1
|
Yang L, Qu M, Wang Z, Huang S, Wang Q, Wei M, Li F, Yang D, Pan L. Biochemical Properties of a Novel Cold-Adapted GH19 Chitinase with Three Chitin-Binding Domains from Chitinilyticum aquatile CSC-1 and Its Potential in Biocontrol of Plant Pathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19581-19593. [PMID: 39190598 DOI: 10.1021/acs.jafc.4c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
GH19 (glycoside hydrolase 19) chitinases play crucial roles in the enzymatic conversion of chitin and biocontrol of phytopathogenic fungi. Herein, a novel multifunctional chitinase of GH19 (CaChi19A), which contains three chitin-binding domains (ChBDs), was successfully cloned from Chitinilyticum aquatile CSC-1 and heterologously expressed in Escherichia coli. We also generated truncated mutants of CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD consisting of two ChBDs and a catalytic domain, one ChBD and a catalytic domain, and only a catalytic domain, respectively. CaChi19A, CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD exhibited cold adaptation, as their relative enzyme activities at 5 °C were 40.7, 51.6, 66.2, and 82.6%, respectively. Compared with CaChi19A and other variants, CaChi19A_ΔIΔII demonstrated a higher level of stability below 50 °C and retained relatively high activity over a wide pH range of 5-12. Analysis of the hydrolysis products revealed that CaChi19A and CaChi19A_ΔIΔII exhibit exoacting, endoacting, and N-acetyl-β-d-glucosaminidase activities toward colloidal chitin. Furthermore, CaChi19A and CaChi19A_ΔIΔII exhibited inhibitory effects on the hyphal growth of Fusarium oxysporum, Fusarium redolens, Fusarium fujikuroi, Fusarium solani, and Coniothyrium diplodiella, thereby illustrating effective biocontrol activity. These results indicated that CaChi19A and CaChi19A_ΔIΔII show advantages in some applications where low temperatures were demanded in industries as well as the biocontrol of fungal diseases in agriculture.
Collapse
Affiliation(s)
- Liyan Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mingbo Qu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhou Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shiyong Huang
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Maochun Wei
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Fei Li
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Dengfeng Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lixia Pan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
2
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
3
|
Zhang X, Tang Y, Gao F, Xu X, Chen G, Li Y, Wang L. Low-cost and efficient strategy for brown algal hydrolysis: Combination of alginate lyase and cellulase. BIORESOURCE TECHNOLOGY 2024; 397:130481. [PMID: 38395233 DOI: 10.1016/j.biortech.2024.130481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.
Collapse
Affiliation(s)
- Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongqi Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Feng Gao
- Qingdao Vland Biotech Company Group, Qingdao 266061, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao 266061, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Du M, Li X, Qi W, Li Y, Wang L. Identification and characterization of a critical loop for the high activity of alginate lyase VaAly2 from the PL7_5 subfamily. Front Microbiol 2024; 14:1333597. [PMID: 38282736 PMCID: PMC10811132 DOI: 10.3389/fmicb.2023.1333597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
As the major component in the cell wall of brown algae, alginates are degradable by alginate lyases via β-elimination. Alginate lyases can be categorized into various polysaccharide lyase (PL) families, and PL7 family alginate lyases are the largest group and can be divided into six subfamilies. However, the major difference among different PL7 subfamilies is not fully understood. In this work, a marine alginate lyase, VaAly2, from Vibrio alginolyticus ATCC 17749 belonging to the PL7_5 subfamily was identified and characterized. It displayed comparatively high alginolytic activities toward different alginate substrates and functions as a bifunctional lyase. Molecular docking and biochemical analysis suggested that VaAly2 not only contains a key catalyzing motif (HQY) conserved in the PL7 family but also exhibits some specific characters limited in the PL7_5 subfamily members, such as the key residues and a long loop1 structure around the active center. Our work provides insight into a loop structure around the center site which plays an important role in the activity and substrate binding of alginate lyases belonging to the PL7_5 subfamily.
Collapse
Affiliation(s)
- Muxuan Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weipeng Qi
- Foshan Haitian (Gaoming) Flavoring & Food Co., Ltd., Foshan, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Zhang W, Ren H, Wang X, Dai Q, Liu X, Ni D, Zhu Y, Xu W, Mu W. Rational design for thermostability improvement of a novel PL-31 family alginate lyase from Paenibacillus sp. YN15. Int J Biol Macromol 2023; 253:126919. [PMID: 37717863 DOI: 10.1016/j.ijbiomac.2023.126919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Currently, alginate oligosaccharides (AOS) become attractive due to their excellent physiological effects. AOS has been widely used in food, pharmaceutical, and cosmetic industries. Generally, AOS can be produced from alginate using alginate lyase (ALyase) as the biocatalyst. However, most ALyase display poor thermostability. In this study, a thermostable ALyase from Paenibacillus sp. YN15 (Payn ALyase) was characterized. It belonged to the polysaccharide lyase (PL) 31 family and displayed poly β-D-mannuronate (Poly M) preference. Under the optimum condition (pH 8.0, 55 °C, 50 mM NaCl), it exhibited maximum activity of 90.3 U/mg and efficiently degraded alginate into monosaccharides and AOS with polymerization (DP) of 2-4. Payn ALyase was relatively stable at 55 °C, but the thermostability dropped rapidly at higher temperatures. To further improve its thermostability, rational design mutagenesis was carried out based on a combination of FireProt, Consensus Finder, and PROSS analysis. Finally, a triple-point mutant K71P/Y129G/S213G was constructed. The optimum temperature was increased from 55 to 70 °C, and the Tm was increased from 62.7 to 64.1 °C. The residual activity after 30 min incubation at 65 °C was enhanced from 36.0 % to 83.3 %. This study provided a promising ALyase mutant for AOS industrial production.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Hu Ren
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinxiu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing 100045, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Ji S, Tian X, Li X, She Q. Identification and structural analysis of a carbohydrate-binding module specific to alginate, a representative of a new family, CBM96. J Biol Chem 2023; 299:102854. [PMID: 36592931 PMCID: PMC9971899 DOI: 10.1016/j.jbc.2022.102854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Carbohydrate-binding modules (CBMs) are the noncatalytic modules that assist functions of the catalytic modules in carbohydrate-active enzymes, and they are usually discrete structural domains in larger multimodular enzymes. CBMs often occur in tandem in different alginate lyases belonging to the CBM families 13, 16, and 32. However, none of the currently known CBMs in alginate lyases specifically bind to an internal alginate chain. In our investigation of the multidomain alginate lyase Dp0100 carrying several ancillary domains, we identified an alginate-binding domain denoted TM6-N4 using protein truncation analysis. The structure of this CBM domain was determined at 1.35 Å resolution. TM6-N4 exhibited an overall β-sandwich fold architecture with two antiparallel β-sheets. We identified an extended binding groove in the CBM using site-directed mutagenesis, docking, and surface electrostatic potential analysis. Affinity analysis revealed that residues of Lys10, Lys22, Lys25, Lys27, Lys31, Arg36, and Tyr159 located on the bottom or the wall of the shallow groove are responsible for alginate binding, and isothermal titration calorimetry analyses indicated that the binding cleft consists of six subsites for sugar recognition. This substrate binding pattern is typical for type B CBM, and it represents the first CBM domain that specifically binds internal alginate chain. Phylogenetic analysis supports that TM6-N4 constitutes the founding member of a new CBM family denoted as CBM96. Our reported structure not only facilitates the investigation of the CBM-alginate ligand recognition mechanism but also inspires the utilization of the CBM domain in biotechnical applications.
