1
|
Sobieh SS, Elshazly RG, Tawab SA, Zaki SS. Estimating the expression levels of genes controlling biofilm formation and evaluating the effects of different conditions on biofilm formation and secreted aspartic proteinase activity in Candida albicans and Saccharomyces cerevisiae: a comparative study. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:49. [DOI: 10.1186/s43088-024-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Characterization of yeast virulence genes is an important tool for identifying the molecular pathways involved in switching yeast virulence. Biofilm formation (BF) and secreted aspartic proteinase (SAP) activity are essential virulence factors that contribute to yeast pathogenicity.
Results
Four Candida albicans and two Saccharomyces cerevisiae strains were tested for BF and SAP activity under optimum conditions, and the expression levels of several genes controlling BF were quantified under the optimal conditions. Biofilm formation was assessed by the microplate method at different pH values, incubation times and culture media. Similarly, SAP activity was assessed at different pH values and incubation periods. The expression levels of nine genes were determined via qRT-PCR technique. All tests were carried out in triplicate, and the values presented as the means ± standard deviations and were analysed with the SPSS programme. Only C. albicans (1), C. albicans (2) and S. cerevisiae 43 formed biofilms. The optimal BF was obtained after culture in sabouraud dextrose broth with 8% glucose at pH 7.5, 4 and 6, respectively, for 48h. Candida albicans biofilm production was more significant than that of S. cerevisiae 43. Moreover, the SAP activity was estimated under the optimum conditions. All yeasts showed optimal SAP activity at pH 4, but astonishingly the SAP activity of S. cerevisiae 44 was higher than that of C. albicans. The expression levels of EFG1 and ZAP1 (transcription factors); ALS3, HWP1and YWP1 (adhesion genes); SAP1 and SAP4 (aspartic proteinase) in C. albicans (1); and FLO11 (adhesion gene) and YPS3 (aspartic proteinase) in S. cerevisiae 43 were quantified during biofilm development at different time intervals. The expression levels of EFG1, ALS3, YWP1, SAP1, SAP4, FLO11 and YPS3 were upregulated at 8 h, while that of ZAP1 was upregulated at 48 h. Only HWP1 was downregulated.
Conclusions
The findings of the present study may provide information for overcoming yeast BF and pathogenicity by regulating specific genes at specific times. Additionally, this study revealed the virulence of the commensal S. cerevisiae, which may take the pathogenicity direction as C. albicans.
Collapse
|
2
|
Abe M, Kinjo Y, Koshikawa T, Miyazaki Y. Basic Research on Candida Species. Med Mycol J 2024; 65:67-74. [PMID: 39218649 DOI: 10.3314/mmj.24.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Candida species are common human pathogens that cause a wide range of diseases ranging from superficial to invasive candidiasis. However, basic studies focusing on the mechanisms underlying these diseases are limited. This article reviews our previous research on the mechanisms of superficial and invasive candidiasis, the virulence of Candida species, and Candida species fitness to hosts. Regarding invasive candidiasis, we focused on two types of infections: ocular candidiasis and endogenous candidiasis from the gastrointestinal tract. Using an established ocular candidiasis mouse model, along with retrospective epidemiological research, we found a strong association between Candida albicans and ocular candidiasis. Regarding endogenous candidiasis, research using Candida auris indicated that invasive strains had a higher capability for gastrointestinal tract colonization and showed greater dissemination compared with non-invasive strains. In terms of superficial candidiasis, we focused on the defense mechanism in vulvovaginal candidiasis. The results suggested that stimulated invariant natural killer T cells played a protective role against C. albicans vaginal infection and might be a therapeutic target for vulvovaginal candidiasis. Concerning Candida species fitness, we focused on environmental factors, particularly oxygen concentration, and evaluated biofilm formation under various oxygen concentrations, revealing that each Candida species favored different oxygen concentrations. In particular, Candida tropicalis showed greater biofilm formation under hypoxic conditions. Our research revealed several insights for understanding the exact mechanisms of candidiasis, which might lead to better control of Candida species infections and appropriate treatment.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Fungal Infection, National Institute of Infectious Diseases
