1
|
Tyagi SC. A High-Fat Diet Induces Epigenetic 1-Carbon Metabolism, Homocystinuria, and Renal-Dependent HFpEF. Nutrients 2025; 17:216. [PMID: 39861346 PMCID: PMC11767380 DOI: 10.3390/nu17020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia. Epigenetically, ACLY acetylates histone. The mechanism(s) are largely unknown. METHODS/RESULTS One hypothesis is that an HFD induces epigenetic folate 1-carbon metabolism (FOCM) and homocystinuria. This abrogates dipping in sleep-time blood pressure and causes hypertension and morning heart attacks. We observed that probiotics/lactobacillus utilize fat/lipids post-biotically, increasing mitochondrial bioenergetics and attenuating HFpEF. We suggest novel and paradigm-shift epigenetic mitochondrial sulfur trans-sulfuration pathways that selectively target HFD-induced HFpEF. Previous studies from our laboratory, using a single-cell analysis, revealed an increase in the transporter (SLC25A) of s-adenosine-methionine (SAM) during elevated levels of homocysteine (Hcy, i.e., homocystinuria, HHcy), a consequence of impaired epigenetic recycling of Hcy back to methionine due to an increase in the FOCM methylation of H3K4, K9, H4K20, and gene writer (DNMT) and decrease in eraser (TET/FTO). Hcy is transported to mitochondria by SLC7A for clearance via sulfur metabolomic trans-sulfuration by 3-mercaptopyruvate sulfur transferase (3MST). CONCLUSIONS We conclude that gut dysbiosis due to HFD disrupts rhythmic epigenetic memory via FOCM and increases in DNMT1 and creates homocystinuria, leading to a decrease in mitochondrial trans-sulfuration and bioenergetics. The treatment with lactobacillus metabolites fat/lipids post-biotically and bi-directionally produces folic acid and lactone-ketone body that mitigates the HFD-induced mitochondrial remodeling and HFpEF.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Tyagi SC. Lactobacillus Eats Amyloid Plaque and Post-Biotically Attenuates Senescence Due to Repeat Expansion Disorder and Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1225. [PMID: 39456478 PMCID: PMC11506100 DOI: 10.3390/antiox13101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Patients with Alzheimer's disease and related dementia (ADRD) are faced with a formidable challenge of focal amyloid deposits and cerebral amyloid angiopathy (CAA). The treatment of amyloid deposits in ADRD by targeting only oxidative stress, inflammation and hyperlipidemia has not yielded significant positive clinical outcomes. The chronic high-fat diet (HFD), or gut dysbiosis, is one of the major contributors of ADRD in part by disrupted transport, epigenetic DNMT1 and the folate 1-carbon metabolism (FOCM) cycle, i.e., rhythmic methylation/de-methylation on DNA, an active part of epigenetic memory during genes turning off and on by the gene writer (DNMT1) and eraser (TET2/FTO) and the transsulfuration pathway by mitochondrial 3-mercaptopyruvate sulfur transferase (3MST)-producing H2S. The repeat CAG expansion and m6A disorder causes senescence and AD. We aim to target the paradigm-shift pathway of the gut-brain microbiome axis that selectively inhibits amyloid deposits and increases mitochondrial transsulfuration and H2S. We have observed an increase in DNMT1 and decreased FTO levels in the cortex of the brain of AD mice. Interestingly, we also observed that probiotic lactobacillus-producing post-biotic folate and lactone/ketone effectively prevented FOCM-associated gut dysbiosis and amyloid deposits. The s-adenosine-methionine (SAM) transporter (SLC25A) was increased by hyperhomocysteinemia (HHcy). Thus, we hypothesize that chronic gut dysbiosis induces SLC25A, the gene writer, and HHcy, and decreases the gene eraser, leading to a decrease in SLC7A and mitochondrial transsulfuration H2S production and bioenergetics. Lactobacillus engulfs lipids/cholesterol and a tri-directional post-biotic, folic acid (an antioxidant and inhibitor of beta amyloid deposits; reduces Hcy levels), and the lactate ketone body (fuel for mitochondria) producer increases SLC7A and H2S (an antioxidant, potent vasodilator and neurotransmitter gas) production and inhibits amyloid deposits. Therefore, it is important to discuss whether lactobacillus downregulates SLC25A and DNMT1 and upregulates TET2/FTO, inhibiting β-amyloid deposits by lowering homocysteine. It is also important to discuss whether lactobacillus upregulates SLC7A and inhibits β-amyloid deposits by increasing the mitochondrial transsulfuration of H2S production.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Morandi S, Silvetti T, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Brasca M. Biodiversity and antibiotic resistance profile provide new evidence for a different origin of enterococci in bovine raw milk and feces. Food Microbiol 2024; 120:104492. [PMID: 38431334 DOI: 10.1016/j.fm.2024.