1
|
Chen Y, Goh YX, Li P, Guan J, Chao Y, Qu H, Ou HY, Wang X. RES-Xre toxin-antitoxin locus knaAT maintains the stability of the virulence plasmid in Klebsiella pneumoniae. Emerg Microbes Infect 2024; 13:2316814. [PMID: 38323903 PMCID: PMC10896132 DOI: 10.1080/22221751.2024.2316814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Hypervirulent Klebsiella pneumoniae isolates have been increasingly reported worldwide, especially hypervirulent drug-resistant variants owing to the acquisition of a mobilizable virulence plasmid by a carbapenem-resistant strain. This pLVPK-like mobilizable plasmid encodes various virulence factors; however, information about its genetic stability is lacking. This study aimed to investigate the type II toxin-antitoxin (TA) modules that facilitate the virulence plasmid to remain stable in K. pneumoniae. More than 3,000 TA loci in 2,000 K. pneumoniae plasmids were examined for their relationship with plasmid cargo genes. TA loci from the RES-Xre family were highly correlated with virulence plasmids of hypervirulent K. pneumoniae. Overexpression of the RES toxin KnaT, encoded by the virulence plasmid-carrying RES-Xre locus knaAT, halts the cell growth of K. pneumoniae and E. coli, whereas co-expression of the cognate Xre antitoxin KnaA neutralizes the toxicity of KnaT. knaA and knaT were co-transcribed, representing the characteristics of a type II TA module. The knaAT deletion mutation gradually lost its virulence plasmid in K. pneumoniae, whereas the stability of the plasmid in E. coli was enhanced by adding knaAT, which revealed that the knaAT operon maintained the genetic stability of the large virulence plasmid in K. pneumoniae. String tests and mouse lethality assays subsequently confirmed that a loss of the virulence plasmid resulted in reduced pathogenicity of K. pneumoniae. These findings provide important insights into the role of the RES-Xre TA pair in stabilizing virulence plasmids and disseminating virulence genes in K. pneumoniae.
Collapse
Affiliation(s)
- Yongkui Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ying-Xian Goh
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Peifei Li
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiahao Guan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Nanda B, Bhowmick J, Varadarajan R, Sarma SP. Backbone assignment of CcdB_G100T toxin from E.coli in complex with the toxin binding C-terminal domain of its cognate antitoxin CcdA. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:285-292. [PMID: 39276296 DOI: 10.1007/s12104-024-10201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
The CcdAB system expressed in the E.coli cells is a prototypical example of the bacterial toxin-antitoxin (TA) systems that ensure the survival of the bacterial population under adverse environmental conditions. The solution and crystal structures of CcdA, CcdB and of CcdB in complex with the toxin-binding C-terminal domain of CcdA have been reported. Our interest lies in the dynamics of CcdB-CcdA complex formation. Solution NMR studies have shown that CcdB_G100T, in presence of saturating concentrations of CcdA-c, a truncated C-terminal fragment of CcdA exists in equilibrium between two major populations. Sequence specific backbone resonance assignments of both equilibrium forms of the ~ 27 kDa complex, have been obtained from a suite of triple resonance NMR experiments acquired on 2H, 13C, 15N enriched samples of CcdB_G100T. Analysis of 1H, 13Cα, 13Cβ secondary chemical shifts, shows that both equilibrium forms of CcdB_G100T have five beta-strands and one alpha-helix as the major secondary structural elements in the tertiary structure. The results of these studies are presented below.
Collapse
Affiliation(s)
- Bahnikana Nanda
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Jayantika Bhowmick
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| |
Collapse
|
3
|
Konkobo A, Ouattara AK, Mètuor Dabiré A, Simporé J. Exploring antibiotic-induced persister formation and bacterial persistence genes in clinical isolates from Burkina Faso. BMC Infect Dis 2024; 24:994. [PMID: 39289656 PMCID: PMC11409487 DOI: 10.1186/s12879-024-09906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND In addition to antibiotic resistance, persistence is another cause of treatment failure in bacterial infections, representing a significant public health concern. Due to a lack of adequate data on clinical isolates, this study was initiated to investigate persistence in clinical isolates in Burkina Faso. METHODS Eighty (80) clinical isolates, including 32 Pseudomonas aeruginosa, 41 Staphylococcus aureus, and 7 Salmonella sp. obtained from clinical laboratories in Burkina Faso, were analyzed to assess their susceptibility to ciprofloxacin and gentamicin, as well as to determine the presence of persistence genes. The effects of ciprofloxacin and gentamicin on persister formation were evaluated by conducting colony counts at 1, 3, 5, 7, and 20 h after exposing the bacteria to high concentrations of these antibiotics. RESULTS Results showed high sensitivity to both antibiotics (72.5% for ciprofloxacin and 82.5% for gentamicin). Persister formation occurred in Staphylococcus aureus with gentamicin and in Salmonella sp. with ciprofloxacin, while Pseudomonas aeruginosa did not form persisters. The mazF gene was found in 28.13% of P. aeruginosa and 2.44% of S. aureus isolates, and the hipA gene in 28.57% of Salmonella sp. None of the relE1 or relE2 genes were detected. CONCLUSIONS The study revealed high sensitivity in clinical bacterial isolates to ciprofloxacin and gentamicin. Staphylococcus aureus and Salmonella sp. showed persister formation under antibiotic stress, with low frequencies of the studied persistence genes. These findings enhance understanding of clinical bacterial behavior and inform strategies against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Augustin Konkobo
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), UFR-SVT, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Abdoul Karim Ouattara
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), UFR-SVT, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso.
- Université Norbert Zongo, Centre Universitaire de Manga, B.P. 376, Koudougou, Burkina Faso.
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso.
| | - Amana Mètuor Dabiré
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), UFR-SVT, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
- Université de Dédougou, BP 176, Dédougou, Burkina Faso
| | - Jacques Simporé
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), UFR-SVT, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| |
Collapse
|
4
|
Arrowsmith TJ, Xu X, Xu S, Usher B, Stokes P, Guest M, Bronowska AK, Genevaux P, Blower TR. Inducible auto-phosphorylation regulates a widespread family of nucleotidyltransferase toxins. Nat Commun 2024; 15:7719. [PMID: 39231966 PMCID: PMC11375011 DOI: 10.1038/s41467-024-51934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Nucleotidyltransferases (NTases) control diverse physiological processes, including RNA modification, DNA replication and repair, and antibiotic resistance. The Mycobacterium tuberculosis NTase toxin family, MenT, modifies tRNAs to block translation. MenT toxin activity can be stringently regulated by diverse MenA antitoxins. There has been no unifying mechanism linking antitoxicity across MenT homologues. Here we demonstrate through structural, biochemical, biophysical and computational studies that despite lacking kinase motifs, antitoxin MenA1 induces auto-phosphorylation of MenT1 by repositioning the MenT1 phosphoacceptor T39 active site residue towards bound nucleotide. Finally, we expand this predictive model to explain how unrelated antitoxin MenA3 is similarly able to induce auto-phosphorylation of cognate toxin MenT3. Our study reveals a conserved mechanism for the control of tuberculosis toxins, and demonstrates how active site auto-phosphorylation can regulate the activity of widespread NTases.
Collapse
Affiliation(s)
| | - Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Shangze Xu
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ben Usher
- Department of Biosciences, Durham University, Durham, UK
| | - Peter Stokes
- Department of Chemistry, Durham University, Durham, UK
| | - Megan Guest
- Department of Biosciences, Durham University, Durham, UK
| | - Agnieszka K Bronowska
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK.
| |
Collapse
|
5
|
Hou Y, Li Y, Tao N, Kong X, Li Y, Liu Y, Li H, Wang Z. Toxin-antitoxin system gene mutations driving Mycobacterium tuberculosis transmission revealed by whole genome sequencing. Front Microbiol 2024; 15:1398886. [PMID: 39144214 PMCID: PMC11322068 DOI: 10.3389/fmicb.2024.1398886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Background The toxin-antitoxin (TA) system plays a vital role in the virulence and pathogenicity of Mycobacterium tuberculosis (M. tuberculosis). However, the regulatory mechanisms and the impact of gene mutations on M. tuberculosis transmission remain poorly understood. Objective To investigate the influence of gene mutations in the toxin-antitoxin system on M. tuberculosis transmission dynamics. Method We performed whole-genome sequencing on the analyzed strains of M. tuberculosis. The genes associated with the toxin-antitoxin system were obtained from the National Center for Biotechnology Information (NCBI) Gene database. Mutations correlating with enhanced transmission within the genes were identified by using random forest, gradient boosting decision tree, and generalized linear mixed models. Results A total of 13,518 M. tuberculosis isolates were analyzed, with 42.29% (n = 5,717) found to be part of genomic clusters. Lineage 4 accounted for the majority of isolates (n = 6488, 48%), followed by lineage 2 (n = 5133, 37.97%). 23 single nucleotide polymorphisms (SNPs) showed a positive correlation with clustering, including vapB1 G34A, vapB24 A76C, vapB2 T171C, mazF2 C85T, mazE2 G104A, vapB31 T112C, relB T226A, vapB11 C54T, mazE5 T344C, vapB14 A29G, parE1 (C103T, C88T), and parD1 C134T. Six SNPs, including vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, Rv2653c A80C, and vapB22 C167T, were associated with transmission clades across different countries. Notably, our findings highlighted the positive association of vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, vapB19 C188T, and Rv2653c A80C with transmission clades across diverse regions. Furthermore, our analysis identified 32 SNPs that exhibited significant associations with clade size. Conclusion Our study presents potential associations between mutations in genes related to the toxin-antitoxin system and the transmission dynamics of M. tuberculosis. However, it is important to acknowledge the presence of confounding factors and limitations in our study. Further research is required to establish causation and assess the functional significance of these mutations. These findings provide a foundation for future investigations and the formulation of strategies aimed at controlling TB transmission.
