1
|
Yu J, Fang M, Shi L, Zhu J, Fu C, Zhang Y, Xu H, Li L, Shen Y, Wang M. High efficiency removal of antibiotic resistance gene with designer zinc-finger protein. BIORESOURCE TECHNOLOGY 2024; 413:131462. [PMID: 39260734 DOI: 10.1016/j.biortech.2024.131462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The use of agricultural biomass-based fertilizers, and the release of feces into the environment leads to last-lasting pollution of antibiotic resistance genes that cannot be removed from waters via traditional methods, resulting in significant health threats. To solve this issue, an antibiotic resistance gene removal method was proposed and tested that used sequence-specific DNA-binding designer zinc finger proteins, which target an 18-bp DNA sequence for specific antibiotic resistance gene binding and removal. Targeting the sulfonamide-resistant sul1 gene, sul1-binding zinc-finger protein was designed, overexpressed, and purified. This protein showed specific binding with sul1 over tetA that do not have the targeted sequence. This protein was further immobilized on agarose-based resins to prepare a sul1-removal column. When loaded with 10 mg protein, this column can remove over 99 % sul1 in water, suggesting high efficiency. This work presents a new method attempting to eliminate environmental and health threats posed by antibiotic resistance genes.
Collapse
Affiliation(s)
- Jianghao Yu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Meng Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Lulu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Jiaming Zhu
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Wirth R, Shetty P, Bagi Z, Kovács KL, Maróti G. Feedstock-dependent antibiotic resistance gene patterns and expression profiles in industrial scale biogas plants revealed by meta-omics technology. WATER RESEARCH 2024; 268:122650. [PMID: 39461216 DOI: 10.1016/j.watres.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
This study investigated antimicrobial resistance in the anaerobic digesters of two industrial-scale biogas plants processing agricultural biomass and municipal wastewater sludge. A combination of deep sequencing and genome-centric workflow was implemented for metagenomic and metatranscriptomics data analysis to comprehensively examine potential antimicrobial resistance in microbial communities. Anaerobic microbes were found to harbour numerous antibiotic resistance genes (ARGs), with 58.85% of the metagenome-assembled genomes (MAGs) harbouring antibiotic resistance. A moderately positive correlation was observed between the abundance and expression of ARGs. ARGs were located primarily on bacterial chromosomes. A higher expression of resistance genes was observed on plasmids than on chromosomes. Risk index assessment suggests that most ARGs identified posed a significant risk to human health. However, potentially pathogenic bacteria showed lower ARG expression than non-pathogenic ones, indicating that anaerobic treatment is effective against pathogenic microbes. Resistomes at the gene category level were associated with various antibiotic resistance categories, including multidrug resistance, beta-lactams, glycopeptides, peptides, and macrolide-lincosamide-streptogramin (MLS). Differential expression analysis revealed specific genes associated with potential pathogenicity, emphasizing the importance of active gene expression in assessing the risks associated with ARGs.
Collapse
Affiliation(s)
- Roland Wirth
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary; Department of Biotechnology and Microbiology, University of Szeged, Szeged, Hungary
| | - Prateek Shetty
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology and Microbiology, University of Szeged, Szeged, Hungary
| | - Kornél L Kovács
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary; Department of Biotechnology and Microbiology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary; Department of Aquatic Environmental Sciences, Faculty of Water Sciences, Ludovika University of Public Service, Baja, Hungary.
