1
|
Bhat MF, Srdanović S, Sundberg LR, Einarsdóttir HK, Marjomäki V, Dekker FJ. Impact of HDAC inhibitors on macrophage polarization to enhance innate immunity against infections. Drug Discov Today 2024; 29:104193. [PMID: 39332483 DOI: 10.1016/j.drudis.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Innate immunity plays an important role in host defense against pathogenic infections. It involves macrophage polarization into either the pro-inflammatory M1 or the anti-inflammatory M2 phenotype, influencing immune stimulation or suppression, respectively. Epigenetic changes during immune reactions contribute to long-term innate immunity imprinting on macrophage polarization. It is becoming increasingly evident that epigenetic modulators, such as histone deacetylase (HDAC) inhibitors (HDACi), enable the enhancement of innate immunity by tailoring macrophage polarization in response to immune stressors. In this review, we summarize current literature on the impact of HDACi and other epigenetic modulators on the functioning of macrophages during diseases that have a strong immune component, such as infections. Depending on the disease context and the chosen therapeutic intervention, HDAC1, HDAC2, HDAC3, HDAC6, or HDAC8 are particularly important in influencing macrophage polarization towards either M1 or M2 phenotypes. We anticipate that therapeutic strategies based on HDAC epigenetic mechanisms will provide a unique approach to boost immunity against disease challenges, including resistant infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sonja Srdanović
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | | | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Whiting-Fawcett F, Blomberg AS, Troitsky T, Meierhofer MB, Field KA, Puechmaille SJ, Lilley TM. A Palearctic view of a bat fungal disease. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14265. [PMID: 38616727 DOI: 10.1111/cobi.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 04/16/2024]
Abstract
The fungal infection causing white-nose disease in hibernating bats in North America has resulted in dramatic population declines of affected species, since the introduction of the causative agent Pseudogymnoascus destructans. The fungus is native to the Palearctic, where it also infects several bat species, yet rarely causes severe pathology or the death of the host. Pseudogymnoascus destructans infects bats during hibernation by invading and digesting the skin tissue, resulting in the disruption of torpor patterns and consequent emaciation. Relations among pathogen, host, and environment are complex, and individuals, populations, and species respond to the fungal pathogen in different ways. For example, the Nearctic Myotis lucifugus responds to infection by mounting a robust immune response, leading to immunopathology often contributing to mortality. In contrast, the Palearctic M. myotis shows no significant immunological response to infection. This lack of a strong response, resulting from the long coevolution between the hosts and the pathogen in the pathogen's native range, likely contributes to survival in tolerant species. After more than 15 years since the initial introduction of the fungus to North America, some of the affected populations are showing signs of recovery, suggesting that the fungus, hosts, or both are undergoing processes that may eventually lead to coexistence. The suggested or implemented management methods of the disease in North America have encompassed, for example, the use of probiotics and fungicides, vaccinations, and modifying the environmental conditions of the hibernation sites to limit the growth of the pathogen, intensity of infection, or the hosts' responses to it. Based on current knowledge from Eurasia, policy makers and conservation managers should refrain from disrupting the ongoing evolutionary processes and adopt a holistic approach to managing the epizootic.
Collapse
Affiliation(s)
- F Whiting-Fawcett
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - A S Blomberg
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - M B Meierhofer
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - K A Field
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - S J Puechmaille
- Institut des Sciences de l'Évolution Montpellier (ISEM), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Kumar V, Stewart JH. Immune Homeostasis: A Novel Example of Teamwork. Methods Mol Biol 2024; 2782:1-24. [PMID: 38622389 DOI: 10.1007/978-1-0716-3754-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
All living organisms must maintain homeostasis to survive, reproduce, and pass their traits on to the next generation. If homeostasis is not maintained, it can result in various diseases and ultimately lead to death. Physiologists have coined the term "homeostasis" to describe this process. With the emergence of immunology as a separate branch of medicine, the concept of immune homeostasis has been introduced. Maintaining immune homeostasis is crucial to support overall homeostasis through different immunological and non-immunological routes. Any changes in the immune system can lead to chronic inflammatory or autoimmune diseases, immunodeficiency diseases, frequent infections, and cancers. Ongoing scientific advances are exploring new avenues in immunology and immune homeostasis maintenance. This chapter introduces the concept of immune homeostasis and its maintenance through different mechanisms.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Tennenbaum SR, Bortner R, Lynch C, Santymire R, Crosier A, Santiestevan J, Marinari P, Pukazhenthi BS, Comizzoli P, Hawkins MTR, Maldonado JE, Koepfli K, vonHoldt BM, DeCandia AL. Epigenetic changes to gene pathways linked to male fertility in ex situ black-footed ferrets. Evol Appl 2024; 17:e13634. [PMID: 38283602 PMCID: PMC10818088 DOI: 10.1111/eva.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
Environmental variation can influence the reproductive success of species managed under human care and in the wild, yet the mechanisms underlying this phenomenon remain largely mysterious. Molecular mechanisms such as epigenetic modifiers are important in mediating the timing and progression of reproduction in humans and model organisms, but few studies have linked epigenetic variation to reproductive fitness in wildlife. Here, we investigated epigenetic variation in black-footed ferrets (Mustela nigripes), an endangered North American mammal reliant on ex situ management for survival and persistence in the wild. Despite similar levels of genetic diversity in human-managed and wild-born populations, individuals in ex situ facilities exhibit reproductive problems, such as poor sperm quality. Differences across these settings suggest that an environmentally driven decline in reproductive capacity may be occurring in this species. We examined the role of DNA methylation, one well-studied epigenetic modifier, in this emergent condition. We leveraged blood, testes, and semen samples from male black-footed ferrets bred in ex situ facilities and found tissue-type specificity in DNA methylation across the genome, although 1360 Gene Ontology terms associated with male average litter size shared functions across tissues. We then constructed gene networks of differentially methylated genomic sites associated with three different reproductive phenotypes to explore the putative biological impact of variation in DNA methylation. Sperm gene networks associated with average litter size and sperm count were functionally enriched for candidate genes involved in reproduction, development, and its regulation through transcriptional repression. We propose that DNA methylation plays an important role in regulating these reproductive phenotypes, thereby impacting the fertility of male ex situ individuals. Our results provide information into how DNA methylation may function in the alteration of reproductive pathways and phenotypes in artificial environments. These findings provide early insights to conservation hurdles faced in the protection of this rare species.