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine
| | - Takuro Koshikawa
- Department of Fungal Infection, National Institute of Infectious Diseases
- Department of Microbiology, St. Marianna University School of Medicine
| | | |
Collapse
|
3
|
Capote-Bonato FG, Bonato DV, Ayer IM, Silva de Lima C, Magalhães LF, Spada CA, Magalhães GM, de Mattos Junior E, Maia Teixeira PP, Negri M, Crivellenti LZ, Estivalet Svidzinski TI. Ascending renal infection following experimental candiduria by Candida tropicalis in immunocompromised mice. Microb Pathog 2023; 183:106295. [PMID: 37562493 DOI: 10.1016/j.micpath.2023.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The present study evaluated renal infection resulting from the implantation of C. tropicalis in the bladder of immunosuppressed mice. Yeasts were implanted in two manners: planktonic and via preformed biofilm on a small catheter fragment (SCF). Renal histopathology and cultures was performed 72 and 144 h after cystotomy was carried out in mice from three groups: group I contained non-contaminated mice implanted with a sterile SCF; group II mice received a sterile SCF plus a yeast suspension containing 1 × 107 yeasts/mL in a planktonic form; group III mice were implanted with a SCF containing preformed C. tropicalis biofilm. Viable yeasts were found in the kidneys of mice from both groups II and III. However, after 72 h the planktonic cells (group II) invaded more quickly than the sessile cells (group III). Over a longer period (144 h), group III exhibited a more invasive infection (50% of the animals presented renal infection and the renal fungal load was 3.2 log10 CFU/g tissue) than in group II, where yeasts were not found. C. tropicalis introduced into the bladder in two ways (in planktonic or biofilm form) were able to reach the kidney and establish a renal fungal infection, causing interstitial disorders. The data of the present study therefore support the hypothesis of an ascending pathway for renal infections by C. tropicalis. Furthermore, the biofilm resulted in a greater and progressive risk of renal infection, attributed to the slow detachment of the yeasts.
Collapse
Affiliation(s)
- Francieli Gesleine Capote-Bonato
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University (UNIPAR), Praça Mascarenhas de Moraes, 4282-Centro, 87502-210, Umuarama, Paraná, Brazil.
| | - Denis Vinicius Bonato
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University (UNIPAR), Praça Mascarenhas de Moraes, 4282-Centro, 87502-210, Umuarama, Paraná, Brazil
| | - Ilan Munhoz Ayer
- Department of Veterinary Medicine, Franca University, São Paulo, Brazil
| | | | | | - Cecilia Aparecida Spada
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University (UNIPAR), Praça Mascarenhas de Moraes, 4282-Centro, 87502-210, Umuarama, Paraná, Brazil
| | | | | | | | - Melyssa Negri
- Department of Clinical Analysis, Medical Mycology Division, State University of Maringá, Paraná, Brazil
| | | | | |
Collapse
|
4
|
A computer vision chemometric-assisted approach to access pH and glucose influence on susceptibility of Candida pathogenic strains. Arch Microbiol 2022; 204:530. [PMID: 35900475 DOI: 10.1007/s00203-022-03145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
Abstract
Microorganisms adapt to environmental conditions as a survival strategy for different interactions with the environment. The adaptive capacity of fungi allows them to cause disease at various sites of infection in humans. In this study, we propose digital images as responses of a complete factorial 23. Furthermore, we compared two experimental approaches: the experimental design (3D) and the checkerboard assay (2D) to know the influence of pH, glucose, and fluconazole concentration on different strains of the genus Candida. The digital images obtained from the factorial 23 were used as input in the PCA-ANOVA to analyze the results of this experimental design. pH modification in the culture medium modifies the susceptibility in some species less adapted to this type of modification. For the first time, to the best of our knowledge, digital images were used as input to PCA-ANOVA to obtain information on Candida spp.. Therefore, a higher concentration of antifungals is needed to inhibit the same strain at a lower pH. In short, we present an alternative with less use of reagents and time. In addition, the use of digital images allows obtaining information about fungal susceptibility with three or more factors.