Collapse
Affiliation(s)
- Yawei Hou
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianglong Kong
- Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yameng Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huaichen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenguo Wang
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Gosain TP, Chugh S, Rizvi ZA, Chauhan NK, Kidwai S, Thakur KG, Awasthi A, Singh R. Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs. Nat Commun 2024; 15:5467. [PMID: 38937463 PMCID: PMC11211403 DOI: 10.1038/s41467-024-49246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saurabh Chugh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Neeraj Kumar Chauhan
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saqib Kidwai
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
7
|
Bustamante P, Ramos-Corominas MN, Martinez-Medina M. Contribution of Toxin-Antitoxin Systems to Adherent-Invasive E. coli Pathogenesis. Microorganisms 2024; 12:1158. [PMID: 38930540 PMCID: PMC11205521 DOI: 10.3390/microorganisms12061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Pathobionts have been implicated in various chronic diseases, including Crohn's disease (CD), a multifactorial chronic inflammatory condition that primarily affects the gastrointestinal tract, causing inflammation and damage to the digestive system. While the exact cause of CD remains unclear, adherent-invasive Escherichia coli (AIEC) strains have emerged as key contributors to its pathogenesis. AIEC are characterized by their ability to adhere to and invade intestinal epithelial cells and survive and replicate inside macrophages. However, the mechanisms underlying the virulence and persistence of AIEC within their host remain the subject of intensive research. Toxin-antitoxin systems (TAs) play a potential role in AIEC pathogenesis and may be therapeutic targets. These systems generally consist of two components: a toxin harmful to the cell and an antitoxin that neutralizes the toxin's effects. They contribute to bacterial survival in adverse conditions and regulate bacterial growth and behavior, affecting various cellular processes in bacterial pathogens. This review focuses on the current information available to determine the roles of TAs in the pathogenicity of AIEC. Their contribution to the AIEC stress response, biofilm formation, phage inhibition, the maintenance of mobile genetic elements, and host lifestyles is discussed.
Collapse
Affiliation(s)
- Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - María Núria Ramos-Corominas
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| | - Margarita Martinez-Medina
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| |
Collapse
|
8
|
Liu X, Wang P, Yuan N, Zhai Y, Yang Y, Hao M, Zhang M, Zhou D, Liu W, Jin Y, Wang A. The (p)ppGpp synthetase Rsh promotes rifampicin tolerant persister cell formation in Brucella abortus by regulating the type II toxin-antitoxin module mbcTA. Front Microbiol 2024; 15:1395504. [PMID: 38841069 PMCID: PMC11150624 DOI: 10.3389/fmicb.2024.1395504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Persister cells are transiently tolerant to antibiotics and are associated with recalcitrant chronic infections due to recolonization of host cells after antibiotic removal. Brucella spp. are facultative pathogens that establish intracellular infection cycles in host cells which results in chronic persistent infections. Brucella abortus forms multi-drug persister cells which are promoted by the (p)ppGpp synthetase Rsh during rifampicin exposure. Here, we confirmed that Rsh promoted persister cells formation in B. abortus stationary phase treated with rifampicin and enrofloxacin. Deletion of the gene for Rsh decreased persister cells level in the presence of these drugs in different growth phases. However, persister cells formation by deletion strain varied in different growth phases in the presence of other antibiotics. Rsh also was involved in persister cells formation during rifampicin treatment under certain stress conditions, including acidic conditions, exposure to PBS, and heat stress. Moreover, Rsh impacted persister cell levels during rifampicin or enrofloxacin treatment in RAW264.7 macrophages. Certain typeIItoxin-antitoxin modules were upregulated under various stress conditions in B. abortus. We established that Rsh positively regulated the type II toxin-antitoxin mbcTA. Moreover, rifampicin-tolerant persister cells formation was elevated and ATP levels were decreased when mbcTA promoter was overexpressed in Rsh deletion background in stationary phase. Our results establish that (p)ppGpp synthetase Rsh plays a key role in B. abortus persistence and may serve as a potent novel target in combination with rifampicin in the development of new therapeutic approaches and prevention strategies to treat chronic infections of Brucella.
Collapse
Affiliation(s)
- Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Pingping Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingxing Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
9
|
Jin C, Kang SM, Kim DH, Lee Y, Lee BJ. Discovery of Antimicrobial Agents Based on Structural and Functional Study of the Klebsiella pneumoniae MazEF Toxin-Antitoxin System. Antibiotics (Basel) 2024; 13:398. [PMID: 38786127 PMCID: PMC11117207 DOI: 10.3390/antibiotics13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Klebsiella pneumoniae causes severe human diseases, but its resistance to current antibiotics is increasing. Therefore, new antibiotics to eradicate K. pneumoniae are urgently needed. Bacterial toxin-antitoxin (TA) systems are strongly correlated with physiological processes in pathogenic bacteria, such as growth arrest, survival, and apoptosis. By using structural information, we could design the peptides and small-molecule compounds that can disrupt the binding between K. pneumoniae MazE and MazF, which release free MazF toxin. Because the MazEF system is closely implicated in programmed cell death, artificial activation of MazF can promote cell death of K. pneumoniae. The effectiveness of a discovered small-molecule compound in bacterial cell killing was confirmed through flow cytometry analysis. Our findings can contribute to understanding the bacterial MazEF TA system and developing antimicrobial agents for treating drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea;
- Mastermeditech Ltd., Gangseo-gu, Seoul 16499, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea;
| | - Do-Hee Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Yuno Lee
- Korea Research Institute of Chemical Technology, Korea Chemical Bank Daejeon, Daejeon 34114, Republic of Korea;
| | - Bong-Jin Lee
- Mastermeditech Ltd., Gangseo-gu, Seoul 16499, Republic of Korea
- College of Pharmacy, Ajou University, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
10
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
11
|
Singh A, Lankapalli AK, Mendem SK, Semmler T, Ahmed N. Unraveling the evolutionary dynamics of toxin-antitoxin systems in diverse genetic lineages of Escherichia coli including the high-risk clonal complexes. mBio 2024; 15:e0302323. [PMID: 38117088 PMCID: PMC10790755 DOI: 10.1128/mbio.03023-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Large-scale genomic studies of E. coli provide an invaluable opportunity to understand how genomic fine-tuning contributes to the transition of bacterial lifestyle from being commensals to mutualists or pathogens. Within this context, through machine learning-based studies, it appears that TA systems play an important role in the classification of high-risk clonal lineages and could be attributed to their epidemiological success. Due to these profound indications and assumptions, we attempted to provide unique insights into the ordered world of TA systems at the population level by investigating the diversity and evolutionary patterns of TA genes across 19 different STs of E. coli. Further in-depth analysis of ST-specific TA structures and associated genetic coordinates holds the potential to elucidate the functional implications of TA systems in bacterial cell survival and persistence, by and large.
Collapse
Affiliation(s)
- Anuradha Singh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| | - Aditya Kumar Lankapalli
- Department of Biology and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Suresh Kumar Mendem
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| | | | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
12
|
Wierz JC, Dirksen P, Kirsch R, Krüsemer R, Weiss B, Pauchet Y, Engl T, Kaltenpoth M. Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders. THE ISME JOURNAL 2024; 18:wrae099. [PMID: 38874172 PMCID: PMC11322605 DOI: 10.1093/ismejo/wrae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Insects engage in manifold interactions with bacteria that can shift along the parasitism-mutualism continuum. However, only a small number of bacterial taxa managed to successfully colonize a wide diversity of insects, by evolving mechanisms for host-cell entry, immune evasion, germline tropism, reproductive manipulation, and/or by providing benefits to the host that stabilize the symbiotic association. Here, we report on the discovery of an Enterobacterales endosymbiont (Symbiodolus, type species Symbiodolus clandestinus) that is widespread across at least six insect orders and occurs at high prevalence within host populations. Fluorescence in situ hybridization in several Coleopteran and one Dipteran species revealed Symbiodolus' intracellular presence in all host life stages and across tissues, with a high abundance in female ovaries, indicating transovarial vertical transmission. Symbiont genome sequencing across 16 host taxa revealed a high degree of functional conservation in the eroding and transposon-rich genomes. All sequenced Symbiodolus genomes encode for multiple secretion systems, alongside effectors and toxin-antitoxin systems, which likely facilitate host-cell entry and interactions with the host. However, Symbiodolus-infected insects show no obvious signs of disease, and biosynthetic pathways for several amino acids and cofactors encoded by the bacterial genomes suggest that the symbionts may also be able to provide benefits to the hosts. A lack of host-symbiont cospeciation provides evidence for occasional horizontal transmission, so Symbiodolus' success is likely based on a mixed transmission mode. Our findings uncover a hitherto undescribed and widespread insect endosymbiont that may present valuable opportunities to unravel the molecular underpinnings of symbiosis establishment and maintenance.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Roy Kirsch
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ronja Krüsemer
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
13
|
Syska C, Kiers A, Rancurel C, Bailly-Bechet M, Lipuma J, Alloing G, Garcia I, Dupont L. VapC10 toxin of the legume symbiont Sinorhizobium meliloti targets tRNASer and controls intracellular lifestyle. THE ISME JOURNAL 2024; 18:wrae015. [PMID: 38365913 PMCID: PMC10945364 DOI: 10.1093/ismejo/wrae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
The soil bacterium Sinorhizobium meliloti can establish a nitrogen-fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Although toxin-antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a mapping by overexpression of an RNase in Escherichia coli (MORE) RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.