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Enterococci are widely distributed in dairy sector. They are commensals of the gastrointestinal tract of animals, thus, via fecal contamination, could reach raw milk and dairy products. The aims of this study were: 1) to investigate the enterococcal diversity in cow feces and milk samples and 2) to evaluate the antibiotic resistance (AR) of dairy-related enterococci and their ability to transfer resistance genes. E. faecalis (59.9%), E. faecium (18.6%) and E. lactis (12.4%) were prevalent in milk, while E. faecium (84.2%) and E. hirae (15.0%) were dominant in bovine feces. RAPD-PCR highlighted a high number of Enterococcus biotypes (45 from milk and 37 from feces) and none of the milk strains exhibited genetic profiles similar to those of feces biotypes. A high percentage of enterococci isolated from milk (71%) were identified as multidrug resistant and resistance against streptomycin and tetracycline were widespread among milk strains while enterococci from feces were commonly resistant to linezolid and quinupristin/dalfopristin. Only E. faecalis strains were able to transfer horizontally the tetM gene to Lb. delbrueckii subsp. lactis. Our results indicated that Enterococcus biotypes from milk and bovine feces belong to different community and the ability of these microorganisms to transfer AR genes is strain-dependent.
Collapse
Affiliation(s)
- Stefano Morandi
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, Milan, Italy.
| | - Tiziana Silvetti
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, Milan, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, Messina, 98168, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Alimentari e Ambientali, Università Cattolica Del Sacro Cuore, Piacenza, 29122, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Alimentari e Ambientali, Università Cattolica Del Sacro Cuore, Piacenza, 29122, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, Milan, Italy
| |
Collapse
|
4
|
Tyagi SC, Pushpakumar S, Sen U, Akinterinwa OE, Zheng Y, Mokshagundam SPL, Kalra DK, Singh M. Role of circadian clock system in the mitochondrial trans-sulfuration pathway and tissue remodeling. Can J Physiol Pharmacol 2024; 102:105-115. [PMID: 37979203 DOI: 10.1139/cjpp-2023-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Previous studies from our laboratory revealed that the gaseous molecule hydrogen sulfide (H2S), a metabolic product of epigenetics, involves trans-sulfuration pathway for ensuring metabolism and clearance of homocysteine (Hcy) from body, thereby mitigating the skeletal muscle's pathological remodeling. Although the master circadian clock regulator that is known as brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (i.e., BMAL 1) is associated with S-adenosylhomocysteine hydrolase (SAHH) and Hcy metabolism but how trans-sulfuration pathway is influenced by the circadian clock remains unexplored. We hypothesize that alterations in the functioning of circadian clock during sleep and wake cycle affect skeletal muscle's biology. To test this hypothesis, we measured serum matrix metalloproteinase (MMP) activities using gelatin gels for analyzing the MMP-2 and MMP-9. Further, employing casein gels, we also studied MMP-13 that is known to be influenced by the growth arrest and DNA damage-45 (GADD45) protein during sleep and wake cycle. The wild type and cystathionine β synthase-deficient (CBS-/+) mice strains were treated with H2S and subjected to measurement of trans-sulfuration factors from skeletal muscle tissues. The results suggested highly robust activation of MMPs in the wake mice versus sleep mice, which appears somewhat akin to the "1-carbon metabolic dysregulation", which takes place during remodeling of extracellular matrix during muscular dystrophy. Interestingly, the levels of trans-sulfuration factors such as CBS, cystathionine γ lyase (CSE), methyl tetrahydrofolate reductase (MTHFR), phosphatidylethanolamine N-methyltransferase (PEMT), and Hcy-protein bound paraoxonase 1 (PON1) were attenuated in CBS-/+ mice. However, treatment with H2S mitigated the attenuation of the trans-sulfuration pathway. In addition, levels of mitochondrial peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC 1-α) and mitofusin-2 (MFN-2) were significantly improved by H2S intervention. Our findings suggest participation of the circadian clock in trans-sulfuration pathway that affects skeletal muscle remodeling and mitochondrial regeneration.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sathnur Pushpakumar
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Oluwaseun E Akinterinwa
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yuting Zheng