Collapse
|
5
|
Leerahakan P, Matangkasombut O, Tarapan S, Lam-Ubol A. Biofilm formation of Candida isolates from xerostomic post-radiotherapy head and neck cancer patients. Arch Oral Biol 2022; 142:105495. [PMID: 35839697 DOI: 10.1016/j.archoralbio.2022.105495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023]
Abstract
Oral candidiasis is a common problem in post-radiation head and neck cancer (HNC) patients. While biofilm formation is a crucial virulence factor for Candida colonization, existing information on biofilm formation capability of Candida in cancer patients is scarce. OBJECTIVE To evaluate biofilm formation capability of Candida spp. colonized in xerostomic post-radiotherapy HNC patients. DESIGN Candida albicans and non-albicans Candida species were previously isolated from xerostomic post-radiation cancer patients and healthy individuals. Biofilm mass and biofilm metabolic activity were investigated by crystal violet and MTT assays, respectively. Their relationship with clinical parameters was analyzed using Mann-Whitney U and Chi-square tests. RESULTS A total of 109 and 45 Candida isolates from 64 cancer patients and 34 controls, respectively, were evaluated. Both biofilm mass and metabolic activity of Candida isolates from cancer patients were higher than those from controls. The between-group differences were statistically significant in C. albicans (p < 0.001) for biofilm mass, and in C. tropicalis (p = 0.01) for biofilm metabolic activity. Overall, C. tropicalis was the best biofilm producers in both groups. Additionally, we found that higher biofilm formation among C. albicans was associated with low saliva buffering capacity. CONCLUSIONS C. albicans and C. tropicalis isolated from xerostomic post-radiation cancer patients had higher biofilm formation capability than those from healthy individuals. Our findings suggest that, in addition to compromised host factors, higher biofilm formation capability may also contribute to the pathogenesis of oral candidiasis in HNC patients. This novel information potentially adds to proper management for these patients.
Collapse
Affiliation(s)
| | - Oranart Matangkasombut
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Supanat Tarapan
- Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand; Langsuan Hospital, Chumphon, Thailand
| | - Aroonwan Lam-Ubol
- Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand.
| |
Collapse
|
6
|
Hu J, Lv X, Niu X, Yu F, Zuo J, Bao Y, Yin H, Huang C, Nawaz S, Zhou W, Jiang W, Chen Z, Tu J, Qi K, Han X. Effect of nutritional and environmental conditions on biofilm formation of avian pathogenic Escherichia coli. J Appl Microbiol 2022; 132:4236-4251. [PMID: 35343028 DOI: 10.1111/jam.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
AIMS To study the effects of environmental stress and nutrient conditions on biofilm formation of avian pathogenic Escherichia coli (APEC). METHODS AND RESULTS The APEC strain DE17 was used to study biofilm formation under various conditions of environmental stress (including different temperatures, pH, metal ions, and antibiotics) and nutrient conditions (LB and M9 media, with the addition of different carbohydrates, if necessary). The DE17 biofilm formation ability was strongest at 25°C in LB medium. Compared to incubation at 37°C, three biofilm-related genes (csgD, dgcC, and pfs) were significantly upregulated and two genes (flhC and flhD) were downregulated at 25°C, which resulted in decreased motility. However, biofilm formation was strongest in M9 medium supplemented with glucose at 37°C, and the number of live bacteria was the highest as determined by confocal laser scanning microscopy (CLSM). The bacteria in the biofilm were surrounded by a thick extracellular matrix, and honeycomb-like or rough surfaces were observed by scanning electron microscopy (SEM). Moreover, biofilm formation of the DE17 strain was remarkably inhibited under acidic conditions, whereas neutral and alkaline conditions were more suitable for biofilm formation. Biofilm formation was also inhibited at specific concentrations of cations (Na+ , K+ , Ca2+ , and Mg2+ ) and antibiotics (ampicillin, chloramphenicol, kanamycin, and spectinomycin). The qRT-PCR showed that the transcription levels of biofilm-related genes change under different environmental conditions. CONCLUSIONS Nutritional and environmental factors played an important role in DE17 biofilm development. The transcription levels of biofilm-related genes changed under different environmental and nutrient conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The findings suggest that nutritional and environmental factors play an important role in APEC biofilm development. Depending on the different conditions involved in this study, it can serve as a guide to treating biofilm-related infections and to eliminating biofilms from the environment.