Collapse
Affiliation(s)
| | - Robyn Bortner
- U.S. Fish & Wildlife Service National Black‐Footed Ferret Conservation CenterCarrColoradoUSA
| | | | - Rachel Santymire
- Biology DepartmentGeorgia State UniversityAtlantaGeorgiaUSA
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Adrienne Crosier
- Center for Animal Care SciencesSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Jenny Santiestevan
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Paul Marinari
- Center for Animal Care SciencesSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Budhan S. Pukazhenthi
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Pierre Comizzoli
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Melissa T. R. Hawkins
- Division of Mammals, Department of Vertebrate ZoologyNational Museum of Natural HistoryWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Klaus‐Peter Koepfli
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
- Smithsonian‐Mason School of ConservationGeorge Mason UniversityFront RoyalVirginiaUSA
| | | | - Alexandra L. DeCandia
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
- BiologyGeorgetown UniversityWashingtonDCUSA
| |
Collapse
|
5
|
Wang C, Liu T, Wang Z, Li W, Zhao Q, Mi Z, Xue X, Shi P, Sun Y, Zhang Y, Wang N, Bao F, Chen W, Liu H, Zhang F. IL-23/IL-23R Promote Macrophage Pyroptosis and T Helper 1/T Helper 17 Cell Differentiation in Mycobacterial Infection. J Invest Dermatol 2023; 143:2264-2274.e18. [PMID: 37187409 DOI: 10.1016/j.jid.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Pathogen-induced epigenetic modifications can reshape anti-infection immune processes and control the magnitude of host responses. DNA methylation profiling has identified crucial aberrant methylation changes associated with diseases, thus providing biological insights into the roles of epigenetic factors in mycobacterial infection. In this study, we performed a genome-wide methylation analysis of skin biopsies from patients with leprosy and healthy controls. T helper 17 differentiation pathway was found to be significantly associated with leprosy through functional enrichment analysis. As a key gene in this pathway, IL-23R was found to be critical to mycobacterial immunity in leprosy, according to integrated analysis with DNA methylation, RNA sequencing, and GWASs. Functional analysis revealed that IL-23/IL-23R-enhanced bacterial clearance by activating caspase-1/GSDMD-mediated pyroptosis in a manner dependent on NLRP3 through signal transducer and activator of transcription 3 signaling in macrophages. Moreover, IL23/IL-23R promoted T helper 1 and T helper 17 cell differentiation and proinflammatory cytokine secretion, thereby increasing host bactericidal activity. IL-23R knockout attenuated the effects and increased susceptibility to mycobacterial infection mentioned earlier. These findings illustrate the biological functions of IL-23/IL-23R in modulating intracellular bacterial clearance in macrophages and further support their regulatory effects in T helper cell differentiation. Our study highlights that IL-23/IL-23R might serve as potential targets for the prevention and treatment of leprosy and other mycobacterial infections.
Collapse
Affiliation(s)
- Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenchao Li
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Peidian Shi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Na Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjie Chen
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
6
|
Zhao M, Lin Z, Zheng Z, Yao D, Yang S, Zhao Y, Chen X, Aweya JJ, Zhang Y. The mechanisms and factors that induce trained immunity in arthropods and mollusks. Front Immunol 2023; 14:1241934. [PMID: 37744346 PMCID: PMC10513178 DOI: 10.3389/fimmu.2023.1241934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Besides dividing the organism's immune system into adaptive and innate immunity, it has long been thought that only adaptive immunity can establish immune memory. However, many studies have shown that innate immunity can also build immunological memory through epigenetic reprogramming and modifications to resist pathogens' reinfection, known as trained immunity. This paper reviews the role of mitochondrial metabolism and epigenetic modifications and describes the molecular foundation in the trained immunity of arthropods and mollusks. Mitochondrial metabolism and epigenetic modifications complement each other and play a key role in trained immunity.
Collapse
Affiliation(s)
- Mingming Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhongyang Lin
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
7
|
McMahon‑Cole H, Johnson A, Sadat Aghamiri S, Helikar T, Crawford LB. Modeling and Remodeling the Cell: How Digital Twins and HCMV Can Elucidate the Complex Interactions of Viral Latency, Epigenetic Regulation, and Immune Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:141-151. [PMID: 37901689 PMCID: PMC10601359 DOI: 10.1007/s40588-023-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 10/31/2023]
Abstract
Purpose of Review Human cytomegalovirus (HCMV), while asymptomatic in most, causes significant complications during fetal development, following transplant or in immunosuppressed individuals. The host-virus interactions regulating viral latency and reactivation and viral control of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. Understanding these processes is essential to controlling infection and can be leveraged as a novel approach for understanding basic cell biology. Recent Findings Immune digital twins (IDTs) are digital simulations integrating knowledge of human immunology, physiology, and patient-specific clinical data to predict individualized immune responses and targeted treatments. Recent studies used IDTs to elucidate mechanisms of T cells, dendritic cells, and epigenetic control-all key to HCMV biology. Summary Here, we discuss how leveraging the unique biology of HCMV and IDTs will clarify immune response dynamics, host-virus interactions, and viral latency and reactivation and serve as a powerful IDT-validation platform for individualized and holistic health management.
Collapse
Affiliation(s)
- Hana McMahon‑Cole
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lindsey B. Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Virology, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| |
Collapse
|
8
|
Han X, He X, Zhan X, Yao L, Sun Z, Gao X, Wang S, Wang Z. Disturbed microbiota-metabolites-immune interaction network is associated with olfactory dysfunction in patients with chronic rhinosinusitis. Front Immunol 2023; 14:1159112. [PMID: 37292198 PMCID: PMC10245275 DOI: 10.3389/fimmu.2023.1159112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose Olfactory dysfunction (OD) is a debilitating symptom frequently reported by patients with chronic rhinosinusitis (CRS) and it is associated with a dysregulated sinonasal inflammation. However, little information is available about the effect of the inflammation-related nasal microbiota and related metabolites on the olfactory function in these patients. Therefore, the current study aimed to investigate the nasal microbiota-metabolites-immune interactions and their role in the pathogenesis of OD in CRS patients. Methods 23 and 19 CRS patients with and without OD, respectively, were enrolled in the present study. The "Sniffin' Sticks" was used to measure the olfactory function, while the metagenomic shotgun sequencing and the untargeted metabolite profiling were performed to assess the differences in terms of the nasal microbiome and metabolome between the two groups. The levels of nasal mucus inflammatory mediators were investigated by a multiplex flow Cytometric Bead Array (CBA). Results A decreased diversity in the nasal microbiome from the OD group compared to the NOD group was evidenced. The metagenomic analysis revealed a significant enrichment of Acinetobacter johnsonii in the OD group, while Mycoplasma arginini, Aeromonas dhakensis, and Salmonella enterica were significantly less represented (LDA value > 3, p < 0.05). The nasal metabolome profiles were significantly different between the OD and NOD groups (P < 0.05). The purine metabolism was the most significantly enriched metabolic subpathway in OD patients compared with NOD patients (P < 0.001). The expressions of IL-5, IL-8, MIP-1α, MCP-1, and TNF were statistically and significantly increased in the OD group (P < 0.05). All these data, including the dysregulation of the nasal microbiota, differential metabolites, and elevated inflammatory mediators in OD patients demonstrated a clear interaction relationship. Conclusion The disturbed nasal microbiota-metabolite-immune interaction networks may be implicated in the pathogenesis of OD in CRS patients and the underlying pathophysiological mechanisms need to be further investigated in future studies.
