1
|
Kopping EJ, Benziger PT, Thanassi DG. TolC and EmrA1 contribute to Francisella novicida multidrug resistance and modulation of host cell death. J Bacteriol 2024; 206:e0024624. [PMID: 39194223 PMCID: PMC11411944 DOI: 10.1128/jb.00246-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Francisella spp. are Gram-negative, facultative intracellular pathogens. Francisella tularensis causes the human disease tularemia and is considered a biological threat agent due to its high infectivity and virulence. A central aspect of Francisella virulence is its ability to dampen host immune responses. We previously identified the outer membrane channel (OMC) protein TolC as a critical F. tularensis virulence factor required for suppression of apoptotic and proinflammatory responses during macrophage infection. TolC functions as part of multidrug efflux systems and the type I secretion pathway that exports bacterial effector proteins. In these systems, TolC forms tripartite complexes together with an inner membrane transporter and periplasmic membrane fusion protein (MFP). To advance understanding of TolC function in Francisella, we analyzed OMC and MFP homologs in Francisella novicida, a widely used model species that causes a tularemia-like disease in mice. In agreement with the previous F. tularensis studies, all three OMCs present in F. novicida contributed to multidrug resistance, but only TolC was important for suppressing macrophage cell death. In addition, we identified the EmrA1 MFP as important for resisting antimicrobial compounds and dampening host cell death. In contrast to results obtained with F. tularensis, the cell death triggered during infection with the F. novicida tolC and emrA1 mutants was dominated by pyroptosis rather than apoptosis. These data expand our understanding of TolC function in Francisella and underscore both conserved and differential aspects of F. novicida and F. tularensis. IMPORTANCE Francisella tularensis is a Gram-negative intracellular bacterial pathogen and causative agent of tularemia. We previously identified the outer membrane channel protein TolC as contributing to antimicrobial resistance and subversion of host responses by F. tularensis. To advance understanding of TolC function in Francisella and to identify components that might work together with TolC, we took advantage of a transposon mutant library in F. novicida, a model species that causes a tularemia-like disease in mice. Our findings identify TolC and the membrane fusion protein EmrA1 as important for both antimicrobial resistance and suppression of macrophage cell death. This study also revealed differences in cell death pathways triggered by F. novicida versus F. tularensis infection that may relate to differences in virulence.
Collapse
Affiliation(s)
- Erik J Kopping
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - P Todd Benziger
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - David G Thanassi
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Graham LA, Hansen T, Yang Y, Sherik M, Ye Q, Soares BP, Kinrade B, Guo S, Davies PL. Adhesin domains responsible for binding bacteria to surfaces they colonize project outwards from companion split domains. Proteins 2024; 92:933-945. [PMID: 38591850 DOI: 10.1002/prot.26689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Bacterial adhesins attach their hosts to surfaces that the bacteria will colonize. This surface adhesion occurs through specific ligand-binding domains located towards the distal end of the long adhesin molecules. However, recognizing which of the many adhesin domains are structural and which are ligand binding has been difficult up to now. Here we have used the protein structure modeling program AlphaFold2 to predict structures for these giant 0.2- to 1.5-megadalton proteins. Crystal structures previously solved for several adhesin regions are in good agreement with the models. Whereas most adhesin domains are linked in a linear fashion through their N- and C-terminal ends, ligand-binding domains can be recognized by budding out from a companion core domain so that their ligand-binding sites are projected away from the axis of the adhesin for maximal exposure to their targets. These companion domains are "split" in their continuity by projecting the ligand-binding domain outwards. The "split domains" are mostly β-sandwich extender modules, but other domains like a β-solenoid can serve the same function. Bioinformatic analyses of Gram-negative bacterial sequences revealed wide variety ligand-binding domains are used in their Repeats-in-Toxin adhesins. The ligands for many of these domains have yet to be identified but known ligands include various cell-surface glycans, proteins, and even ice. Recognizing the ligands to which the adhesins bind could lead to ways of blocking colonization by bacterial pathogens. Engineering different ligand-binding domains into an adhesin has the potential to change the surfaces to which bacteria bind.
Collapse
Affiliation(s)
- Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yanzhi Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mustafa Sherik
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Blake P Soares
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Brett Kinrade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Chen G, Wang H, Bumba L, Masin J, Sebo P, Li H. The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity. J Biol Chem 2023; 299:105150. [PMID: 37567473 PMCID: PMC10511787 DOI: 10.1016/j.jbc.2023.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Maphosa S, Moleleki LN, Motaung TE. Bacterial secretion system functions: evidence of interactions and downstream implications. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37083586 DOI: 10.1099/mic.0.001326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.