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sri Prakash L Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dinesh K Kalra
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Mahara FA, Nuraida L, Lioe HN, Nurjanah S. Hypothetical Regulation of Folate Biosynthesis and Strategies for Folate Overproduction in Lactic Acid Bacteria. Prev Nutr Food Sci 2023; 28:386-400. [PMID: 38188086 PMCID: PMC10764224 DOI: 10.3746/pnf.2023.28.4.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 01/09/2024] Open
Abstract
Folate (vitamin B9) is an essential nutrient for cell metabolism, especially in pregnant women; however, folate deficiency is a major global health issue. To address this issue, folate-rich fermented foods have been used as alternative sources of natural folate. Lactic acid bacteria (LAB), which are commonly involved in food fermentation, can synthesize and excrete folate into the medium, thereby increasing folate levels. However, screening for folate-producing LAB strains is necessary because this ability is highly dependent on the bacterial strain. Some strains of LAB consume folate, and their presence in a fermentation mix can lower the folate levels of the final product. Since microorganisms efficiently regulate folate biosynthesis to meet their growth needs, some strains of folate-producing LAB can deplete folate levels if folate is available in the media. Such folate-efficient producers possess a feedback inhibition mechanism that downregulates folate biosynthesis. Therefore, the application of folate-overproducing strains may be a key strategy for increasing folate levels in media with or without available folate. Many studies have been conducted to screen folate-producing bacteria, but very few have focused on the identification of overproducers. This is probably because of the limited understanding of the regulation of folate biosynthesis in LAB. In this review, we discuss the roles of folate-biosynthetic genes and their contributions to the ability of LAB to synthesize and regulate folate. In addition, we present various hypotheses regarding the regulation of the feedback inhibition mechanism of folate-biosynthetic enzymes and discuss strategies for obtaining folate-overproducing LAB strains.
Collapse
Affiliation(s)
- Fenny Amilia Mahara
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Lilis Nuraida
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Siti Nurjanah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| |
Collapse
|
6
|
Dashtbanei S, Keshtmand Z. A Mixture of Multi-Strain Probiotics (Lactobacillus Rhamnosus, Lactobacillus Helveticus, and Lactobacillus Casei) had Anti-Inflammatory, Anti-Apoptotic, and Anti-Oxidative Effects in Oxidative Injuries Induced By Cadmium in Small Intestine and Lung. Probiotics Antimicrob Proteins 2023; 15:226-238. [PMID: 35819625 DOI: 10.1007/s12602-022-09946-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Cadmium (Cd) produces severe oxidative stress, which can result in serious clinical consequences and tissue injury. The aim of the present survey was to investigate the protective effects of native Iranian probiotics (Lactobacillus rhamnosus, L. helveticus, and L. casei) against cadmium (Cd)-induced toxicity against the small intestine and lung at histopathological and biochemical levels. MATERIALS AND METHODS Twenty-one adult male Wistar rats were randomized into three groups of seven rats (control, Cd-treated (3 mg/kg), and concomitant Cd and mix probiotic treatment for 30 days). Histological alterations were appraised via hematoxylin & eosin, Trichrome Masson, and PAS staining. The qRT-PCR technique was applied to assess the expression of pro-apoptotic, anti-apoptotic, and pro-inflammatory genes. Antioxidant enzymes activity was measured via ZellBio kits. RESULTS Probiotic-treated rats displayed low production of lipid peroxides, reduced malondialdehyde (MDA) level, and elevated contents of superoxide dismutase (SOD) and catalase (CAT) enzymes compared with Cd-treated rats. The results of qRT-PCR demonstrated the up-regulation of Bax, p53, and caspase 3 and down-regulation of Bcl2, TNF-α, and IL-6 genes in both the intestine and lungs of mix probiotic-treated rats compared with Cd-treated animals. Histopathological findings revealed that the probiotic formulation improved Cd-triggered tissue damage in the intestine and lungs. CONCLUSION The strong cytoprotective benefits of Iranian probiotics against Cd-induced tissue injury observed in this study may be due to their anti-inflammatory and antioxidant properties. Therefore, additional clinical and experimental research is required to explain the precise mechanisms of probiotics' beneficial impacts and underline their potential therapeutic use.