Collapse
Affiliation(s)
- Xingyu Han
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Xuejia He
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology-Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Linyin Yao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhifu Sun
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xing Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhenlin Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Solforosi L, Costes LMM, Tolboom JTBM, McMahan K, Anioke T, Hope D, Murdza T, Sciacca M, Bouffard E, Barrett J, Wu C, Hachmann N, Miller J, Yu J, He X, Jacob-Dolan C, Huber SKR, Dekking L, Chamanza R, Choi Y, Boer KFD, Barouch DH, Schuitemaker H, Zahn RC, Wegmann F. Booster with Ad26.COV2.S or Omicron-adapted vaccine enhanced immunity and efficacy against SARS-CoV-2 Omicron in macaques. Nat Commun 2023; 14:1944. [PMID: 37029141 PMCID: PMC10080532 DOI: 10.1038/s41467-023-37715-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Omicron spike (S) encoding vaccines as boosters, are a potential strategy to improve COVID-19 vaccine efficacy against Omicron. Here, macaques (mostly females) previously immunized with Ad26.COV2.S, are boosted with Ad26.COV2.S, Ad26.COV2.S.529 (encoding Omicron BA.1 S) or a 1:1 combination of both vaccines. All booster vaccinations elicit a rapid antibody titers increase against WA1/2020 and Omicron S. Omicron BA.1 and BA.2 antibody responses are most effectively boosted by vaccines including Ad26.COV2.S.529. Independent of vaccine used, mostly WA1/2020-reactive or WA1/2020-Omicron BA.1 cross-reactive B cells are detected. Ad26.COV2.S.529 containing boosters provide only slightly higher protection of the lower respiratory tract against Omicron BA.1 challenge compared with Ad26.COV2.S-only booster. Antibodies and cellular immune responses are identified as complementary correlates of protection. Overall, a booster with an Omicron-spike based vaccine provide only moderately improved immune responses and protection compared with the original Wuhan-Hu-1-spike based vaccine, which still provide robust immune responses and protection against Omicron.
Collapse
Affiliation(s)
| | - Lea M M Costes
- Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| | | | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tochi Anioke
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Hope
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tetyana Murdza
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michaela Sciacca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emily Bouffard
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cindy Wu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole Hachmann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica Miller
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xuan He
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Ronnie Chamanza
- Non-Clinical Safety Toxicology/Pathology, Janssen Research and Development, Beerse, Belgium
| | - Ying Choi
- Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | | | - Roland C Zahn
- Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| | - Frank Wegmann
- Janssen Vaccines and Prevention B.V., Leiden, Netherlands.
| |
Collapse
|
10
|
Manoj G, Anjali K, Presannan A, Melethadathil N, Suravajhala R, Suravajhala P. Epigenetics, genomics imprinting and non-coding RNAs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:93-104. [PMID: 37019598 DOI: 10.1016/bs.pmbts.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Epigenetic traits are heritable phenotypes caused by alterations in chromosomes rather than DNA sequences. The actual epigenetic expression of the somatic cells of a species is identical, however, they may show distinct subtleties in various cell types in which they may be affected. Several recent studies demonstrated that the epigenetic system plays a very important role in regulating all biological natural processes in the body from birth to death. We outline the essential elements of epigenetics, genomic imprinting, and non-coding RNAs in this mini-review.
Collapse
Affiliation(s)
- Gautham Manoj
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Krishna Anjali
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Anandhu Presannan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | | | - Renuka Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India.
| |
Collapse
|
11
|
Posseme C, Llibre A, Charbit B, Bondet V, Rouilly V, Saint-André V, Boussier J, Bergstedt J, Smith N, Townsend L, Sugrue JA, Ní Cheallaigh C, Conlon N, Rotival M, Kobor MS, Mottez E, Pol S, Patin E, Albert ML, Quintana-Murci L, Duffy D. Early IFNβ secretion determines variable downstream IL-12p70 responses upon TLR4 activation. Cell Rep 2022; 39:110989. [PMID: 35767946 PMCID: PMC9237956 DOI: 10.1016/j.celrep.2022.110989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
The interleukin-12 (IL-12) family comprises the only heterodimeric cytokines mediating diverse functional effects. We previously reported a striking bimodal IL-12p70 response to lipopolysaccharide (LPS) stimulation in healthy donors. Herein, we demonstrate that interferon β (IFNβ) is a major upstream determinant of IL-12p70 production, which is also associated with numbers and activation of circulating monocytes. Integrative modeling of proteomic, genetic, epigenomic, and cellular data confirms IFNβ as key for LPS-induced IL-12p70 and allowed us to compare the relative effects of each of these parameters on variable cytokine responses. Clinical relevance of our findings is supported by reduced IFNβ-IL-12p70 responses in patients hospitalized with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or chronically infected with hepatitis C (HCV). Importantly, these responses are resolved after viral clearance. Our systems immunology approach defines a better understanding of IL-12p70 and IFNβ in healthy and infected persons, providing insights into how common genetic and epigenetic variation may impact immune responses to bacterial infection.
Collapse
Affiliation(s)
- Celine Posseme
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Frontiers of Innovation in Research and Education PhD Program, CRI Doctoral School, Paris, France
| | - Alba Llibre
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | | | - Violaine Saint-André
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Jeremy Boussier
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Jacob Bergstedt
- Human Evolutionary Genetics Unit, CNRS, Institut Pasteur, Université Paris Cité, UMR2000, 75015 Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Liam Townsend
- Department of Infectious Diseases, St. James's Hospital, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Jamie A Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Clíona Ní Cheallaigh
- Department of Infectious Diseases, St. James's Hospital, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St. James's Hospital, Dublin, Ireland; Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, CNRS, Institut Pasteur, Université Paris Cité, UMR2000, 75015 Paris, France
| | - Michael S Kobor
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, University of British Columbia/British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Estelle Mottez
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Stanislas Pol
- Hepatology Unit, Hôpital Cochin, AP-HP, 27, rue du Fg Saint-Jacques, 75014 Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, CNRS, Institut Pasteur, Université Paris Cité, UMR2000, 75015 Paris, France
| | | | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, CNRS, Institut Pasteur, Université Paris Cité, UMR2000, 75015 Paris, France; Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université Paris Cité, 75015 Paris, France.
