to its complete debromination to phenol in cultures with and without sulfate. 2,6-DBP debrominating cultures differed in microbial composition from PCE-dechlorinating cultures. Desulfobacterota genera recently verified to include OHRB, including Desulfovibrio and Desulfuromusa, were enriched in all microcosms, whereas Halodesulfovibrio was only enriched in cultures without sulfate. Hydrogen and methane were detected in cultures without sulfate. Hydrogen likely served as electron donor for OHR and methanogenesis. This study shows that OHR can occur in marine environments mediated by yet unknown OHRB, suggesting their role in natural halogen cycling.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom N P Bosma
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Peng Peng
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, United States
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
5
|
Guo Y, Rene ER, Han B, Ma W. Enhanced fluoroglucocorticoid removal from groundwater in a bio-electrochemical system with polyaniline-loaded activated carbon three-dimensional electrodes: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126197. [PMID: 34492961 DOI: 10.1016/j.jhazmat.2021.126197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the removal performance and mechanisms of dexamethasone (DEX), a representative fluoroglucocorticoid (FGC), from micro-polluted oligotrophic groundwater in a bio-electrochemical system amended with polyaniline-loaded activated carbon (PANI@AC) as three-dimensional particle electrodes (BES-3D). The BES-3D achieved a DEX removal efficiency of 95.7%, which was 39.0% and 14.1% higher than that of a single biological system (SBIO) and two-dimensional bio-electrochemical system (BES-2D), respectively. The preliminary metabolic mechanism of defluorination accounted for 53.5%, 41.1%, and 16.3% in BES-3D, BES-2D, and SBIO, respectively, which was accompanied by demethylation, side-chain fracture, and hydroxyl oxidation for ketone formation and final-ring opening. The main mechanism by which removal was improved in BES-3D was the enrichment of functional microbes and enhancement of the expression of dehalogenation genes. The relative abundance of functional microbes with electron transfer ability and reductive dehalogenating genera, i.e., Pseudomonas, Methylotenera, Desulfuromonas, Sphingomonas, and Microbacterium, in BES-3D was 3.7-6.1 times higher and the copy number of functional genes was 1.9 times higher than those of SBIO, which contributed to the high DEX removal.
Collapse
Affiliation(s)
- Yating Guo
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Eldon R Rene
- IHE Delft Institute for Water Education, Department of Water Supply, Sanitary and Environmental Engineering, Westvest 7, 2611AX Delft, the Netherlands
| | - Bingyi Han
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Trueba-Santiso A, Wasmund K, Soder-Walz JM, Marco-Urrea E, Adrian L. Genome Sequence, Proteome Profile, and Identification of a Multiprotein Reductive Dehalogenase Complex in Dehalogenimonas alkenigignens Strain BRE15M. J Proteome Res 2020; 20:613-623. [PMID: 32975419 PMCID: PMC7786376 DOI: 10.1021/acs.jproteome.0c00569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Bacteria
of the genus Dehalogenimonas respire
with vicinally halogenated alkanes via dihaloelimination.
We aimed to describe involved proteins and their supermolecular organization.
Metagenomic sequencing of a Dehalogenimonas-containing culture resulted in a 1.65 Mbp draft genome of Dehalogenimonas alkenigignens strain BRE15M. It contained
31 full-length reductive dehalogenase homologous genes (rdhA), but only eight had cognate rdhB gene coding for
membrane-anchoring proteins. Shotgun proteomics of cells grown with
1,2-dichloropropane as an electron acceptor identified 1152 proteins
representing more than 60% of the total proteome. Ten RdhA proteins
were detected, including a DcpA ortholog, which was the strongest
expressed RdhA. Blue native gel electrophoresis
(BNE) demonstrating maximum activity was localized in a protein complex
of 146–242 kDa. Protein mass spectrometry revealed the presence
of DcpA, its membrane-anchoring protein DcpB, two hydrogen uptake
hydrogenase subunits (HupL and HupS), an iron–sulfur protein
(HupX), and subunits of a redox protein with a molybdopterin-binding
motif (OmeA and OmeB) in the complex. BNE after protein solubilization
with different detergent concentrations revealed no evidence for an
interaction between the putative respiratory electron input module
(HupLS) and the OmeA/OmeB/HupX module. All detected RdhAs comigrated
with the organohalide respiration complex. Based on genomic and proteomic
analysis, we propose quinone-independent respiration in Dehalogenimonas.
Collapse
Affiliation(s)
- Alba Trueba-Santiso
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra 08193, Spain
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1010, Austria
| | - Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra 08193, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra 08193, Spain
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Berlin 10623, Germany
| |
Collapse
|
7
|
Fincker M, Huber JA, Orphan VJ, Rappé MS, Teske A, Spormann AM. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ Microbiol 2020; 22:3188-3204. [PMID: 32372496 DOI: 10.1111/1462-2920.15061] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Uncultured members of the Chloroflexi phylum are highly enriched in numerous subseafloor environments. Their metabolic potential was evaluated by reconstructing 31 Chloroflexi genomes from six different subseafloor habitats. The near ubiquitous presence of enzymes of the Wood-Ljungdahl pathway, electron bifurcation, and ferredoxin-dependent transport-coupled phosphorylation indicated anaerobic acetogenesis was central to their catabolism. Most of the genomes simultaneously contained multiple degradation pathways for complex carbohydrates, detrital protein, aromatic compounds, and hydrogen, indicating the coupling of oxidation of chemically diverse organic substrates to ubiquitous CO2 reduction. Such pathway combinations may confer a fitness advantage in subseafloor environments by enabling these Chloroflexi to act as primary fermenters and acetogens in one microorganism without the need for syntrophic H2 consumption. While evidence for catabolic oxygen respiration was limited to two phylogenetic clusters, the presence of genes encoding putative reductive dehalogenases throughout the phylum expanded the phylogenetic boundary for potential organohalide respiration past the Dehalococcoidia class.
