1
|
Irit N, Hana B, Laura R, Arielle K, Mariela P, Esti KW, Guadalupe P, Katja S, Ariel K. Trichocoleus desertorum isolated from Negev desert petroglyphs: Characterization, adaptation and bioerosion potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166739. [PMID: 37673239 DOI: 10.1016/j.scitotenv.2023.166739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
The Negev petroglyphs are considered valuable cultural heritage sites, but unfortunately, they are exposed to deterioration processes caused by anthropogenic and natural forces. Despite the many studies that have already pointed to the role of cyanobacteria in biogenic rock weathering, the knowledge involved in the process is still lacking. In this study, a cyanobacterial strain was isolated from the Negev Desert petroglyphs aiming to reveal its involvement in geochemical cycles and in the weathering processes of the rock substrate. The strain was characterized using morphological, molecular, and microscopic studies. The morphological research revealed a green-bluish, bundle-forming filamentous strain characterized by trichomes embedded in a common sheath. A combination of Nanopore and Illumina sequencing technologies facilitated the assembly of a near-complete genome containing 5,458,034 base pairs. A total of 5027 coding sequences were revealed by implementing PROKKA software. Annotation of five replicas of the 16S ribosomal RNA genes revealed that the Negev cyanobacteria isolate is closely (99.73 %) related to Trichocoleus desertorum LSB90_MW403957 isolated from the Sahara Desert, Algeria. The local strain was thus named Trichocoleus desertorum NBK24 CP116619. Several gene sequences that code for possible environmental adaptation mechanisms were found. Our study also identified genes for membrane transporters involved in the exchange of chemical elements, suggesting a possible interaction with rock minerals. Microscopic observations of T. desertorum NBK24 CP116619 infected onto calcareous stone slabs under laboratory conditions demonstrated the effect of the isolated cyanobacteria on stone surface degradation. In conclusion, the findings of this study further our understanding of terrestrial cyanobacterial genomes and functions and highlight the role of T. desertorum NBK24 CP116619 in stone weathering processes. This information may contribute to the creation of efficient restoration strategies for stone monuments affected by cyanobacteria.
Collapse
Affiliation(s)
- Nir Irit
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Barak Hana
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rabbachin Laura
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Vienna, Austria
| | - Kahn Arielle
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Pavan Mariela
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Kramarsky-Winter Esti
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Piñar Guadalupe
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Vienna, Austria
| | - Sterflinger Katja
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Vienna, Austria
| | - Kushmaro Ariel
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
2
|
Inaba T, Hori T, Tsuchiya M, Ihara H, Uchida E, Gu JD, Katayama Y. Microscopic evidence of sandstone deterioration and damage by fungi isolated from the Angkor monuments in simulation experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165265. [PMID: 37400029 DOI: 10.1016/j.scitotenv.2023.165265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The Angkor monuments have been registered on the World Cultural Heritage List of UNESCO, while the buildings built mostly of sandstone are suffering from serious deterioration and damage. Microorganisms are one of the leading causes for the sandstone deterioration. Identification of the mechanisms underlying the biodeterioration is of significance because it reveals the biochemical reaction involved so that effective conservation and restoration of cultural properties can be achieved. In this study, the fungal colonization and biodeterioration of sandstone in simulation experiments were examined using confocal reflection microscopy (CRM) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Aspergillus sp. strain AW1 and Paecilomyces sp. strain BY8 isolated from the deteriorated sandstone of Angkor Wat and Bayon of Angkor Thom, respectively, were inoculated and incubated with the sandstone used for construction of Angkor Wat. With CRM, we could visualize that strain AW1 tightly attached to and broke in the sandstone with extension of the hyphae. Quantitative imaging analyses showed that the sandstone surface roughness increased and the cavities formed under the fungal hyphae deepened during the incubation of strains AW1 and BY8. These highlighted that the massive growth of fungi even under the culture conditions was associated with the cavity formation of the sandstone and its expansion. Furthermore, SEM-EDS indicated the flat and Si-rich materials, presumably quartz and feldspar, were found frequently at the intact sandstone surface. But the flatness was lost during the incubation, possibly due to the detachment of the Si-rich mineral particles by the fungal deterioration. Consequently, this study proposed a biodeterioration model of the sandstone in that the hyphae of fungi elongated on the surface of the sandstone to penetrate into the soft and porous sandstone matrix, damaging the matrix and gradually destabilize the hard and Si-rich minerals, such as quartz and feldspar, to the collapse and cavities.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Megumi Tsuchiya
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Ihara
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Etsuo Uchida
- Department of Resources and Environmental Engineering, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555, Japan
| | - Ji-Dong Gu
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong 515063, China
| | - Yoko Katayama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Independent Administrative Institution, Tokyo National Research Institute for Cultural Properties, 13-43 Ueno-Park, Taito-ku, Tokyo 110-8713, Japan.