| |
Collapse
|
12
|
Sharma M, Sharma C, Mandal SK, Nesari TM, Kumar A. Immune status determined as per guidelines of Ayurveda found associated with clinical outcomes of COVID-19 disease - Results of a cross-sectional pilot study. J Ayurveda Integr Med 2022; 13:100425. [PMID: 34054247 PMCID: PMC8141726 DOI: 10.1016/j.jaim.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND A key public health priority during the emergence of a novel pathogen is probing the factors contributing in clinical severity of the disease COVID-19. Moreover, analysis of the determined clinical outcomes is required and thus, modifiable predictor values need to identified. In Ayurveda, outcome of a disease is a multivariate function and this exploratory work is an attempt to identify one such factor "Vyadhiksamatwa" (immune status). MATERIALS AND METHODS A questionnaire-based, cross-sectional study was conducted in fifty diagnosed cases of COVID-19. Study participants were subjected to a questionnaire to assess relationship between the three determinants of the disease - exposure, clinical severity, and Vyadhiksamatwa. RESULTS Clinical severity was found strongly correlated with Vyadhiksmatwa with the value of Pearson Correlation - 0.740 significant at the 0.01 level (2-tailed). CONCLUSION In the determination of clinical severity of disease, there are two epidemiological factors responsible - extrinsic (exposure) and intrinsic (Vyadhiksamatwa). It has been observed that higher the value of Vyadhiksamatwa of an individual, lesser will be the clinical severity of the disease in that individual. Vyadhiksamatwa can alter the host response to infections.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Dept. of Rog Nidan Evum Vikriti Vigyan, All India Institute of Ayurveda, India
| | - Charu Sharma
- Dept. of Prasuti Tantra & Stri Roga, All India Institute of Ayurveda, India.
| | - Sisir Kumar Mandal
- Dept. of Rog Nidan Evum Vikriti Vigyan, All India Institute of Ayurveda, India
| | | | | |
Collapse
|
13
|
Prakash A, Khan I. Why do insects evolve immune priming? A search for crossroads. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104246. [PMID: 34453994 DOI: 10.1016/j.dci.2021.104246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Until recently, it was assumed that insects lack immune memory since they do not have vertebrate-like specialized memory cells. Therefore, their most well studied evolutionary response against pathogens was increased basal immunity. However, growing evidence suggests that many insects also exhibit a form of immune memory (immune priming), where prior exposure to a low dose of infection confers protection against subsequent infection by the same pathogen that acts both within and across generations. Most strikingly, they can rapidly evolve as a highly parallel and mutually exclusive strategy from basal immunity, under different selective conditions and with divergent evolutionary trade-offs. However, the relative importance of priming as an optimal immune strategy also has contradictions, primarily because supporting mechanisms are still unclear. In this review, we adopt a comparative approach to highlight several emerging evolutionary, ecological and mechanistic features of priming vs basal immune responses that warrant immediate attention for future research.
Collapse
Affiliation(s)
- Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom.
| | - Imroze Khan
- Department of Biology, Ashoka University, Plot No. 2, Rajiv Gandhi Education City, P.O. Rai, Sonepat, Haryana, 131029, India.
| |
Collapse
|
14
|
Dunislawska A, Pietrzak E, Wishna Kadawarage R, Beldowska A, Siwek M. Pre-hatching and post-hatching environmental factors related to epigenetic mechanisms in poultry. J Anim Sci 2021; 100:6473202. [PMID: 34932113 DOI: 10.1093/jas/skab370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications are phenotypic changes unrelated to the modification of the DNA sequence. These modifications are essential for regulating cellular differentiation and organism development. In this case, epigenetics controls how the animal's genetic potential is used. The main epigenetic mechanisms are microRNA activity, DNA methylation and histone modification. The literature has repeatedly shown that environmental modulation has a significant influence on the regulation of epigenetic mechanisms in poultry. The aim of this review is to give an overview of the current state of the knowledge in poultry epigenetics in terms of issues relevant to overall poultry production and the improvement of the health status in chickens and other poultry species. One of the main differences between birds and mammals is the stage of embryonic development. The bird's embryo develops outside its mother, so an optimal environment of egg incubation before hatching is crucial for development. It is also the moment when many factors influence the activation of epigenetic mechanisms, i.e., incubation temperature, humidity, light, as well as in ovo treatments. Epigenome of the adult birds, might be modulated by: nutrition, supplementation and treatment, as well as modification of the intestinal microbiota. In addition, the activation of epigenetic mechanisms is influenced by pathogens (i.e., pathogenic bacteria, toxins, viruses and fungi) as well as, the maintenance conditions. Farm animal epigenetics is still a big challenge for scientists. This is a research area with many open questions. Modern methods of epigenetic analysis can serve both in the analysis of biological mechanisms and in the research and applied to production system, poultry health and welfare.
Collapse
Affiliation(s)
- A Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - E Pietrzak
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - R Wishna Kadawarage
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - A Beldowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - M Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| |
Collapse
|
15
|
Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 2021; 17:564-579. [PMID: 34341569 DOI: 10.1038/s41582-021-00530-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Maternal health during pregnancy plays a major role in shaping health and disease risks in the offspring. The maternal immune activation hypothesis proposes that inflammatory perturbations in utero can affect fetal neurodevelopment, and evidence from human epidemiological studies supports an association between maternal inflammation during pregnancy and offspring neurodevelopmental disorders (NDDs). Diverse maternal inflammatory factors, including obesity, asthma, autoimmune disease, infection and psychosocial stress, are associated with an increased risk of NDDs in the offspring. In addition to inflammation, epigenetic factors are increasingly recognized to operate at the gene-environment interface during NDD pathogenesis. For example, integrated brain transcriptome and epigenetic analyses of individuals with NDDs demonstrate convergent dysregulated immune pathways. In this Review, we focus on the emerging human evidence for an association between maternal immune activation and childhood NDDs, including autism spectrum disorder, attention-deficit/hyperactivity disorder and Tourette syndrome. We refer to established pathophysiological concepts in animal models, including immune signalling across the placenta, epigenetic 'priming' of offspring microglia and postnatal immune-brain crosstalk. The increasing incidence of NDDs has created an urgent need to mitigate the risk and severity of these conditions through both preventive strategies in pregnancy and novel postnatal therapies targeting disease mechanisms.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Bregaint S, Boyer E, Fong SB, Meuric V, Bonnaure-Mallet M, Jolivet-Gougeon A. Porphyromonas gingivalis outside the oral cavity. Odontology 2021; 110:1-19. [PMID: 34410562 DOI: 10.1007/s10266-021-00647-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/31/2021] [Indexed: 12/14/2022]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacillus present in periodontal disease, is considered one of the major pathogens in periodontitis. A literature search for English original studies, case series and review articles published up to December 2019 was performed using the MEDLINE, PubMed and GoogleScholar databases, with the search terms "Porphyromonas gingivalis" AND the potentially associated condition or systemic disease Abstracts and full text articles were used to make a review of published research literature on P. gingivalis outside the oral cavity. The main points of interest of this narrative review were: (i) a potential direct action of the bacterium and not the systemic effects of the inflammatory acute-phase response induced by the periodontitis, (ii) the presence of the bacterium (viable or not) in the organ, or (iii) the presence of its virulence factors. Virulence factors (gingipains, capsule, fimbriae, hemagglutinins, lipopolysaccharide, hemolysin, iron uptake transporters, toxic outer membrane blebs/vesicles, and DNA) associated with P. gingivalis can deregulate certain functions in humans, particularly host immune systems, and cause various local and systemic pathologies. The most recent studies linking P. gingivalis to systemic diseases were discussed, remembering particularly the molecular mechanisms involved in different infections, including cerebral, cardiovascular, pulmonary, bone, digestive and peri-natal infections. Recent involvement of P. gingivalis in neurological diseases has been demonstrated. P. gingivalis modulates cellular homeostasis and increases markers of inflammation. It is also a factor in the oxidative stress involved in beta-amyloid production.