| |
Collapse
|
3
|
Steuer P, Barkema HW, Tejeda C, Hernández JM, Ulloa F, Salgado M. Response of Mycobacterium avium subsp. paratuberculosis isolates to reactive oxygen stress generated by treatment with copper ions. Vet Microbiol 2024; 298:110251. [PMID: 39366317 DOI: 10.1016/j.vetmic.2024.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/06/2024]
Abstract
Copper (Cu) ions have been recognized for their efficacy in inactivating bacteria, including Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease (JD) known for its resilience to unfavorable conditions. However, the response of MAP isolates isolated from cows to Cu exposure remains inadequately understood, as their responses may differ from those of laboratory-adapted reference strains. In this study, we examined the response of MAP isolates obtained from MAP-infected and affected cows to Cu ion treatment, comparing that with the response of the reference strain ATCC 19698 to the same treatment. Three MAP field isolates and the MAP reference strain were exposed to Cu ions, and their viability, protein/lipid damage, ROS production, and gene expression were evaluated in triplicate. Survival differed among isolates, with an isolate from a cow with clinical JD exhibiting increased tolerance to Cu exposure. While Cu treatment induced lipid peroxidation and ROS production across all isolates, genes associated with Cu detoxification and virulence were upregulated, particularly in the reference strain. Whole genome sequencing analysis revealed that, despite genomic similarities between field isolates and the reference strain ATCC 19698, there were differences regarding the presence/absence of genes related with certain virulence factors. Further research on Cu exposure with larger numbers of MAP isolates is needed to explain the stress-induced responses that influence MAP survival during natural infections and in challenging environments.
Collapse
Affiliation(s)
- P Steuer
- Laboratorio de Enfermedades Infecciosas, Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Casilla P.O. Box 567, Valdivia, Chile.
| | - H W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - C Tejeda
- Laboratorio de Enfermedades Infecciosas, Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Casilla P.O. Box 567, Valdivia, Chile
| | - J M Hernández
- Laboratorio de Enfermedades Infecciosas, Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Casilla P.O. Box 567, Valdivia, Chile; Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - F Ulloa
- Laboratorio de Enfermedades Infecciosas, Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Casilla P.O. Box 567, Valdivia, Chile; Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - M Salgado
- Laboratorio de Enfermedades Infecciosas, Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Casilla P.O. Box 567, Valdivia, Chile.
| |
Collapse
|
4
|
Yang B, Xin X, Cao X, Nasifu L, Nie Z, He B. Phenotypic and genotypic perspectives on detection methods for bacterial antimicrobial resistance in a One Health context: research progress and prospects. Arch Microbiol 2024; 206:409. [PMID: 39302440 DOI: 10.1007/s00203-024-04131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
The widespread spread of bacterial antimicrobial resistance (AMR) and multidrug-resistant bacteria poses a significant threat to global public health. Traditional methods for detecting bacterial AMR are simple, reproducible, and intuitive, requiring long time incubation and high labor intensity. To quickly identify and detect bacterial AMR is urgent for clinical treatment to reduce mortality rate, and many new methods and technologies were required to be developed. This review summarizes the current phenotypic and genotypic detection methods for bacterial AMR. Phenotypic detection methods mainly include antimicrobial susceptibility tests, while genotypic detection methods have higher sensitivity and specificity and can detect known or even unknown drug resistance genes. However, most of the current tests are either genotypic or phenotypic and rarely combined. Combining the advantages of phenotypic and genotypic methods, combined with the joint application of multiple rapid detection methods may be the trend for future AMR testing. Driven by rapid diagnostic technology, big data analysis, and artificial intelligence, detection methods of bacterial AMR are expected to constantly develop and innovate. Adopting rational detection methods and scientific data analysis can better address the challenges of bacterial AMR and ensure human health and social well-being.
Collapse
Affiliation(s)
- Bingbing Yang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqi Xin
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqing Cao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lubanga Nasifu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Biology, Muni University, Arua, Uganda
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China.