Collapse
Affiliation(s)
- Silindile Maphosa
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Lucy N Moleleki
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Thabiso E Motaung
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
5
|
Wangwiwatsin A, Kulwong S, Phetcharaburanin J, Namwat N, Klanrit P, Loilome W, Maleewong W, Reid AJ. Toward novel treatment against filariasis: Insight into genome-wide co-evolutionary analysis of filarial nematodes and Wolbachia. Front Microbiol 2023; 14:1052352. [PMID: 37032902 PMCID: PMC10073474 DOI: 10.3389/fmicb.2023.1052352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
Infectious diseases caused by filarial nematodes are major health problems for humans and animals globally. Current treatment using anti-helminthic drugs requires a long treatment period and is only effective against the microfilarial stage. Most species of filarial nematodes harbor a specific strain of Wolbachia bacteria, which are essential for the survival, development, and reproduction of the nematodes. This parasite-bacteria obligate symbiosis offers a new angle for the cure of filariasis. In this study, we utilized publicly available genome data and putative protein sequences from seven filarial nematode species and their symbiotic Wolbachia to screen for protein-protein interactions that could be a novel target against multiple filarial nematode species. Genome-wide in silico screening was performed to predict molecular interactions based on co-evolutionary signals. We identified over 8,000 pairs of gene families that show evidence of co-evolution based on high correlation score and low false discovery rate (FDR) between gene families and obtained a candidate list that may be keys in filarial nematode-Wolbachia interactions. Functional analysis was conducted on these top-scoring pairs, revealing biological processes related to various signaling processes, adult lifespan, developmental control, lipid and nucleotide metabolism, and RNA modification. Furthermore, network analysis of the top-scoring genes with multiple co-evolving pairs suggests candidate genes in both Wolbachia and the nematode that may play crucial roles at the center of multi-gene networks. A number of the top-scoring genes matched well to known drug targets, suggesting a promising drug-repurposing strategy that could be applicable against multiple filarial nematode species.
Collapse
Affiliation(s)
- Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Siriyakorn Kulwong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Adam J Reid
- Parasite Genomics Group, Wellcome Sanger Institute, Hinxton, United Kingdom
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Klonowska A, Ardley J, Moulin L, Zandberg J, Patrel D, Gollagher M, Marinova D, Reddy TBK, Varghese N, Huntemann M, Woyke T, Seshadri R, Ivanova N, Kyrpides N, Reeve W. Discovery of a novel filamentous prophage in the genome of the Mimosa pudica microsymbiont Cupriavidus taiwanensis STM 6018. Front Microbiol 2023; 14:1082107. [PMID: 36925474 PMCID: PMC10011098 DOI: 10.3389/fmicb.2023.1082107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Integrated virus genomes (prophages) are commonly found in sequenced bacterial genomes but have rarely been described in detail for rhizobial genomes. Cupriavidus taiwanensis STM 6018 is a rhizobial Betaproteobacteria strain that was isolated in 2006 from a root nodule of a Mimosa pudica host in French Guiana, South America. Here we describe features of the genome of STM 6018, focusing on the characterization of two different types of prophages that have been identified in its genome. The draft genome of STM 6018 is 6,553,639 bp, and consists of 80 scaffolds, containing 5,864 protein-coding genes and 61 RNA genes. STM 6018 contains all the nodulation and nitrogen fixation gene clusters common to symbiotic Cupriavidus species; sharing >99.97% bp identity homology to the nod/nif/noeM gene clusters from C. taiwanensis LMG19424T and "Cupriavidus neocalidonicus" STM 6070. The STM 6018 genome contains the genomes of two prophages: one complete Mu-like capsular phage and one filamentous phage, which integrates into a putative dif site. This is the first characterization of a filamentous phage found within the genome of a rhizobial strain. Further examination of sequenced rhizobial genomes identified filamentous prophage sequences in several Beta-rhizobial strains but not in any Alphaproteobacterial rhizobia.