Collapse
Affiliation(s)
- Steeve Bregaint
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Emile Boyer
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Shao Bing Fong
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Vincent Meuric
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Martine Bonnaure-Mallet
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Anne Jolivet-Gougeon
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France. .,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France.
| |
Collapse
|
17
|
Qin W, Scicluna BP, van der Poll T. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection. Front Immunol 2021; 12:696280. [PMID: 34394088 PMCID: PMC8358789 DOI: 10.3389/fimmu.2021.696280] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic changes play a key role in the immune response to bacteria, among which DNA modifications that include methylation have received much attention in recent years. The extent of DNA methylation is well known to regulate gene expression. Whilst historically DNA methylation was considered to be a stable epigenetic modification, accumulating evidence indicates that DNA methylation patterns can be altered rapidly upon exposure of cells to changing environments and pathogens. Furthermore, the action of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by bacteria. This review discusses the principles of DNA methylation, and recent insights about the regulation of host DNA methylation during bacterial infection.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Bascuñan N, Vidal R. Temporal genome-wide DNA methylation signature of post-smolt Pacific salmon challenged with Piscirickettsia salmonis. Epigenetics 2020; 16:1335-1346. [PMID: 33319647 DOI: 10.1080/15592294.2020.1864166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has sorted several efforts to its control, generating enormous economic losses. Epigenetic alterations, such as DNA methylation, can play a relevant role in the modulation of the metazoans response to pathogens. Bacterial disease may activate global and local immune responses generating intricate responses with significant biological impact in the host. However, it is scarcely understood how bacterial infections influence fish epigenetic alterations. In the present study, we utilized Pacific salmon and Piscirickettsiosis as model, to gain understanding into the dynamics of DNA methylation among fish-bacterial infection interactions. A genome-wide analysis of DNA methylation patterns in female spleen tissue of Pacific salmon was achieved by reduced representation bisulphite sequencing from a time course design. We determined 2,251, 1,918, and 2,516 differentially methylated regions DMRs among infected and control Pacific salmon in 1 dpi, 5 dpi, and 15 dpi, respectively. The mean methylation difference per DMR among control and infected groups was of ~35%, with an oscillatory pattern of hypo, hyper, and hypomethylation across the disease. DMCs, among the control and infected group, showed that they were statistically enriched in intergenic regions and depleted in exons. Functional annotation of the DMR genes demonstrated three KEGG principal categories, associated directly with the host response to pathogens infections. Our results provide the first evidence of epigenetic variation in fish provoked by bacterial infection and demonstrate that this variation can be modulated across the disease.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Scarlet Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | - Nicolás Bascuñan
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
19
|
Wei T, Sui H, Su Y, Cheng W, Liu Y, He Z, Ji Q, Xu C. Research advances in molecular mechanisms underlying the pathogenesis of cystic fibrosis: From technical improvement to clinical applications (Review). Mol Med Rep 2020; 22:4992-5002. [PMID: 33173976 PMCID: PMC7646950 DOI: 10.3892/mmr.2020.11607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a chronic disease causing severe impairment to the respiratory system and digestive tracts. Currently, CF is incurable. As an autosomal recessive disorder, the morbidity of CF is significantly higher among Caucasians of European descent, whereas it is less pervasive among African and Asian populations. The disease is caused by identical mutations (homozygosity) or different mutations (heterozygosity) of an autosomal recessive mutation at position 7q31.2-q31.1 of chromosome 7. Diagnostic criteria and guidelines work concurrently with laboratory detection to facilitate precise CF detection. With technological advances, the understanding of CF pathogenesis has reached an unprecedented level, allowing for increasingly precise carrier screening, more effective early stage CF intervention and improved prognostic outcomes. These advances significantly increase the life quality and expectancy of patients with CF. Given the numerous improvements in the field of CF, the current review summarized the technical advances in the study of the molecular mechanisms underlying CF, as well as how these improvements facilitate the clinical outcomes of CF. Furthermore, challenges and obstacles to overcome are discussed.
Collapse
Affiliation(s)
- Tao Wei
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Wanjing Cheng
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Yunhua Liu
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Zilin He
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Qingchao Ji
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Changlong Xu
- Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi Zhuang Autonomous Region 530031, P.R. China
| |
Collapse
|
20
|
Číž M, Dvořáková A, Skočková V, Kubala L. The Role of Dietary Phenolic Compounds in Epigenetic Modulation Involved in Inflammatory Processes. Antioxidants (Basel) 2020; 9:antiox9080691. [PMID: 32756302 PMCID: PMC7464822 DOI: 10.3390/antiox9080691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/09/2023] Open
Abstract
A better understanding of the interactions between dietary phenolic compounds and the epigenetics of inflammation may impact pathological conditions and their treatment. Phenolic compounds are well-known for their antioxidant, anti-inflammatory, anti-angiogenic, and anti-cancer properties, with potential benefits in the treatment of various human diseases. Emerging studies bring evidence that nutrition may play an essential role in immune system modulation also by altering gene expression. This review discusses epigenetic mechanisms such as DNA methylation, post-translational histone modification, and non-coding microRNA activity that regulate the gene expression of molecules involved in inflammatory processes. Special attention is paid to the molecular basis of NF-κB modulation by dietary phenolic compounds. The regulation of histone acetyltransferase and histone deacetylase activity, which all influence NF-κB signaling, seems to be a crucial mechanism of the epigenetic control of inflammation by phenolic compounds. Moreover, chronic inflammatory processes are reported to be closely connected to the major stages of carcinogenesis and other non-communicable diseases. Therefore, dietary phenolic compounds-targeted epigenetics is becoming an attractive approach for disease prevention and intervention.