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
5
|
Mandell JB, Gish C, Cappellini AJ, Parker DM, Brothers KM, Ma D, Urish KL. Methicillin resistant Staphylococcus aureus mazEF expression promotes infections by influencing cellular growth, antibiotic sensitivity, and formation of biofilms. Sci Rep 2024; 14:21269. [PMID: 39261496 PMCID: PMC11390869 DOI: 10.1038/s41598-024-70829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Staphylococcus aureus infections are hard to treat due to the emergence of antibiotic resistant strains, as well as their ability to form biofilms. The MazEF toxin-antitoxin system is thought play a role in bacterial biofilm phenotype as well as antibiotic resistance. In S. aureus, the physiologic function of the mazEF gene in the disease transition from acute to chronic infection is not well understood. In methicillin resistant S. aureus (MRSA), loss of mazF expression results in loss of resistance to first generation cephalosporins. mazF::tn displayed sensitivity while the isogenic wild type (WT) remained resistant. mazF::tn displayed significantly increased growth of biofilms on metal implants over 48 h compared to WT and the complemented transposon mutant. mazF::tn biofilms displayed significantly decreased antibiotic tolerance to vancomycin and cefazolin in comparison to WT and complement biofilms. Mice given mazF::tn in a sepsis model displayed less abscess burden and increased survival (100%) when treated with cefazolin compared to WT bacteremia treated with cefazolin (20%). mazF::tn periprosthetic joint infections displayed increased biofilm burden at acute time points and decreased biofilm burden at chronic time points. Our data suggests MazEF in MRSA is responsible for controlling growth of biofilms, antibiotic tolerance, and influence chronic infections in vivo.
Collapse
Affiliation(s)
- Jonathan B Mandell
- Arthritis and Arthroplasty Design Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Gish
- Arthritis and Arthroplasty Design Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alex J Cappellini
- Arthritis and Arthroplasty Design Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana M Parker
- Arthritis and Arthroplasty Design Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly M Brothers
- Arthritis and Arthroplasty Design Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongzhu Ma
- Arthritis and Arthroplasty Design Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth L Urish
- Arthritis and Arthroplasty Design Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- The Bone and Joint Center, Magee Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Caliskan-Aydogan O, Zaborney Kline C, Alocilja EC. Cell morphology as biomarker of carbapenem exposure. J Antibiot (Tokyo) 2024; 77:600-611. [PMID: 38866921 DOI: 10.1038/s41429-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Characterizing the physiological response of bacterial cells to antibiotics is crucial for designing diagnostic techniques, treatment choices, and drug development. While bacterial cells at sublethal doses of antibiotics are commonly characterized, the impact of exposure to high concentrations of antibiotics on bacteria after long-term serial exposure and their effect on withdrawal need attention for further characterization. This study investigated the effect of increasing imipenem concentrations on carbapenem-susceptible (S) and carbapenem-resistant (R) E. coli on their growth adaptation and cell surface structure. We exposed the bacterial population to increasing imipenem concentrations through 30 exposure cycles. Cell morphology was observed using a 3D laser scanning confocal microscope (LSCM) and transmission electron microscope (TEM). Results showed that the exposure resulted in significant morphological changes in E. coli (S) cells, while minor changes were seen in E. coli (R) cells. The rod-shaped E. coli (S) gradually transformed into round shapes. Further, the exposed E. coli (S) cells' surface area-to-volume ratio (SA/V) was also significantly different from the control, which is non-exposed E. coli (S). Then, the exposed E. coli (S) cells were re-grown in antibiotic-free environment for 100 growth cycles to determine if the changes in cells were reversible. The results showed that their cell morphology remained round, showing that the cell morphology was not reversible. The morphological response of these cells to imipenem can assist in understanding the resistance mechanism in the context of diagnostics and antibacterial therapies.