Collapse
Affiliation(s)
- Agnieszka Klonowska
- Université de Montpellier, IRD, CIRAD, INRAE, Institut AgroPHIM Plant Health Institute, Montpellier, France
| | - Julie Ardley
- Centre for Crop and Food Innovation, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Lionel Moulin
- Université de Montpellier, IRD, CIRAD, INRAE, Institut AgroPHIM Plant Health Institute, Montpellier, France
| | - Jaco Zandberg
- Centre for Crop and Food Innovation, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Delphine Patrel
- Université de Montpellier, IRD, CIRAD, INRAE, Institut AgroPHIM Plant Health Institute, Montpellier, France
| | - Margaret Gollagher
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - Dora Marinova
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - T B K Reddy
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Neha Varghese
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rekha Seshadri
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Wayne Reeve
- Centre for Crop and Food Innovation, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
7
|
Wang C, Xiao Y, Wang Y, Liu Y, Yao Q, Zhu H. Comparative genomics and transcriptomics insight into myxobacterial metabolism potentials and multiple predatory strategies. Front Microbiol 2023; 14:1146523. [PMID: 37213496 PMCID: PMC10196010 DOI: 10.3389/fmicb.2023.1146523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Myxobacteria are part of the phylum Myxococcota, encompassing four orders. Most of them display complex lifestyles and broad predation profiles. However, metabolic potential and predation mechanisms of different myxobacteria remains poorly understood. Herein, we used comparative genomics and transcriptomics to analyze metabolic potentials and differentially expressed gene (DEG) profiles of Myxococcus xanthus monoculture (Mx) compared to coculture with Escherichia coli (MxE) and Micrococcus luteus (MxM) prey. The results showed that myxobacteria had conspicuous metabolic deficiencies, various protein secretion systems (PSSs) and the common type II secretion system (T2SS). RNA-seq data demonstrated that M. xanthus overexpressed the potential predation DEGs, particularly those encoding T2SS, the tight adherence (Tad) pilus, different secondary metabolites (myxochelin A/B, myxoprincomide, myxovirescin A1, geosmin and myxalamide), glycosyl transferases and peptidase during predation. Furthermore, the myxalamide biosynthesis gene clusters, two hypothetical gene clusters and one arginine biosynthesis clusters were highly differential expressed in MxE versus MxM. Additionally, homologue proteins of the Tad (kil) system and five secondary metabolites were in different obligate or facultative predators. Finally, we provided a working model for exhibiting multiple predatory strategies when M. xanthus prey on M. luteus and E. coli. These results might spur application-oriented research on the development of novel antibacterial strategies.
Collapse
Affiliation(s)
- Chunling Wang
- College of Life Science, Huizhou University, Huizhou, Guangdong, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yi Xiao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yong Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yumin Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, Guangdong, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- *Correspondence: Honghui Zhu,
| |
Collapse
|
8
|
The hemolysin A secretion system is a multi-engine pump containing three ABC transporters. Cell 2022; 185:3329-3340.e13. [DOI: 10.1016/j.cell.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
|
9
|
Pourhassan N. Z, Cui H, Khosa S, Davari MD, Jaeger K, Smits SHJ, Schwaneberg U, Schmitt L. Optimized Hemolysin Type 1 Secretion System in Escherichia coli by Directed Evolution of the Hly Enhancer Fragment and Including a Terminator Region. Chembiochem 2022; 23:e202100702. [PMID: 35062047 PMCID: PMC9306574 DOI: 10.1002/cbic.202100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Indexed: 11/26/2022]
Abstract
Type 1 secretion systems (T1SS) have a relatively simple architecture compared to other classes of secretion systems and therefore, are attractive to be optimized by protein engineering. Here, we report a KnowVolution campaign for the hemolysin (Hly) enhancer fragment, an untranslated region upstream of the hlyA gene, of the hemolysin T1SS of Escherichia coli to enhance its secretion efficiency. The best performing variant of the Hly enhancer fragment contained five nucleotide mutations at five positions (A30U, A36U, A54G, A81U, and A116U) resulted in a 2-fold increase in the secretion level of a model lipase fused to the secretion carrier HlyA1. Computational analysis suggested that altered affinity to the generated enhancer fragment towards the S1 ribosomal protein contributes to the enhanced secretion levels. Furthermore, we demonstrate that involving a native terminator region along with the generated Hly enhancer fragment increased the secretion levels of the Hly system up to 5-fold.
Collapse
Affiliation(s)
- Zohreh Pourhassan N.