Collapse
Affiliation(s)
- Camille Syska
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Aurélie Kiers
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Corinne Rancurel
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Marc Bailly-Bechet
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | | | - Geneviève Alloing
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Isabelle Garcia
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| | - Laurence Dupont
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis 06903, France
| |
Collapse
|
14
|
Guan J, Chen Y, Goh YX, Wang M, Tai C, Deng Z, Song J, Ou HY. TADB 3.0: an updated database of bacterial toxin-antitoxin loci and associated mobile genetic elements. Nucleic Acids Res 2024; 52:D784-D790. [PMID: 37897352 PMCID: PMC10767807 DOI: 10.1093/nar/gkad962] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023] Open
Abstract
TADB 3.0 (https://bioinfo-mml.sjtu.edu.cn/TADB3/) is an updated database that provides comprehensive information on bacterial types I to VIII toxin-antitoxin (TA) loci. Compared with the previous version, three major improvements are introduced: First, with the aid of text mining and manual curation, it records the details of 536 TA loci with experimental support, including 102, 403, 8, 14, 1, 1, 3 and 4 TA loci of types I to VIII, respectively; Second, by leveraging the upgraded TA prediction tool TAfinder 2.0 with a stringent strategy, TADB 3.0 collects 211 697 putative types I to VIII TA loci predicted in 34 789 completely sequenced prokaryotic genomes, providing researchers with a large-scale dataset for further follow-up analysis and characterization; Third, based on their genomic locations, relationships of 69 019 TA loci and 60 898 mobile genetic elements (MGEs) are visualized by interactive networks accessible through the user-friendly web page. With the recent updates, TADB 3.0 may provide improved in silico support for comprehending the biological roles of TA pairs in prokaryotes and their functional associations with MGEs.
Collapse
Affiliation(s)
- Jiahao Guan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongkui Chen
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Xian Goh
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cui Tai
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Kopf A, Bunk B, Riedel T, Schröttner P. The zoonotic pathogen Wohlfahrtiimonas chitiniclastica - current findings from a clinical and genomic perspective. BMC Microbiol 2024; 24:3. [PMID: 38172653 PMCID: PMC10763324 DOI: 10.1186/s12866-023-03139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The zoonotic pathogen Wohlfahrtiimonas chitiniclastica can cause several diseases in humans, including sepsis and bacteremia. Although the pathogenesis is not fully understood, the bacterium is thought to enter traumatic skin lesions via fly larvae, resulting in severe myiasis and/or wound contamination. Infections are typically associated with, but not limited to, infestation of an open wound by fly larvae, poor sanitary conditions, cardiovascular disease, substance abuse, and osteomyelitis. W. chitiniclastica is generally sensitive to a broad spectrum of antibiotics with the exception of fosfomycin. However, increasing drug resistance has been observed and its development should be monitored with caution. In this review, we summarize the currently available knowledge and evaluate it from both a clinical and a genomic perspective.
Collapse
Affiliation(s)
- Anna Kopf
- Clinic for Cardiology, Sana Heart Center, Leipziger Str. 50, 03048, Cottbus, Germany
- 2nd Medical Clinic for Hematology, Oncology, Pneumology and Nephrology, Carl-Thiem Hospital Cottbus gGmbH, Cottbus, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Percy Schröttner
- Institute for Medical Microbiology and Virology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
16
|
Kheirjou S, Hosseini F, Masjedian Jazi F, Siasi Torbati E. Employment of Spore-Forming Probiotics to Combat Persister Cells of Staphylococcus Epidermidis. Rep Biochem Mol Biol 2024; 12:643-651. [PMID: 39086592 PMCID: PMC11288240 DOI: 10.61186/rbmb.12.4.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/30/2024] [Indexed: 08/02/2024]
Abstract
Background In this study, spore-forming probiotics were employed to eradicate Staphylococcus epidermidis biofilms and the presence and expression of genes involved in stress response was examined. Methods Polymerase chain reaction (PCR) assay was used to detect rpoS, relA and mazF genes in S. epidermidis ATCC 12228. Biofilm production was investigated by microtiter plate (MTP) assay. 100X minimum inhibitory concentration (MIC) of gentamycin was used to induce persister cells in planktonic and biofilm bacterial cells. The expression of rpoS, relA, and mazF genes was assessed at different time intervals of 2, 8, and 24 h using real-time PCR assay. Then, dilutions of 1, 0.5, and 0.25 µg/ml of the supernatant of Bacillus coagulans culture was used to eradicate the persister cells and the number of colonies was determined. Results Persister cells of S. epidermidis were formed after 7 h in planktonic and 5 h in the biofilm structure after exposure to 50 µg/ml of gentamycin. The expression of mazF and rpoS in biofilm structure and the expression of rpoS and relA in persister cells were significantly higher compared to the control (p< 0.05). The number of persister cells showed a reduction of log 2.4 and log 0.8 after exposure to 1 and 0.5 µg/ml B. coagulans supernatant, respectively, but no reduction was observed at the concentration of 0.25 µg/ml. Conclusion The results showed that the supernatant of probiotics containing their secretive metabolites can be used as a novel approach to combat persister cells.
Collapse
Affiliation(s)
- Saeid Kheirjou
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Farzaneh Hosseini
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Framarz Masjedian Jazi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Elham Siasi Torbati
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
17
|
Worm D, Grabe GJ, de Castro GV, Rabinovich S, Warm I, Isherwood K, Helaine S, Barnard A. Stapled Phd Peptides Inhibit Doc Toxin Induced Growth Arrest in Salmonella. ACS Chem Biol 2023; 18:2485-2494. [PMID: 38098459 PMCID: PMC10728895 DOI: 10.1021/acschembio.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023]
Abstract
Bacterial toxin inhibition is a promising approach to overcoming antibiotic failure. InSalmonella, knockout of the toxin Doc has been shown to significantly reduce the formation of antibiotic-tolerant persisters. Doc is a kinase that is inhibited in nontolerant cells by its cognate antitoxin, Phd. In this work, we have developed first-in-class stapled peptide antitoxin mimetics based on the Doc inhibitory sequence of Phd. After making a series of substitutions to improve bacterial uptake, we identified a lead stapled Phd peptide that is able to counteract Doc toxicity in Salmonella. This provides an exciting starting point for the further development of therapeutic peptides capable of reducing antibiotic persistence in pathogenic bacteria.
Collapse
Affiliation(s)
- Dennis
J. Worm
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Grzegorz J. Grabe
- Department
of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Guilherme V. de Castro
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Sofya Rabinovich
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Ian Warm
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Kira Isherwood
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Sophie Helaine
- Department
of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Anna Barnard
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| |
Collapse
|
18
|
Xue M, Gao Q, Yan R, Liu L, Wang L, Wen B, Wen C. Comparative Genomic Analysis of Shrimp-Pathogenic Vibrio parahaemolyticus LC and Intraspecific Strains with Emphasis on Virulent Factors of Mobile Genetic Elements. Microorganisms 2023; 11:2752. [PMID: 38004763 PMCID: PMC10672994 DOI: 10.3390/microorganisms11112752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Vibrio parahaemolyticus exhibits severe pathogenicity in humans and animals worldwide. In this study, genome sequencing and comparative analyses were conducted for in-depth characterization of the virulence factor (VF) repertoire of V. parahaemolyticus strain LC, which presented significant virulence to shrimp Litopenaeus vannamei. Strain LC, harboring two circular chromosomes and three linear plasmids, demonstrated ≥98.14% average nucleotide identities with 31 publicly available V. parahaemolyticus genomes, including 13, 11, and 7 shrimp-, human-, and non-pathogenic strains, respectively. Phylogeny analysis based on dispensable genes of pan-genome clustered 11 out of 14 shrimp-pathogenic strains and 7 out of 11 clinical strains into two distinct clades, indicating the close association between host-specific pathogenicity and accessory genes. The VFDB database revealed that 150 VFs of LC were mainly associated with the secretion system, adherence, antiphagocytosis, chemotaxis, motility, and iron uptake, whereas no homologs of the typical pathogenic genes pirA, pirB, tdh, and trh were detected. Four genes, mshB, wbfT, wbfU, and wbtI, were identified in both types of pathogenic strains but were absent in non-pathogens. Notably, a unique cluster similar to Yen-Tc, which encodes an insecticidal toxin complex, and diverse toxin-antitoxin (TA) systems, were identified on the mobile genetic elements (MGEs) of LC. Conclusively, in addition to the common VFs, various unique MGE-borne VFs, including the Yen-Tc cluster, TA components, and multiple chromosome-encoded chitinase genes, may contribute to the full spectrum of LC virulence. Moreover, V. parahaemolyticus demonstrates host-specific virulence, which potentially drives the origin and spread of pathogenic factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chongqing Wen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (M.X.)
