1
|
Morrison AL, Sarfas C, Sibley L, Williams J, Mabbutt A, Dennis MJ, Lawrence S, White AD, Bodman-Smith M, Sharpe SA. IV BCG Vaccination and Aerosol BCG Revaccination Induce Mycobacteria-Responsive γδ T Cells Associated with Protective Efficacy against M. tb Challenge. Vaccines (Basel) 2023; 11:1604. [PMID: 37897006 PMCID: PMC10611416 DOI: 10.3390/vaccines11101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intravenously (IV) delivered BCG provides superior tuberculosis (TB) protection compared with the intradermal (ID) route in non-human primates (NHPs). We examined how γδ T cell responses changed in vivo after IV BCG vaccination of NHPs, and whether these correlated with protection against aerosol M. tuberculosis challenge. In the circulation, Vδ2 T cell populations expanded after IV BCG vaccination, from a median of 1.5% (range: 0.8-2.3) of the CD3+ population at baseline, to 5.3% (range: 1.4-29.5) 4 weeks after M. tb, and were associated with TB protection. This protection was related to effector and central memory profiles; homing markers; and production of IFN-γ, TNF-α and granulysin. In comparison, Vδ2 cells did not expand after ID BCG, but underwent phenotypic and functional changes. When Vδ2 responses in bronchoalveolar lavage (BAL) samples were compared between routes, IV BCG vaccination resulted in highly functional mucosal Vδ2 cells, whereas ID BCG did not. We sought to explore whether an aerosol BCG boost following ID BCG vaccination could induce a γδ profile comparable to that induced with IV BCG. We found evidence that the aerosol BCG boost induced significant changes in the Vδ2 phenotype and function in cells isolated from the BAL. These results indicate that Vδ2 population frequency, activation and function are characteristic features of responses induced with IV BCG, and the translation of responses from the circulation to the site of infection could be a limiting factor in the response induced following ID BCG. An aerosol boost was able to localise activated Vδ2 populations at the mucosal surfaces of the lung. This vaccine strategy warrants further investigation to boost the waning human ID BCG response.
Collapse
Affiliation(s)
- Alexandra L. Morrison
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Charlotte Sarfas
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Laura Sibley
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Jessica Williams
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Adam Mabbutt
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Mike J. Dennis
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Steve Lawrence
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Andrew D. White
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George’s University of London, London SW17 0BD, UK
| | - Sally A. Sharpe
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| |
Collapse
|
2
|
Rawat BS, Kumar D, Soni V, Rosenn EH. Therapeutic Potentials of Immunometabolomic Modulations Induced by Tuberculosis Vaccination. Vaccines (Basel) 2022; 10:vaccines10122127. [PMID: 36560537 PMCID: PMC9781011 DOI: 10.3390/vaccines10122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.
Collapse
Affiliation(s)
- Bhupendra Singh Rawat
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Deepak Kumar
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Paliwal D, Thom M, Hussein A, Ravishankar D, Wilkes A, Charleston B, Jones IM. Towards Reverse Vaccinology for Bovine TB: High Throughput Expression of Full Length Recombinant Mycobacterium bovis Proteins. Front Mol Biosci 2022; 9:889667. [PMID: 36032666 PMCID: PMC9402895 DOI: 10.3389/fmolb.2022.889667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis caused by Mycobacterium bovis, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the M. bovis genome, using a mixture of E. coli and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Areej Hussein
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alex Wilkes
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Ian M. Jones,
| |
Collapse
|
4
|
Li Z, Zheng C, Terreni M, Tanzi L, Sollogoub M, Zhang Y. Novel Vaccine Candidates against Tuberculosis. Curr Med Chem 2020; 27:5095-5118. [DOI: 10.2174/0929867326666181126112124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Ranking above AIDS, Tuberculosis (TB) is the ninth leading cause of death affecting and
killing many individuals every year. Drugs’ efficacy is limited by a series of problems such as Multi-
Drug Resistance (MDR) and Extensively-Drug Resistance (XDR). Meanwhile, the only licensed vaccine
BCG (Bacillus Calmette-Guérin) existing for over 90 years is not effective enough. Consequently,
it is essential to develop novel vaccines for TB prevention and immunotherapy. This paper
provides an overall review of the TB prevalence, immune system response against TB and recent
progress of TB vaccine research and development. Several vaccines in clinical trials are described as
well as LAM-based candidates.