Collapse
Affiliation(s)
- Shiqi Ji
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Xuhui Tian
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xin Li
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Chen C, Cao S, Zhu B, Jiang L, Yao Z. Biochemical characterization and elucidation the degradation pattern of a new cold-adapted and Ca2+ activated alginate lyase for efficient preparation of alginate oligosaccharides. Enzyme Microb Technol 2023; 162:110146. [DOI: 10.1016/j.enzmictec.2022.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
|
8
|
Li H, Huang X, Yao S, Zhang C, Hong X, Wu T, Jiang Z, Ni H, Zhu Y. Characterization of a bifunctional and endolytic alginate lyase from Microbulbifer sp. ALW1 and its application in alginate oligosaccharides production from Laminaria japonica. Protein Expr Purif 2022; 200:106171. [PMID: 36103937 DOI: 10.1016/j.pep.2022.106171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
The diverse biological activities of alginate oligosaccharides attracted extensive exploration of alginate lyases with various substrate specificity and enzymatic properties. In this study, an alginate lyase from Microbulbifer sp. ALW1, namely AlgL7, was phylogenetically classified into the polysaccharide lyase family 7 (PL7). The conserved amino acid residues Tyr606 and His499 in AlgL7 were predicted to act as the general acid/base catalysts. The enzyme was enzymatically characterized after heterologous expression and purification in E. coli. AlgL7 displayed optimal activity at 40 °C and pH 7.0. It had good stability at temperature below 35 °C and within a pH range of 5.0-10.0. AlgL7 exhibited good stability against the reducing reagent β-ME and the surfactants of Tween-20 and Triton X-100. The degradation profiles of alginate indicated AlgL7 was a bifunctional endolytic alginate lyase generating alginate oligosaccharides with the degrees of polymerization 2-4. The degradation products of sodium alginate exhibited stronger antioxidant activities than the untreated polysaccharide. In addition, AlgL7 could directly digest Laminaria japonica to produce alginate oligosaccharides. These characteristics of AlgL7 offer a great potential of its application in high-value utilization of brown algae resources.
Collapse
Affiliation(s)
- Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008, China
| | - Xiaoyi Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shuxiang Yao
- Xiamen Institute of Software Technology, Xiamen, 361024, China
| | - Chenghao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xuan Hong
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008, China
| | - Ting Wu
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
9
|
Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules 2022; 27:molecules27196305. [PMID: 36234848 PMCID: PMC9572377 DOI: 10.3390/molecules27196305] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Lysozymes are hydrolytic enzymes characterized by their ability to cleave the β-(1,4)-glycosidic bonds in peptidoglycan, a major structural component of the bacterial cell wall. This hydrolysis action compromises the integrity of the cell wall, causing the lysis of bacteria. For more than 80 years, its role of antibacterial defense in animals has been renowned, and it is also used as a preservative in foods and pharmaceuticals. In order to improve the antimicrobial efficacy of lysozyme, extensive research has been intended for its modifications. This manuscript reviews the natural antibiotic compound lysozyme with reference to its catalytic and non-catalytic mode of antibacterial action, lysozyme types, susceptibility and resistance of bacteria, modification of lysozyme molecules, and its applications in the food industry.
Collapse
|
10
|
Biochemical Characterization and Elucidation of the Hybrid Action Mode of a New Psychrophilic and Cold-Tolerant Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides. Mar Drugs 2022; 20:md20080506. [PMID: 36005509 PMCID: PMC9410210 DOI: 10.3390/md20080506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
Abstract
Alginate lyases with unique biochemical properties have irreplaceable value in food and biotechnology industries. Herein, the first new hybrid action mode Thalassotalea algicola-derived alginate lyase gene (TAPL7A) with both psychrophilic and cold-tolerance was cloned and expressed heterologously in E. coli. With the highest sequence identity (43%) to the exolytic alginate lyase AlyA5 obtained from Zobellia galactanivorans, TAPL7A was identified as a new polysaccharide lyases family 7 (PL7) alginate lyase. TAPL7A has broad substrate tolerance with specific activities of 4186.1 U/mg, 2494.8 U/mg, 2314.9 U/mg for polyM, polyG, and sodium alginate, respectively. Biochemical characterization of TAPL7A showed optimal activity at 15 °C, pH 8.0. Interestingly, TAPL7A exhibits both extreme psychrophilic and cold tolerance, which other cold-adapted alginate lyase do not possess. In a wide range of 5–30 °C, the activity can reach 80–100%, and the residual activity of more than 70% can still be maintained after 1 h of incubation. Product analysis showed that TAPL7A adopts a hybrid endo/exo-mode on all three substrates. FPLC and ESI-MS confirmed that the final products of TAPL7A are oligosaccharides with degrees of polymerization (Dps) of 1–2. This study provides excellent alginate lyase candidates for low-temperature environmental applications in food, agriculture, medicine and other industries.
Collapse
|
11
|
Lu S, Na K, Wei J, Zhang L, Guo X. Alginate oligosaccharides: The structure-function relationships and the directional preparation for application. Carbohydr Polym 2022; 284:119225. [PMID: 35287920 DOI: 10.1016/j.carbpol.2022.119225] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/02/2023]
Abstract
Alginate oligosaccharides (AOS) are degradation products of alginate extracted from brown algae. With low molecular weight, high water solubility, and good biological activity, AOS present anti-inflammatory, antimicrobial, antioxidant, and antitumor properties. They also exert growth-promoting effects in animals and plants. Three types of AOS, mannuronate oligosaccharides (MAOS), guluronate oligosaccharides (GAOS), and heterozygous mannuronate and guluronate oligosaccharides (HAOS), can be produced from alginate by enzymatic hydrolysis. Thus far, most studies on the applications and biological activities of AOS have been based mainly on a hybrid form of HAOS. To improve the directional production of AOS for practical applications, systematic studies on the structures and related biological activities of AOS are needed. This review provides a summary of current understanding of structure-function relationships and advances in the production of AOS. The current challenges and opportunities in the application of AOS is suggested to guide the precise application of AOS in practice.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Kai Na
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Jiani Wei
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China.
| |
Collapse
|
12
|
Tang L, Bao M, Wang Y, Fu Z, Han F, Yu W. Effects of Module Truncation of a New Alginate Lyase VxAly7C from Marine Vibrio xiamenensis QY104 on Biochemical Characteristics and Product Distribution. Int J Mol Sci 2022; 23:ijms23094795. [PMID: 35563187 PMCID: PMC9102848 DOI: 10.3390/ijms23094795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alginate lyase has received extensive attention as an important tool for oligosaccharide preparation, pharmaceutical production, and energy biotransformation. Noncatalytic module carbohydrate-binding modules (CBM) have a major impact on the function of alginate lyases. Although the effects of two different families of CBMs on enzyme characteristics have been reported, the effect of two combined CBM32s on enzyme function has not been elucidated. Herein, we cloned and expressed a new multimodular alginate lyase, VxAly7C, from Vibrioxiamenensis QY104, consisting of two CBM32s at N-terminus and a polysaccharide lyase family 7 (PL7) at C-terminus. To explore the function of CBM32s in VxAly7C, full-length (VxAly7C-FL) and two truncated mutants, VxAly7C-TM1 (with the first CBM32 deleted) and VxAly7C-TM2 (with both CBM32s deleted), were characterized. The catalytic efficiency of recombinant VxAly7C-TM2 was 1.82 and 4.25 times higher than that of VxAly7C-TM1 and VxAly7C-FL, respectively, indicating that CBM32s had an antagonistic effect. However, CBM32s improved the temperature stability, the adaptability in an alkaline environment, and the preference for polyG. Moreover, CBM32s contributed to the production of tri- and tetrasaccharides, significantly affecting the end-product distribution. This study advances the understanding of module function and provides a reference for broader enzymatic applications and further enzymatic improvement and assembly.
Collapse
Affiliation(s)
- Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Bao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Ying Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Zheng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Correspondence: (F.H.); (W.Y.); Tel.: +86-532-82032067 (F.H.); +86-532-82031680 (W.Y.)