| |
Collapse
|
19
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M. Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system. FEMS Microbiol Rev 2023; 47:fuad052. [PMID: 37715317 PMCID: PMC10532202 DOI: 10.1093/femsre/fuad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, C/Albert Einstein 22, PCTCAN, 39011 Santander, Spain
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine
, Universiti Sultan Zainal Abidin, Jalan Sultan Mahumd, 20400 Kuala Terengganu, Malaysia
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
21
|
Zhang Y, Song X, Chen C, Liu L, Xu Y, Zhang N, Huang W, Zheng J, Yuan W, Tang L, Lin Z. Structural insights of the toxin-antitoxin system VPA0770-VPA0769 in Vibrio parahaemolyticus. Int J Biol Macromol 2023:124755. [PMID: 37164131 DOI: 10.1016/j.ijbiomac.2023.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Toxin-antitoxin (TA) systems are involved in both normal bacterial physiology and pathogenicity, including gene regulation, antibiotic resistance, and bacteria persistence under stressful environments. In pathogenic Vibrio parahaemolyticus, however, TA interaction and assembly remain largely unknown. In this work, we identified a new RES-Xre type II TA module, encoded by gene cluster vpa0770-vpa0769 on chromosome II of V. parahaemolyticus. Ectopic expression of the VPA0770 toxin rapidly arrests the growth of E. coli cells, which can be neutralized by co-expression of the VPA0769 antitoxin. To decipher the action mechanism, we determined the crystal structure of the VPA0770-VPA0769 TA complex. VPA0770 and VPA0769 proteins can assemble into two types of large complexes, a W-shaped hetero-hexamer and a donut-like hetero-dodecamer, in a concentration-dependent manner in solution. Disruption of the TA interface results in a loss of the antitoxic phenotype. The toxicity of the VPA0770 toxin, which harbors a NAD+-binding pocket, may be largely ascribed to its highly effective capability to degrade intracellular NAD+. Our study provides a structural basis for a better understanding of diverse molecular mechanisms employed by human pathogens.
Collapse
Affiliation(s)
- Yan Zhang
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Xiaojie Song
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yangyang Xu
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Ning Zhang
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, 750004, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macao
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300073, China.
| | - Le Tang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300073, China.
| |
Collapse
|
22
|
Zhou S, Liu Z, Song J, Chen Y. Disarm The Bacteria: What Temperate Phages Can Do. Curr Issues Mol Biol 2023; 45:1149-1167. [PMID: 36826021 PMCID: PMC9955262 DOI: 10.3390/cimb45020076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
In the field of phage applications and clinical treatment, virulent phages have been in the spotlight whereas temperate phages received, relatively speaking, less attention. The fact that temperate phages often carry virulent or drug-resistant genes is a constant concern and drawback in temperate phage applications. However, temperate phages also play a role in bacterial regulation. This review elucidates the biological properties of temperate phages based on their life cycle and introduces the latest work on temperate phage applications, such as on host virulence reduction, biofilm degradation, genetic engineering and phage display. The versatile use of temperate phages coupled with their inherent properties, such as economy, ready accessibility, wide variety and host specificity, make temperate phages a solid candidate in tackling bacterial infections.
Collapse
Affiliation(s)
- Shiyue Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhengjie Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiaoyang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yibao Chen
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
23
|
de Melo BST, Xavier DE, Leal NC, Campos TDL. High prevalence of GR2 and GR4 plasmids in Acinetobacter baumannii strains from Brazil. Pathog Dis 2023; 81:ftad022. [PMID: 37660275 DOI: 10.1093/femspd/ftad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Acinetobacter baumannii is Gram-negative pathogen with extensive role in healthcare-associated infections (HAIs). Plasmids in this species are important carriers of antimicrobial resistance genes. In this work, we investigated the plasmids of 227 Brazilian A. baumannii genomes. A total of 389 plasmid sequences with 424 Rep proteins typed to 22 different homology groups (GRs) were identified. The GR2 plasmid group was the most predominant (40.6%), followed by the GR4 group (16.7%), representing ∼57% of all plasmids. There is a wide distribution of plasmids among the isolates and most strains carry more than one plasmid. Our analyses revealed a significant prevalence of GR4 plasmids in Brazilian A. baumannii genomes carrying several antimicrobial resistance genes, notably to carbapenem (39.43%). These plasmids harbor a MOBQ relaxase that might confer increased spreading potential in the environment. Most plasmids of the predominant groups belong to the same plasmid taxonomic unit (PTU-Pse7) and have a AbkA/AbkB toxin-antitoxin system that has a role in plasmid stability and dissemination of carbapenem resistance genes. The results of this work should contribute to our understanding of the molecular content of plasmids in a large and populous country, highlighting the importance of genomics for enhanced epidemiological surveillance.
Collapse
Affiliation(s)
- Beatriz Souza Toscano de Melo
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Av. Professor Moraes Rego, s/n, Cidade Universitária, CEP 50740-465, Recife, PE, Brazil
| | - Danilo Elias Xavier
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Av. Professor Moraes Rego, s/n, Cidade Universitária, CEP 50740-465, Recife, PE, Brazil
| | - Nilma Cintra Leal
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Av. Professor Moraes Rego, s/n, Cidade Universitária, CEP 50740-465, Recife, PE, Brazil
| | - Túlio de Lima Campos
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Av. Professor Moraes Rego, s/n, Cidade Universitária, CEP 50740-465, Recife, PE, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fiocruz., Av. Professor Moraes Rego, s/n, Cidade Universitária, CEP 50740-465, Recife, PE, Brazil
| |
Collapse
|
24
|
Talà A, Calcagnile M, Resta SC, Pennetta A, De Benedetto GE, Alifano P. Thiostrepton, a resurging drug inhibiting the stringent response to counteract antibiotic-resistance and expression of virulence determinants in Neisseria gonorrhoeae. Front Microbiol 2023; 14:1104454. [PMID: 36910221 PMCID: PMC9998046 DOI: 10.3389/fmicb.2023.1104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Due to the increased resistance to all available antibiotics and the lack of vaccines, Neisseria gonorrhoeae (the gonococcus) poses an urgent threat. Although the mechanisms of virulence and antibiotic resistance have been largely investigated in this bacterium, very few studies have addressed the stringent response (SR) that in pathogenic bacteria controls the expression of genes involved in host-pathogen interaction and tolerance and persistence toward antibiotics. In this study, the results of the transcriptome analysis of a clinical isolate of N. gonorrhoeae, after induction of the SR by serine hydroxamate, provided us with an accurate list of genes that are transcriptionally modulated during the SR. The list includes genes associated with metabolism, cellular machine functions, host-pathogen interaction, genome plasticity, and antibiotic tolerance and persistence. Moreover, we found that the artificial induction of the SR in N. gonorrhoeae by serine hydroxamate is prevented by thiostrepton, a thiopeptide antibiotic that is known to interact with ribosomal protein L11, thereby inhibiting functions of EF-Tu and EF-G, and binding of pppGpp synthase I (RelA) to ribosome upon entry of uncharged tRNA. We found that N. gonorrhoeae is highly sensitive to thiostrepton under in vitro conditions, and that thiostrepton, in contrast to other antibiotics, does not induce tolerance or persistence. Finally, we observed that thiostrepton attenuated the expression of key genes involved in the host-pathogen interaction. These properties make thiostrepton a good drug candidate for dampening bacterial virulence and preventing antibiotic tolerance and persistence. The ongoing challenge is to increase the bioavailability of thiostrepton through the use of chemistry and nanotechnology.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonio Pennetta
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
25
|
Breusing C, Klobusnik NH, Hauer MA, Beinart RA. Genome assembly of the chemosynthetic endosymbiont of the hydrothermal vent snail Alviniconcha adamantis from the Mariana Arc. G3 (BETHESDA, MD.) 2022; 12:jkac220. [PMID: 35997584 PMCID: PMC9526052 DOI: 10.1093/g3journal/jkac220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022]
Abstract
Chemosynthetic animal-microbe symbioses sustain hydrothermal vent communities in the global deep sea. In the Indo-Pacific Ocean, hydrothermal ecosystems are often dominated by gastropod species of the genus Alviniconcha, which live in association with chemosynthetic Gammaproteobacteria or Campylobacteria. While the symbiont genomes of most extant Alviniconcha species have been sequenced, no genome information is currently available for the gammaproteobacterial endosymbiont of Alviniconcha adamantis-a comparatively shallow living species that is thought to be the ancestor to all other present Alviniconcha lineages. Here, we report the first genome sequence for the symbiont of A. adamantis from the Chamorro Seamount at the Mariana Arc. Our phylogenomic analyses show that the A. adamantis symbiont is most closely related to Chromatiaceae endosymbionts of the hydrothermal vent snails Alviniconcha strummeri and Chrysomallon squamiferum, but represents a distinct bacterial species or possibly genus. Overall, the functional capacity of the A. adamantis symbiont appeared to be similar to other chemosynthetic Gammaproteobacteria, though several flagella and chemotaxis genes were detected, which are absent in other gammaproteobacterial Alviniconcha symbionts. These differences might suggest potential contrasts in symbiont transmission dynamics, host recognition, or nutrient transfer. Furthermore, an abundance of genes for ammonia transport and urea usage could indicate adaptations to the oligotrophic waters of the Mariana region, possibly via recycling of host- and environment-derived nitrogenous waste products. This genome assembly adds to the growing genomic resources for chemosynthetic bacteria from hydrothermal vents and will be valuable for future comparative genomic analyses assessing gene content evolution in relation to environment and symbiotic lifestyles.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | | | - Michelle A Hauer
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| |
Collapse
|
26
|
Koo JS, Kang SM, Jung WM, Kim DH, Lee BJ. The Haemophilus influenzae HipBA toxin-antitoxin system adopts an unusual three-com-ponent regulatory mechanism. IUCRJ 2022; 9:625-631. [PMID: 36071804 PMCID: PMC9438503 DOI: 10.1107/s205225252200687x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Type II toxin-antitoxin (TA) systems encode two proteins: a toxin that inhibits cell growth and an antitoxin that neutralizes the toxin by direct inter-molecular protein-protein inter-actions. The bacterial HipBA TA system is implicated in persister formation. The Haemophilus influenzae HipBA TA system consists of a HipB antitoxin and a HipA toxin, the latter of which is split into two fragments, and here we investigate this novel three-com-ponent regulatory HipBA system. Structural and functional analysis revealed that HipAN corresponds to the N-ter-minal part of HipA from other bacteria and toxic HipAC is inactivated by HipAN, not HipB. This study will be helpful in understanding the detailed regulatory mechanism of the HipBAN+C system, as well as why it is constructed as a three-com-ponent system.