Collapse
Affiliation(s)
- Jiangang Hu
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China.,Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaolong Lv
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiangpeng Niu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Fangheng Yu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiangan Han
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China.,Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| |
Collapse
|
7
|
Genetic diversity and molecular epidemiology of Candida albicans from vulvovaginal candidiasis patients. INFECTION GENETICS AND EVOLUTION 2021; 92:104893. [PMID: 33964472 DOI: 10.1016/j.meegid.2021.104893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 01/11/2023]
Abstract
Candida albicans (C. albicans) is a common cause of vulvovaginal candidiasis (VVC). In this paper, the genetic diversity and molecular epidemiology of 173C. albicans strains were investigated by multilocus sequence typing (MLST). A total of 52 diploid sequence types (DSTs) were recognized, and 27 (51.9%) of which have not been reported in the MLST database. Genotyping was performed on the multiple isolates collected from patients with recurrent VVC (RVVC, referring to VVC which attacks more than 4 times in one year) in different acute infectious phases. The results showed that 59.1% (26/44) of the patients suffered a relapse, with DST 79 (65.4%) as the dominant genotype. The etiology of the remaining 40.9% (18/44) of patients was reinfection, and the main genotypes included DST 79 (33.3%), DST 124 (8.6%) and DST 1895 (8.6%). DST 79 (45%) and DST 1395 (7.5%) were the main isolates of VVC patients, while DST 79 (24.1%), DST 727 (6.9%), DST 732 (6.9%) and DST 1867 (6.9%) were the main types of healthy volunteers. The results of the genotypes between RVVC patients and other groups were statistically different. Furthermore, cluster analysis was carried out on 1468 isolates, among which 1337 were downloaded from the MLST database, 130 were divided into 8 Clades in the present study and the remaining one was taken as a singleton. 92.3% isolates from relapse patients, 58.3% isolates from re-infected patients, 77.5% isolates from VVC patients and 51.7% isolates from volunteers were distributed in Clade 1. The analysis of the genotypes of multiple isolates from RVVC patients further demonstrated that point mutation and loss of heterozygosity contributed to the microevolution of C. albicans.
Collapse
|
8
|
Prins RC, Billerbeck S. A buffered media system for yeast batch culture growth. BMC Microbiol 2021; 21:127. [PMID: 33892647 PMCID: PMC8063419 DOI: 10.1186/s12866-021-02191-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Fungi are premier hosts for the high-yield secretion of proteins for biomedical and industrial applications. The stability and activity of these secreted proteins is often dependent on the culture pH. As yeast acidifies the commonly used synthetic complete drop-out (SD) media that contains ammonium sulfate, the pH of the media needs to be buffered in order to maintain a desired extracellular pH during biomass production. At the same time, many buffering agents affect growth at the concentrations needed to support a stable pH. Although the standard for biotechnological research and development is shaken batch cultures or microtiter plate cultures that cannot be easily automatically pH-adjusted during growth, there is no comparative study that evaluates the buffering capacity and growth effects of different media types across pH-values in order to develop a pH-stable batch culture system. Results We systematically test the buffering capacity and growth effects of a citrate-phosphate buffer (CPB) from acidic to neutral pH across different media types. These media types differ in their nitrogen source (ammonium sulfate, urea or both). We find that the widely used synthetic drop-out media that uses ammonium sulfate as nitrogen source can only be effectively buffered at buffer concentrations that also affect growth. At lower concentrations, yeast biomass production still acidifies the media. When replacing the ammonium sulfate with urea, the media alkalizes. We then develop a medium combining ammonium sulfate and urea which can be buffered at low CPB concentrations that do not affect growth. In addition, we show that a buffer based on Tris/HCl is not effective in maintaining any of our media types at neutral pH even at relatively high concentrations. Conclusion Here we show that the buffering of yeast batch cultures is not straight-forward and addition of a buffering agent to set a desired starting pH does not guarantee pH-maintenance during growth. In response, we present a buffered media system based on an ammonium sulfate/urea medium that enables relatively stable pH-maintenance across a wide pH-range without affecting growth. This buffering system is useful for protein-secretion-screenings, antifungal activity assays, as well as for other pH-dependent basic biology or biotechnology projects. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02191-5.
