1
|
Huang X, Zhou Y, Li Y, Wang T, Chen Y, Zhou Y, Zhou X, Liu Q. Astragaloside IV inhibits inflammation caused by influenza virus via reactive oxygen species/NOD-like receptor thermal protein domain associated protein 3/Caspase-1 signaling pathway. Immun Inflamm Dis 2024; 12:e1309. [PMID: 38860765 PMCID: PMC11165686 DOI: 10.1002/iid3.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Astragaloside IV (AS-IV) is the most active monomer in the traditional Chinese herbal medicine Radix Astragali, which has a wide range of antiviral, anti-inflammatory, and antifibrosis pharmacological effects, and shows protective effects in acute lung injury. METHODS This study utilized the immunofluorescence, flow cytometry, enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, western blot, and hematoxylin and eosin staining methods to investigate the mechanism of AS-IV in reducing viral pneumonia caused by influenza A virus in A549 cells and BALB/c mice. RESULTS The results showed that AS-IV suppressed reactive oxygen species production in influenza virus-infected A549 cells in a dose-dependent manner, and subsequently inhibited the activation of nucleotide-binding oligomerization domain-like receptor thermal protein domain associated protein 3 inflammasome and Caspase-1, decreased interleukin (IL) -1β and IL-18 secretion. In BALB/c mice infected with Poly (I:C), oral administration of AS-IV can significantly reduce Poly (I:C)-induced acute pneumonia and lung pathological injury. CONCLUSIONS AS-IV alleviates the inflammatory response induced by influenza virus in vitro and lung flammation and structural damage caused by poly (I:C) in vivo.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Infectious Diseases, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
- Central Laboratory, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
| | - Yifan Zhou
- Department of Infectious Diseases, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
- Central Laboratory, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
| | - Yi Li
- Central Laboratory, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
- Department of Cardio‐Thoracic Surgery, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
| | - Ting Wang
- Department of Infectious Diseases, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
| | - Yandong Chen
- Department of Infectious Diseases, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
| | - Yuanhong Zhou
- Department of Infectious Diseases, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
| | - Xiaolin Zhou
- Department of Infectious Diseases, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
| | - Qiang Liu
- Department of Infectious Diseases, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
- Central Laboratory, The First College of Clinical Medical ScienceChina Three Gorges University & Yichang Central People's HospitalYichangChina
| |
Collapse
|
2
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Xu R, Zhang J, Hu X, Xu P, Huang S, Cui S, Guo Y, Yang H, Chen X, Jiang C. Yi-shen-hua-shi granules modulate immune and inflammatory damage via the ALG3/PPARγ/NF-κB pathway in the treatment of immunoglobulin a nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117204. [PMID: 37757993 DOI: 10.1016/j.jep.2023.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Controversy persists regarding the treatment of immunoglobulin A nephropathy (IgAN), thereby highlighting the demand for safer more effective therapeutic drugs. Although supplementary treatment using Yi-Shen-Hua-Shi (YSHS) granules has distinct advantages with respect to improving renal function in IgAN, a lack of clarity regarding the underlying mechanisms limits their clinical application. AIM OF THE STUDY In this study, we aimed to elucidate the therapeutic mechanisms underlying the efficacy of YSHS granules in the treatment of IgAN. MATERIALS AND METHODS A rat model of IgAN was established based on lipopolysaccharide, carbon tetrachloride, and bovine serum albumin induction. In order to evaluate the effects of YSHS granules, we performed a range of techniques, including immunofluorescence assays, hematoxylin and eosin staining, and flow cytometry, to assess inflammation, immunity, and other relevant factors. Direct data-independent acquisition-mass spectrometry (DIA-MS) analysis and parallel reaction monitoring (PRM) were used for functional characterization and quantitative validation of differentially expressed proteins (DEPs), and Western blot analysis is used to identify downstream proteins associated with DEPs. RESULTS Compared with the model group, the levels of proteinuria, urine red blood cells, serum creatinine, blood urea nitrogen, low-density lipoprotein-cholesterol, triglycerides, and pathological kidney damage were reduced in the YSHS group. A high dose of YSHS granules was found to raise the levels of CD8 T cells and reduce the CD4/CD8 ratio in the peripheral serum. To examine the mechanisms underlying the therapeutic effects YSHS granules, we performed direct DIA-MS analysis to identify proteins that were differentially expressed among the model, YSHS, and control groups. A total of 29 proteins were identified as being commonly expressed in all three groups. Further KEGG and protein-protein interaction (PPI) network analysis revealed that YSHS granules can contribute to the regulation of N-glycosylation-associated proteins, such as ALG3 and STT3A, in rats with IgAN. Detected changes in the expression of ALG3 and STT3A were consistent with the PRM results. We also established that the administration of YSHS granules can contribute to regulation of the ALG3-associated PPAR-γ/NF-κB signaling pathway. CONCLUSIONS Our findings in this study provide evidence to indicate the efficacy of YSHS granules in the treatment of IgAN, the putative underlying mechanisms of which involve the modulation of N-glycosylation, mediated via the PPAR-γ/NF-κB pathway.