Collapse
Affiliation(s)
- Maeva Fincker
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Michael S Rappé
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Andreas Teske
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Organohalide-respiring Desulfoluna species isolated from marine environments. ISME JOURNAL 2020; 14:815-827. [PMID: 31896791 PMCID: PMC7031245 DOI: 10.1038/s41396-019-0573-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
The genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila AA1T and D. butyratoxydans MSL71T, of which only the former was shown to perform organohalide respiration (OHR). Here we isolated a third strain, designated D. spongiiphila strain DBB, from marine intertidal sediment using 1,4-dibromobenzene and sulfate as the electron acceptors and lactate as the electron donor. Each strain harbors three reductive dehalogenase gene clusters (rdhABC) and corrinoid biosynthesis genes in their genomes, and dehalogenated brominated but not chlorinated organohalogens. The Desulfoluna strains maintained OHR in the presence of 20 mM sulfate or 20 mM sulfide, which often negatively affect other organohalide-respiring bacteria. Strain DBB sustained OHR with 2% oxygen in the gas phase, in line with its genetic potential for reactive oxygen species detoxification. Reverse transcription-quantitative PCR revealed differential induction of rdhA genes in strain DBB in response to 1,4-dibromobenzene or 2,6-dibromophenol. Proteomic analysis confirmed expression of rdhA1 with 1,4-dibromobenzene, and revealed a partially shared electron transport chain from lactate to 1,4-dibromobenzene and sulfate, which may explain accelerated OHR during concurrent sulfate reduction. Versatility in using electron donors, de novo corrinoid biosynthesis, resistance to sulfate, sulfide and oxygen, and concurrent sulfate reduction and OHR may confer an advantage to marine Desulfoluna strains.
Collapse
|
9
|
Watanabe M, Kojima H, Fukui M. Labilibaculum antarcticum sp. nov., a novel facultative anaerobic, psychrotorelant bacterium isolated from marine sediment of Antarctica. Antonie Van Leeuwenhoek 2019; 113:349-355. [PMID: 31628625 DOI: 10.1007/s10482-019-01345-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/02/2019] [Indexed: 11/26/2022]
Abstract
A novel facultative anaerobic and facultative psychrophilic bacterium, designated SPP2T, was isolated from an Antarctic marine sediment. Cells of the isolate were observed to be long rods (0.5 × 5-10 μm), Gram-stain negative and to have gliding motility. For growth, the optimum NaCl concentration was found to be 2-3% and the optimum temperature to be 18-22 °C. Strain SPP2T cannot use sulfate and nitrate as electron acceptors in the presence of lactate. The G+C content of the genomic DNA was determined to be 36.0 mol%.. The major cellular fatty acids were identified as anteiso-C15:0 and iso-C15:0. MK-7 was found to be the predominant respiratory quinone. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belongs to the family Marinifilaceae and to be closely related to Labilibaculum manganireducens 59.10-2MT with 16S rRNA gene sequence identity of 98%. The OrthoANI and dDDH values between the genome sequences of strain SPP2T and its close relative were 84% and 27.3%, which are lower than the threshold values for species delineation. On the basis of phylogenetic and phenotypic characterisation, Labilibaculum antarcticum sp. nov. is proposed with the type strain SPP2T (= NBRC 111151T = CECT 9460T).
Collapse
Affiliation(s)
- Miho Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-8471, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
10
|
Metagenomes from Coastal Marine Sediments Give Insights into the Ecological Role and Cellular Features of Loki- and Thorarchaeota. mBio 2019; 10:mBio.02039-19. [PMID: 31506313 PMCID: PMC6737245 DOI: 10.1128/mbio.02039-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genomes of Asgard Archaea, a novel archaeal proposed superphylum, share an enriched repertoire of eukaryotic signature genes and thus promise to provide insights into early eukaryote evolution. However, the distribution, metabolisms, cellular structures, and ecology of the members within this superphylum are not well understood. Here we provide a meta-analysis of the environmental distribution of the Asgard archaea, based on available 16S rRNA gene sequences. Metagenome sequencing of samples from a salt-crusted lagoon on the Baja California Peninsula of Mexico allowed the assembly of a new Thorarchaeota and three Lokiarchaeota genomes. Comparative analyses of all known Lokiarchaeota and Thorarchaeota genomes revealed overlapping genome content, including central carbon metabolism. Members of both groups contained putative reductive dehalogenase genes, suggesting that these organisms might be able to metabolize halogenated organic compounds. Unlike the first report on Lokiarchaeota, we identified genes encoding glycerol-1-phosphate dehydrogenase in all Loki- and Thorarchaeota genomes, suggesting that these organisms are able to synthesize bona fide archaeal lipids with their characteristic glycerol stereochemistry.IMPORTANCE Microorganisms of the superphylum Asgard Archaea are considered to be the closest living prokaryotic relatives of eukaryotes (including plants and animals) and thus promise to give insights into the early evolution of more complex life forms. However, very little is known about their biology as none of the organisms has yet been cultivated in the laboratory. Here we report on the ecological distribution of Asgard Archaea and on four newly sequenced genomes of the Lokiarchaeota and Thorarchaeota lineages that give insight into possible metabolic features that might eventually help to identify these enigmatic groups of archaea in the environment and to culture them.
Collapse
|