Collapse
Affiliation(s)
- Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Staniszewska M. Virulence Factors in Candida species. Curr Protein Pept Sci 2021; 21:313-323. [PMID: 31544690 DOI: 10.2174/1389203720666190722152415] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 07/14/2019] [Indexed: 02/08/2023]
Abstract
Fungal diseases are severe and have very high morbidity as well as up to 60% mortality for patients diagnosed with invasive fungal infection. In this review, in vitro and in vivo studies provided us with the insight into the role of Candida virulence factors that mediate their success as pathogens, such as: membrane and cell wall (CW) barriers, dimorphism, biofilm formation, signal transduction pathway, proteins related to stress tolerance, hydrolytic enzymes (e.g. proteases, lipases, haemolysins), and toxin production. The review characterized the virulence of clinically important C. albicans, C. parapsilosis, C. tropicalis, C. glabrata and C. krusei. Due to the white-opaque transition in the mating-type locus MTL-homozygous cells, C. albicans demonstrates an advantage over other less related species of Candida as a human commensal and pathogen. It was reviewed that Candida ergosterol biosynthesis genes play a role in cellular stress and are essential for Candida pathogenesis both in invasive and superficial infections. Hydrolases associated with CW are involved in the host-pathogen interactions. Adhesins are crucial in colonization and biofilm formation, an important virulence factor for candidiasis. Calcineurin is involved in membrane and CW stress as well as virulence. The hyphae-specific toxin, named candidalysin, invades mucosal cells facilitating fungal invasion into deeper tissues. Expression of this protein promotes resistance to neutrophil killing in candidiasis. The virulence factors provide immunostimulatory factors, activating dendric cells and promoting T cell infiltration and activation. Targeting virulence factors, can reduce the risk of resistance development in Candida infections.
Collapse
Affiliation(s)
- Monika Staniszewska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
10
|
Zhang Q, Xu L, Yuan S, Zhou Q, Wang X, Wang L, Hu Z, Yan Y. NGT1 Is Essential for N-Acetylglucosamine-Mediated Filamentous Growth Inhibition and HXK1 Functions as a Positive Regulator of Filamentous Growth in Candida tropicalis. Int J Mol Sci 2020; 21:ijms21114036. [PMID: 32516879 PMCID: PMC7312872 DOI: 10.3390/ijms21114036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Candida tropicalis is a pathogenic fungus that can cause opportunistic infections in humans. The ability of Candida species to transition between yeast and filamentous growth forms is essential to their ability to undergo environmental adaptation and to maintain virulence. In other fungal species, such as Candida albicans, N-acetylglucosamine (GlcNAc) can induce filamentous growth, whereas it suppresses such growth in C. tropicalis. In the present study, we found that knocking out the GlcNA-specific transporter gene NGT1 was sufficient to enhance C. tropicalis filamentous growth on Lee’s plus GlcNAc medium. This suggests that GlcNAc uptake into C. tropicalis cells is essential to the disruption of mycelial growth. As such, we further studied how GlcNAc catabolism-related genes were able to influence C. tropicalis filamentation. We found that HXK1 overexpression drove filamentous growth on Lee’s media containing glucose and GlcNAc, whereas the deletion of the same gene disrupted this filamentous growth. Interestingly, the deletion of the DAC1 or NAG1 genes impaired C. tropicalis growth on Lee’s plus GlcNAc plates. Overall, these results indicate that HXK1 can serve as a positive regulator of filamentous growth, with excess GlcNAc-6-PO4 accumulation being toxic to C. tropicalis. These findings may highlight novel therapeutic targets worthy of future investigation.
Collapse
|
11
|
Gonçalves B, Fernandes L, Henriques M, Silva S. Environmental pH modulates biofilm formation and matrix composition in Candida albicans and Candida glabrata. BIOFOULING 2020; 36:621-630. [PMID: 32674601 DOI: 10.1080/08927014.2020.1793963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Candida species are fungal opportunistic pathogens capable of colonizing and infecting various human anatomical sites, where they have to adapt to distinct niche-specific pH conditions. The aim of this study was to analyse the features of Candida albicans and Candida glabrata biofilms developed under neutral and vaginal acidic (pH 4) conditions. C. albicans produced thicker and more filamentous biofilms under neutral than under acidic conditions. On the other hand, the formation of biofilms by C. glabrata was potentiated by the acidic conditions suggesting the high adaptability of this species to the vaginal environment. In general, both species developed biofilms containing higher amounts of matrix components (protein and carbohydrate) under neutral than acidic conditions, although the opposite result was found for one C. glabrata strain. Overall, this study contributes to a better understanding of the modulation of C. albicans and C. glabrata virulence by specific pH conditions.