Collapse
Affiliation(s)
- Rongjia Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jiajia Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Xingge Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Penghao Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiqi Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiyan Cui
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuxin Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Chen Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
4
|
Liu M, Wang Q, Xu W, Wu J, Xu X, Yang H, Li X. Natural products for treating cytokine storm-related diseases: Therapeutic effects and mechanisms. Biomed Pharmacother 2023; 167:115555. [PMID: 37776639 DOI: 10.1016/j.biopha.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND A cytokine storm (CS) is a rapidly occurring, complex, and highly lethal systemic acute inflammatory response induced by pathogens and other factors. Currently, no clinical therapeutic drugs are available with a significant effect and minimal side effects. Given the pathogenesis of CS, natural products have become important resources for bioactive agents in the discovery of anti-CS drugs. PURPOSE This study aimed to provide guidance for preventing and treating CS-related diseases by reviewing the natural products identified to inhibit CS in recent years. METHODS A comprehensive literature review was conducted on CS and natural products, utilizing databases such as PubMed and Web of Science. The quality of the studies was evaluated and summarized for further analysis. RESULTS This study summarized more than 30 types of natural products, including 9 classes of flavonoids, phenols, and terpenoids, among others. In vivo and in vitro experiments demonstrated that these natural products could effectively inhibit CS via nuclear factor kappa-B, mitogen-activated protein kinase, and Mammalian target of rapamycin (mTOR) signaling pathways. Moreover, the enzyme inhibition assays revealed that more than 20 chemical components had the potential to inhibit ACE2, 3CL-protease, and papain-like protease activity. The experimental results were obtained using advanced technologies such as biochips and omics. CONCLUSIONS Various natural compounds in traditional Chinese medicine (TCM) extracts could directly or indirectly inhibit CS occurrence, potentially serving as effective drugs for treating CS-related diseases. This study may guide further exploration of the therapeutic effects and biochemical mechanisms of natural products on CS.