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Correspondence: (F.H.); (W.Y.); Tel.: +86-532-82032067 (F.H.); +86-532-82031680 (W.Y.)
| |
Collapse
|
13
|
Sun XK, Gong Y, Shang DD, Liu BT, Du ZJ, Chen GJ. Degradation of Alginate by a Newly Isolated Marine Bacterium Agarivorans sp. B2Z047. Mar Drugs 2022; 20:254. [PMID: 35447927 PMCID: PMC9029943 DOI: 10.3390/md20040254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022] Open
Abstract
Alginate is the main component of brown algae, which is an important primary production in marine ecosystems and represents a huge marine biomass. The efficient utilization of alginate depends on alginate lyases to catalyze the degradation, and remains to be further explored. In this study, 354 strains were isolated from the gut of adult abalones, which mainly feed on brown algae. Among them, 100 alginate-degrading strains were gained and the majority belonged to the Gammaproteobacteria, followed by the Bacteroidetes and Alphaproteobacteria. A marine bacterium, Agarivorans sp. B2Z047, had the strongest degradation ability of alginate with the largest degradation circle and the highest enzyme activity. The optimal alginate lyase production medium of strain B2Z047 was determined as 1.1% sodium alginate, 0.3% yeast extract, 1% NaCl, and 0.1% MgSO4 in artificial seawater (pH 7.0). Cells of strain B2Z047 were Gram-stain-negative, aerobic, motile by flagella, short rod-shaped, and approximately 0.7-0.9 µm width and 1.2-1.9 µm length. The optimal growth conditions were determined to be at 30 °C, pH 7.0-8.0, and in 3% (w/v) NaCl. A total of 12 potential alginate lyase genes were identified through whole genome sequencing and prediction, which belonged to polysaccharide lyase family 6, 7, 17, and 38 (PL6, PL7, PL17, and PL38, respectively). Furthermore, the degradation products of nine alginate lyases were detected, among which Aly38A was the first alginate lyase belonging to the PL38 family that has been found to degrade alginate. The combination of alginate lyases functioning in the alginate-degrading process was further demonstrated by the growth curve and alginate lyase production of strain B2Z047 cultivated with or without sodium alginate, as well as the content changes of total sugar and reducing sugar and the transcript levels of alginate lyase genes. A simplified model was proposed to explain the alginate utilization process of Agarivorans sp. B2Z047.
Collapse
Affiliation(s)
- Xun-Ke Sun
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
| | - Ya Gong
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Dan-Dan Shang
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
| | - Bang-Tao Liu
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guan-Jun Chen
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
14
|
Tang L, Guo E, Zhang L, Wang Y, Gao S, Bao M, Han F, Yu W. The Function of CBM32 in Alginate Lyase VxAly7B on the Activity on Both Soluble Sodium Alginate and Alginate Gel. Front Microbiol 2022; 12:798819. [PMID: 35069502 PMCID: PMC8776709 DOI: 10.3389/fmicb.2021.798819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Carbohydrate-binding modules (CBMs), as an important auxiliary module, play a key role in degrading soluble alginate by alginate lyase, but the function on alginate gel has not been elucidated. Recently, we reported alginate lyase VxAly7B containing a CBM32 and a polysaccharide lyase family 7 (PL7). To investigate the specific function of CBM32, we characterized the full-length alginate lyase VxAly7B (VxAly7B-FL) and truncated mutants VxAly7B-CM (PL7) and VxAly7B-CBM (CBM32). Both VxAly7B-FL and native VxAly7B can spontaneously cleavage between CBM32 and PL7. The substrate-binding capacity and activity of VxAly7B-CM to soluble alginate were 0.86- and 1.97-fold those of VxAly7B-FL, respectively. Moreover, CBM32 could accelerate the expansion and cleavage of alginate gel beads, and the degradation rate of VxAly7B-FL to alginate gel beads was threefold that of VxAly7B-CM. Results showed that CBM32 is not conducive to the degradation of soluble alginate by VxAly7B but is helpful for binding and degradation of insoluble alginate gel. This study provides new insights into the function of CBM32 on alginate gel, which may inspire the application strategy of CBMs in insoluble substrates.
Collapse
Affiliation(s)
- Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Enwen Guo
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Bao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Liu L, Wang Z, Zheng Z, Li Z, Ji X, Cong H, Wang H. Secretory Expression of an Alkaline Alginate Lyase With Heat Recovery Property in Yarrowia lipolytica. Front Microbiol 2021; 12:710533. [PMID: 34434178 PMCID: PMC8381381 DOI: 10.3389/fmicb.2021.710533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022] Open
Abstract
Alginate lyase possesses wide application prospects for the degradation of brown algae and preparation of alginate oligosaccharides, and its degradation products display a variety of biological activities. Although many enzymes of this type have been reported, alginate lyases with unique properties are still relatively rare. In the present work, an alginate lyase abbreviated as Alyw203 has been cloned from Vibrio sp. W2 and expressed in food-grade Yarrowia lipolytica. The Alyw203 gene consists of an open reading frame (ORF) of 1,566 bp containing 521 amino acids, of which the first 17 amino acids are considered signal peptides, corresponding to secretory features. The peak activity of the current enzyme appears at 45°C with a molecular weight of approximately 57.0 kDa. Interestingly, Alyw203 exhibits unique heat recovery performance, returning above 90% of its initial activity in the subsequent incubation for 20 min at 10°C, which is conducive to the recovery of current enzymes at low-temperature conditions. Meanwhile, the highest activity is obtained under alkaline conditions of pH 10.0, showing outstanding pH stability. Additionally, as an alginate lyase independent of NaCl and resistant to metal ions, Alyw203 is highly active in various ionic environments. Moreover, the hydrolyzates of present enzymes are mainly concentrated in the oligosaccharides of DP1–DP2, displaying perfect product specificity. The alkali suitability, heat recovery performance, and high oligosaccharide yield of Alyw203 make it a potential candidate for industrial production of the monosaccharide and disaccharide.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhipeng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhihong Zheng
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Ze Li
- College of Advanced Agricultural Sciences, Linyi Vocational University of Science and Technology, Linyi, China
| | - Xiaofeng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haihua Cong
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Haiying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
16
|
Meng Q, Zhou L, Hassanin HA, Jiang B, Liu Y, Chen J, Zhang T. A new role of family 32 carbohydrate binding module in alginate lyase from Vibrio natriegens SK42.001 in altering its catalytic activity, thermostability and product distribution. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
A novel fungal metal-dependent α-L-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity. Sci Rep 2021; 11:10961. [PMID: 34040092 PMCID: PMC8155123 DOI: 10.1038/s41598-021-90490-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Trichoderma genus fungi present great potential for the production of carbohydrate-active enzymes (CAZYmes), including glycoside hydrolase (GH) family members. From a renewability perspective, CAZYmes can be biotechnologically exploited to convert plant biomass into free sugars for the production of advanced biofuels and other high-value chemicals. GH54 is an attractive enzyme family for biotechnological applications because many GH54 enzymes are bifunctional. Thus, GH54 enzymes are interesting targets in the search for new enzymes for use in industrial processes such as plant biomass conversion. Herein, a novel metal-dependent GH54 arabinofuranosidase (ThABF) from the cellulolytic fungus Trichoderma harzianum was identified and biochemically characterized. Initial in silico searches were performed to identify the GH54 sequence. Next, the gene was cloned and heterologously overexpressed in Escherichia coli. The recombinant protein was purified, and the enzyme's biochemical and biophysical properties were assessed. GH54 members show wide functional diversity and specifically remove plant cell substitutions including arabinose and galactose in the presence of a metallic cofactor. Plant cell wall substitution has a major impact on lignocellulosic substrate conversion into high-value chemicals. These results expand the known functional diversity of the GH54 family, showing the potential of a novel arabinofuranosidase for plant biomass degradation.