Collapse
Affiliation(s)
- Oznur Caliskan-Aydogan
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lansing, MI, 48824, USA
| | - Chloe Zaborney Kline
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Evangelyn C Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Jan H, Ghayas S, Higazy D, Ahmad NM, Yaghmur A, Ciofu O. Antibacterial and anti-biofilm activities of antibiotic-free phosphatidylglycerol/docosahexaenoic acid lamellar and non-lamellar liquid crystalline nanoparticles. J Colloid Interface Sci 2024; 669:537-551. [PMID: 38729002 DOI: 10.1016/j.jcis.2024.04.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Infectious diseases, particularly those associated with biofilms, are challenging to treat due to an increased tolerance to commonly used antibiotics. This underscores the urgent need for innovative antimicrobial strategies. Here, we present an alternative simple-by-design approach focusing on the development of biocompatible and antibiotic-free nanocarriers from docosahexaenoic acid (DHA) that has the potential to combat microbial infections and phosphatidylglycerol (DOPG), which is attractive for use as a biocompatible prominent amphiphilic component of Gram-positive bacterial cell membranes. We assessed the anti-bacterial and anti-biofilm activities of these nanoformulations (hexosomes and vesicles) against S. aureus and S. epidermidis, which are the most common causes of infections on catheters and medical devices by different methods (including resazurin assay, time-kill assay, and confocal laser scanning microscopy on an in vitro catheter biofilm model). In a DHA-concentration-dependent manner, these nano-self-assemblies demonstrated strong anti-bacterial and anti-biofilm activities, particularly against S. aureus. A five-fold reduction of the planktonic and a four-fold reduction of biofilm populations of S. aureus were observed after treatment with hexosomes. The nanoparticles had a bacteriostatic effect against S. epidermidis planktonic cells but no anti-biofilm activity was detected. We discuss the findings in terms of nanoparticle-bacterial cell interactions, plausible alterations in the phospholipid membrane composition, and potential penetration of DHA into these membranes, leading to changes in their structural and biophysical properties. The implications for the future development of biocompatible nanocarriers for the delivery of DHA alone or in combination with other anti-bacterial agents are discussed, as novel treatment strategies of Gram-positive infections, including biofilm-associated infections.
Collapse
Affiliation(s)
- Habibullah Jan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sana Ghayas
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Doaa Higazy
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nasir Mahmood Ahmad
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
8
|
Saccà ML, Resci I, Cilia G. Phenotypic and genotypic antimicrobial resistance patterns in honey bee (Apis mellifera L.) bacterial symbionts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34598-8. [PMID: 39098972 DOI: 10.1007/s11356-024-34598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Antimicrobial resistance (AMR) is a major global public health problem. Nevertheless, the knowledge of the factors driving the spread of resistance among environmental microorganisms is limited, and few studies have been performed worldwide. Honey bees (Apis mellifera L.) have long been considered bioindicators of environmental pollution and more recently also of AMR. In this study, 53 bacterial strains isolated from the body surface of honey bees at three ontogenetic stages, collected from ten different geographic locations, were tested for their phenotypic and genotypic resistance to eight classes of the most widely used antimicrobials in human and veterinary medicine. Results showed that 83% of the strains were resistant to at least one antimicrobial and 62% were multidrug-resistant bacteria, with a prevalence of resistance to nalidixic acid, cefotaxime, and aztreonam. A high percentage of isolates harbouring at least one antimicrobial gene was also observed (85%). The gene encoding resistance to colistin mcr-1 was the most abundant, followed by those for tetracycline tetM and tetC. Geographical features influenced the distribution of these traits more than bacterial species or bee stage, supporting the use of honey bee colonies and their associated bacteria as indicators to monitor environmental resistance. This approach can improve the scientific understanding of this global threat by increasing data collection capacity.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Economics, Via Di Corticella 133, 40128, Bologna, Italy.
| | - Ilaria Resci
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Economics, Via Di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
9
|
Resci I, Zavatta L, Piva S, Mondo E, Guerra I, Nanetti A, Bortolotti L, Cilia G. Using honey bee colonies to monitor phenotypic and genotypic resistance to colistin. CHEMOSPHERE 2024; 362:142717. [PMID: 38944352 DOI: 10.1016/j.chemosphere.2024.142717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Colistin is a polymyxin antimicrobic mainly used to treat infection caused by multi-drug resistant Gram-negative bacteria. Mechanisms of colistin resistance are linked to the mobile colistin resistance (mcr) genes, which are transferable within mobile plasmids. Currently, there is limited research on the environmental dissemination of these genes. The behavioural and morphological characteristics of Apis mellifera L. make honey bees effective environmental bioindicators for assessing the prevalence of antimicrobial-resistant bacteria. This study aims to evaluate the colistin phenotypic and genotypic resistance in environmental Gram-negative bacteria isolated from foraging honey bees, across a network of 33 colonies distributed across the Emilia-Romagna region in Italy. Phenotypic resistances were determined through a microdilution assay using the minimum inhibitory concentration (MIC) with dilutions ranging from 0.5 μg/ml to 256 μg/ml. Strains with MIC values gather than 2 μg/ml were classified as resistant. Also, the identification of the nine mcr genes was carried out using two separate multiplex PCR assays. The study found that 68.5% of isolates were resistant and the genus with the higher resistance rates observed in Enterobacter spp. (84.5%). At least one mcr gene was found in 137 strains (53.3%). The most detected gene was mcr5 (35.3%), which was the most frequently detected gene in the seven provinces, while the least observed was mcr4 (4.8%), detected only in two provinces. These results suggested the feasibility of detecting specific colistin resistance genes in environmentally spread bacteria and understanding their distribution at the environmental level, despite their restricted clinical use. In a One-Health approach, this capability enables valuable environmental monitoring, considering the significant role of colistin in the context of public health.