Collapse
Affiliation(s)
- Ji Sung Koo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Won-Min Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Hee Kim
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Dai Z, Wu T, Xu S, Zhou L, Tang W, Hu E, Zhan L, Chen M, Yu G. Characterization of toxin-antitoxin systems from public sequencing data: A case study in Pseudomonas aeruginosa. Front Microbiol 2022; 13:951774. [PMID: 36051757 PMCID: PMC9424990 DOI: 10.3389/fmicb.2022.951774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The toxin-antitoxin (TA) system is a widely distributed group of genetic modules that play important roles in the life of prokaryotes, with mobile genetic elements (MGEs) contributing to the dissemination of antibiotic resistance gene (ARG). The diversity and richness of TA systems in Pseudomonas aeruginosa, as one of the bacterial species with ARGs, have not yet been completely demonstrated. In this study, we explored the TA systems from the public genomic sequencing data and genome sequences. A small scale of genomic sequencing data in 281 isolates was selected from the NCBI SRA database, reassembling the genomes of these isolates led to the findings of abundant TA homologs. Furthermore, remapping these identified TA modules on 5,437 genome/draft genomes uncovers a great diversity of TA modules in P. aeruginosa. Moreover, manual inspection revealed several TA systems that were not yet reported in P. aeruginosa including the hok-sok, cptA-cptB, cbeA-cbtA, tomB-hha, and ryeA-sdsR. Additional annotation revealed that a large number of MGEs were closely distributed with TA. Also, 16% of ARGs are located relatively close to TA. Our work confirmed a wealth of TA genes in the unexplored P. aeruginosa pan-genomes, expanded the knowledge on P. aeruginosa, and provided methodological tips on large-scale data mining for future studies. The co-occurrence of MGE, ARG, and TA may indicate a potential interaction in their dissemination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Qiu J, Zhai Y, Wei M, Zheng C, Jiao X. Toxin–antitoxin systems: Classification, biological roles, and applications. Microbiol Res 2022; 264:127159. [DOI: 10.1016/j.micres.2022.127159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
|
29
|
Kopf A, Bunk B, Coldewey SM, Gunzer F, Riedel T, Schröttner P. Comparative Genomic Analysis of the Human Pathogen Wohlfahrtiimonas Chitiniclastica Provides Insight Into the Identification of Antimicrobial Resistance Genotypes and Potential Virulence Traits. Front Cell Infect Microbiol 2022; 12:912427. [PMID: 35873140 PMCID: PMC9301364 DOI: 10.3389/fcimb.2022.912427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022] Open
Abstract
Recent studies suggest that Wohlfahrtiimonas chitiniclastica may be the cause of several diseases in humans including sepsis and bacteremia making the bacterium as a previously underappreciated human pathogen. However, very little is known about the pathogenicity and genetic potential of W. chitiniclastica; therefore, it is necessary to conduct systematic studies to gain a deeper understanding of its virulence characteristics and treatment options. In this study, the entire genetic repertoire of all publicly available W. chitiniclastica genomes was examined including in silico characterization of bacteriophage content, antibiotic resistome, and putative virulence profile. The pan-genome of W. chitiniclastica comprises 3819 genes with 1622 core genes (43%) indicating a putative metabolic conserved species. Furthermore, in silico analysis indicated presumed resistome expansion as defined by the presence of genome-encoded transposons and bacteriophages. While macrolide resistance genes macA and macB are located within the core genome, additional antimicrobial resistance genotypes for tetracycline (tetH, tetB, and tetD), aminoglycosides (ant(2'')-Ia, aac(6')-Ia,aph(3'')-Ib, aph(3')-Ia, and aph(6)-Id)), sulfonamide (sul2), streptomycin (strA), chloramphenicol (cat3), and beta-lactamase (blaVEB) are distributed among the accessory genome. Notably, our data indicate that the type strain DSM 18708T does not encode any additional clinically relevant antibiotic resistance genes, whereas drug resistance is increasing within the W. chitiniclastica clade. This trend should be monitored with caution. To the best of our knowledge, this is the first comprehensive genome analysis of this species, providing new insights into the genome of this opportunistic human pathogen.
Collapse
Affiliation(s)
- Anna Kopf
- Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Dresden, Germany
- Clinic for Hematology and Oncology, Carl-Thiem-Klinikum, Cottbus, Germany
| | - Boyke Bunk
- German Collection of Microorganisms and Cell Cultures GmbH, Leibniz Institute DSMZ, Braunschweig, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Florian Gunzer
- Department of Hospital Infection Control, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Thomas Riedel
- German Collection of Microorganisms and Cell Cultures GmbH, Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Percy Schröttner
- Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
30
|
Tomasi FG, Hall AMJ, Schweber JTP, Dulberger CL, McGowen K, Liu Q, Fortune SM, Helaine S, Rubin EJ. A tRNA-Acetylating Toxin and Detoxifying Enzyme in Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0058022. [PMID: 35638832 PMCID: PMC9241777 DOI: 10.1128/spectrum.00580-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems allow bacteria to adapt to changing environments without altering gene expression. Despite being overrepresented in Mycobacterium tuberculosis, their physiological roles remain elusive. We describe a TA system in M. tuberculosis which we named TacAT due to its homology to previously discovered systems in Salmonella. The toxin, TacT, blocks growth by acetylating glycyl-tRNAs and inhibiting translation. Its effects are reversed by the enzyme peptidyl tRNA hydrolase (Pth), which also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. Pth is essential in most bacteria and thereby has been proposed as a promising drug target for complex pathogens like M. tuberculosis. Transposon sequencing data suggest that the tacAT operon is nonessential for M. tuberculosis growth in vitro, and premature stop mutations in this TA system present in some clinical isolates suggest that it is also dispensable in vivo. We assessed whether TacT modulates pth essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacAT is disrupted. We show that pth essentiality is unaffected by the absence of tacAT. These results highlight a fundamental aspect of mycobacterial biology and indicate that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics. IMPORTANCE The global rise in antibiotic-resistant tuberculosis has prompted an urgent search for new drugs. Toxin-antitoxin (TA) systems allow bacteria to adapt rapidly to environmental changes, and Mycobacterium tuberculosis encodes more TA systems than any known pathogen. We have characterized a new TA system in M. tuberculosis: the toxin, TacT, acetylates charged tRNA to block protein synthesis. TacT's effects are reversed by the essential bacterial enzyme peptidyl tRNA hydrolase (Pth), which is currently being explored as an antibiotic target. Pth also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. We assessed whether TacT modulates pth essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacT is disrupted. We show that pth essentiality is unaffected by the absence of this TA system, indicating that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics.
Collapse
Affiliation(s)
- Francesca G. Tomasi
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Jessica T. P. Schweber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kerry McGowen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Song X, Lin Z, Yuan W. Toxin-antitoxin systems in pathogenic Vibrio species: a mini review from a structure perspective. 3 Biotech 2022; 12:125. [PMID: 35542053 DOI: 10.1007/s13205-022-03178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022] Open
Abstract
Toxin-antitoxin (TA) genetic modules have been found to widely exist in bacterial chromosomes and mobile genetic elements. They are composed of stable toxins and less stable antitoxins that can counteract the toxicity of toxins. The interactions between toxins and antitoxins could play critical roles in the virulence and persistence of pathogenic bacteria. There are at least eight types of TA systems which have been identified in a variety of bacteria. Vibrio, a genus of Gram-negative bacteria, is widespread in aquatic environments and can cause various human diseases, such as epidemic cholera. In this review, we mainly explore the structures and functions of TA modules found in common Vibrio pathogens, mainly V. cholerae, for better understanding of TA action mechanisms in pathogenic bacteria.