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| | - Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052056AachenGermany
- Present address: Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-Champaign1206 West Gregory DriveUrbanaIl 61801USA
| | - Sakshi Khosa
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| | - Mehdi D. Davari
- Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryWeinberg 306120HalleGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University and Institute of Bio- and Geosciences IBG-1Biotechnology, Forschungszentrum Jülich GmbH52426JülichGermany
| | - Sander H. J. Smits
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052056AachenGermany
| | - Lutz Schmitt
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| |
Collapse
|
10
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
11
|
Chen Z, Zhao Z, Hui X, Zhang J, Hu Y, Chen R, Cai X, Hu Y, Wang Y. T1SEstacker: A Tri-Layer Stacking Model Effectively Predicts Bacterial Type 1 Secreted Proteins Based on C-Terminal Non-repeats-in-Toxin-Motif Sequence Features. Front Microbiol 2022; 12:813094. [PMID: 35211101 PMCID: PMC8861453 DOI: 10.3389/fmicb.2021.813094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Type 1 secretion systems play important roles in pathogenicity of Gram-negative bacteria. However, the substrate secretion mechanism remains largely unknown. In this research, we observed the sequence features of repeats-in-toxin (RTX) proteins, a major class of type 1 secreted effectors (T1SEs). We found striking non-RTX-motif amino acid composition patterns at the C termini, most typically exemplified by the enriched “[FLI][VAI]” at the most C-terminal two positions. Machine-learning models, including deep-learning ones, were trained using these sequence-based non-RTX-motif features and further combined into a tri-layer stacking model, T1SEstacker, which predicted the RTX proteins accurately, with a fivefold cross-validated sensitivity of ∼0.89 at the specificity of ∼0.94. Besides substrates with RTX motifs, T1SEstacker can also well distinguish non-RTX-motif T1SEs, further suggesting their potential existence of common secretion signals. T1SEstacker was applied to predict T1SEs from the genomes of representative Salmonella strains, and we found that both the number and composition of T1SEs varied among strains. The number of T1SEs is estimated to reach 100 or more in each strain, much larger than what we expected. In summary, we made comprehensive sequence analysis on the type 1 secreted RTX proteins, identified common sequence-based features at the C termini, and developed a stacking model that can predict type 1 secreted proteins accurately.
Collapse
Affiliation(s)
- Zewei Chen
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Ziyi Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Xinjie Hui
- Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junya Zhang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Yixue Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Runhong Chen
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuxia Cai
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Yueming Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Yejun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
12
|
Hermansen S, Linke D, Leo JC. Transmembrane β-barrel proteins of bacteria: From structure to function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:113-161. [PMID: 35034717 DOI: 10.1016/bs.apcsb.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of β-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel β-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the β-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on β-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Antimicrobial resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
13
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Frozen motion: how cryo-EM changes the way we look at ABC transporters. Trends Biochem Sci 2021; 47:136-148. [PMID: 34930672 DOI: 10.1016/j.tibs.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
ATP-binding cassette (ABC) transporters are widely present molecular machines that transfer substrates across the cell membrane. ABC transporters are involved in numerous physiological processes and are often clinical targets. Structural biology is fundamental to obtain the molecular details underlying ABC transporter function and suggest approaches to modulate it. Until recently, X-ray crystallography has been the only method capable of providing high-resolution structures of ABC transporters. However, modern cryo-electron microscopy (cryo-EM) opens entirely new ways of studying these dynamic membrane proteins. Cryo-EM enables analyses of targets that resist X-ray crystallography, challenging multicomponent complexes, and the exploration of conformational dynamics. These unique capacities have turned cryo-EM into the dominant technique for structural studies of membrane proteins, including ABC transporters.
Collapse
|
15
|
Zhu W, Hu L, Wang Y, Lv L, Wang H, Shi W, Zhu J, Lu H. A hemolysin secretion pathway-based novel secretory expression platform for efficient manufacturing of tag peptides and anti-microbial peptides in Escherichia coli. BIORESOUR BIOPROCESS 2021; 8:115. [PMID: 38650268 PMCID: PMC10992379 DOI: 10.1186/s40643-021-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Although Escherichia coli has been widely used for the expression of exogenous proteins, the secretory expression in this system is still a big obstacle. As one of the most important secretion pathways, hemolysin A (HlyA) system of E. coli can transport substrates directly from the cytoplasm to extracellular medium without the formation of any periplasmic intermediate, making it an ideal candidate for the development of the secretory production platform for exogenous proteins. RESULTS In this work, we developed a novel production platform, THHly, based on the HlyA secretion system, and explored its applications in the efficient preparation and quick detection of tag peptides and anti-microbial peptides. In this novel platform the signal sequence of HlyA is fused to the C-terminal of target peptide, with Tobacco Etch Virus (TEV) protease cleavage site and 6*His tag between them. Five tag peptides displayed good secretory properties in E. coli BL21 (DE3), among which T7 tag and S tag were obtained by two rounds of purification steps and TEV cleavage, and maintained their intrinsic immunogenicity. Furthermore, Cecropin A and Melittin, two different types of widely explored anti-microbial peptides, were produced likewise and verified to possess anti-microbial/anti-tumor bioactivities. No significant bacterial growth inhibition was observed during the fusion protein expression, indicating that the fusion form not only mediated the secretion but also decreased the toxicity of anti-microbial peptides (AMPs) to the host bacteria. To the best of our knowledge, this is the first report to achieve the secretory expression of these two AMPs in E. coli with considerable potential for manufacturing and industrialization purposes. CONCLUSIONS The results demonstrate that the HlyA based novel production platform of E. coli allowed the efficient secretory production and purification of peptides, thus suggesting a promising strategy for the industrialized production of peptide pharmaceuticals or reagents.