Collapse
Affiliation(s)
- Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanai Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Jingyu Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Li L, Guan J, Lin R, Wang F, Ma H, Mao C, Guo X, Qu Z, Guan R. Astragaloside IV alleviates lung inflammation in Klebsiella pneumonia rats by suppressing TGF-β1/Smad pathway. Braz J Med Biol Res 2023; 56:e12203. [PMID: 37493767 PMCID: PMC10361639 DOI: 10.1590/1414-431x2023e12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 07/27/2023] Open
Abstract
Astragaloside IV is a biologically active substance derived from the traditional Chinese medicine Astragalus mambranaceus Bunge, and has antioxidant, anti-inflammatory, and anti-apoptotic properties. In this study, we aimed to investigate the effects of astragaloside IV on Klebsiella pneumonia rats and the underlying mechanisms. Klebsiella pneumoniae (K. pneumoniae) rats were treated with different dosages of astragaloside IV (5, 10, and 20 mg/kg) by intragastric administration. The levels of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) were determined. Pathological changes of lung tissue were inspected by HE staining. The expression of transforming growth factor (TGF)-β1 in lung tissue was determined with immunohistochemistry, and the expression levels of TGF-β1, p-Smad2/Smad2, p-Smad3/Smad3, IκBα/p-IκBα, and p65/p-p65 in lung tissue were determined by western blot. The mechanism was further investigated with TGF-β1 inhibitor SB-431542. Astragaloside IV reduced the elevated levels of pro-inflammatory cytokines caused by K. pneumoniae and improved lung tissue damage in a dose-dependent manner. Astragaloside IV also decreased the expression of TGF-β1/Smad signaling pathway-related proteins and decreased the protein levels of inflammation-related p-IκBα and p65 in lung tissues induced by K. pneumoniae. Additionally, it was found that the effects of 20 mg/kg astragaloside IV were similar to SB-431542, which could improve pulmonary fibrosis induced by K. pneumoniae, decrease the levels of TGF-β1/Smad signaling pathway-related proteins in lung, and reduce inflammation at the same time. Astragaloside IV could alleviate the inflammation of rat pneumonia induced by K. pneumoniae through suppressing the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Lei Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Guan
- Department of Neurology, Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Rongjun Lin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fang Wang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Ma
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenggang Mao
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqing Guo
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Renzheng Guan
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Wang Y, Zhang Z, Cheng Z, Xie W, Qin H, Sheng J. Astragaloside in cancer chemoprevention and therapy. Chin Med J (Engl) 2023; 136:1144-1154. [PMID: 37075760 PMCID: PMC10278710 DOI: 10.1097/cm9.0000000000002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
ABSTRACT Tumor chemoprevention and treatment are two approaches aimed at improving the survival of patients with cancers. An ideal anti-tumor drug is that which not only kills tumor cells but also alleviates tumor-causing risk factors, such as precancerous lesions, and prevents tumor recurrence. Chinese herbal monomers are considered to be ideal treatment agents due to their multi-target effects. Astragaloside has been shown to possess tumor chemoprevention, direct anti-tumor, and chemotherapeutic drug sensitization effects. In this paper, we review the effects of astragaloside on tumor prevention and treatment and provide directions for further research.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 13033, China
| | - Zhaohua Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Wei Xie
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
7
|
Chen Z, Ye SY. Research progress on antiviral constituents in traditional Chinese medicines and their mechanisms of action. PHARMACEUTICAL BIOLOGY 2022; 60:1063-1076. [PMID: 35634712 PMCID: PMC9154771 DOI: 10.1080/13880209.2022.2074053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Viruses have the characteristics of rapid transmission and high mortality. At present, western medicines still lack an ideal antiviral. As natural products, many traditional Chinese medicines (TCM) have certain inhibitory effects on viruses, which has become the hotspot of medical research in recent years. OBJECTIVE The antiviral active ingredients and mechanisms of TCM against viral diseases was studied in combination with the pathogenesis of viral diseases and antiviral effects. MATERIALS AND METHODS English and Chinese literature from 1999 to 2021 was collected from databases including Web of Science, PubMed, Elsevier, Chinese Pharmacopoeia 2020 (CP), and CNKI (Chinese). Traditional Chinese medicines (TCM), active ingredients, antiviral, mechanism of action, and anti-inflammatory effect were used as the key words. RESULTS The antiviral activity of TCM is clarified to put forward a strategy for discovering active compounds against viruses, and provide reference for screening antivirus drugs from TCM. TCM can not only directly kill viruses and inhibit the proliferation of viruses in cells, but also prevent viruses from infecting cells and causing cytophilia. It can also regulate the human immune system, enhance human immunity, and play an indirect antiviral role. DISCUSSION AND CONCLUSION Based on the experimental study and antiviral mechanism of TCM, this paper can provide analytical evidence that supports the effectiveness of TCM in treating virus infections, as well as their mechanisms against viruses. It could be helpful to provide reference for the research and development of innovative TCMs with multiple components, multiple targets and low toxicity.