Collapse
Affiliation(s)
- Ilaria Resci
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy; Department of Veterinary Sciences, University of Bologna, Ozzano Dell'Emilia (BO), Italy; Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy; DISTAL-Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Silvia Piva
- Department of Veterinary Sciences, University of Bologna, Ozzano Dell'Emilia (BO), Italy
| | - Elisabetta Mondo
- Department of Veterinary Sciences, University of Bologna, Ozzano Dell'Emilia (BO), Italy
| | - Irene Guerra
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Laura Bortolotti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy.
| |
Collapse
|
10
|
Basu A, Samhita L. Context-dependent fitness benefits of antibiotic resistance mutations. Proc Biol Sci 2024; 291:20241071. [PMID: 39043246 PMCID: PMC11265866 DOI: 10.1098/rspb.2024.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Aabeer Basu
- Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| | - Laasya Samhita
- Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| |
Collapse
|
11
|
Lee Y, Kwon S, Balaraju K, Jeon Y. Influence of phenotypic variation of Paenibacillus polymyxa E681 on growth promotion in cucumbers. Front Microbiol 2024; 15:1427265. [PMID: 39144205 PMCID: PMC11322358 DOI: 10.3389/fmicb.2024.1427265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
The goal of the current study is to better understand how bacteria may adapt to survive under adverse environmental conditions by altering and improving their phenotypes. In this study, we report the consequences of phenotypic variation in Paenibacillus polymyxa E681 (E681), a plant growth-promoting rhizobacterium (PGPR), isolated from winter barley root that has a variety of advantageous effects on crop plants. In our previous study, two different types of bacterial cells in E681 were distinguished. We used the term F-type for the variant that doesn't produce endospores and B-type for the endospore-producing wild type. Under the circumstances of our experiment, the cucumber rhizosphere soil and the surface of the seeds produced phenotypic variance. On tryptic soy agar (TSA) plates, the B-type spontaneously converted into the F-type, but the reverse was not reversible. Intriguingly, the plant growth promotion test displayed that cucumber seedlings treated with F-type cells had characteristics resembling those of the untreated control. Whereas, growth promotion of cucumber seedlings treated with B-type depends on temperature conditions. In particular, an increased growth promotion was observed at a low temperature of 20°C. The phenotypic change from B-type to F-type did not occur at 20°C for 6 days in the growth curve analysis of E681, but it did occur on the fourth and second days at 30 and 37°C, respectively. Therefore, before using PGPR strains as a bacterial inoculant for sustainable agriculture, it is imperative to resolve phenotypic variance in these strains.