| |
Collapse
|
3
|
Phylotypic Diversity of Bacteria Associated with Speleothems of a Silicate Cave in a Guiana Shield Tepui. Microorganisms 2022; 10:microorganisms10071395. [PMID: 35889113 PMCID: PMC9316562 DOI: 10.3390/microorganisms10071395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022] Open
Abstract
The diversity of microorganisms associated with speleological sources has mainly been studied in limestone caves, while studies in silicate caves are still under development. Here, we profiled the microbial diversity of opal speleothems from a silicate cave in Guiana Highlands. Bulk DNAs were extracted from three speleothems of two types, i.e., one soft whitish mushroom-like speleothem and two hard blackish coral-like speleothems. The extracted DNAs were amplified for sequencing the V3–V4 region of the bacterial 16S rRNA gene by MiSeq. A total of 210,309 valid reads were obtained and clustered into 3184 phylotypes or operational taxonomic units (OTUs). The OTUs from the soft whitish speleothem were mostly affiliated with Acidobacteriota, Pseudomonadota (formerly, Proteobacteria), and Chloroflexota, with the OTUs ascribed to Nitrospirota being found specifically in this speleothem. The OTUs from the hard blackish speleothems were similar to each other and were mostly affiliated with Pseudomonadota, Acidobacteriota, and Actinomycetota (formerly, Actinobacteria). These OTU compositions were generally consistent with those reported for limestone and silicate caves. The OTUs were further used to infer metabolic features by using the PICRUSt bioinformatic tool, and membrane transport and amino acid metabolism were noticeably featured. These and other featured metabolisms may influence the pH microenvironment and, consequently, the formation, weathering, and re-deposition of silicate speleothems.
Collapse
|
4
|
Mezzasoma A, Coleine C, Sannino C, Selbmann L. Endolithic Bacterial Diversity in Lichen-Dominated Communities Is Shaped by Sun Exposure in McMurdo Dry Valleys, Antarctica. MICROBIAL ECOLOGY 2022; 83:328-339. [PMID: 34081148 PMCID: PMC8891110 DOI: 10.1007/s00248-021-01769-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The diversity and composition of endolithic bacterial diversity of several locations in McMurdo Dry Valleys (Continental Antarctica) were explored using amplicon sequencing, targeting the V3 and V4 of the 16S region. Despite the increasing interest in edaphic factors that drive bacterial community composition in Antarctic rocky communities, few researchers focused attention on the direct effects of sun exposure on bacterial diversity; we herein reported significant differences in the northern and southern communities. The analysis of β-diversity showed significant differences among sampled localities. For instance, the most abundant genera found in the north-exposed rocks were Rhodococcus and Blastococcus in Knobhead Mt.; Ktedonobacter and Cyanobacteria Family I Group I in Finger Mt.; Rhodococcus and Endobacter in University Valley; and Segetibacter and Tetrasphaera in Siegfried Peak samples. In south-exposed rocks, instead, the most abundant genera were Escherichia/Shigella and Streptococcus in Knobhead Mt.; Ktedonobacter and Rhodococcus in Finger Mt.; Ktedonobacter and Roseomonas in University Valley; and Blastocatella, Cyanobacteria Family I Group I and Segetibacter in Siegfried Peak. Significant biomarkers, detected by the Linear discriminant analysis Effect Size, were also found among north- and south-exposed communities. Besides, the large number of positive significant co-occurrences may suggest a crucial role of positive associations over competitions under the harsher conditions where these rock-inhabiting microorganisms spread. Although the effect of geographic distances in these extreme environments play a significant role in shaping biodiversity, the study of an edaphic factor, such as solar exposure, adds an important contribution to the mosaic of microbial biodiversity of Antarctic bacterial cryptoendolithic communities.