Collapse
|
32
|
Meparambu Prabhakaran D, Patel HR, Sivakumar Krishnankutty Chandrika S, Thomas S. Genomic attributes differ between Vibrio parahaemolyticus environmental and clinical isolates including pathotypes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:365-375. [PMID: 34461673 DOI: 10.1111/1758-2229.13000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Vibrio parahaemolyticus is a marine bacterium and causes opportunistic gastroenteritis in humans. Clinical strains of V. parahaemolyticus contain haemolysin and type III secretion systems (T3SS) that define their pathotype. A growing number of strains isolated recently from the environment have acquired these virulence genes constituting a pool of potential pathogens. This study used comparative genomics to identify genetic factors that delineate environmental and clinical V. parahaemolyticus population and understand the similarities and differences between the T3SS2 phylotypes. The comparative analysis revealed the presence of a cluster of genes belonging to bacterial cellulose synthesis (bcs) in isolates of environmental origin. This cluster, previously unreported in V. parahaemolyticus, exhibit significant similarity to that of Aliivibrio fischeri, and might dictate a potentially new mechanism of its environmental adaptation and persistence. The study also identified many genes predicted in silico to be T3SS effectors that are unique to T3SS2β of tdh- trh+ and tdh+ trh+ pathotype and having no identifiable homologue in tdh+ trh- T3SS2α. Overall, these findings highlight the importance of understanding the genes and strategies V. parahaemolyticus utilize for the myriad interactions with its hosts, either marine invertebrates or humans.
Collapse
Affiliation(s)
- Divya Meparambu Prabhakaran
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Hardip R Patel
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | | | - Sabu Thomas
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
33
|
de Castro GV, Worm DJ, Grabe GJ, Rowan FC, Haggerty L, de la Lastra AL, Popescu O, Helaine S, Barnard A. Characterization of the Key Determinants of Phd Antitoxin Mediated Doc Toxin Inactivation in Salmonella. ACS Chem Biol 2022; 17:1598-1606. [PMID: 35647667 PMCID: PMC9207808 DOI: 10.1021/acschembio.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the search for novel antimicrobial therapeutics, toxin-antitoxin (TA) modules are promising yet underexplored targets for overcoming antibiotic failure. The bacterial toxin Doc has been associated with the persistence of Salmonella in macrophages, enabling its survival upon antibiotic exposure. After developing a novel method to produce the recombinant toxin, we have used antitoxin-mimicking peptides to thoroughly investigate the mechanism by which its cognate antitoxin Phd neutralizes the activity of Doc. We reveal insights into the molecular detail of the Phd-Doc relationship and discriminate antitoxin residues that stabilize the TA complex from those essential for inhibiting the activity of the toxin. Coexpression of Doc and antitoxin peptides in Salmonella was able to counteract the activity of the toxin, confirming our in vitro results with equivalent sequences. Our findings provide key principles for the development of chemical tools to study and therapeutically interrogate this important class of protein-protein interactions.
Collapse
Affiliation(s)
- Guilherme V. de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Dennis J. Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Grzegorz J. Grabe
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Fiona C. Rowan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Lucy Haggerty
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Ana L. de la Lastra
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Oana Popescu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
34
|
Chattopadhyay G, Bhasin M, Ahmed S, Gosain TP, Ganesan S, Das S, Thakur C, Chandra N, Singh R, Varadarajan R. Functional and Biochemical Characterization of the MazEF6 Toxin-Antitoxin System of Mycobacterium tuberculosis. J Bacteriol 2022; 204:e0005822. [PMID: 35357163 PMCID: PMC9053165 DOI: 10.1128/jb.00058-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The Mycobacterium tuberculosis genome harbors nine toxin-antitoxin (TA) systems that are members of the mazEF family, unlike other prokaryotes, which have only one or two. Although the overall tertiary folds of MazF toxins are predicted to be similar, it is unclear how they recognize structurally different RNAs and antitoxins with divergent sequence specificity. Here, we have expressed and purified the individual components and complex of the MazEF6 TA system from M. tuberculosis. Size exclusion chromatography-multiangle light scattering (SEC-MALS) was performed to determine the oligomerization status of the toxin, antitoxin, and the complex in different stoichiometric ratios. The relative stabilities of the proteins were determined by nano-differential scanning fluorimetry (nano-DSF). Microscale thermophoresis (MST) and yeast surface display (YSD) were performed to measure the relative affinities between the cognate toxin-antitoxin partners. The interaction between MazEF6 complexes and cognate promoter DNA was also studied using MST. Analysis of paired-end RNA sequencing data revealed that the overexpression of MazF6 resulted in differential expression of 323 transcripts in M. tuberculosis. Network analysis was performed to identify the nodes from the top-response network. The analysis of mRNA protection ratios resulted in identification of putative MazF6 cleavage site in its native host, M. tuberculosis. IMPORTANCE M. tuberculosis harbors a large number of type II toxin-antitoxin (TA) systems, the exact roles for most of which are unclear. Prior studies have reported that overexpression of several of these type II toxins inhibits bacterial growth and contributes to the formation of drug-tolerant populations in vitro. To obtain insights into M. tuberculosis MazEF6 type II TA system function, we determined stability, oligomeric states, and binding affinities of cognate partners with each other and with their promoter operator DNA. Using RNA-seq data obtained from M. tuberculosis overexpression strains, we have identified putative MazF6 cleavage sites and targets in its native, cellular context.
Collapse
Affiliation(s)
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shahbaz Ahmed
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srivarshini Ganesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sayan Das
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
35
|
Wang S, Wang D, Duan Y, Zhou Z, Gao W, Zhang L. Cellular Nanosponges for Biological Neutralization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107719. [PMID: 34783078 DOI: 10.1002/adma.202107719] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Biological neutralization represents a general strategy that deploys therapeutic agents to bind with harmful molecules or infectious pathogens, block their bioactivity, and thus prevent them from causing the diseases. Here, a comprehensive review of using cell-membrane-coated nanoparticles, namely "cellular nanosponges," as host decoys for a wide range of biological neutralization applications is provided. Compared to traditional neutralization strategies, the cellular nanosponges stand out by mimicking susceptible host cells rather than accommodating the structures of the causative agents for the design of therapeutics. As all pathological agents must interact with host cells for bioactivity, nanosponges bypass the diversity of these agents and create function-driven and broad-spectrum neutralization solutions. The review focuses on the recent progress of using this new nanomedicine platform for neutralization against five primary pathological agents, including bacterial toxins, chemical toxicants, inflammatory cytokines, pathological antibodies, and viruses. Existing studies have established cellular nanosponges as versatile tools for biological neutralization. A thorough review of the cellular nanosponge technology is expected to inspire more refined cellular nanosponge designs and unique neutralization applications to address unsolved medical problems.
Collapse
Affiliation(s)
- Shuyan Wang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
36
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
37
|
Pan P, Wang X, Chen Y, Chen Q, Yang Y, Wei C, Cheng T, Wan H, Yu D. Effect of Hcp Iron Ion Regulation on the Interaction Between Acinetobacter baumannii With Human Pulmonary Alveolar Epithelial Cells and Biofilm Formation. Front Cell Infect Microbiol 2022; 12:761604. [PMID: 35281445 PMCID: PMC8905654 DOI: 10.3389/fcimb.2022.761604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Acinetobacter baumannii is a type of bacterial nosocomial infection with severe drug resistance. Hemolysin co-regulated protein (Hcp) is a marker of activated type VI secretion system (T6SS), a key secretory system that promotes Gram-negative bacteria colonization, adhesion, and invasion of host cells. Hcp is also regulated by iron ions (Fe). In this study, an ATCC17978 hcp deletion strain (ATCC17978Δhcp), an hcp complement strain (ATCC17978Δhcp+), and an A. baumannii–green fluorescent protein (GFP) strain were constructed and used to investigate the role of hcp in bacterial adhesion to cells (human pulmonary alveolar epithelial cells (HPAEpiC)) and biofilm formation. Our results indicate that the inhibitory concentrations of the three A. baumannii strains (ATCC17978 wild type, ATCC17978Δhcp, and ATCC17978Δhcp+) were drug-sensitive strains. A. baumannii hcp gene and iron ions might be involved in promoting the formation of a biofilm and host–bacteria interaction. Iron ions affected the ability of A. baumannii to adhere to cells, as there was no significant difference in the bacterial numbers when assessing the adhesion of the three strains to HPAEpiC in the presence of iron ion concentrations of 0 μM (F = 3.1800, p = 0.1144), 25 μM (F = 2.067, p = 0.2075), 100 μM (F = 30.52, p = 0.0007), and 400 μM (F = 17.57, p = 0.0031). The three strains showed significant differences in their ability to adhere to HPAEpiC. The numbers of bacteria adhesion to HPAEpiC were ATCC17978Δhcp>ATCC17978Δhcp+>ATCC17978 in descending order. Hcp gene was positively regulated by iron ions in the bacteria–cells’ co-culture. It is speculated that the effect of iron ions on the interaction between A. baumannii and HPAEpiC might be related to the transport function of hcp and bacterial immune escape mechanisms.