Collapse
Affiliation(s)
- Milan Číž
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Correspondence: ; Tel.: +420-541-517-104
| | - Adéla Dvořáková
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Skočková
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| |
Collapse
|
21
|
Sagonas K, Meyer BS, Kaufmann J, Lenz TL, Häsler R, Eizaguirre C. Experimental Parasite Infection Causes Genome-Wide Changes in DNA Methylation. Mol Biol Evol 2020; 37:2287-2299. [PMID: 32227215 PMCID: PMC7531312 DOI: 10.1093/molbev/msaa084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite infection has been widely studied, little is known about how epigenetic changes contribute to parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA methylation modifications to respond to parasite infections. In a controlled infection experiment, we used the three-spined stickleback fish, a model species for host-parasite studies, and their nematode parasite Camallanus lacustris. We showed that the levels of DNA methylation are higher in infected fish. Results furthermore suggest correlations between DNA methylation and shifts in key fitness and immune traits between infected and control fish, including respiratory burst and functional trans-generational traits such as the concentration of motile sperm. We revealed that genes associated with metabolic, developmental, and regulatory processes (cell death and apoptosis) were differentially methylated between infected and control fish. Interestingly, genes such as the neuropeptide FF receptor 2 and the integrin alpha 1 as well as molecular pathways including the Th1 and Th2 cell differentiation were hypermethylated in infected fish, suggesting parasite-mediated repression mechanisms of immune responses. Altogether, we demonstrate that parasite infection contributes to genome-wide DNA methylation modifications. Our study brings novel insights into the evolution of vertebrate immunity and suggests that epigenetic mechanisms are complementary to genetic responses against parasite-mediated selection.
Collapse
Affiliation(s)
- Kostas Sagonas
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Britta S Meyer
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Joshka Kaufmann
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Republic of Ireland
- Department for Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
22
|
Malinczak CA, Rasky AJ, Fonseca W, Schaller MA, Allen RM, Ptaschinski C, Morris S, Lukacs NW. Upregulation of H3K27 Demethylase KDM6 During Respiratory Syncytial Virus Infection Enhances Proinflammatory Responses and Immunopathology. THE JOURNAL OF IMMUNOLOGY 2019; 204:159-168. [PMID: 31748348 DOI: 10.4049/jimmunol.1900741] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Severe disease following respiratory syncytial virus (RSV) infection has been linked to enhanced proinflammatory cytokine production that promotes a Th2-type immune environment. Epigenetic regulation in immune cells following viral infection plays a role in the inflammatory response and may result from upregulation of key epigenetic modifiers. In this study, we show that RSV-infected bone marrow-derived dendritic cells (BMDC) as well as pulmonary dendritic cells (DC) from RSV-infected mice upregulated the expression of Kdm6b/Jmjd3 and Kdm6a/Utx, H3K27 demethylases. KDM6-specific chemical inhibition (GSK J4) in BMDC led to decreased production of chemokines and cytokines associated with the inflammatory response during RSV infection (i.e., CCL-2, CCL-3, CCL-5, IL-6) as well as decreased MHC class II and costimulatory marker (CD80/86) expression. RSV-infected BMDC treated with GSK J4 altered coactivation of T cell cytokine production to RSV as well as a primary OVA response. Airway sensitization of naive mice with RSV-infected BMDCs exacerbate a live challenge with RSV infection but was inhibited when BMDCs were treated with GSK J4 prior to sensitization. Finally, in vivo treatment with the KDM6 inhibitor, GSK J4, during RSV infection reduced inflammatory DC in the lungs along with IL-13 levels and overall inflammation. These results suggest that KDM6 expression in DC enhances proinflammatory innate cytokine production to promote an altered Th2 immune response following RSV infection that leads to more severe immunopathology.
Collapse
Affiliation(s)
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Matthew A Schaller
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL 32610; and
| | - Ronald M Allen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; .,Mary H. Weiser Food and Allergy Center, Ann Arbor, MI 48109
| |
Collapse
|
23
|
Loiseau C, Cooper MM, Doolan DL. Deciphering host immunity to malaria using systems immunology. Immunol Rev 2019; 293:115-143. [PMID: 31608461 DOI: 10.1111/imr.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
A century of conceptual and technological advances in infectious disease research has changed the face of medicine. However, there remains a lack of effective interventions and a poor understanding of host immunity to the most significant and complex pathogens, including malaria. The development of successful interventions against such intractable diseases requires a comprehensive understanding of host-pathogen immune responses. A major advance of the past decade has been a paradigm switch in thinking from the contemporary reductionist (gene-by-gene or protein-by-protein) view to a more holistic (whole organism) view. Also, a recognition that host-pathogen immunity is composed of complex, dynamic interactions of cellular and molecular components and networks that cannot be represented by any individual component in isolation. Systems immunology integrates the field of immunology with omics technologies and computational sciences to comprehensively interrogate the immune response at a systems level. Herein, we describe the system immunology toolkit and report recent studies deploying systems-level approaches in the context of natural exposure to malaria or controlled human malaria infection. We contribute our perspective on the potential of systems immunity for the rational design and development of effective interventions to improve global public health.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| |
Collapse
|
24
|
Baradaran E, Moharramipour S, Asgari S, Mehrabadi M. Induction of DNA methyltransferase genes in Helicoverpa armigera following injection of pathogenic bacteria modulates expression of antimicrobial peptides and affects bacterial proliferation. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103939. [PMID: 31493391 DOI: 10.1016/j.jinsphys.2019.103939] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Following pathogen attack in a host, widespread changes are induced in the host's gene expression, in particular those involved in the immune system, growth and survival. Epigenetic mechanisms have been suggested to be involved in the regulation of these changes through a number of mechanisms. DNA methylation is one of the important epigenetic processes that is carried out by DNA (cytosine-5) methyltransferase (DNMT) and alters expression of target genes. Here, we identified two putative sequences of DNMT (i.e. DNMT1 and DNMT2) from the transcriptome dataset of Helicoverpa armigera that showed high similarity to the homologous sequences in Bombyx mori. Domain architectures of DNMT1 and DNMT2 exhibit the unique pattern of DNMTs that highlights conserved function of these genes in different insects. To see if these genes play any role in bacterial infection, we challenged the fifth instar larvae of H. armigera by injecting Bacillus thuringiensis and Serratia marcescens cells into the hemolymph. Transcript levels of the DNMTs were analyzed by RT-qPCR. The results showed that the expression levels of DNMT1 and DNMT2 increased in the bacteria-injected larvae. Injection of the heat-killed bacteria also induced the expression of the DNMTs, but lower than that of the live bacteria. To determine whether these genes function during bacterial infection, we injected the inhibitor of DNMTs, 5-azacytidine (5-AZA), into the larvae and 24 h later, the bacterial cells were also injected into the larvae. Bacterial replication and larval mortality were analyzed in the treated and control insects. We found that 5-AZA reduced bacterial replication and also mortality of the bacterial-injected larvae regardless of the pathogenic bacterial species. Interestingly, the expression levels of antimicrobial peptides (AMPs) were also modulated following 5-AZA treatment. In conclusion, we showed that upregulation of the DNMTs in H. armigera following bacterial infections modulates AMPs and thereby affects the insect-bacteria interactions.