Collapse
Affiliation(s)
- Ambra Mezzasoma
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|
5
|
Nir I, Barak H, Kramarsky-Winter E, Kushmaro A, de Los Ríos A. Microscopic and biomolecular complementary approaches to characterize bioweathering processes at petroglyph sites from the Negev Desert, Israel. Environ Microbiol 2021; 24:967-980. [PMID: 34110072 DOI: 10.1111/1462-2920.15635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
Throughout the Negev Desert highlands, thousands of ancient petroglyphs sites are susceptible to deterioration processes that may result in the loss of this unique rock art. Therefore, the overarching goal of the current study was to characterize the composition, diversity and effects of microbial colonization of the rocks to find ways of protecting these unique treasures. The spatial organization of the microbial colonizers and their relationships with the lithic substrate were analysed using scanning electron microscopy. This approach revealed extensive epilithic and endolithic colonization and close microbial-mineral interactions. Shotgun sequencing analysis revealed various taxa from the archaea, bacteria and some eukaryotes. Metagenomic coding sequences (CDS) of these microbial lithobionts exhibited specific metabolic pathways involved in the rock elements' cycles and uptake processes. Thus, our results provide evidence for the potential participation of the microorganisms colonizing these rocks during different solubilization and mineralization processes. These damaging actions may contribute to the deterioration of this extraordinary rock art and thus threaten this valuable heritage. Shotgun metagenomic sequencing, in conjunction with the in situ scanning electron microscopy study, can thus be considered an effective strategy to understand the complexity of the weathering processes occurring at petroglyph sites and other cultural heritage assets.
Collapse
Affiliation(s)
- Irit Nir
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, 8410501, Israel
| | - Hana Barak
- Unit of Environmental Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, 8410501, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, 8410501, Israel.,The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
6
|
Influence of Environment on Microbial Colonization of Historic Stone Buildings with Emphasis on Cyanobacteria. HERITAGE 2020. [DOI: 10.3390/heritage3040081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microbial cells that produce biofilms, or patinas, on historic buildings are affected by climatic changes, mainly temperature, rainfall and air pollution, all of which will alter over future decades. This review considers the colonization of stone buildings by microorganisms and the effects that the resultant biofilms have on the degradation of the structure. Conservation scientists require a knowledge of the potential effects of microorganisms, and the subsequent growth of higher organisms such as vascular plants, in order to formulate effective control strategies. The vulnerability of various structural materials (“bioreceptivity”) and the ways in which the environmental factors of temperature, precipitation, wind-driven rain and air pollution influence microbial colonization are discussed. The photosynthetic microorganisms, algae and cyanobacteria, are acknowledged to be the primary colonizers of stone surfaces and many cyanobacterial species are able to survive climate extremes; hence special attention is paid to this group of organisms. Since cyanobacteria require only light and water to grow, can live endolithically and are able to survive most types of stress, they may become even more important as agents of stone cultural property degradation in the future.
Collapse
|
7
|
Cary C, Cowan DA, McMinn A, Häggblom MM. Editorial: Thematic issue on polar and alpine microbiology. FEMS Microbiol Ecol 2020; 96:5875089. [PMID: 32697840 DOI: 10.1093/femsec/fiaa136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato - Te Whare Wānanga o Waikato, Hamilton 3240, New Zealand
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Hatfield 0028, Pretoria, South Africa
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, College of Science and Engineering, University of Tasmania, Battery Point, Tasmania, Australia
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Piergiacomo F, Borruso L, Ciccazzo S, Rizzi S, Zerbe S, Brusetti L. Environmental Distribution of AR Class 1 Integrons in Upper Adige River Catchment (Northern Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072336. [PMID: 32235649 PMCID: PMC7177501 DOI: 10.3390/ijerph17072336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022]
Abstract
The source of antibiotic residuals can be directly related to the presence of municipal or industrial wastewater and agricultural activities. Antibiotics can trigger the dissemination of antibiotic resistance genes within bacterial communities. The mobile genetic elements Class 1 integrons (intl1 region) has been already found to be correlated with a wide range of pollutants (i.e., antibiotics, heavy metals), and hence, it has been proposed as a proxy for environmental health. This study aimed to assess the presence of intl1 in different environmental matrices, including agricultural and forest soils, freshwater and unpolluted sediments in the upper Adige River catchment (N Italy), in order to identify the spread of pollutants. Intl1 was detected by direct PCR amplification at different frequencies. The urban and agricultural areas revealed the presence of intl1, except for apple orchards, where it was below the detection limit. Interestingly, intl1 was found in a presumed unpolluted environment (glacier moraine), maybe because of the high concentration of metal ions in the mineral soil. Finally, intl1 was absent in forest fresh-leaf litter samples and occurred with low rates in soil. Our results provide new data in supporting the use of intl1 to detect the environmental health of different land-use systems.
Collapse
|