Collapse
Affiliation(s)
- Younmi Lee
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Sungmoon Kwon
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Kotnala Balaraju
- Agricultural Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| |
Collapse
|
12
|
Tan Y, Scornet AL, Yap MNF, Zhang D. Machine learning-based classification reveals distinct clusters of non-coding genomic allelic variations associated with Erm-mediated antibiotic resistance. mSystems 2024; 9:e0043024. [PMID: 38953319 PMCID: PMC11264731 DOI: 10.1128/msystems.00430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
The erythromycin resistance RNA methyltransferase (erm) confers cross-resistance to all therapeutically important macrolides, lincosamides, and streptogramins (MLS phenotype). The expression of erm is often induced by the macrolide-mediated ribosome stalling in the upstream co-transcribed leader sequence, thereby triggering a conformational switch of the intergenic RNA hairpins to allow the translational initiation of erm. We investigated the evolutionary emergence of the upstream erm regulatory elements and the impact of allelic variation on erm expression and the MLS phenotype. Through systematic profiling of the upstream regulatory sequences across all known erm operons, we observed that specific erm subfamilies, such as ermB and ermC, have independently evolved distinct configurations of small upstream ORFs and palindromic repeats. A population-wide genomic analysis of the upstream ermB regions revealed substantial non-random allelic variation at numerous positions. Utilizing machine learning-based classification coupled with RNA structure modeling, we found that many alleles cooperatively influence the stability of alternative RNA hairpin structures formed by the palindromic repeats, which, in turn, affects the inducibility of ermB expression and MLS phenotypes. Subsequent experimental validation of 11 randomly selected variants demonstrated an impressive 91% accuracy in predicting MLS phenotypes. Furthermore, we uncovered a mixed distribution of MLS-sensitive and MLS-resistant ermB loci within the evolutionary tree, indicating repeated and independent evolution of MLS resistance. Taken together, this study not only elucidates the evolutionary processes driving the emergence and development of MLS resistance but also highlights the potential of using non-coding genomic allele data to predict antibiotic resistance phenotypes. IMPORTANCE Antibiotic resistance (AR) poses a global health threat as the efficacy of available antibiotics has rapidly eroded due to the widespread transmission of AR genes. Using Erm-dependent MLS resistance as a model, this study highlights the significance of non-coding genomic allelic variations. Through a comprehensive analysis of upstream regulatory elements within the erm family, we elucidated the evolutionary emergence and development of AR mechanisms. Leveraging population-wide machine learning (ML)-based genomic analysis, we transformed substantial non-random allelic variations into discernible clusters of elements, enabling precise prediction of MLS phenotypes from non-coding regions. These findings offer deeper insight into AR evolution and demonstrate the potential of harnessing non-coding genomic allele data for accurately predicting AR phenotypes.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Alexandre Le Scornet
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mee-Ngan Frances Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, USA
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Zhang Y, Chang K, Ogunlade B, Herndon L, Tadesse LF, Kirane AR, Dionne JA. From Genotype to Phenotype: Raman Spectroscopy and Machine Learning for Label-Free Single-Cell Analysis. ACS NANO 2024; 18:18101-18117. [PMID: 38950145 DOI: 10.1021/acsnano.4c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Raman spectroscopy has made significant progress in biosensing and clinical research. Here, we describe how surface-enhanced Raman spectroscopy (SERS) assisted with machine learning (ML) can expand its capabilities to enable interpretable insights into the transcriptome, proteome, and metabolome at the single-cell level. We first review how advances in nanophotonics-including plasmonics, metamaterials, and metasurfaces-enhance Raman scattering for rapid, strong label-free spectroscopy. We then discuss ML approaches for precise and interpretable spectral analysis, including neural networks, perturbation and gradient algorithms, and transfer learning. We provide illustrative examples of single-cell Raman phenotyping using nanophotonics and ML, including bacterial antibiotic susceptibility predictions, stem cell expression profiles, cancer diagnostics, and immunotherapy efficacy and toxicity predictions. Lastly, we discuss exciting prospects for the future of single-cell Raman spectroscopy, including Raman instrumentation, self-driving laboratories, Raman data banks, and machine learning for uncovering biological insights.