Collapse
Affiliation(s)
- Ehsan Baradaran
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Armstrong DA, Chen Y, Dessaint JA, Aridgides DS, Channon JY, Mellinger DL, Christensen BC, Ashare A. DNA Methylation Changes in Regional Lung Macrophages Are Associated with Metabolic Differences. Immunohorizons 2019; 3:274-281. [PMID: 31356157 PMCID: PMC6686200 DOI: 10.4049/immunohorizons.1900042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
A number of pulmonary diseases occur with upper lobe predominance, including cystic fibrosis and smoking-related chronic obstructive pulmonary disease. In the healthy lung, several physiologic and metabolic factors exhibit disparity when comparing the upper lobe of the lung to lower lobe, including differences in oxygenation, ventilation, lymphatic flow, pH, and blood flow. In this study, we asked whether these regional differences in the lung are associated with DNA methylation changes in lung macrophages that could potentially lead to altered cell responsiveness upon subsequent environmental challenge. All analyses were performed using primary lung macrophages collected via bronchoalveolar lavage from healthy human subjects with normal pulmonary function. Epigenome-wide DNA methylation was examined via Infinium MethylationEPIC (850K) array and validated by targeted next-generation bisulfite sequencing. We observed 95 CpG loci with significant differential methylation in lung macrophages, comparing upper lobe to lower lobe (all false discovery rate < 0.05). Several of these genes, including CLIP4, HSH2D, NR4A1, SNX10, and TYK2, have been implicated as participants in inflammatory/immune-related biological processes. Functionally, we identified phenotypic differences in oxygen use, comparing upper versus lower lung macrophages. Our results support a hypothesis that epigenetic changes, specifically DNA methylation, at a multitude of gene loci in lung macrophages are associated with metabolic differences regionally in lung.
Collapse
Affiliation(s)
- David A Armstrong
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756;
| | - Youdinghuan Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - John A Dessaint
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Daniel S Aridgides
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Jacqueline Y Channon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Diane L Mellinger
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Alix Ashare
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756; .,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| |
Collapse
|
26
|
Nguyen DV, Vidal C, Chu HC, van Nunen S. Human leukocyte antigen-associated severe cutaneous adverse drug reactions: from bedside to bench and beyond. Asia Pac Allergy 2019; 9:e20. [PMID: 31384575 PMCID: PMC6676067 DOI: 10.5415/apallergy.2019.9.e20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
Despite their being uncommon, severe cutaneous adverse drug reactions (SCARs) result in a very great burden of disease. These reactions not only carry with them a high mortality (10%-50%) and high morbidity (60%) with severe ocular complications, alopecia, oral and dental complications and development of autoimmune diseases, but also create a substantial economic burden for patients' families and society. SCARs are, therefore, an important medical problem needing a solution in many countries, especially in Asia. The clinical spectrum of SCARs comprises Stevens-Johnson syndrome, toxic epidermal necrolysis, DRESS (drug rash with eosinophilia and systemic symptoms) (also known as drug hypersensitivity syndrome or drug-induced hypersensitivity syndrome) and acute generalised exanthematous pustulosis. Recent crucial advances in determining genetic susceptibility and understanding how T cells recognise certain medications or their metabolites via the major histocompatibility complex and the effects of cofactors, have led to the implementation of cost-effective screening programs enabling prevention in a number of countries, and to further understanding of the patho-mechanisms involved in SCARs and their significance. In this review, we document comprehensively the journey of SCARs from bedside to bench and outline future perspectives in SCARs research.
Collapse
Affiliation(s)
- Dinh Van Nguyen
- Division of Respiratory, Allergy and Clinical Immunology, Vinmec International Hospital, Times City and VinUni Project, Hanoi, Vietnam
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Allergy and Clinical Immunology, Hanoi Medical University, Hanoi, Vietnam
| | - Christopher Vidal
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Hieu Chi Chu
- Centre of Allergology and Clinical Immunology, Bach Mai Hospital, Hanoi, Vietnam
| | - Sheryl van Nunen
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
27
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
28
|
Wang Z, Liu S, Tao Y. Regulation of chromatin remodeling through RNA polymerase II stalling in the immune system. Mol Immunol 2019; 108:75-80. [PMID: 30784765 DOI: 10.1016/j.molimm.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
RNA polymerase II (Pol II) binds to promoter-proximal regions of inducible target genes that are controlled and not transcribed by several negative elongation factors, which is known as Pol II stalling. The occurrence of stalling is due to particular modification signatures and structural conformations of chromatin that affect Pol II elongation. The existence and physiological importance of Pol II stalling implies that there is a dynamic balance in chromatin regulation prior to endogenous or exogenous stimulation. In this review, we discuss the effects of ATP-dependent chromatin remodeling complexes and histone modification via transcriptional machinery Pol II C-terminal domain phosphorylated at serine 5 (S5P RNAPII) initiation and S2P RNAPII elongation on the expression or silence of specific genes after the production of activated or differentiated signals or cytokines. The response occurs immediately during immune cell development and function, and it also includes the generation of immunological memories. This summary suggests that the host immune response genes involve a novel mechanism of selectively regulatory chromatin remodeling, a fundamental and crucial aspect of epigenetic regulation.