Collapse
Affiliation(s)
- Bruna Gonçalves
- LIBRO - Biofilm Research Laboratory Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Liliana Fernandes
- LIBRO - Biofilm Research Laboratory Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mariana Henriques
- LIBRO - Biofilm Research Laboratory Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sónia Silva
- LIBRO - Biofilm Research Laboratory Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
12
|
Biofilm Formed by Candida haemulonii Species Complex: Structural Analysis and Extracellular Matrix Composition. J Fungi (Basel) 2020; 6:jof6020046. [PMID: 32260180 PMCID: PMC7345111 DOI: 10.3390/jof6020046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/18/2023] Open
Abstract
Candida haemulonii species complex (C. haemulonii, C. duobushaemulonii, and C. haemulonii var. vulnera) has emerged as opportunistic, multidrug-resistant yeasts able to cause fungemia. Previously, we showed that C. haemulonii complex formed biofilm on polystyrene. Biofilm is a well-known virulence attribute of Candida spp. directly associated with drug resistance. In the present study, the architecture and the main extracellular matrix (ECM) components forming the biofilm over polystyrene were investigated in clinical isolates of the C. haemulonii complex. We also evaluated the ability of these fungi to form biofilm on catheters used in medical arena. The results revealed that all fungi formed biofilms on polystyrene after 48 h at 37 °C. Microscopic analyses demonstrated a dense network of yeasts forming the biofilm structure, with water channels and ECM. Regarding ECM, proteins and carbohydrates were the main components, followed by nucleic acids and sterols. Mature biofilms were also detected on late bladder (siliconized latex), nasoenteric (polyurethane), and nasogastric (polyvinyl chloride) catheters, with the biomasses being significantly greater than on polystyrene. Collectively, our results demonstrated the ability of the C. haemulonii species complex to form biofilm on different types of inert surfaces, which is an incontestable virulence attribute associated with devices-related candidemia in hospitalized individuals.
Collapse
|
13
|
Khodavandi A, Alizadeh F, Jafarzadeh M. Synergistic Interaction of Fluconazole/Amphotericin B on Inhibition of Enzymes Contributes to the Pathogenesis of Candida Tropicalis. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Candidiasis has gained much attention in recent decades due to its increasing prevalence in immunocompromised patients. Usually, antifungals such as fluconazole and amphotricin B are used for treatment of candidiasis, but one of the major clinical problems is the emergence of antifungal resistance. Combination antifungal therapy is one of the most commonly used methods to alleviate the problem of antifungal resistance. Methods: The effect of fluconazole alone and in combination with amphotericin B on C. tropicalis isolates were performed using the Clinical and Laboratory Standards Institute (CLSI) reference method. Eventually hypha formation, time kill study, proteinase and phospholipase activity and expression of PLB and SAP2 genes were carried out to investigate the enzymes inhibitory properties of antifungal tested against C. tropicalis. Results: Results showed the significant synergic effect of fluconazole in combination with amphotericin B in inhibiting the growth of C. tropicalis isolates, with fractional inhibitory concentration indices ranging from 0.06 to 0.5. The combination of fluconazole with amphotericin B reduced the number of yeast form and inhibited the yeast to hyphae transition in C. tropicalis. The antifungals tested were able to show the effect of down regulating expression of the selected genes significantly in fluconazole/amphotericin B ranging from 1.42- to 2.27-fold. Conclusion: Our results demonstrated that the synergistic interaction of fluconazole/amphotericin B would be worth exploring for the management of candidiasis. In addition, PLB and SAP2 genes could be probable molecular targets in the synergistic interaction of fluconazole/amphotericin B in C. tropicalis.
Collapse
Affiliation(s)
- Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Fahimeh Alizadeh
- Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Mahsa Jafarzadeh
- Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
14
|
In vitro interaction of Candida tropicalis biofilm formed on catheter with human cells. Microb Pathog 2018; 125:177-182. [DOI: 10.1016/j.micpath.2018.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/14/2018] [Accepted: 09/15/2018] [Indexed: 11/19/2022]
|