Collapse
Affiliation(s)
- Wen Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liangyin Lv
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqiang Shi
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
16
|
Pourhassan N Z, Smits SHJ, Ahn JH, Schmitt L. Biotechnological applications of type 1 secretion systems. Biotechnol Adv 2021; 53:107864. [PMID: 34767962 DOI: 10.1016/j.biotechadv.2021.107864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Bacteria have evolved a diverse range of secretion systems to export different substrates across their cell envelope. Although secretion of proteins into the extracellular space could offer advantages for recombinant protein production, the low secretion titers of the secretion systems for some heterologous proteins remain a clear drawback of their utility at commercial scales. Therefore, a potential use of most of secretion systems as production platforms at large scales are still limited. To overcome this limitation, remarkable efforts have been made toward improving the secretion efficiency of different bacterial secretion systems in recent years. Here, we review the progress with respect to biotechnological applications of type I secretion system (T1SS) of Gram-negative bacteria. We will also focus on the applicability of T1SS for the secretion of heterologous proteins as well as vaccine development. Last but not least, we explore the employed engineering strategies that have enhanced the secretion efficiencies of T1SS. Attention is also paid to directed evolution approaches that may offer a more versatile approach to optimize secretion efficiency of T1SS.
Collapse
Affiliation(s)
- Zohreh Pourhassan N
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jung Hoon Ahn
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, South Korea
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
17
|
Thompson DK, Sharkady SM. Genomic Insights into Drug Resistance Determinants in Cedecea neteri, A Rare Opportunistic Pathogen. Microorganisms 2021; 9:microorganisms9081741. [PMID: 34442820 PMCID: PMC8401664 DOI: 10.3390/microorganisms9081741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Cedecea, a genus in the Enterobacteriaceae family, includes several opportunistic pathogens reported to cause an array of sporadic acute infections, most notably of the lung and bloodstream. One species, Cedecea neteri, is associated with cases of bacteremia in immunocompromised hosts and has documented resistance to different antibiotics, including β-lactams and colistin. Despite the potential to inflict serious infections, knowledge about drug resistance determinants in Cedecea is limited. In this study, we utilized whole-genome sequence data available for three environmental strains (SSMD04, M006, ND14a) of C. neteri and various bioinformatics tools to analyze drug resistance genes in this bacterium. All three genomes harbor multiple chromosome-encoded β-lactamase genes. A deeper analysis of β-lactamase genes in SSMD04 revealed four metallo-β-lactamases, a novel variant, and a CMY/ACT-type AmpC putatively regulated by a divergently transcribed AmpR. Homologs of known resistance-nodulation-cell division (RND)-type multidrug efflux pumps such as OqxB, AcrB, AcrD, and MdtBC were also identified. Genomic island prediction for SSMD04 indicated that tolC, involved in drug and toxin export across the outer membrane of Gram-negative bacteria, was acquired by a transposase-mediated genetic transfer mechanism. Our study provides new insights into drug resistance mechanisms of an environmental microorganism capable of behaving as a clinically relevant opportunistic pathogen.