Collapse
Affiliation(s)
- Ping Pan
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolei Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Qiong Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunxing Yang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxing Wei
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongtong Cheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan, ; Daojun Yu,
| | - Daojun Yu
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan, ; Daojun Yu,
| |
Collapse
|
38
|
Choi E, Huh A, Oh C, Oh JI, Kang HY, Hwang J. Functional characterization of HigBA toxin-antitoxin system in an Arctic bacterium, Bosea sp. PAMC 26642. J Microbiol 2022; 60:192-206. [PMID: 35102526 DOI: 10.1007/s12275-022-1619-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Changmin Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
39
|
Kaushik V, Sharma S, Tiwari M, Tiwari V. Anti-persister strategies against stress induced bacterial persistence. Microb Pathog 2022; 164:105423. [PMID: 35092834 DOI: 10.1016/j.micpath.2022.105423] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/22/2023]
Abstract
The increase in antibiotic non-responsive bacteria is the leading concern in current research-oriented to eliminate pathogens. Nowadays, the excess use of antibiotics without specifically understanding the potentiality of killing pathogens and bacterial survival patterns has helped bacteria emerge indefatigably. Bacteria use various mechanisms such as resistance, persistence, and tolerance to ensure survival. Among these, persistence is a mechanism by which bacteria reside in their dormant state, bypassing the effects of treatments, making it crucial for bacterial survival. Persistent bacterial cells arise from the normal bacterial population as a slow-growing subset of bacteria with no metabolic flux. This behavior renders it to survive for a longer duration and at higher concentrations of antibiotics. They are one of the underlying causes of recurrence of bacterial infections. The present article explains the detailed molecular mechanisms and strategies of bacterial persistence, including the toxin-antitoxin modules, DNA damage, the formation of inactive ribosomal complexes, (p)ppGpp network, antibiotic-induced persistence, which are triggered by drug-induced stress. The article also comprehensively covers the epigenetic memory of persistence in bacteria, and anti-persistent therapeutics like antimicrobial molecules, synthetic peptides, acyldepsipeptide antibiotics, and endolysin therapy to reduce persister cell formation and control their frequency. These strategies could be utilized in combating the pathogenic bacteria undergoing persistence.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
40
|
Sharma A, Sagar K, Chauhan NK, Venkataraman B, Gupta N, Gosain TP, Bhalla N, Singh R, Gupta A. HigB1 Toxin in Mycobacterium tuberculosis Is Upregulated During Stress and Required to Establish Infection in Guinea Pigs. Front Microbiol 2021; 12:748890. [PMID: 34917044 PMCID: PMC8669151 DOI: 10.3389/fmicb.2021.748890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.
Collapse
Affiliation(s)
- Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Kalpana Sagar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| | - Neeraj Kumar Chauhan
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Balaji Venkataraman
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nidhi Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Nikhil Bhalla
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Amita Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| |
Collapse
|
41
|
Tamiya-Ishitsuka H, Tsuruga M, Noda N, Yokota A. Conserved Amino Acid Moieties of Candidatus Desulforudis audaxviator MazF Determine Ribonuclease Activity and Specificity. Front Microbiol 2021; 12:748619. [PMID: 34867867 PMCID: PMC8634880 DOI: 10.3389/fmicb.2021.748619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
The toxin-antitoxin (TA) system, inherent to various prokaryotes, plays a critical role in survival and adaptation to diverse environmental stresses. The toxin MazF, belonging to the type II TA system, functions as a sequence-specific ribonuclease that recognizes 3 to 7 bases. In recent studies, crystallographic analysis of MazFs from several species have suggested the presence of amino acid sites important for MazF substrate RNA binding and for its catalytic activity. Herein, we characterized MazF obtained from Candidatus Desulforudis audaxviator (MazF-Da) and identified the amino acid residues necessary for its catalytic function. MazF-Da, expressed using a cell-free protein synthesis system, is a six-base-recognition-specific ribonuclease that preferentially cleaves UACAAA sequences and weakly cleaves UACGAA and UACUAA sequences. We found that MazF-Da exhibited the highest activity at around 60°C. Analysis using mutants with a single mutation at an amino acid residue site that is well conserved across various MazF toxins showed that G18, E20, R25, and P26 were important for the ribonuclease activity of MazF-Da. The recognition sequence of the N36A mutant differed from that of the wild type. This mutant cleaved UACAAG sequences in addition to UACAAA sequences, but did not cleave UACGAA or UACUAA sequences, suggesting that Asn36 affects the loosening and narrowing of MazF-Da cleavage sequence recognition. Our study posits UACAAA as the recognition sequence of MazF-Da and provides insight into the amino acid sites that are key to its unique enzymatic properties.
Collapse
Affiliation(s)
- Hiroko Tamiya-Ishitsuka
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masako Tsuruga
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
42
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
43
|
Xue L, Khan MH, Yue J, Zhu Z, Niu L. The two paralogous copies of the YoeB-YefM toxin-antitoxin module in Staphylococcus aureus differ in DNA binding and recognition patterns. J Biol Chem 2021; 298:101457. [PMID: 34861238 PMCID: PMC8717551 DOI: 10.1016/j.jbc.2021.101457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous regulatory modules for bacterial growth and cell survival following stress. YefM-YoeB, the most prevalent type II TA system, is present in a variety of bacterial species. In Staphylococcus aureus, the YefM-YoeB system exists as two independent paralogous copies. Our previous research resolved crystal structures of the two oligomeric states (heterotetramer and heterohexamer-DNA ternary complex) of the first paralog as well as the molecular mechanism of transcriptional autoregulation of this module. However, structural details reflecting molecular diversity in both paralogs have been relatively unexplored. To understand the molecular mechanism of how Sa2YoeB and Sa2YefM regulate their own transcription and how each paralog functions independently, we solved a series of crystal structures of the Sa2YoeB-Sa2YefM. Our structural and biochemical data demonstrated that both paralogous copies adopt similar mechanisms of transcriptional autoregulation. In addition, structural analysis suggested that molecular diversity between the two paralogs might be reflected in the interaction profile of YefM and YoeB and the recognition pattern of promoter DNA by YefM. Interaction analysis revealed unique conformational and activating force effected by the interface between Sa2YoeB and Sa2YefM. In addition, the recognition pattern analysis demonstrated that residues Thr7 and Tyr14 of Sa2YefM specifically recognizes the flanking sequences (G and C) of the promoter DNA. Together, these results provide the structural insights into the molecular diversity and independent function of the paralogous copies of the YoeB-YefM TA system.
Collapse
Affiliation(s)
- Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
44
|
Chandra S, Chattopadhyay G, Varadarajan R. Rapid Identification of Secondary Structure and Binding Site Residues in an Intrinsically Disordered Protein Segment. Front Genet 2021; 12:755292. [PMID: 34795695 PMCID: PMC8593223 DOI: 10.3389/fgene.2021.755292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis harbours nine toxin-antitoxin (TA) systems of the MazEF family. MazEF TA modules are of immense importance due to the perceived role of the MazF toxin in M. tuberculosis persistence and disease. The MazE antitoxin has a disordered C-terminal domain that binds the toxin, MazF and neutralizes its endoribonuclease activity. However, the structure of most MazEF TA complexes remains unsolved till date, obscuring structural and functional information about the antitoxins. We present a facile method to identify toxin binding residues on the disordered antitoxin. Charged residue scanning mutagenesis was used to screen a yeast surface displayed MazE6 antitoxin library against its purified cognate partner, the MazF6 toxin. Binding residues were deciphered by probing the relative reduction in binding to the ligand by flow cytometry. We have used this to identify putative antitoxin interface residues and local structure attained by the antitoxin upon interaction in the MazEF6 TA system and the same methodology is readily applicable to other intrinsically disordered protein regions.
Collapse
|
45
|
Jeon H, Choi E, Hwang J. Identification and characterization of VapBC toxin-antitoxin system in Bosea sp. PAMC 26642 isolated from Arctic lichens. RNA (NEW YORK, N.Y.) 2021; 27:1374-1389. [PMID: 34429367 PMCID: PMC8522696 DOI: 10.1261/rna.078786.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Toxin-antitoxin (TA) systems are genetic modules composed of a toxin interfering with cellular processes and its cognate antitoxin, which counteracts the activity of the toxin. TA modules are widespread in bacterial and archaeal genomes. It has been suggested that TA modules participate in the adaptation of prokaryotes to unfavorable conditions. The Bosea sp. PAMC 26642 used in this study was isolated from the Arctic lichen Stereocaulon sp. There are 12 putative type II TA loci in the genome of Bosea sp. PAMC 26642. Of these, nine functional TA systems have been shown to be toxic in Escherichia coli The toxin inhibits growth, but this inhibition is reversed when the cognate antitoxin genes are coexpressed, indicating that these putative TA loci were bona fide TA modules. Only the BoVapC1 (AXW83_01405) toxin, a homolog of VapC, showed growth inhibition specific to low temperatures, which was recovered by the coexpression of BoVapB1 (AXW83_01400). Microscopic observation and growth monitoring revealed that the BoVapC1 toxin had bacteriostatic effects on the growth of E. coli and induced morphological changes. Quantitative real time polymerase chain reaction and northern blotting analyses showed that the BoVapC1 toxin had a ribonuclease activity on the initiator tRNAfMet, implying that degradation of tRNAfMet might trigger growth arrest in E. coli Furthermore, the BoVapBC1 system was found to contribute to survival against prolonged exposure at 4°C. This is the first study to identify the function of TA systems in cold adaptation.