Collapse
Affiliation(s)
- Zhihao Li
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lisa Tanzi
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Li J, Zhao A, Tang J, Wang G, Shi Y, Zhan L, Qin C. Tuberculosis vaccine development: from classic to clinical candidates. Eur J Clin Microbiol Infect Dis 2020; 39:1405-1425. [PMID: 32060754 PMCID: PMC7223099 DOI: 10.1007/s10096-020-03843-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Bacillus Calmette-Guérin (BCG) has been in use for nearly 100 years and is the only licensed TB vaccine. While BCG provides protection against disseminated TB in infants, its protection against adult pulmonary tuberculosis (PTB) is variable. To achieve the ambitious goal of eradicating TB worldwide by 2050, there is an urgent need to develop novel TB vaccines. Currently, there are more than a dozen novel TB vaccines including prophylactic and therapeutic at different stages of clinical research. This literature review provides an overview of the clinical status of candidate TB vaccines and discusses the challenges and future development trends of novel TB vaccine research in combination with the efficacy of evaluation of TB vaccines, provides insight for the development of safer and more efficient vaccines, and may inspire new ideas for the prevention of TB.
Collapse
Affiliation(s)
- Junli Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Aihua Zhao
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, People's Republic of China
| | - Jun Tang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Guozhi Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, People's Republic of China
| | - Yanan Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Lingjun Zhan
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China.
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China.
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China.
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China.
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China.
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China.
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China.
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China.
| |
Collapse
|
6
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
7
|
Deep A, Tiwari P, Agarwal S, Kaundal S, Kidwai S, Singh R, Thakur KG. Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin-antitoxin system: targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Res 2019; 46:11639-11655. [PMID: 30329074 PMCID: PMC6265470 DOI: 10.1093/nar/gky924] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/04/2018] [Indexed: 01/10/2023] Open
Abstract
Toxin–antitoxin (TA) systems are involved in diverse physiological processes in prokaryotes, but their exact role in Mycobacterium tuberculosis (Mtb) virulence and in vivo stress adaptation has not been extensively studied. Here, we demonstrate that the VapBC11 TA module is essential for Mtb to establish infection in guinea pigs. RNA-sequencing revealed that overexpression of VapC11 toxin results in metabolic slowdown, suggesting that modulation of the growth rate is an essential strategy for in vivo survival. Interestingly, overexpression of VapC11 resulted in the upregulation of chromosomal TA genes, suggesting the existence of highly coordinated crosstalk among TA systems. In this study, we also present the crystal structure of the VapBC11 heterooctameric complex at 1.67 Å resolution. Binding kinetic studies suggest that the binding affinities of toxin–substrate and toxin–antitoxin interactions are comparable. We used a combination of structural studies, molecular docking, mutational analysis and in vitro ribonuclease assays to enhance our understanding of the mode of substrate recognition by the VapC11 toxin. Furthermore, we have also designed peptide-based inhibitors to target VapC11 ribonuclease activity. Taken together, we propose that the structure-guided design of inhibitors against in vivo essential ribonucleases might be a novel strategy to hasten clearance of intracellular Mtb.