Collapse
Affiliation(s)
- Shadi Dashtbanei
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Urrutia-Baca V, Hernández-Hernández S, Martínez L, Dávila-Vega J, Chuck-Hernández C. The Role of Probiotics in Dairy Foods and Strategies to Evaluate Their Functional Modifications. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- V.H Urrutia-Baca
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, México
| | | | - L.M. Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, NL, México
| | - J.P Dávila-Vega
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, México
| | - C. Chuck-Hernández
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, México
| |
Collapse
|
8
|
Tang H, Huang W, Yao YF. The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:49-62. [PMID: 36908281 PMCID: PMC9993431 DOI: 10.15698/mic2023.03.792] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 03/14/2023]
Abstract
Lactic acid bacteria (LAB) are ubiquitous microorganisms that can colonize the intestine and participate in the physiological metabolism of the host. LAB can produce a variety of metabolites, including organic acids, bacteriocin, amino acids, exopolysaccharides and vitamins. These metabolites are the basis of LAB function and have a profound impact on host health. The intestine is colonized by a large number of gut microorganisms with high species diversity. Metabolites of LAB can keep the balance and stability of gut microbiota through aiding in the maintenance of the intestinal epithelial barrier, resisting to pathogens and regulating immune responses, which further influence the nutrition, metabolism and behavior of the host. In this review, we summarize the metabolites of LAB and their influence on the intestine. We also discuss the underlying regulatory mechanisms and emphasize the link between LAB and the human gut from the perspective of health promotion.
Collapse
Affiliation(s)
- Huang Tang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanqiu Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai 200025, China
| |
Collapse
|
9
|
Nelli A, Venardou B, Skoufos I, Voidarou C(C, Lagkouvardos I, Tzora A. An Insight into Goat Cheese: The Tales of Artisanal and Industrial Gidotyri Microbiota. Microorganisms 2023; 11:123. [PMID: 36677415 PMCID: PMC9863150 DOI: 10.3390/microorganisms11010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to determine for the first time the microbiota in artisanal-type and industrial-type Gidotyri cheeses and investigate the influence of the cheese-making practices on their composition using culture-independent techniques. The microbiota present in artisanal with commercial starters (Artisanal_CS, n = 15), artisanal with in-house starters (Artisanal_IHS, n = 10) and industrial (Ind., n = 9) Gidotyri cheese samples were analyzed using a targeted metagenomic approach (16S rRNA gene). The Ind. Gidotyri cheese microbiota were less complex, dominated by the Streptococcaceae family (91%) that was more abundant compared to the artisanal Gidotyri cheeses (p < 0.05). Artisanal cheeses were more diverse compositionally with specific bacterial species being prevalent to each subtype. Particularly, Loigolactobacillus coryniformis (OTU 175), Secundilactobacillus malefermentans (OTU 48), and Streptococcus parauberis (OTU 50) were more prevalent in Artisanal_IHS cheeses compared to Artisanal_CS (p ≤ 0.001) and Ind. (p < 0.01) Gidotyri cheeses. Carnobacterium maltaromaticum (OTU 23) and Enterobacter hormaechei subsp. hoffmannii (OTU 268) were more prevalent in Artisanal_CS cheeses compared to Artisanal_IHS cheeses (p < 0.05) and Ind. cheeses (p < 0.05). Hafnia alvei (OTU 13) and Acinetobacter colistiniresistens (OTU 111) tended to be more prevalent in Artisanal_CS compared to the other two cheese groups (p < 0.10). In conclusion, higher microbial diversity was observed in the artisanal-type Gidotyri cheeses, with possible bacterial markers specific to each subtype identified with potential application to traceability of the manufacturing processes’ authenticity and cheese quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| |
Collapse
|
10
|
Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022; 12:biom12101443. [PMID: 36291652 PMCID: PMC9599591 DOI: 10.3390/biom12101443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Antioxidants are often associated with a variety of anti-aging compounds that can ensure human and animal health longevity. Foods and diet supplements from animals and plants are the common exogenous sources of antioxidants. However, microbial-based products, including probiotics and their derivatives, have been recognized for their antioxidant properties through numerous studies and clinical trials. While the number of publications on probiotic antioxidant capacities and action mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging. Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their different effects on human and animal health are reviewed and discussed. Synbiotics can generate almost unlimited possibilities of antioxidant compounds, which may have superior performance compared to those of their components through additive or complementary effects, and especially by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based new routes for supplying natural antioxidants appear relevant and promising in human and animal health prevention and treatment. A better understanding of various component interactions within synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from these biotic sources.
Collapse
|
11
|
Singh M, Pushpakumar S, Zheng Y, Homme RP, Smolenkova I, Mokshagundam SPL, Tyagi SC. Hydrogen sulfide mitigates skeletal muscle mitophagy-led tissue remodeling via epigenetic regulation of the gene writer and eraser function. Physiol Rep 2022; 10:e15422. [PMID: 35986494 PMCID: PMC9391604 DOI: 10.14814/phy2.15422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 05/29/2023] Open
Abstract
Ketone bodies (KB) serve as the food for mitochondrial biogenetics. Interestingly, probiotics are known to promote KB formation in the gut (especially those that belong to the Lactobacillus genus). Furthermore, Lactobacillus helps produce folate that lowers the levels of homocysteine (Hcy); a hallmark non-proteinogenic amino acid that defines the importance of epigenetics, and its landscape. In this study, we decided to test whether hydrogen sulfide (H2 S), another Hcy lowering agent regulates the epigenetic gene writer DNA methyltransferase (DNMT), eraser FTO and TET2, and thus mitigates the skeletal muscle remodeling. We treated hyperhomocysteinemic (HHcy, cystathionine beta-synthase heterozygote knockout; CBS+/- ) mice with NaHS (the H2 S donor). The results suggested multi-organ damage by HHcy in the CBS+/- mouse strain compared with WT control mice (CBS+/+ ). H2 S treatment abrogated most of the HHcy-induced damage. The levels of gene writer (DNMT2) and H3K9 (methylation) were higher in the CBS+/- mice, and the H2 S treatment normalized their levels. More importantly, the levels of eraser FTO, TET, and associated GADD45, and MMP-13 were decreased in the CBS+/- mice; however, H2 S treatment mitigated their respective decrease. These events were associated with mitochondrial fission, i.e., an increase in DRP1, and mitophagy. Although the MMP-2 level was lower in CBS+/- compared to WT but H2 S could further lower it in the CBS+/- mice. The MMPs levels were associated with an increase in interstitial fibrosis in the CBS+/- skeletal muscle. Due to fibrosis, the femoral artery blood flow was reduced in the CBS+/- mice, and that was normalized by H2 S. The bone and muscle strengths were found to be decreased in the CBS+/- mice but the H2 S treatment normalized skeletal muscle strength in the CBS+/- mice. Our findings suggest that H2 S mitigates the mitophagy-led skeletal muscle remodeling via epigenetic regulation of the gene writer and eraser function.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Sathnur Pushpakumar
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Yuting Zheng
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Rubens P. Homme
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Irina Smolenkova
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Sri Prakash L. Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical CenterUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Suresh C. Tyagi
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| |
Collapse
|
12
|