Collapse
Affiliation(s)
- Zuli Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
29
|
Chen Y, Armstrong DA, Salas LA, Hazlett HF, Nymon AB, Dessaint JA, Aridgides DS, Mellinger DL, Liu X, Christensen BC, Ashare A. Genome-wide DNA methylation profiling shows a distinct epigenetic signature associated with lung macrophages in cystic fibrosis. Clin Epigenetics 2018; 10:152. [PMID: 30526669 PMCID: PMC6288922 DOI: 10.1186/s13148-018-0580-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Lung macrophages are major participants in the pulmonary innate immune response. In the cystic fibrosis (CF) lung, the inability of lung macrophages to successfully regulate the exaggerated inflammatory response suggests dysfunctional innate immune cell function. In this study, we aim to gain insight into innate immune cell dysfunction in CF by investigating alterations in DNA methylation in bronchoalveolar lavage (BAL) cells, composed primarily of lung macrophages of CF subjects compared with healthy controls. All analyses were performed using primary alveolar macrophages from human subjects collected via bronchoalveolar lavage. Epigenome-wide DNA methylation was examined via Illumina MethylationEPIC (850 K) array. Targeted next-generation bisulfite sequencing was used to validate selected differentially methylated CpGs. Methylation-based sample classification was performed using the recursively partitioned mixture model (RPMM) and was tested against sample case-control status. Differentially methylated loci were identified by fitting linear models with adjustment of age, sex, estimated cell type proportions, and repeat measurement. Results RPMM class membership was significantly associated with the CF disease status (P = 0.026). One hundred nine CpG loci were differentially methylated in CF BAL cells (all FDR ≤ 0.1). The majority of differentially methylated loci in CF were hypo-methylated and found within non-promoter CpG islands as well as in putative enhancer regions and DNase hyper-sensitive regions. Conclusions These results support a hypothesis that epigenetic changes, specifically DNA methylation at a multitude of gene loci in lung macrophages, may participate, at least in part, in driving dysfunctional innate immune cells in the CF lung. Electronic supplementary material The online version of this article (10.1186/s13148-018-0580-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youdinghuan Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - David A Armstrong
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Haley F Hazlett
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Amanda B Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - John A Dessaint
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Daniel S Aridgides
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Diane L Mellinger
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Xiaoying Liu
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alix Ashare
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
30
|
DeCandia AL, Dobson AP, vonHoldt BM. Toward an integrative molecular approach to wildlife disease. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:798-807. [PMID: 29380417 PMCID: PMC7162296 DOI: 10.1111/cobi.13083] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/12/2017] [Accepted: 01/19/2018] [Indexed: 05/03/2023]
Abstract
Pathogens pose serious threats to human health, agricultural investment, and biodiversity conservation through the emergence of zoonoses, spillover to domestic livestock, and epizootic outbreaks. As such, wildlife managers are often tasked with mitigating the negative effects of disease. Yet, parasites form a major component of biodiversity that often persist. This is due to logistical challenges of implementing management strategies and to insufficient understanding of host-parasite dynamics. We advocate for an inclusive understanding of molecular diversity in driving parasite infection and variable host disease states in wildlife systems. More specifically, we examine the roles of genetic, epigenetic, and commensal microbial variation in disease pathogenesis. These include mechanisms underlying parasite virulence and host resistance and tolerance, and the development, regulation, and parasite subversion of immune pathways, among other processes. Case studies of devil facial tumor disease in Tasmanian devils (Sarcophilus harrisii) and chytridiomycosis in globally distributed amphibians exemplify the broad range of questions that can be addressed by examining different facets of molecular diversity. For particularly complex systems, integrative molecular analyses present a promising frontier that can provide critical insights necessary to elucidate disease dynamics operating across scales. These insights enable more accurate risk assessment, reconstruction of transmission pathways, discernment of optimal intervention strategies, and development of more effective and ecologically sound treatments that minimize damage to the host population and environment. Such measures are crucial when mitigating threats posed by wildlife disease to humans, domestic animals, and species of conservation concern.
Collapse
Affiliation(s)
- Alexandra L. DeCandia
- Department of Ecology and Evolutionary BiologyPrinceton University106A Guyot HallPrincetonNJ 08544U.S.A.
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary BiologyPrinceton University106A Guyot HallPrincetonNJ 08544U.S.A.
| | - Bridgett M. vonHoldt
- Department of Ecology and Evolutionary BiologyPrinceton University106A Guyot HallPrincetonNJ 08544U.S.A.
| |
Collapse
|
31
|
Weathering the storm; a review of pre-pregnancy stress and risk of spontaneous abortion. Psychoneuroendocrinology 2018; 92:142-154. [PMID: 29628283 DOI: 10.1016/j.psyneuen.2018.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 02/01/2018] [Accepted: 03/01/2018] [Indexed: 01/01/2023]
Abstract
The Weathering Effect is a theory that links stress exposure, over the life-course, with racial disparities in reproductive outcomes, through the effects of social adversity on a woman's body. The concept of maternal "weathering" captures cumulative somatic and psychological adversities that can exacerbate the effects of aging. Much of the evidence for weathering comes from observational studies linking self-report measures with reproductive outcomes. The purpose of this review is to explore biological mechanisms that underlie these observations. We focus on spontaneous abortion because this event is understudied despite evidence of racial disparities in this outcome. Spontaneous abortion is the most common pregnancy failure, and it happens early in pregnancy. Early pregnancy is a time most susceptible to the harmful effects of immune dysregulation that may, in part, result from adversities experienced before pregnancy begins. In exploring these mechanisms, we draw on well-defined signaling processes observed in the stressor-depression relationship. Pro-inflammatory dysregulation, for example, has particular relevance to immunological control occurring early in pregnancy. Early pregnancy immunologic changes affect the trajectories of pregnancy via control of trophoblastic invasion. Within the first few weeks of pregnancy, uterine derived cytokines operate within cytokine networks and play a critical role in this invasion. Programming for pro-inflammatory dysregulation can occur before conception. This dysregulation, brought into early pregnancy, has implications for viability and success of the index pregnancy. These patterns suggest early pregnancy health is susceptible to stress processing pathways that influence this immunologic control in the first six to eight weeks of pregnancy. In this review, we discuss the known mediating role of immune factors in the stressor-depression relationship. We also discuss how adversity experienced before the index pregnancy, or "pre-pregnancy" may influence these pathways, and subsequently influence early pregnancy health. There is a need to understand adversity, experienced before pregnancy, and mechanisms driving the effects of these experiences on pregnancy outcomes. This approach is a useful entry point for understanding racial inequities in pregnancy health through an understanding of differences in exposures to adversity. We hypothesize that spontaneous abortion involves cyclical changes within a woman's reproductive tract in response to stressors that are established well before a woman enters into pregnancy. Furthermore, we propose mechanisms that potentially drive weathering processes relevant to reproductive disparities. We also examine what is known about pre-pregnancy stress exposures associated with race, inequity, and adversity, and their potential impact on neuroendocrine and immune changes affecting early pregnancy risk.
Collapse
|
32
|
Dissecting chromatin-mediated gene regulation and epigenetic memory through mathematical modelling. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|