Collapse
Affiliation(s)
- Amar Deep
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Prabhakar Tiwari
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Sakshi Agarwal
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Krishan G Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| |
Collapse
|
8
|
Prabowo SA, Painter H, Zelmer A, Smith SG, Seifert K, Amat M, Cardona PJ, Fletcher HA. RUTI Vaccination Enhances Inhibition of Mycobacterial Growth ex vivo and Induces a Shift of Monocyte Phenotype in Mice. Front Immunol 2019; 10:894. [PMID: 31114572 PMCID: PMC6503078 DOI: 10.3389/fimmu.2019.00894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a major global health problem and there is a dire need for an improved treatment. A strategy to combine vaccination with drug treatment, termed therapeutic vaccination, is expected to provide benefit in shortening treatment duration and augmenting treatment success rate. RUTI candidate vaccine has been specifically developed as a therapeutic vaccine for TB. The vaccine is shown to reduce bacillary load when administered after chemotherapy in murine and guinea pig models, and is also immunogenic when given to healthy adults and individuals with latent TB. In the absence of a validated correlate of vaccine-induced protection for TB vaccine testing, mycobacterial growth inhibition assay (MGIA) has been developed as a comprehensive tool to evaluate vaccine potency ex vivo. In this study, we investigated the potential of RUTI vaccine to control mycobacterial growth ex vivo and demonstrated the capacity of MGIA to aid the identification of essential immune mechanism. We found an association between the peak response of vaccine-induced growth inhibition and a shift in monocyte phenotype following RUTI vaccination in healthy mice. The vaccination significantly increased the frequency of non-classical Ly6C− monocytes in the spleen after two doses of RUTI. Furthermore, mRNA expressions of Ly6C−-related transcripts (Nr4a1, Itgax, Pparg, Bcl2) were upregulated at the peak vaccine response. This is the first time the impact of RUTI has been assessed on monocyte phenotype. Given that non-classical Ly6C− monocytes are considered to play an anti-inflammatory role, our findings in conjunction with previous studies have demonstrated that RUTI could induce a balanced immune response, promoting an effective cell-mediated response whilst at the same time limiting excessive inflammation. On the other hand, the impact of RUTI on non-classical monocytes could also reflect its impact on trained innate immunity which warrants further investigation. In summary, we have demonstrated a novel mechanism of action of the RUTI vaccine, which suggests the importance of a balanced M1/M2 monocyte function in controlling mycobacterial infection. The MGIA could be used as a screening tool for therapeutic TB vaccine candidates and may aid the development of therapeutic vaccination regimens for TB in the near future.
Collapse
Affiliation(s)
- Satria A Prabowo
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hannah Painter
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrea Zelmer
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven G Smith
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Karin Seifert
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Pere-Joan Cardona
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Helen A Fletcher
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
de Paula Oliveira Santos B, Trentini MM, Machado RB, Rúbia Nunes Celes M, Kipnis A, Petrovsky N, Junqueira-Kipnis AP. Advax4 delta inulin combination adjuvant together with ECMX, a fusion construct of four protective mTB antigens, induces a potent Th1 immune response and protects mice against Mycobacterium tuberculosis infection. Hum Vaccin Immunother 2018; 13:2967-2976. [PMID: 28937879 DOI: 10.1080/21645515.2017.1368598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Tuberculosis (TB) remains a main public health concern and 10.4 million new cases occurred in 2015 around the world. BCG is the only approved vaccine against TB, but has variable efficacy and new vaccines are needed. We developed two new mTB vaccine candidates based on the recombinant fusion proteins, rCMX and rECMX formulated with Advax4, a new combination adjuvant combining delta inulin, CpG oligonucleotide and murabutide. BALB/c mice were immunized three times intramuscularly with these vaccine formulations. Injection of Advax4 alone increased the percentage of lymphatic endothelial cells and activated macrophages (F480/CD11b+) in the draining lymph nodes consistent with a chemotactic adjuvant effect. Advax4+CMX and Advax4+ECMX induced the highest levels of IgG1 and IgG2a antibodies against rCMX and rECMX, respectively. Immunized mice challenged with Mycobacterium tuberculosis (Mtb) had increased vaccine-specific Th1 responses in the lungs together with reduced Mtb - associated alveolar damage, although only the Advax4+ECMX vaccine demonstrated significant reduction of lung bacterial load. This study confirmed Advax4+ECMX as a potential TB vaccine candidate, with potential for further optimization and clinical development.
Collapse
Affiliation(s)
- Bruno de Paula Oliveira Santos
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Monalisa Martins Trentini
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Renato Beilner Machado
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Mara Rúbia Nunes Celes
- b Laboratory of Pathology, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - André Kipnis
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Nikolai Petrovsky
- c Flinders University and Vaxine Pty Ltd, Flinders Medical Center , Adelaide , Australia
| | - Ana Paula Junqueira-Kipnis
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| |
Collapse
|
10
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|
11
|
Moliva JI, Hossfeld AP, Canan CH, Dwivedi V, Wewers MD, Beamer G, Turner J, Torrelles JB. Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8 + T-cell-dependent manner. Mucosal Immunol 2018; 11:968-978. [PMID: 28930287 PMCID: PMC5860920 DOI: 10.1038/mi.2017.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023]
Abstract
Current tuberculosis (TB) treatments include chemotherapy and preventative vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In humans, however, BCG vaccination fails to fully protect against pulmonary TB. Few studies have considered the impact of the human lung mucosa (alveolar lining fluid (ALF)), which modifies the Mycobacterium tuberculosis (M.tb) cell wall, revealing alternate antigenic epitopes on the bacterium surface that alter its pathogenicity. We hypothesized that ALF-induced modification of BCG would induce better protection against aerosol infection with M.tb. Here we vaccinated mice with ALF-exposed BCG, mimicking the mycobacterial cell surface properties that would be present in the lung during M.tb infection. ALF-exposed BCG-vaccinated mice were more effective at reducing M.tb bacterial burden in the lung and spleen, and had reduced lung inflammation at late stages of M.tb infection. Improved BCG efficacy was associated with increased numbers of memory CD8+ T cells, and CD8+ T cells with the potential to produce interferon-γ in the lung in response to M.tb challenge. Depletion studies confirmed an essential role for CD8+ T cells in controlling M.tb bacterial burden. We conclude that ALF modifications to the M.tb cell wall in vivo are relevant in the context of vaccine design.