Collapse
Affiliation(s)
- Zhi Chen
- Pharmaceutical College, Shandong University of TCM, Jinan, People’s Republic of China
| | - Si-yong Ye
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, People’s Republic of China
| |
Collapse
|
8
|
Zhou A, Zhang W, Dong X, Liu M, Chen H, Tang B. The battle for autophagy between host and influenza A virus. Virulence 2022; 13:46-59. [PMID: 34967267 PMCID: PMC9794007 DOI: 10.1080/21505594.2021.2014680] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza A virus (IAV) is an infectious pathogen, threatening the population and public safety with its epidemics. Therefore, it is essential to better understand influenza virus biology to develop efficient strategies against its pathogenicity. Autophagy is an important cellular process to maintain cellular homeostasis by cleaning up the hazardous substrates in lysosome. Accumulating research has also suggested that autophagy is a critical mechanism in host defense responses against IAV infection by degrading viral particles and activating innate or acquired immunity to induce viral clearance. However, IAV has conversely hijacked autophagy to strengthen virus infection by blocking autophagy maturation and further interfering host antiviral signalling to promote viral replication. Therefore, how the battle for autophagy between host and IAV is carried out need to be known. In this review, we describe the role of autophagy in host defence and IAV survival, and summarize the role of influenza proteins in subverting the autophagic process as well as then concentrate on how host utilize antiviral function of autophagy to prevent IAV infection.
Collapse
Affiliation(s)
- Ao Zhou
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Wenhua Zhang
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Xia Dong
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Mengyun Liu
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Hongbo Chen
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Bin Tang
- Department of Chemistry, School of Basic Medical College, Southwest Medical University, Luzhou, 646100, People’s Republic of China,CONTACT Bin Tang Department of Chemistry, School of Basic Medical College, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
9
|
Yang Y, Hong M, Lian WW, Chen Z. Review of the pharmacological effects of astragaloside IV and its autophagic mechanism in association with inflammation. World J Clin Cases 2022; 10:10004-10016. [PMID: 36246793 PMCID: PMC9561601 DOI: 10.12998/wjcc.v10.i28.10004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Astragalus membranaceus Bunge, known as Huangqi, has been used to treat various diseases for a long time. Astragaloside IV (AS-IV) is one of the primary active ingredients of the aqueous Huangqi extract. Many experimental models have shown that AS-IV exerts broad beneficial effects on cardiovascular disease, nervous system diseases, lung disease, diabetes, organ injury, kidney disease, and gynaecological diseases. This review demonstrates and summarizes the structure, solubility, pharmacokinetics, toxicity, pharmacological effects, and autophagic mechanism of AS-IV. The autophagic effects are associated with multiple signalling pathways in experimental models, including the PI3KI/Akt/mTOR, PI3K III/Beclin-1/Bcl-2, PI3K/Akt, AMPK/mTOR, PI3K/Akt/mTOR, SIRT1–NF-κB, PI3K/AKT/AS160, and TGF-β/Smad signalling pathways. Based on this evidence, AS-IV could be used as a replacement therapy for treating the multiple diseases referenced above.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Wen Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
10
|
Jiang H, Kan X, Ding C, Sun Y. The Multi-Faceted Role of Autophagy During Animal Virus Infection. Front Cell Infect Microbiol 2022; 12:858953. [PMID: 35402295 PMCID: PMC8990858 DOI: 10.3389/fcimb.2022.858953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a process of degradation to maintain cellular homeostatic by lysosomes, which ensures cellular survival under various stress conditions, including nutrient deficiency, hypoxia, high temperature, and pathogenic infection. Xenophagy, a form of selective autophagy, serves as a defense mechanism against multiple intracellular pathogen types, such as viruses, bacteria, and parasites. Recent years have seen a growing list of animal viruses with autophagy machinery. Although the relationship between autophagy and human viruses has been widely summarized, little attention has been paid to the role of this cellular function in the veterinary field, especially today, with the growth of serious zoonotic diseases. The mechanisms of the same virus inducing autophagy in different species, or different viruses inducing autophagy in the same species have not been clarified. In this review, we examine the role of autophagy in important animal viral infectious diseases and discuss the regulation mechanisms of different animal viruses to provide a potential theoretical basis for therapeutic strategies, such as targets of new vaccine development or drugs, to improve industrial production in farming.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| |