Collapse
|
18
|
Expression and Characterization of a Cold-Adapted Alginate Lyase with Exo/Endo-Type Activity from a Novel Marine Bacterium Alteromonas portus HB161718 T. Mar Drugs 2021; 19:md19030155. [PMID: 33802659 PMCID: PMC8002439 DOI: 10.3390/md19030155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
The alginate lyases have unique advantages in the preparation of alginate oligosaccharides and processing of brown algae. Herein, a gene alg2951 encoding a PL7 family alginate lyase with exo/endo-type activity was cloned from a novel marine bacterium Alteromonas portus HB161718T and then expressed in Escherichia coli. The recombinant Alg2951 in the culture supernatant reached the activity of 63.6 U/mL, with a molecular weight of approximate 60 kDa. Alg2951 exhibited the maximum activity at 25 °C and pH 8.0, was relatively stable at temperatures lower than 30 °C, and showed a special preference to poly-guluronic acid (polyG) as well. Both NaCl and KCl had the most promotion effect on the enzyme activity of Alg2951 at 0.2 M, increasing by 21.6 and 19.1 times, respectively. The TCL (Thin Layer Chromatography) and ESI-MS (Electrospray Ionization Mass Spectrometry) analyses suggested that Alg2951 could catalyze the hydrolysis of sodium alginate to produce monosaccharides and trisaccharides. Furthermore, the enzymatic hydrolysates displayed good antioxidant activity by assays of the scavenging abilities towards radicals (hydroxyl and ABTS+) and the reducing power. Due to its cold-adapted and dual exo/endo-type properties, Alg2951 can be a potential enzymatic tool for industrial production.
Collapse
|
19
|
Hu F, Cao S, Li Q, Zhu B, Yao Z. Construction and biochemical characterization of a novel hybrid alginate lyase with high activity by module recombination to prepare alginate oligosaccharides. Int J Biol Macromol 2020; 166:1272-1279. [PMID: 33159942 DOI: 10.1016/j.ijbiomac.2020.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023]
Abstract
Alginate lyases are essential tools to prepare alginate oligosaccharides with various biological activities. However, alginate lyases with excellent properties such as high activity and good thermal stability are still in shortage. Therefore, it is crucial to exploit new alginate lyases with high activity and polysaccharide-degrading efficiency for alginate oligosaccharide preparation. Herein, we proposed to construct a novel hybrid alginate lyase with improved property by module recombination. The hybrid alginate lyase, designated as Aly7C, was successfully constructed by recombining the carbohydrate binding module (CBM) of Aly7A with the catalytic module of Aly7B. Interestingly, the hybrid enzyme Aly7C exhibited higher activity than the catalytic domain. Moreover, it could degrade sodium alginate, polyM and polyG into oligosaccharides with degrees of polymerization (Dps) 2-5, which exhibit perfect product specificity. This work provides a new insight into well-defined generation of alginate oligosaccharides with associated CBMs and enhances the understanding of functions of the modules.
Collapse
Affiliation(s)
- Fu Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
20
|
Characterization of a New Intracellular Alginate Lyase with Metal Ions-Tolerant and pH-Stable Properties. Mar Drugs 2020; 18:md18080416. [PMID: 32784864 PMCID: PMC7460510 DOI: 10.3390/md18080416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022] Open
Abstract
Alginate lyases play an important role in alginate oligosaccharides (AOS) preparation and brown seaweed processing. Many extracellular alginate lyases have been characterized to develop efficient degradation tools needed for industrial applications. However, few studies focusing on intracellular alginate lyases have been conducted. In this work, a novel intracellular alkaline alginate lyase Alyw202 from Vibrio sp. W2 was cloned, expressed and characterized. Secretory expression was performed in a food-grade host, Yarrowia lipolytica. Recombinant Alyw202 with a molecular weight of approximately 38.3 kDa exhibited the highest activity at 45 °C and more than 60% of the activity in a broad pH range of 3.0 to 10.0. Furthermore, Alyw202 showed remarkable metal ion-tolerance, NaCl independence and the capacity of degrading alginate into oligosaccharides of DP2-DP4. Due to the unique pH-stable and high salt-tolerant properties, Alyw202 has potential applications in the food and pharmaceutical industries.
Collapse
|
21
|
Mei X, Chang Y, Shen J, Zhang Y, Xue C. Expression and characterization of a novel alginate-binding protein: A promising tool for investigating alginate. Carbohydr Polym 2020; 246:116645. [PMID: 32747278 DOI: 10.1016/j.carbpol.2020.116645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Abstract
Alginate is a commercially important polysaccharide widely applied in various industries. Carbohydrate-binding proteins could be utilized as desirable tools in the investigation and further applications of polysaccharides. Few alginate-binding proteins have hitherto been characterized and reported. In the present study, a novel alginate-binding protein ABP_Wf, consisting of two "orphan" carbohydrate-binding modules, was cloned from a predicted alginate utilization locus of marine bacterium Wenyingzhuangia funcanilytica, and expressed in Escherichia coli. ABP_Wf exhibited a specific binding capacity to alginate, and the association constant (Ka) and affinity (KD) were 1.94 × 103 M-1s-1 and 1.16 × 10-6 M. It was confirmed that the binding capacity of ABP_Wf to alginate is attributed to its constituent CBM16 domain rather than the CBM44 domain. The potentials of ABP_Wf in the semi-quantitative detection and the in situ visualization of alginate were evaluated, which implied that ABP_Wf could be served as a promising tool for investigating alginate.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
22
|
Wang ZP, Cao M, Li B, Ji XF, Zhang XY, Zhang YQ, Wang HY. Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase. Mar Drugs 2020; 18:E189. [PMID: 32244721 PMCID: PMC7230187 DOI: 10.3390/md18040189] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cold-adapted alginate lyases have unique advantages for alginate oligosaccharide (AOS) preparation and brown seaweed processing. Robust and cold-adapted alginate lyases are urgently needed for industrial applications. In this study, a cold-adapted alginate lyase-producing strain Vibrio sp. W2 was screened. Then, the gene ALYW201 was cloned from Vibrio sp. W2 and expressed in a food-grade host, Yarrowia lipolytica. The secreted Alyw201 showed the activity of 64.2 U/mL, with a molecular weight of approximate 38.0 kDa, and a specific activity of 876.4 U/mg. Alyw201 performed the highest activity at 30 °C, and more than 80% activity at 25-40 °C. Furthermore, more than 70% of the activity was obtained in a broad pH range of 5.0-10.0. Alyw201 was also NaCl-independent and salt-tolerant. The degraded product was that of the oligosaccharides of DP (Degree of polymerization) 2-6. Due to its robustness and its unique pH-stable property, Alyw201 can be an efficient tool for industrial production.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Min Cao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Bing Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Xiao-Feng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Laboratory of Enzyme Engineering, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
| | - Xin-Yue Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Yue-Qi Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Laboratory of Enzyme Engineering, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
23
|
Elucidation of a Unique Pattern and the Role of Carbohydrate Binding Module of an Alginate Lyase. Mar Drugs 2019; 18:md18010032. [PMID: 31905894 PMCID: PMC7024192 DOI: 10.3390/md18010032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Alginate oligosaccharides with different degrees of polymerization (DPs) possess diverse physiological activities. Therefore, in recent years, increasing attention has been drawn to the use of enzymes for the preparation of alginate oligosaccharides for food and industrial applications. Previously, we identified and characterized a novel bifunctional alginate lyase Aly7A, which can specifically release trisaccharide from three different substrate types with a unique degradation pattern. Herein, we investigated its degradation pattern by modular truncation and molecular docking. The results suggested that Aly7A adopted a unique action mode towards different substrates with the substrate chain sliding into the binding pocket of the catalytic domain to position the next trisaccharide for cleavage. Deletion of the Aly7A carbohydrate binding module (CBM) domain resulted in a complex distribution of degradation products and no preference for trisaccharide formation, indicating that the CBM may act as a “controller” during the trisaccharide release process. This study further testifies CBM as a regulator of product distribution and provides new insights into well-defined generation of alginate oligosaccharides with associated CBMs.