Collapse
Affiliation(s)
- Juan I. Moliva
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, COM, OSU, Columbus, OH, USA
| | - Austin P. Hossfeld
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Cynthia H. Canan
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Varun Dwivedi
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Mark D. Wewers
- Dept. Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, COM, OSU, Columbus, OH, USA
| | - Gillian Beamer
- Dept. Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Joanne Turner
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Jordi B. Torrelles
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| |
Collapse
|
12
|
Kwon BE, Ahn JH, Min S, Kim H, Seo J, Yeo SG, Ko HJ. Development of New Preventive and Therapeutic Vaccines for Tuberculosis. Immune Netw 2018; 18:e17. [PMID: 29732235 PMCID: PMC5928416 DOI: 10.4110/in.2018.18.e17] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is a contagious disease that has been responsible for the death of one billion people in the last 200 years. Until now, the only vaccine approved for the prevention of TB is Bacillus Calmette-Guérin (BCG), which is prepared by attenuating Mycobacterium bovis. However, one of the limitations of BCG is that its preventive effect against pulmonary TB varies from person to person. Therefore, there arises a need for a new TB vaccine to replace or supplement BCG. In this review, we have summarized the findings of current clinical trials on preventive and therapeutic TB vaccine candidates. In addition, we have discussed a novel vaccination approach using the cell-based vaccine presenting early secretory antigenic target-6 (ESAT-6), which is a potent immunogenic antigen. The role of ESAT-6 in hosts has also been described.
Collapse
Affiliation(s)
- Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Seunghwan Min
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Hyeongseop Kim
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Jungheun Seo
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Sang-Gu Yeo
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju 28159, Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| |
Collapse
|
13
|
Abstract
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509; .,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509.,Los Angeles Biomedical Research Institute, Torrance, California 90502
| | | |
Collapse
|
14
|
Kaufmann SHE, Dockrell HM, Drager N, Ho MM, McShane H, Neyrolles O, Ottenhoff THM, Patel B, Roordink D, Spertini F, Stenger S, Thole J, Verreck FAW, Williams A. TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development. Front Immunol 2017; 8:1203. [PMID: 29046674 PMCID: PMC5632681 DOI: 10.3389/fimmu.2017.01203] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC). It aims at the discovery and development of novel tuberculosis (TB) vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hazel M Dockrell
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nick Drager
- Tuberculosis Vaccine Initiative (TBVI), Lelystad, Netherlands
| | - Mei Mei Ho
- Bacteriology Division, MHRA-NIBSC, Potters Bar, United Kingdom
| | | | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Brij Patel
- RegExcel Consulting Ltd, Surrey, United Kingdom
| | | | | | | | - Jelle Thole
- Tuberculosis Vaccine Initiative (TBVI), Lelystad, Netherlands
| | | | | | | |
Collapse
|
15
|
Kaufmann SH, Weiner J, Maertzdorf J. Accelerating tuberculosis vaccine trials with diagnostic and prognostic biomarkers. Expert Rev Vaccines 2017; 16:845-853. [DOI: 10.1080/14760584.2017.1341316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stefan H.E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
16
|
Bezos J, Casal C, Álvarez J, Roy A, Romero B, Rodríguez-Bertos A, Bárcena C, Díez A, Juste R, Gortázar C, Puentes E, Aguiló N, Martín C, de Juan L, Domínguez L. Evaluation of the Mycobacterium tuberculosis SO 2 vaccine using a natural tuberculosis infection model in goats. Vet J 2017; 223:60-67. [PMID: 28671074 DOI: 10.1016/j.tvjl.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 11/27/2022]
Abstract