Collapse
|
11
|
Miranda RDS, Jesus BDSM, Silva Luiz SR, Viana CB, Adão Malafaia CR, Figueiredo FDS, Carvalho TDSC, Silva ML, Londero VS, Costa‐Silva TA, Lago JHG, Martins RCC. Antiinflammatory activity of natural triterpenes—An overview from 2006 to 2021. Phytother Res 2022; 36:1459-1506. [DOI: 10.1002/ptr.7359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Rodrigo de Souza Miranda
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Sandra Regina Silva Luiz
- Institute of Microbiology Paulo de Góes Federal University of Rio de Janeiro (IMPG‐UFRJ) Rio de Janeiro Brazil
| | - Cristina Borges Viana
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Camila Rodrigues Adão Malafaia
- Laboratory of Natural Products and Biological Assays, Natural Products and Food Department, Faculty of Pharmacy Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Fabiana de Souza Figueiredo
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Matheus Lopes Silva
- Center of Human and Natural Sciences Federal University of ABC (UFABC) Santo André Brazil
| | - Vinicius Silva Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences Federal University of São Paulo (UNIFESP) Diadema Brazil
| | | | | | - Roberto Carlos Campos Martins
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| |
Collapse
|
12
|
Qingjie Fuzheng Granule suppresses lymphangiogenesis in colorectal cancer via the VEGF-C/VEGFR-3 dependent PI3K/AKT pathway. Biomed Pharmacother 2021; 137:111331. [PMID: 33578235 DOI: 10.1016/j.biopha.2021.111331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
SCOPE To investigate the effect of Qingjie Fuzheng Granule (QFG) on lymphangiogenesis and lymphatic metastasis in colorectal cancer. METHODS The effects of QFG on the expression and secretion of vascular endothelial growth factor-C (VEGF-C) in HCT-116 cells were investigated both in vitro and in vivo. HCT-116 cells were treated with different concentrations (0.2, 0.5, and 1.0 mg/mL) of QFG. The VEGF-C expression level was determined using RT-qPCR and western blotting, and the VEGF-C concentration in supernatant was measured by ELISA. Tumor xenograft models of HCT-116 cells were generated using BALB/c nude mice, and the mice were randomly divided into a control group (gavaged with normal saline) and QFG group (gavaged with 2 g/kg QFG). The effect of QFG on tumor growth was evaluated by comparing the volume and weight of tumors between two groups. Immunohistochemistry (IHC) and RT-qPCR were performed to detect the expression levels of VEGF-C, vascular endothelial growth factor receptor 3 (VEGFR-3), and LYVE-1 (lymphatic vessel endothelial hyaluronan receptor 1). ELISA was performed to measure the concentration of serum VEGF-C. TMT proteomics technology and Reactome pathway analysis were used to explore the mechanism of QFG inhibiting lymphangiogenesis in tumor. The VEGF-C (5 ng/mL)-stimulated human lymphatic endothelial cell (HLEC) model was conducted to evaluate the effect of QFG on lymphangiogenesis in vitro. The model cells were treated with different concentrations (0.2, 0.5, and 1.0 mg/mL) of QFG. Cell viability was then determined using an MTT assay. The cell migration, invasion, and tube-formation ability were analyzed using transwell migration, matrigel invasion and tube formation assays, respectively. The underlying mechanism was uncovered, the levels of VEGFR-3, matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), p-PI3K/PI3K, p-AKT/AKT and p-mTOR/ mTOR were detected using western blotting. RESULTS QFG significantly reduced VEGF-C expression and secretion in HCT-116 cells. QFG evidently suppressed in vivo tumor growth and the expression of VEGF-C, VEGFR-3, and LYVE-1. The serum VEGF-C level was also reduced by QFG. Moreover, TMT proteomics technology and Reactome pathway analysis identified 95 differentially expressed protein and multiple enriched pathway about matrix metalloproteinase and extracellular matrix, which is direct associate with lymphangiogenesis. In vitro experiment, QFG inhibited the viability, migration, invasion and tube formation of HLECs. Additionally, QFG reduced the VEGFR-3, MMP-2, MMP-9 expression levels, and the p-PI3K/PI3K, p-AKT/AKT, p-mTOR/ mTOR ratios. CONCLUSION QFG can exert its effect on both tumor cells and HLECs, exhibiting ani- lymphangiogenesis in colorectal cancer via the VEGF-C/VEGFR-3 dependent PI3K/AKT pathway pathway.