Collapse
|
18
|
Leitner M, Bishop C, Asgari S. Transcriptional Response of Wolbachia to Dengue Virus Infection in Cells of the Mosquito Aedes aegypti. mSphere 2021; 6:e0043321. [PMID: 34190587 PMCID: PMC8265661 DOI: 10.1128/msphere.00433-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Aedes aegypti transmits one of the most significant mosquito-borne viruses, dengue virus (DENV). The absence of effective vaccines and clinical treatments and the emergence of insecticide resistance in A. aegypti necessitate novel vector control strategies. A new approach uses the endosymbiotic bacterium Wolbachia pipientis to reduce the spread of arboviruses. However, the Wolbachia-mediated antiviral mechanism is not well understood. To shed light on this mechanism, we investigated an unexplored aspect of Wolbachia-virus-mosquito interaction. We used RNA sequencing to examine the transcriptional response of Wolbachia to DENV infection in A. aegypti Aag2 cells transinfected with the wAlbB strain of Wolbachia. Our results suggest that genes encoding an endoribonuclease (RNase HI), a regulator of sigma 70-dependent gene transcription (6S RNA), essential cellular, transmembrane, and stress response functions and primary type I and IV secretion systems were upregulated, while a number of transport and binding proteins of Wolbachia, ribosome structure, and elongation factor-associated genes were downregulated due to DENV infection. Furthermore, bacterial retrotransposon, transposable, and phage-related elements were found among the up- and downregulated genes. We show that Wolbachia elicits a transcriptional response to virus infection and identify differentially expressed Wolbachia genes mostly at the early stages of virus infection. These findings highlight Wolbachia's ability to alter its gene expression in response to DENV infection of the host cell. IMPORTANCE Aedes aegypti is a vector of several pathogenic viruses, including dengue, Zika, chikungunya, and yellow fever viruses, which are of importance to human health. Wolbachia is an endosymbiotic bacterium currently used in transinfected mosquitoes to suppress replication and transmission of dengue viruses. However, the mechanism of Wolbachia-mediated virus inhibition is not fully understood. While several studies have shown mosquitoes' transcriptional responses to dengue virus infection, none have investigated these responses in Wolbachia, which may provide clues to the inhibition mechanism. Our results suggest changes in the expression of a number of functionally important Wolbachia genes upon dengue virus infection, including those involved in stress responses, providing insights into the endosymbiont's reaction to virus infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
19
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
20
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
21
|
Nguyen BN, Tieves F, Rohr T, Wobst H, Schöpf FS, Solano JDM, Schneider J, Stock J, Uhde A, Kalthoff T, Jaeger KE, Schmitt L, Schwarz C. Numaswitch: an efficient high-titer expression platform to produce peptides and small proteins. AMB Express 2021; 11:48. [PMID: 33765268 PMCID: PMC7994495 DOI: 10.1186/s13568-021-01204-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
The production of peptides as active pharmaceutical ingredients (APIs) by recombinant technologies is of emerging interest. A reliable production platform, however, is still missing due the inherent characteristics of peptides such as proteolytic sensitivity, aggregation and cytotoxicity. We have developed a new technology named Numaswitch solving present limitations. Numaswitch was successfully employed for the production of diverse peptides and small proteins varying in length, physicochemical and functional characteristics, including Teriparatide, Linaclotide, human β-amyloid and Serum amyloid A3. Additionally, the potential of Numaswitch for a cost-efficient commercial production is demonstrated yielding > 2 g Teriparatide per liter fermentation broth in a quality meeting API standard.
Collapse
|
22
|
Asada T, Takagi D, Nakai M, Abe S, Yuasa K. Secretory production of a camelid single-domain antibody (VHH, nanobody) by the Serratia marcescens Lip system in Escherichia coli. Biochem Biophys Res Commun 2021; 549:105-112. [PMID: 33667707 DOI: 10.1016/j.bbrc.2021.02.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 11/20/2022]
Abstract
Escherichia coli is one of the most popularly used hosts to produce recombinant proteins. Most recombinant proteins are produced in the cytoplasm and periplasm, requiring multiple steps to extract and purify recombinant proteins. The Serratia marcescens Lip system (LipB-LipC-LipD) is a type 1 secretion system that selectively secretes LipA from the intracellular to extracellular space in a single step. This study aimed to establish a secretory production system for nanobodies, camelid-derived small molecule antibody fragments, using the S. marcescens Lip system. Surprisingly, E. coli harboring only LipC, a membrane fusion protein of the Lip system, could secrete an anti-green fluorescent protein (GFP)-Nb, a nanobody against GFP, without the addition of a long amino acid sequence. The LipC-based secretion system recognized the Val-Thr-Val sequence at the C-terminus of the nanobody. Finally, Strep-tagged anti-GFP-Nb was purified from culture supernatants of E. coli harboring LipC by Strep-affinity chromatography at a final yield of >5 mg per liter of culture supernatant. These results potently supported that the S. marcescens LipC-based secretion system has the potential to establish an efficient secretory production system for nanobodies.