Lactic acid bacteria as pro-technological, bioprotective and health-promoting cultures in the dairy food industry. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Prieto‐Maradona M, Querol A, Sijtsma L, Evaristo Suarez J, Sundh I, Vlak J, Barizzone F, Hempen M, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 15: suitability of taxonomic units notified to EFSA until September 2021. EFSA J 2022; 20:e07045. [PMID: 35126735 PMCID: PMC8792879 DOI: 10.2903/j.efsa.2022.7045] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The qualified presumption of safety (QPS) approach was developed to provide a generic pre-evaluation of the safety of biological agents. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. The QPS list was updated in relation to the revised taxonomy of the genus Bacillus, to synonyms of yeast species and for the qualifications 'absence of resistance to antimycotics' and 'only for production purposes'. Lactobacillus cellobiosus has been reclassified as Limosilactobacillus fermentum. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS taxonomic units (TU)s. Of the 70 microorganisms notified to EFSA, 64 were not evaluated: 11 filamentous fungi, one oomycete, one Clostridium butyricum, one Enterococcus faecium, five Escherichia coli, one Streptomyces sp., one Bacillus nakamurai and 43 TUs that already had a QPS status. Six notifications, corresponding to six TUs were evaluated: Paenibacillus lentus was reassessed because an update was requested for the current mandate. Enterococcus lactis synonym Enterococcus xinjiangensis, Aurantiochytrium mangrovei synonym Schizochytrium mangrovei, Schizochytrium aggregatum, Chlamydomonas reinhardtii synonym Chlamydomonas smithii and Haematococcus lacustris synonym Haematococcus pluvialis were assessed for the first time. The following TUs were not recommended for QPS status: P. lentus due to a limited body of knowledge, E. lactis synonym E. xinjiangensis due to potential safety concerns, A. mangrovei synonym S. mangrovei, S. aggregatum and C. reinhardtii synonym C. smithii, due to lack of a body of knowledge on its occurrence in the food and feed chain. H. lacustris synonym H. pluvialis is recommended for QPS status with the qualification 'for production purposes only'.
Collapse
|
14
|
Mahara FA, Nuraida L, Lioe HN. Folate in Milk Fermented by Lactic Acid Bacteria from Different Food Sources. Prev Nutr Food Sci 2021; 26:230-240. [PMID: 34316488 PMCID: PMC8276708 DOI: 10.3746/pnf.2021.26.2.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/06/2022] Open
Abstract
Folates are essential micronutrients, and folate deficiency still occurs in many countries. Lactic acid bacteria (LAB) are known to be able to synthesize folates during fermentation, but the folate production is strain-dependent and influenced by the fermentation medium, presence of a folate precursor, and fermentation time. This study aimed to screen extracellular folate-producing LAB from local food sources and evaluate the factors influencing their folate biosynthesis during milk fermentation. The selection of folate-producing LAB was based on their ability to grow in folate-free medium (FACM), with folate concentrations quantified by microbiological assay. Growth of the 18 LAB in FACM varied between isolates, with only 8 isolates growing well and able to synthesize extracellular folate at relatively high concentrations (up to 24.27 ng/mL). The isolates with highest extracellular folate levels, Lactobacillus fermentum JK13 from kefir granules, Lactobacillus plantarum 4C261 from salted mustard, and Lactobacillus rhamnosus R23 from breast milk, were applied to milk fermentation. The last two isolates were probiotic candidates. The three isolates consumed folate when it was present in the milk, and its consumption was in line with their growth. The availability of folate precursors affected the amount of folate consumed, but did not lead to increased folate concentrations in the medium after 72 h fermentation. The results of this study indicate that these isolates cannot be utilized for producing folate in folate-containing milk, as it shows feedback inhibition on folate biosynthesis.
Collapse
Affiliation(s)
- Fenny Amilia Mahara
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology and
| | - Lilis Nuraida
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology and.,Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology and
| |
Collapse
|
15
|
|