Collapse
|
13
|
Ge C, He Y. In Silico Prediction of Molecular Targets of Astragaloside IV for Alleviation of COVID-19 Hyperinflammation by Systems Network Pharmacology and Bioinformatic Gene Expression Analysis. Front Pharmacol 2020; 11:556984. [PMID: 33041797 PMCID: PMC7525161 DOI: 10.3389/fphar.2020.556984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The overproduction of cytokines and chemokines caused by excessive and uncontrolled inflammation contributes to the development of COVID-19. Astragaloside IV is considered as an anti-inflammatory and antioxidant agent. This study aimed at undertaking a network pharmacology approach and bioinformatics analysis to uncover the pharmacological mechanisms of Astragaloside IV on COVID-19. Methods Potential targets of Astragaloside IV were screened from public databases. Differentially expressed genes (DEGs) in SARS-CoV-2 were screened using bioinformatics analysis on the Gene Expression Omnibus (GEO) datasets GSE147507. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. The overlapping genes, GO terms and KEGG pathways between Astragaloside IV targets and SARS-CoV-2 DEGs were confirmed, and the location of overlapping targets in the key pathways was queried using KEGG Mapper. Results A total of 425 potential targets of Astragaloside IV were screened. Besides, a total of 546 DEGs were identified between SARS-CoV-2 infected samples and control samples, including 380 up-regulated and 166 down-regulated genes. There was a significant overlap in GO terms and KEGG pathways between Astragaloside IV targets and SARS-CoV-2 DEGs. The shared genes included MMP13, NLRP3, TRIM21, GBP1, ADORA2A, PTAFR, TNF, MLNR, IL1B, NFKBIA, ADRB2, and IL6. Conclusions This study is the first to propose Astragaloside IV as a new drug candidate for alleviating hyper-inflammation in COVID-19 patients. Besides, the key targets and pathways may reveal the main pharmacological mechanism of Astragaloside IV in the treatment of COVID-19.
Collapse
Affiliation(s)
- Chenliang Ge
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yan He
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Maoujoud O, Asserraji M, Ahid S, Belarbi M, Zemraoui N. Anakinra for patients with COVID-19. LANCET RHEUMATOLOGY 2020; 2:e383. [PMID: 32835237 PMCID: PMC7316448 DOI: 10.1016/s2665-9913(20)30177-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Omar Maoujoud
- Department of Nephrology, Avicennes Military Hospital, Faculty of Medicine, Cadi Ayyad University, Marrakech 40000, Morocco.,Research Team of Pharmacoeconomics & Pharmacoepidemiology, Faculty of Medicine & Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mohammed Asserraji
- Department of Nephrology, Avicennes Military Hospital, Faculty of Medicine, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Samir Ahid
- Research Team of Pharmacoeconomics & Pharmacoepidemiology, Faculty of Medicine & Pharmacy, Mohammed V University, Rabat, Morocco.,Methodological Support Unit, Faculty of Pharmacy, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Marouane Belarbi
- Department of Nephrology, Avicennes Military Hospital, Faculty of Medicine, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Nadir Zemraoui
- Department of Nephrology, Avicennes Military Hospital, Faculty of Medicine, Cadi Ayyad University, Marrakech 40000, Morocco
| |
Collapse
|