Collapse
|
24
|
Zhang Z, Tang L, Bao M, Liu Z, Yu W, Han F. Functional Characterization of Carbohydrate-Binding Modules in a New Alginate Lyase, TsAly7B, from Thalassomonas sp. LD5. Mar Drugs 2019; 18:md18010025. [PMID: 31888109 PMCID: PMC7024181 DOI: 10.3390/md18010025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
Alginate lyases degrade alginate into oligosaccharides, of which the biological activities have vital roles in various fields. Some alginate lyases contain one or more carbohydrate-binding modules (CBMs), which assist the function of the catalytic modules. However, the precise function of CBMs in alginate lyases has yet to be fully elucidated. We have identified a new multi-domain alginate lyase, TsAly7B, in the marine bacterium Thalassomonas sp. LD5. This novel lyase contains an N-terminal CBM9, an internal CBM32, and a C-terminal polysaccharide lyase family 7 (PL7) catalytic module. To investigate the specific function of each of these CBMs, we expressed and characterized the full-length TsAly7B and three truncated mutants: TM1 (CBM32-PL7), TM2 (CBM9-PL7), and TM3 (PL7 catalytic module). CBM9 and CBM32 could enhance the degradation of alginate. Notably, the specific activity of TM2 was 7.6-fold higher than that of TM3. CBM32 enhanced the resistance of the catalytic module to high temperatures. In addition, a combination of CBM9 and CBM32 showed enhanced thermostability when incubated at 80 °C for 1 h. This is the first report that finds CBM9 can significantly improve the ability of enzyme degradation. Our findings provide new insight into the interrelationships of tandem CBMs and alginate lyases and other polysaccharide-degrading enzymes, which may inspire CBM fusion strategies.
Collapse
Affiliation(s)
- Zhelun Zhang
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Luyao Tang
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mengmeng Bao
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhigang Liu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (W.Y.); (F.H.); Tel.: +86-532-82032067 (F.H.)
| | - Feng Han
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (W.Y.); (F.H.); Tel.: +86-532-82032067 (F.H.)
| |
Collapse
|
25
|
Ji S, Dix SR, Aziz AA, Sedelnikova SE, Baker PJ, Rafferty JB, Bullough PA, Tzokov SB, Agirre J, Li FL, Rice DW. The molecular basis of endolytic activity of a multidomain alginate lyase from Defluviitalea phaphyphila, a representative of a new lyase family, PL39. J Biol Chem 2019; 294:18077-18091. [PMID: 31624143 DOI: 10.1074/jbc.ra119.010716] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Alginate is a polymer containing two uronic acid epimers, β-d-mannuronate (M) and α-l-guluronate (G), and is a major component of brown seaweed that is depolymerized by alginate lyases. These enzymes have diverse specificity, cleaving the chain with endo- or exotype activity and with differential selectivity for the sequence of M or G at the cleavage site. Dp0100 is a 201-kDa multimodular, broad-specificity endotype alginate lyase from the marine thermophile Defluviitalea phaphyphila, which uses brown algae as a carbon source, converting it to ethanol, and bioinformatics analysis suggested that its catalytic domain represents a new polysaccharide lyase family, PL39. The structure of the Dp0100 catalytic domain, determined at 2.07 Å resolution, revealed that it comprises three regions strongly resembling those of the exotype lyase families PL15 and PL17. The conservation of key catalytic histidine and tyrosine residues belonging to the latter suggests these enzymes share mechanistic similarities. A complex of Dp0100 with a pentasaccharide, M5, showed that the oligosaccharide is located in subsites -2, -1, +1, +2, and +3 in a long, deep canyon open at both ends, explaining the endotype activity of this lyase. This contrasted with the hindered binding sites of the exotype enzymes, which are blocked such that only one sugar moiety can be accommodated at the -1 position in the catalytic site. The biochemical and structural analyses of Dp0100, the first for this new class of endotype alginate lyases, have furthered our understanding of the structure-function and evolutionary relationships within this important class of enzymes.
Collapse
Affiliation(s)
- Shiqi Ji
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101 Qingdao, China
| | - Samuel R Dix
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Adli A Aziz
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Svetlana E Sedelnikova
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Patrick J Baker
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - John B Rafferty
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Per A Bullough
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Svetomir B Tzokov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington YO10 5DD, York, United Kingdom
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101 Qingdao, China
| | - David W Rice
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom.
| |
Collapse
|
26
|
Huang G, Wen S, Liao S, Wang Q, Pan S, Zhang R, Lei F, Liao W, Feng J, Huang S. Characterization of a bifunctional alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2. Biotechnol Lett 2019; 41:1187-1200. [PMID: 31418101 PMCID: PMC6742608 DOI: 10.1007/s10529-019-02722-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/08/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Bifunctional alginate lyase can efficiently saccharify alginate biomass and prepare functional oligosaccharides of alginate. RESULTS A new BP-2 strain that produces alginate lyase was screened and identified from rotted Sargassum. A new alginate lyase, Alg17B, belonging to the polysaccharide lyase family 17, was isolated and purified from BP-2 fermentation broth by freeze-drying, dialysis, and ion exchange chromatography. The enzymatic properties of the purified lyase were investigated. The molecular weight of Alg17B was approximately 77 kDa, its optimum reaction temperature was 40-45 °C, and its optimum reaction pH was 7.5-8.0. The enzyme was relatively stable at pH 7.0-8.0, with a temperature range of 25-35 °C, and the specific activity of the purified enzyme reached 4036 U/mg. A low Na+ concentration stimulated Alg17B enzyme activity, but Ca2+, Zn2+, and other metal ions inhibited it. Substrate specificity analysis, thin-layer chromatography, and mass spectrometry showed that Alg17B is an alginate lyase that catalyses the hydrolysis of sodium alginate, polymannuronic acid (polyM) and polyguluronic acid to produce monosaccharides and low molecular weight oligosaccharides. Alg17B is also bifunctional, exhibiting both endolytic and exolytic activities toward alginate, and has a wide substrate utilization range with a preference for polyM. CONCLUSIONS Alg17B can be used to saccharify the main carbohydrate, alginate, in the ethanolic production of brown algae fuel as well as in preparing and researching oligosaccharides.
Collapse
Affiliation(s)
- Guiyuan Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Shunhua Wen
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
- Research and Development Department, Xiamen Innodx Biotech Co. Ltd, Xiamen, China
| | - Siming Liao
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Nanning, China
| | - Qiaozhen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Shihan Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Rongcan Zhang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Fu Lei
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Wei Liao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
- The Food and Biotechnology, Guangxi Vocational and Technical College, Nanning, China
| | - Jie Feng
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
27
|
The Characterization and Modification of a Novel Bifunctional and Robust Alginate Lyase Derived from Marinimicrobium sp. H1. Mar Drugs 2019; 17:md17100545. [PMID: 31547564 PMCID: PMC6835848 DOI: 10.3390/md17100545] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Alginase lyase is an important enzyme for the preparation of alginate oligosaccharides (AOS), that possess special biological activities and is widely used in various fields, such as medicine, food, and chemical industry. In this study, a novel bifunctional alginate lyase (AlgH) belonging to the PL7 family was screened and characterized. The AlgH exhibited the highest activity at 45 °C and pH 10.0, and was an alkaline enzyme that was stable at pH 6.0–10.0. The enzyme showed no significant dependence on metal ions, and exhibited unchanged activity at high concentration of NaCl. To determine the function of non-catalytic domains in the multi-domain enzyme, the recombinant AlgH-I containing only the catalysis domain and AlgH-II containing the catalysis domain and the carbohydrate binding module (CBM) domain were constructed and characterized. The results showed that the activity and thermostability of the reconstructed enzymes were significantly improved by deletion of the F5/8 type C domain. On the other hand, the substrate specificity and the mode of action of the reconstructed enzymes showed no change. Alginate could be completely degraded by the full-length and modified enzymes, and the main end-products were alginate disaccharide, trisaccharide, and tetrasaccharide. Due to the thermo and pH-stability, salt-tolerance, and bifunctionality, the modified alginate lyase was a robust enzyme which could be applied in industrial production of AOS.