Collapse
Affiliation(s)
- Tomonori Asada
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Daichi Takagi
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Miyu Nakai
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Shogo Abe
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Keizo Yuasa
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima-cho, Tokushima, 770-8506, Japan.
| |
Collapse
|
23
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
24
|
Isolation and genomic characterization of a pathogenic Providencia rettgeri strain G0519 in turtle Trachemys scripta. Antonie van Leeuwenhoek 2020; 113:1633-1662. [PMID: 32951105 DOI: 10.1007/s10482-020-01469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Providencia rettgeri infection has occurred occasionally in aquaculture, but is rare in turtles. Here, a pathogenic P. rettgeri strain G0519 was isolated from a diseased slider turtle (Trachemys scripta) in China, and qPCR assay was established for the RTX toxin (rtxD) gene. Histopathological examination showed that many inflammatory cells were infiltrated into heart, liver and intestine, as well as the necrosis of liver, kidney and spleen. The genome consisted of one circular chromosome (4.493 Mb) and one plasmid (18.8 kb), and predicted to contain 4170 and 19 protein-coding genes, respectively. Multiple pathogenic and virulence factors (e.g., fimbria, adhesion, invasion, toxin, hemolysin, chemotaxis, secretion system), multidrug-resistant genes (e.g., ampC, per-1, oxa-1, sul1, tetR) and a novel genomic resistance island PRI519 were identified. Comparative genome analysis revealed the closest relationship was with P. rettgeri, and with P. heimbachae closer than with other Providencia spp. To our knowledge, this was first report on genomic characterization of multidrug-resistant pathogenic P. rettgeri in cultured turtles.
Collapse
|
25
|
Shvarev D, Maldener I. The HlyD-like membrane fusion protein All5304 is essential for acid stress survival of the filamentous cyanobacterium Anabaena sp. PCC 7120. FEMS Microbiol Lett 2020; 367:5863934. [PMID: 32592389 DOI: 10.1093/femsle/fnaa108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022] Open
Abstract
Acid stress is an environmental problem for plants and fresh water cyanobacteria like the filamentous, heterocyst forming species Anabaena sp. PCC 7120 (hereafter Anabaena sp.). Heterocyst differentiation, cell-cell communication and nitrogen fixation has been deeply studied in this model organism, but little is known about the cellular response of Anabaena sp. to decreased pH values, causing acid stress. ATP-binding cassette (ABC) transporters are involved in acid stress response in other bacteria, by exporting proteins responsible for survival under acidification. The genome of Anabaena sp. encodes numerous ABC transporter components, whose function is not known yet. Here, we describe the function of the gene all5304 encoding a protein with homology to membrane fusion proteins of tripartite efflux pumps driven by ABC transporters like HlyBD-TolC of Escherichia coli. The all5304 mutant shows less resistance against low pH, even though the expression of the gene is independent from the pH of the medium. We compared the exoproteome of the wild type and mutant cultures and identified three proteins-candidate substrates of the putative transporter. Including the in silico analysis of All5304, our results suggest that All5304 functions as part of an efflux pump, secreting of a protein necessary for acid tolerance in Anabaena sp.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iris Maldener
- Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Lindsey ARI. Sensing, Signaling, and Secretion: A Review and Analysis of Systems for Regulating Host Interaction in Wolbachia. Genes (Basel) 2020; 11:E813. [PMID: 32708808 PMCID: PMC7397232 DOI: 10.3390/genes11070813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Wolbachia (Anaplasmataceae) is an endosymbiont of arthropods and nematodes that resides within host cells and is well known for manipulating host biology to facilitate transmission via the female germline. The effects Wolbachia has on host physiology, combined with reproductive manipulations, make this bacterium a promising candidate for use in biological- and vector-control. While it is becoming increasingly clear that Wolbachia's effects on host biology are numerous and vary according to the host and the environment, we know very little about the molecular mechanisms behind Wolbachia's interactions with its host. Here, I analyze 29 Wolbachia genomes for the presence of systems that are likely central to the ability of Wolbachia to respond to and interface with its host, including proteins for sensing, signaling, gene regulation, and secretion. Second, I review conditions under which Wolbachia alters gene expression in response to changes in its environment and discuss other instances where we might hypothesize Wolbachia to regulate gene expression. Findings will direct mechanistic investigations into gene regulation and host-interaction that will deepen our understanding of intracellular infections and enhance applied management efforts that leverage Wolbachia.