Collapse
Affiliation(s)
- Hyerin Jeon
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
46
|
Chen X, Hu A, Zou Q, Luo S, Wu H, Yan C, Liu T, He D, Li X, Cheng G. The Mesorhizobium huakuii transcriptional regulator AbiEi plays a critical role in nodulation and is important for bacterial stress response. BMC Microbiol 2021; 21:245. [PMID: 34511061 PMCID: PMC8436566 DOI: 10.1186/s12866-021-02304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Bacterial abortive infection (Abi) systems are type IV toxin–antitoxin (TA) system, which could elicit programmed cell death and constitute a native survival strategy of pathogenic bacteria under various stress conditions. However, no rhizobial AbiE family TA system has been reported so far. Here, a M. huakuii AbiE TA system was identified and characterized. Results A mutation in M. huakuii abiEi gene, encoding an adjacent GntR-type transcriptional regulator, was generated by homologous recombination. The abiEi mutant strain grew less well in rich TY medium, and displayed increased antioxidative capacity and enhanced gentamicin resistance, indicating the abiEi operon was negatively regulated by the antitoxin AbiEi in response to the oxidative stress and a particular antibiotic. The mRNA expression of abiEi gene was significantly up-regulated during Astragalus sinicus nodule development. The abiEi mutant was severely impaired in its competitive ability in rhizosphere colonization, and was defective in nodulation with 97% reduction in nitrogen-fixing capacity. The mutant infected nodule cells contained vacuolation and a small number of abnormal bacteroids with senescence character. RNA-seq experiment revealed it had 5 up-regulated and 111 down-regulated genes relative to wild type. Of these down-regulated genes, 21 are related to symbiosis nitrogen fixation and nitrogen mechanism, 16 are involved in the electron transport chain and antioxidant responses, and 12 belong to type VI secretion system (T6SS). Conclusions M. huakuii AbiEi behaves as a key transcriptional regulator mediating root nodule symbiosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02304-0.
Collapse
Affiliation(s)
- Xiaohong Chen
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Aiqi Hu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Qian Zou
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Hetao Wu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Chunlan Yan
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Tao Liu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
47
|
Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Front Microbiol 2021; 12:671706. [PMID: 34475853 PMCID: PMC8406773 DOI: 10.3389/fmicb.2021.671706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements that play an essential role in multidrug tolerance and virulence of bacteria. So far, little is known about the TA systems in Streptococcus suis. In this study, the Xress-MNTss TA system, composed of the MNTss toxin in the periplasmic space and its interacting Xress antitoxin, was identified in S. suis. β-galactosidase activity and electrophoretic mobility shift assay (EMSA) revealed that Xress and the Xress-MNTss complex could bind directly to the Xress-MNTss promoter as well as downregulate streptomycin adenylyltransferase ZY05719_RS04610. Interestingly, the Xress deletion mutant was less pathogenic in vivo following a challenge in mice. Transmission electron microscopy and adhesion assays pointed to a significantly thinner capsule but greater biofilm-formation capacity in ΔXress than in the wild-type strain. These results indicate that Xress-MNTss, a new type II TA system, plays an important role in antibiotic resistance and pathogenicity in S. suis.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Peijuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Dan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiankun Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
48
|
Basile LA, Lepek VC. Legume-rhizobium dance: an agricultural tool that could be improved? Microb Biotechnol 2021; 14:1897-1917. [PMID: 34318611 PMCID: PMC8449669 DOI: 10.1111/1751-7915.13906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
The specific interaction between rhizobia and legume roots leads to the development of a highly regulated process called nodulation, by which the atmospheric nitrogen is converted into an assimilable plant nutrient. This capacity is the basis for the use of bacterial inoculants for field crop cultivation. Legume plants have acquired tools that allow the entry of compatible bacteria. Likewise, plants can impose sanctions against the maintenance of nodules occupied by rhizobia with low nitrogen-fixing capacity. At the same time, bacteria must overcome different obstacles posed first by the environment and then by the legume. The present review describes the mechanisms involved in the regulation of the entire legume-rhizobium symbiotic process and the strategies and tools of bacteria for reaching the nitrogen-fixing state inside the nodule. Also, we revised different approaches to improve the nodulation process for a better crop yield.
Collapse
Affiliation(s)
- Laura A. Basile
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| | - Viviana C. Lepek
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| |
Collapse
|
49
|
Karimaei S, Kazem Aghamir SM, Foroushani AR, Pourmand MR. Antibiotic tolerance in biofilm persister cells of Staphylococcus aureus and expression of toxin-antitoxin system genes. Microb Pathog 2021; 159:105126. [PMID: 34384900 DOI: 10.1016/j.micpath.2021.105126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
The ability of Staphylococcus aureus to form biofilm and persister cells is the main cause of recurrent infections. This study aimed to evaluate the expression of toxin-antitoxin (TA) systems in persister cells within S. aureus biofilms. Time-dependent variation in the persister population present in biofilms of S. aureus was examined after treatment with bactericidal antibiotics. Then, the relative expression level of type II TA system (mazF, relE1, and relE2), type I TA system (sprG), and clpP protease genes in S. aureus strains were assessed by Real _Time PCR. Among the sixteen isolates, two isolates were found to be the strongest biofilm producers. The established biofilm of these isolates showed a comparable biphasic pattern at the lethal dose of the antibiotics. The expression level of TA system genes was increased and strain-specific expression patterns were observed under antibiotics stress conditions. Persisters within a biofilm may establish a reservoir for relapsing infection and could contribute to treatment failures. Hence, the possible role of the TA systems should be considered in biofilm and persister cell formation.
Collapse
Affiliation(s)
- Samira Karimaei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Nielsen KL, Stegger M, Kiil K, Lilje B, Ejrnæs K, Leihof RF, Skjøt-Rasmussen L, Godfrey P, Monsen T, Ferry S, Hammerum AM, Frimodt-Møller N. Escherichia coli Causing Recurrent Urinary Tract Infections: Comparison to Non-Recurrent Isolates and Genomic Adaptation in Recurrent Infections. Microorganisms 2021; 9:1416. [PMID: 34209190 PMCID: PMC8303582 DOI: 10.3390/microorganisms9071416] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/04/2023] Open
Abstract
Recurrent urinary tract infection (rUTI) remains a major problem for many women and therefore the pursuit for genomic and phenotypic traits which could define rUTI has been ongoing. The present study applied a genomic approach to investigate recurrent urinary tract infections by comparative analyses of recurrent and non-recurrent Escherichia coli isolates from general practice. From whole-genome sequencing data, phylogenetic clustering and genomic traits were studied on a collection of isolates which caused recurrent infection compared to non-recurrent isolates. In addition, genomic variation between the 1st and following infection was studied on a subset of the isolates. Evidence of limited adaptation between the recurrent infections based on single nucleotide polymorphism analyses with a range of 0-13 non-synonymous single nucleotide polymorphisms (SNPs) between the paired isolates. This included an overrepresentation of SNPs in metabolism genes. We identified several genes which were more common in rUTI isolates, including nine fimbrial genes, however, not significantly after false-discovery rate. Finally, the results show that recurrent isolates of the present dataset are not distinctive by variation in the core genome, and thus, did not cluster distinct from non-rUTI isolates in a SNP phylogeny.
Collapse
Affiliation(s)
- Karen Leth Nielsen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark; (M.S.); (K.K.); (B.L.); (K.E.); (R.F.L.); (L.S.-R.); (A.M.H.)
| | - Kristoffer Kiil
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark; (M.S.); (K.K.); (B.L.); (K.E.); (R.F.L.); (L.S.-R.); (A.M.H.)
| | - Berit Lilje
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark; (M.S.); (K.K.); (B.L.); (K.E.); (R.F.L.); (L.S.-R.); (A.M.H.)
| | - Karen Ejrnæs
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark; (M.S.); (K.K.); (B.L.); (K.E.); (R.F.L.); (L.S.-R.); (A.M.H.)
- Department of Pathology, Herlev Hospital, 2730 Herlev, Denmark
| | - Rikke Fleron Leihof
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark; (M.S.); (K.K.); (B.L.); (K.E.); (R.F.L.); (L.S.-R.); (A.M.H.)
- Analytical Development, Novo Nordisk, 2880 Måløv, Denmark
| | - Line Skjøt-Rasmussen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark; (M.S.); (K.K.); (B.L.); (K.E.); (R.F.L.); (L.S.-R.); (A.M.H.)
- Animal Health Innovation, Chr. Hansen, 2970 Hørsholm, Denmark
| | - Paul Godfrey
- Genome Sequencing and Analysis Program, Institute of Technology, Broad Institute of Harvard and Massachusetts, Cambridge, MA 02142, USA;
| | - Tor Monsen
- Department of Clinical Microbiology, University of Umeå, 901 04 Umeå, Sweden; (T.M.); (S.F.)
| | - Sven Ferry
- Department of Clinical Microbiology, University of Umeå, 901 04 Umeå, Sweden; (T.M.); (S.F.)
| | - Anette M. Hammerum
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark; (M.S.); (K.K.); (B.L.); (K.E.); (R.F.L.); (L.S.-R.); (A.M.H.)
| | | |
Collapse
|