Collapse
|
28
|
Kundu S. Insights into the mechanism(s) of digestion of crystalline cellulose by plant class C GH9 endoglucanases. J Mol Model 2019; 25:240. [PMID: 31338614 PMCID: PMC7385011 DOI: 10.1007/s00894-019-4133-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/11/2019] [Indexed: 02/03/2023]
Abstract
Biofuels such as γ-valerolactone, bioethanol, and biodiesel are derived from potentially fermentable cellulose and vegetable oils. Plant class C GH9 endoglucanases are CBM49-encompassing hydrolases that cleave the β (1 → 4) glycosidic linkage of contiguous D-glucopyranose residues of crystalline cellulose. Here, I analyse 3D-homology models of characterised and putative class C enzymes to glean insights into the contribution of the GH9, linker, and CBM49 to the mechanism(s) of crystalline cellulose digestion. Crystalline cellulose may be accommodated in a surface groove which is imperfectly bounded by the GH9_CBM49, GH9_linker, and linker_CBM49 surfaces and thence digested in a solvent accessible subsurface cavity. The physical dimensions and distortions thereof, of the groove, are mediated in part by the bulky side chains of aromatic amino acids that comprise it and may also result in a strained geometry of the bound cellulose polymer. These data along with an almost complete absence of measurable cavities, along with poorly conserved, hydrophobic, and heterogeneous amino acid composition, increased atomic motion of the CBM49_linker junction, and docking experiements with ligands of lower degrees of polymerization suggests a modulatory rather than direct role for CBM49 in catalysis. Crystalline cellulose is the de facto substrate for CBM-containing plant and non-plant GH9 enzymes, a finding supported by exceptional sequence- and structural-homology. However, despite the implied similarity in general acid-base catalysis of crystalline cellulose, this study also highlights qualitative differences in substrate binding and glycosidic bond cleavage amongst class C members. Results presented may aid the development of novel plant-based GH9 endoglucanases that could extract and utilise potential fermentable carbohydrates from biomass. Crystalline cellulose digestion by plant class C GH9 endoglucanases - an in silico assessment of function. ![]()
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, Army College of Medical Sciences, Brar Square, Delhi Cantt., New Delhi, 110010, India.
| |
Collapse
|
29
|
Wang Y, Chen X, Bi X, Ren Y, Han Q, Zhou Y, Han Y, Yao R, Li S. Characterization of an Alkaline Alginate Lyase with pH-Stable and Thermo-Tolerance Property. Mar Drugs 2019; 17:md17050308. [PMID: 31137685 PMCID: PMC6562718 DOI: 10.3390/md17050308] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023] Open
Abstract
Alginate oligosaccharides (AOS) show versatile bioactivities. Although various alginate lyases have been characterized, enzymes with special characteristics are still rare. In this study, a polysaccharide lyase family 7 (PL7) alginate lyase-encoding gene, aly08, was cloned from the marine bacterium Vibrio sp. SY01 and expressed in Escherichia coli. The purified alginate lyase Aly08, with a molecular weight of 35 kDa, showed a specific activity of 841 U/mg at its optimal pH (pH 8.35) and temperature (45 °C). Aly08 showed good pH-stability, as it remained more than 80% of its initial activity in a wide pH range (4.0–10.0). Aly08 was also a thermo-tolerant enzyme that recovered 70.8% of its initial activity following heat shock treatment for 5 min. This study also demonstrated that Aly08 is a polyG-preferred enzyme. Furthermore, Aly08 degraded alginates into disaccharides and trisaccharides in an endo-manner. Its thermo-tolerance and pH-stable properties make Aly08 a good candidate for further applications.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Xuehong Chen
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Xiaolin Bi
- Department of Rehabilitation Medicine, Qingdao University, Qingdao 266071, China.
| | - Yining Ren
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Qi Han
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Yu Zhou
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Yantao Han
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Ruyong Yao
- Central Laboratory of Medicine, Qingdao University, Qingdao 266071, China.
| | - Shangyong Li
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
30
|
Hu F, Li Q, Zhu B, Ni F, Sun Y, Yao Z. Effects of module truncation on biochemical characteristics and products distribution of a new alginate lyase with two catalytic modules. Glycobiology 2019; 29:876-884. [DOI: 10.1093/glycob/cwz064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
In this work, we investigated the functions of structural modules within alginate lyase by truncating an endo-type alginate lyase into two successive catalytic modules. The effects of module deletion on biochemical characteristics and product distributions were further investigated. The N-terminal module (Aly7B-CDI) exhibited no activity toward alginate, polyM or polyG, but the C-terminal module (Aly7B-CDII) retained its activity. The full-length enzyme (Aly7B) and its truncated counterpart (Aly7B-CDII) had similar substrate specificities, but Aly7B-CDII had lower activity. Moreover, the activity of Aly7B was much higher than Aly7B-CDII at 30°C. Aly7B-CDII, however, possessed higher optimal pH and better pH stability than the full-length enzyme. The final degradation products for Aly7B were unsaturated di-, tri- and tetra-oligosaccharides, and those for Aly7B-CDII were unsaturated mono-, di-, tri-, tetra- and penta-oligosaccharides. Therefore, the potential impact of the noncatalytic module Aly7B-CDI on the catalytic module Aly7B-CDII was further elucidated by characterizing Aly7B and its truncations. These data contribute to the functional understanding of these differing modules.
Collapse
Affiliation(s)
- Fu Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fang Ni
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yun Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
31
|
Gao S, Zhang Z, Li S, Su H, Tang L, Tan Y, Yu W, Han F. Characterization of a new endo-type polysaccharide lyase (PL) family 6 alginate lyase with cold-adapted and metal ions-resisted property. Int J Biol Macromol 2018; 120:729-735. [PMID: 30170056 DOI: 10.1016/j.ijbiomac.2018.08.164] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
Abstract
Alginate lyase played an important role in brown algae degradation, and its enzymatic degradation products showed various biological activities. Although many alginate lyases have been characterized, the enzymes with special characterizations are still rather rare. In this study, a new alginate lyase gene, tsaly6A, has been cloned from marine bacterium Thalassomonas sp. LD5, and expressed in Escherichia coli. The deduced alginate lyase, TsAly6A, belonged to the polysaccharide lyase (PL) family 6 and showed the highest amino acid identity (63%) with an exo-type oligoalginate lyase AlyGC. However, this study showed that TsAly6A was an endo-type enzyme yielding alginate trisaccharides (64.5%) as the main products. Compared with other alginate lyases, TsAly6A showed high trisaccharide-yielding levels. Meanwhile, TsAly6A showed the specific activity of 15,960 U/μmol at its optimal pH (pH 8.0) and temperature (35 °C). In addition, TsAly6A was a cold-adapted, salt-activated and metal ions-resisted alginate lyase, which will enable it to perform high activity in the solution containing various ions. Its cold-adaptation, metal ions-tolerance and high trisaccharides yields make TsAly6A an excellent candidate for industrial applications.