Collapse
Affiliation(s)
- Amelia R I Lindsey
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
27
|
Kolich LR, Chang YT, Coudray N, Giacometti SI, MacRae MR, Isom GL, Teran EM, Bhabha G, Ekiert DC. Structure of MlaFB uncovers novel mechanisms of ABC transporter regulation. eLife 2020; 9:e60030. [PMID: 32602838 PMCID: PMC7367683 DOI: 10.7554/elife.60030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
ABC transporters facilitate the movement of diverse molecules across cellular membranes, but how their activity is regulated post-translationally is not well understood. Here we report the crystal structure of MlaFB from E. coli, the cytoplasmic portion of the larger MlaFEDB ABC transporter complex, which drives phospholipid trafficking across the bacterial envelope to maintain outer membrane integrity. MlaB, a STAS domain protein, binds the ABC nucleotide binding domain, MlaF, and is required for its stability. Our structure also implicates a unique C-terminal tail of MlaF in self-dimerization. Both the C-terminal tail of MlaF and the interaction with MlaB are required for the proper assembly of the MlaFEDB complex and its function in cells. This work leads to a new model for how an important bacterial lipid transporter may be regulated by small proteins, and raises the possibility that similar regulatory mechanisms may exist more broadly across the ABC transporter family.
Collapse
Affiliation(s)
- Ljuvica R Kolich
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Ya-Ting Chang
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
- Applied Bioinformatics Laboratory, New York University School of MedicineNew YorkUnited States
| | - Sabrina I Giacometti
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Mark R MacRae
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Georgia L Isom
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Evelyn M Teran
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Gira Bhabha
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
| |
Collapse
|
28
|
Baumann U. Structure-Function Relationships of the Repeat Domains of RTX Toxins. Toxins (Basel) 2019; 11:toxins11110657. [PMID: 31718085 PMCID: PMC6891781 DOI: 10.3390/toxins11110657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 01/08/2023] Open
Abstract
RTX proteins are a large family of polypeptides of mainly Gram-negative origin that are secreted into the extracellular medium by a type I secretion system featuring a non-cleavable C-terminal secretion signal, which is preceded by a variable number of nine-residue tandem repeats. The three-dimensional structure forms a parallel β-roll, where β-strands of two parallel sheets are connected by calcium-binding linkers in such a way that a right-handed spiral is built. The Ca2+ ions are an integral part of the structure, which cannot form without them. The structural determinants of this unique architecture will be reviewed with its conservations and variations together with the implication for secretion and folding of these proteins. The general purpose of the RTX domains appears to act as an internal chaperone that keeps the polypeptide unfolded in the calcium-deprived cytosol and triggers folding in the calcium-rich extracellular medium. A rather recent addition to the structural biology of the RTX toxin is a variant occurring in a large RTX adhesin, where this non-canonical β-roll binds to ice and diatoms.
Collapse
Affiliation(s)
- Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicherstrasse 47, D-50674 Cologne, Germany
| |
Collapse
|
29
|
Beis K, Rebuffat S. Multifaceted ABC transporters associated to microcin and bacteriocin export. Res Microbiol 2019; 170:399-406. [DOI: 10.1016/j.resmic.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022]
|
30
|
Anné J, Karamanou S, Economou A. Editorial: Thematic issue on bacterial protein export: from fundamentals to applications. FEMS Microbiol Lett 2019; 365:5092704. [PMID: 30202899 DOI: 10.1093/femsle/fny206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jozef Anné
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, Leuven 3000, BelgiumE-mail:
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, Leuven 3000, Belgium
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
31
|
Shvarev D, Nishi CN, Maldener I. Two DevBCA‐like ABC transporters are involved in the multidrug resistance of the cyanobacterium
Anabaena
sp. PCC 7120. FEBS Lett 2019; 593:1818-1826. [DOI: 10.1002/1873-3468.13450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Dmitry Shvarev
- Organismic Interactions Interfaculty Institute of Microbiology and Infection Medicine Eberhard Karls University of Tübingen Germany
| | - Carolina N. Nishi
- Organismic Interactions Interfaculty Institute of Microbiology and Infection Medicine Eberhard Karls University of Tübingen Germany
| | - Iris Maldener
- Organismic Interactions Interfaculty Institute of Microbiology and Infection Medicine Eberhard Karls University of Tübingen Germany
| |
Collapse
|