The development of new vaccines against animal tuberculosis (TB) is a priority for improving the control and eradication of this disease, particularly in those species not subjected to compulsory eradication programmes. In this study, the protection conferred by the Mycobacterium tuberculosis SO2 experimental vaccine was evaluated using a natural infection model in goats. Twenty-six goats were distributed in three groups: (1) 10 goats served as a control group; (2) six goats were subcutaneously vaccinated with BCG; and (3) 10 goats were subcutaneously vaccinated with SO2. Four months after vaccination, all groups were merged with goats infected with Mycobacterium bovis or Mycobacterium caprae, and tested over a 40 week period using a tuberculin intradermal test and an interferon-γ assay for mycobacterial reactivity. The severity of lesions was determined at post-mortem examination and the bacterial load in tissues were evaluated by culture. The two vaccinated groups had significantly lower lesion and bacterial culture scores than the control group (P<0.05); at the end of the study, the SO2 vaccinated goats had the lowest lesion and culture scores. These results suggest that the SO2 vaccine provides some protection against TB infection acquired from natural exposure.
Collapse
Affiliation(s)
- J Bezos
- MAEVA SERVET SL, Alameda del Valle, Madrid, Spain; Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain.
| | - C Casal
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - J Álvarez
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - A Roy
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - B Romero
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - A Rodríguez-Bertos
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - C Bárcena
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - A Díez
- MAEVA SERVET SL, Alameda del Valle, Madrid, Spain
| | - R Juste
- Servicio Regional de Investigación y Desarrollo Agrario (SERIDA), Carretera Oviedo, Villaviciosa, Asturias, Spain
| | - C Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - E Puentes
- BIOFABRI SL, Porriño, Pontevedra, Spain
| | - N Aguiló
- Departamento de Microbiología, Universidad de Zaragoza, ISS Aragón, CIBER de Enfermedades Respiratorias, Spain
| | - C Martín
- Departamento de Microbiología, Universidad de Zaragoza, ISS Aragón, CIBER de Enfermedades Respiratorias, Spain
| | - L de Juan
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - L Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| |
Collapse
|
17
|
Venturini E, Tersigni C, Chiappini E, de Martino M, Galli L. Optimizing the management of children with latent tuberculosis infection. Expert Rev Anti Infect Ther 2017; 15:341-349. [PMID: 28074660 DOI: 10.1080/14787210.2017.1279541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The management of latent tuberculosis (LTBI) in children represents an important issue for paediatricians because of the disease burden, the lack of a gold standard for the diagnosis and the high annual risk of progression to active disease. Areas covered: A review of English language articles on LTBI in children, published between the 1st of January 2010 and the 1st of July 2016, was conducted using multiple keywords and standardized terminology in PubMed database. This review provides an updated overview of the available tests for LTBI diagnosis in children, management strategies and treatment options. Expert commentary: Two tests are available for LTBI diagnosis: tuberculin skin test and interferon-gamma release assays, both with a suboptimal specificity and sensitivity, and both with the lack of capability in distinguishing between infection and disease. Several new markers have been identified but further studies are needed. Among all treatment regimes, because of the high safety and efficacy profile showed and to avoid the poor completion rate, the treatment with a three-month course of isoniazid and rifampicin is currently recommended. New vaccines are needed because of the spread of the disease despite BCG vaccination in high risk countries. Currently, 15 new vaccines are in the pipeline.
Collapse
Affiliation(s)
- E Venturini
- a Department of Health Sciences , University of Florence, Anna Meyer Children's University Hospital , Florence , Italy
| | - C Tersigni
- a Department of Health Sciences , University of Florence, Anna Meyer Children's University Hospital , Florence , Italy
| | - E Chiappini
- a Department of Health Sciences , University of Florence, Anna Meyer Children's University Hospital , Florence , Italy
| | - M de Martino
- a Department of Health Sciences , University of Florence, Anna Meyer Children's University Hospital , Florence , Italy
| | - L Galli
- a Department of Health Sciences , University of Florence, Anna Meyer Children's University Hospital , Florence , Italy
| |
Collapse
|