Collapse
Affiliation(s)
- Shan Gao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Zhelun Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Shangyong Li
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Hang Su
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Luyao Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Yulong Tan
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Feng Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China.
| |
Collapse
|
32
|
Pei X, Chang Y, Shen J. Cloning, expression and characterization of an endo-acting bifunctional alginate lyase of marine bacterium Wenyingzhuangia fucanilytica. Protein Expr Purif 2018; 154:44-51. [PMID: 30248453 DOI: 10.1016/j.pep.2018.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022]
Abstract
Alginate is the major constituent of brown algae and a commercially important polysaccharide with wide applications. Alginate lyases are desired tools for degrading alginate. Based on the genome mining of marine bacterium Wenyingzhuangia funcanilytica, an alginate lyase Aly7B_Wf was discovered, cloned and expressed in Escherichia coli. Aly7B_Wf belonged to subfamily 6 of PL7 family. Its biochemical properties, kinetic constants, substrate specificity and degradation pattern were clarified. The enzyme is an endo-acting bifunctional alginate lyase, and preferably cleaved polymannuronate (polyM). The Km (0.0237 ± 0.0004 μM, 0.0105 ± 0.0002 mg/mL) and kcat/Km (1180.65 ± 19.81 μM-1 s-1, 2654.34 ± 44.54 mg-1 ml s-1) indicated relatively high substrate-binding affinity and catalysis efficiency of Aly7B_Wf. By using mass spectrometry, final products of alginate degraded by Aly7B_Wf were identified as alginate hexasaccharide to disaccharide, and final products of polyguluronate (polyG) and polyM were confirmed as tetrasaccharide to disaccharide. The most predominant oligosaccharide in the final products of polyG and polyM was trisaccharide and disaccharide respectively. The broad substrate specificity, endo-acting degradation pattern and high catalysis efficiency suggested that Aly7B_Wf could be utilizied as a potential tool for tailoring the size of alginate and preparing alginate oligosaccharides.
Collapse
Affiliation(s)
- Xiaojie Pei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
33
|
Yagi H, Fujise A, Itabashi N, Ohshiro T. Characterization of a novel endo-type alginate lyase derived from Shewanella sp. YH1. J Biochem 2018; 163:341-350. [PMID: 29319800 DOI: 10.1093/jb/mvy001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Alginate, which is an anionic polysaccharide, is widely distributed in the cell wall of brown algae. Alginate and the products of its degradation (oligosaccharides) are used in stabilizers, thickeners and gelling agents, especially in the food industry. The degradation of alginate generally involves a combination of several alginate lyases (exo-type, endo-type and oligoalginate lyase). Enhancing the efficiency of the production of alginate degradation products may require the identification of novel alginate lyases with unique characteristics. In this study, we isolated an alginate-utilizing bacterium, Shewanella sp. YH1, from seawater collected off the coast of Tottori prefecture, Japan. The detected novel alginate lyase was named AlgSI-PL7, and was classified in polysaccharide lyase family 7. The enzyme was purified from Shewanella sp. YH1 and a recombinant AlgSI-PL7 was produced in Escherichia coli. The optimal temperature and pH for enzyme activity were around 45°C and 8, respectively. Interestingly, we observed that AlgSI-PL7 was not thermotolerant, but could refold to its active form following an almost complete denaturation at approximately 60°C. Moreover, the degradation of alginate by AlgSI-PL7 produced two to five oligosaccharides, implying this enzyme was an endo-type lyase. Our findings suggest that AlgSI-PL7 may be useful as an industrial enzyme.
Collapse
Affiliation(s)
- Hisashi Yagi
- Center for Research on Green Sustainable Chemistry
| | - Asako Fujise
- Department of Chemistry and Biotechnology, Graduate School of Engineering
| | - Narumi Itabashi
- Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori, Japan
| | - Takashi Ohshiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering
| |
Collapse
|
34
|
AlgM4: A New Salt-Activated Alginate Lyase of the PL7 Family with Endolytic Activity. Mar Drugs 2018; 16:md16040120. [PMID: 29642383 PMCID: PMC5923407 DOI: 10.3390/md16040120] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/17/2022] Open
Abstract
Alginate lyases are a group of enzymes that catalyze the depolymerization of alginates into oligosaccharides or monosaccharides. These enzymes have been widely used for a variety of purposes, such as producing bioactive oligosaccharides, controlling the rheological properties of polysaccharides, and performing structural analyses of polysaccharides. The algM4 gene of the marine bacterium Vibrio weizhoudaoensis M0101 encodes an alginate lyase that belongs to the polysaccharide lyase family 7 (PL7). In this study, the kinetic constants Vmax (maximum reaction rate) and Km (Michaelis constant) of AlgM4 activity were determined as 2.75 nmol/s and 2.72 mg/mL, respectively. The optimum temperature for AlgM4 activity was 30 °C, and at 70 °C, AlgM4 activity dropped to 11% of the maximum observed activity. The optimum pH for AlgM4 activity was 8.5, and AlgM4 was completely inactive at pH 11. The addition of 1 mol/L NaCl resulted in a more than sevenfold increase in the relative activity of AlgM4. The secondary structure of AlgM4 was altered in the presence of NaCl, which caused the α-helical content to decrease from 12.4 to 10.8% and the β-sheet content to decrease by 1.7%. In addition, NaCl enhanced the thermal stability of AlgM4 and increased the midpoint of thermal denaturation (Tm) by 4.9 °C. AlgM4 exhibited an ability to degrade sodium alginate, poly-mannuronic acid (polyM), and poly-guluronic acid (polyG), resulting in the production of oligosaccharides with a degree of polymerization (DP) of 2–9. AlgM4 possessed broader substrate, indicating that it is a bifunctional alginate lyase. Thus, AlgM4 is a novel salt-activated and bifunctional alginate lyase of the PL7 family with endolytic activity.
Collapse
|
35
|
Abstract
Alginate oligosaccharides with different bioactivities can be prepared through the specific degradation of alginate by alginate lyases. Therefore, alginate lyases that can be used to degrade alginate under mild conditions have recently attracted public attention. Although various types of alginate lyases have been discovered and characterized, few can be used in industrial production. In this study, AlgA, a novel alginate lyase with high specific activity, was purified from the marine bacterium Bacillus sp. Alg07. AlgA had a molecular weight of approximately 60 kDa, an optimal temperature of 40 °C, and an optimal pH of 7.5. The activity of AlgA was dependent on sodium chloride and could be considerably enhanced by Mg2+ or Ca2+. Under optimal conditions, the activity of AlgA reached up to 8306.7 U/mg, which is the highest activity recorded for alginate lyases. Moreover, the enzyme was stable over a broad pH range (5.0–10.0), and its activity negligibly changed after 24 h of incubation at 40 °C. AlgA exhibited high activity and affinity toward poly-β-d-mannuronate (polyM). These characteristics suggested that AlgA is an endolytic polyM-specific alginate lyase (EC 4.2.2.3). The products of alginate and polyM degradation by AlgA were purified and identified through fast protein liquid chromatography and electrospray ionization mass spectrometry, which revealed that AlgA mainly produced disaccharides, trisaccharides, and tetrasaccharide from alginate and disaccharides and trisaccharides from polyM. Therefore, the novel lysate AlgA has potential applications in the production of mannuronic oligosaccharides and poly-α-l-guluronate blocks from alginate.
Collapse
|
36
|
Biochemical Characteristics and Variable Alginate-Degrading Modes of a Novel Bifunctional Endolytic Alginate Lyase. Appl Environ Microbiol 2017; 83:AEM.01608-17. [PMID: 28939598 PMCID: PMC5691422 DOI: 10.1128/aem.01608-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022] Open
Abstract
Bifunctional alginate lyases can efficiently degrade alginate comprised of mannuronate (M) and guluronate (G), but their substrate-degrading modes have not been thoroughly elucidated to date. In this study, we present Aly1 as a novel bifunctional endolytic alginate lyase of the genus Flammeovirga. The recombinant enzyme showed optimal activity at 50°C and pH 6.0. The enzyme produced unsaturated disaccharide (UDP2) and trisaccharide fractions as the final main alginate digests. Primary substrate preference tests and further structure identification of various size-defined final oligosaccharide products demonstrated that Aly1 is a bifunctional alginate lyase and prefers G to M. Tetrasaccharide-size fractions are the smallest substrates, and M, G, and UDP2 fractions are the minimal product types. Remarkably, Aly1 can vary its substrate-degrading modes in accordance with the terminus types, molecular sizes, and M/G contents of alginate substrates, producing a series of small size-defined saturated oligosaccharide products from the nonreducing ends of single or different saturated sugar chains and yielding unsaturated products in distinct but restricted patterns. The action mode changes can be partially inhibited by fluorescent labeling at the reducing ends of oligosaccharide substrates. Deletion of the noncatalytic region (NCR) of Aly1 caused weak changes of biochemical characteristics but increased the degradation proportions of small size-defined saturated M-enriched oligosaccharide substrates and unsaturated tetrasaccharide fractions without any size changes of degradable oligosaccharides, thereby enhancing the M preference and enzyme activity. Therefore, our results provided insight into the variable action mode of a novel bifunctional endolytic alginate lyase to inform accurate enzyme use. IMPORTANCE The elucidated endolytic alginate lyases usually degrade substrates into various size-defined unsaturated oligosaccharide products (≥UDP2), and exolytic enzymes yield primarily unsaturated monosaccharide products. However, it is poorly understood whether endolytic enzymes can produce monosaccharide product types when degrading alginate. In this study, we demonstrated that Aly1, a bifunctional alginate lyase of Flammeovirga sp. strain MY04, is endolytic and monosaccharide producing. Using various sugar chains as testing substrates, we also proved that key factors causing Aly1's action mode changes are the terminus types, molecular sizes, and M/G contents of substrates. Furthermore, the NCR fragment's effects on Aly1's biochemical characteristics and alginate-degrading modes and corresponding mechanisms were discovered by gene truncation and enzyme comparison. In summary, this study provides a novel bifunctional endolytic tool and a variable action mode for accurate use in alginate degradation.
Collapse
|
37
|
Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles 2017; 22:1-12. [PMID: 29110088 DOI: 10.1007/s00792-017-0974-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.
Collapse
|
38
|
Li S, Wang L, Hao J, Xing M, Sun J, Sun M. Purification and Characterization of a New Alginate Lyase from Marine Bacterium Vibrio sp. SY08. Mar Drugs 2016; 15:md15010001. [PMID: 28025527 PMCID: PMC5295221 DOI: 10.3390/md15010001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Unsaturated alginate disaccharides (UADs), enzymatically derived from the degradation of alginate polymers, are considered powerful antioxidants. In this study, a new high UAD-producing alginate lyase, AlySY08, has been purified from the marine bacterium Vibrio sp. SY08. AlySY08, with a molecular weight of about 33 kDa and a specific activity of 1070.2 U/mg, showed the highest activity at 40 °C in phosphate buffer at pH 7.6. The enzyme was stable over a broad pH range (6.0–9.0) and retained about 75% activity after incubation at 40 °C for 2 h. Moreover, the enzyme was active in the absence of salt ions and its activity was enhanced by the addition of NaCl and KCl. AlySY08 resulted in an endo-type alginate lyase that degrades both polyM and polyG blocks, yielding UADs as the main product (81.4% of total products). All these features made AlySY08 a promising candidate for industrial applications in the production of antioxidants from alginate polysaccharides.
Collapse
Affiliation(s)
- Shangyong Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Linna Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Mengxin Xing
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Jingjing Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Mi Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
39
|
A New Member of Family 11 Polysaccharide Lyase, Rhamnogalacturonan Lyase (CtRGLf) from Clostridium thermocellum. Mol Biotechnol 2016; 58:232-40. [DOI: 10.1007/s12033-016-9921-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Kundu S, Sharma R. In silico Identification and Taxonomic Distribution of Plant Class C GH9 Endoglucanases. FRONTIERS IN PLANT SCIENCE 2016; 7:1185. [PMID: 27570528 PMCID: PMC4981690 DOI: 10.3389/fpls.2016.01185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/22/2016] [Indexed: 05/08/2023]
Abstract
The glycoside hydrolase 9 superfamily, mainly comprising the endoglucanases, is represented in all three domains of life. The current division of GH9 enzymes, into three subclasses, namely A, B, and C, is centered on parameters derived from sequence information alone. However, this classification is ambiguous, and is limited by the paralogous ancestry of classes B and C endoglucanases, and paucity of biochemical and structural data. Here, we extend this classification schema to putative GH9 endoglucanases present in green plants, with an emphasis on identifying novel members of the class C subset. These enzymes cleave the β(1 → 4) linkage between non-terminal adjacent D-glucopyranose residues, in both, amorphous and crystalline regions of cellulose. We utilized non redundant plant GH9 enzymes with characterized molecular data, as the training set to construct Hidden Markov Models (HMMs) and train an Artificial Neural Network (ANN). The parameters that were used for predicting dominant enzyme function, were derived from this training set, and subsequently refined on 147 sequences with available expression data. Our knowledge-based approach, can ascribe differential endoglucanase activity (A, B, or C) to a query sequence with high confidence, and was used to construct a local repository of class C GH9 endoglucanases (GH9C = 241) from 32 sequenced green plants.
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, Dr. Baba Saheb Ambedkar Medical College & HospitalNew Delhi, India
- Mathematical and Computational Biology, Information Technology Research Academy, Media Lab AsiaNew Delhi, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew Delhi, India
- *Correspondence: Siddhartha Kundu
| | - Rita Sharma
- School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew Delhi, India
- Rita Sharma
| |
Collapse
|
41
|
Novel Alginate Lyase (Aly5) from a Polysaccharide-Degrading Marine Bacterium, Flammeovirga sp. Strain MY04: Effects of Module Truncation on Biochemical Characteristics, Alginate Degradation Patterns, and Oligosaccharide-Yielding Properties. Appl Environ Microbiol 2015; 82:364-74. [PMID: 26519393 DOI: 10.1128/aem.03022-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
Alginate lyases are important tools for oligosaccharide preparation, medical treatment, and energy bioconversion. Numerous alginate lyases have been elucidated. However, relatively little is known about their substrate degradation patterns and product-yielding properties, which is a limit to wider enzymatic applications and further enzyme improvements. Herein, we report the characterization and module truncation of Aly5, the first alginate lyase obtained from the polysaccharide-degrading bacterium Flammeovirga. Aly5 is a 566-amino-acid protein and belongs to a novel branch of the polysaccharide lyase 7 (PL7) superfamily. The protein rAly5 is an endolytic enzyme of alginate and associated oligosaccharides. It prefers guluronate (G) to mannuronate (M). Its smallest substrate is an unsaturated pentasaccharide, and its minimum product is an unsaturated disaccharide. The final alginate digests contain unsaturated oligosaccharides that generally range from disaccharides to heptasaccharides, with the tetrasaccharide fraction constituting the highest mass concentration. The disaccharide products are identified as ΔG units. While interestingly, the tri- and tetrasaccharide fractions each contain higher proportions of ΔG to ΔM ends, the larger final products contain only ΔM ends, which constitute a novel oligosaccharide-yielding property of guluronate lyases. The deletion of the noncatalytic region of Aly5 does not alter its M/G preference but significantly decreases the enzymatic activity and enzyme stability. Notably, the truncated protein accumulates large final oligosaccharide products but yields fewer small final products than Aly5, which are codetermined by its M/G preference to and size enlargement of degradable oligosaccharides. This study provides novel enzymatic properties and catalytic mechanisms of a guluronate lyase for potential uses and improvements.
Collapse
|