Collapse
Affiliation(s)
- Yirui Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kai Chang
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Babatunde Ogunlade
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Liam Herndon
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Loza F Tadesse
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Jameel Clinic for AI & Healthcare, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda R Kirane
- Department of Surgery, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
14
|
Diaz-Diaz S, Garcia-Montaner A, Vanni R, Murillo-Torres M, Recacha E, Pulido MR, Romero-Muñoz M, Docobo-Pérez F, Pascual A, Rodriguez-Martinez JM. Heterogeneity of SOS response expression in clinical isolates of Escherichia coli influences adaptation to antimicrobial stress. Drug Resist Updat 2024; 75:101087. [PMID: 38678745 DOI: 10.1016/j.drup.2024.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
In recent years, new evidence has shown that the SOS response plays an important role in the response to antimicrobials, with involvement in the generation of clinical resistance. Here we evaluate the impact of heterogeneous expression of the SOS response in clinical isolates of Escherichia coli on response to the fluoroquinolone, ciprofloxacin. In silico analysis of whole genome sequencing data showed remarkable sequence conservation of the SOS response regulators, RecA and LexA. Despite the genetic homogeneity, our results revealed a marked differential heterogeneity in SOS response activation, both at population and single-cell level, among clinical isolates of E. coli in the presence of subinhibitory concentrations of ciprofloxacin. Four main stages of SOS response activation were identified and correlated with cell filamentation. Interestingly, there was a correlation between clinical isolates with higher expression of the SOS response and further progression to resistance. This heterogeneity in response to DNA damage repair (mediated by the SOS response) and induced by antimicrobial agents could be a new factor with implications for bacterial evolution and survival contributing to the generation of antimicrobial resistance.
Collapse
Affiliation(s)
- Sara Diaz-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain.
| | - Andrea Garcia-Montaner
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Roberta Vanni
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Marina Murillo-Torres
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Esther Recacha
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marina R Pulido
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Romero-Muñoz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Fernando Docobo-Pérez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Manuel Rodriguez-Martinez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Sarker S, Neeloy RM, Habib MB, Urmi UL, Al Asad M, Mosaddek ASM, Khan MRK, Nahar S, Godman B, Islam S. Mobile Colistin-Resistant Genes mcr-1, mcr-2, and mcr-3 Identified in Diarrheal Pathogens among Infants, Children, and Adults in Bangladesh: Implications for the Future. Antibiotics (Basel) 2024; 13:534. [PMID: 38927200 PMCID: PMC11200974 DOI: 10.3390/antibiotics13060534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Colistin is a last-resort antimicrobial for treating multidrug-resistant Gram-negative bacteria. Phenotypic colistin resistance is highly associated with plasmid-mediated mobile colistin resistance (mcr) genes. mcr-bearing Enterobacteriaceae have been detected in many countries, with the emergence of colistin-resistant pathogens a global concern. This study assessed the distribution of mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes with phenotypic colistin resistance in isolates from diarrheal infants and children in Bangladesh. Bacteria were identified using the API-20E biochemical panel and 16s rDNA gene sequencing. Polymerase chain reactions detected mcr gene variants in the isolates. Their susceptibilities to colistin were determined by agar dilution and E-test by minimal inhibitory concentration (MIC) measurements. Over 31.6% (71/225) of isolates showed colistin resistance according to agar dilution assessment (MIC > 2 μg/mL). Overall, 15.5% of isolates carried mcr genes (7, mcr-1; 17, mcr-2; 13, and mcr-3, with co-occurrence occurring in two isolates). Clinical breakout MIC values (≥4 μg/mL) were associated with 91.3% of mcr-positive isolates. The mcr-positive pathogens included twenty Escherichia spp., five Shigella flexneri, five Citrobacter spp., two Klebsiella pneumoniae, and three Pseudomonas parafulva. The mcr-genes appeared to be significantly associated with phenotypic colistin resistance phenomena (p = 0.000), with 100% colistin-resistant isolates showing MDR phenomena. The age and sex of patients showed no significant association with detected mcr variants. Overall, mcr-associated colistin-resistant bacteria have emerged in Bangladesh, which warrants further research to determine their spread and instigate activities to reduce resistance.
Collapse
Affiliation(s)
- Shafiuzzaman Sarker
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Reeashat Muhit Neeloy
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Marnusa Binte Habib
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Umme Laila Urmi
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mamun Al Asad
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | | | | | - Shamsun Nahar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Liu M, Wang M, Huang M, Gao Q, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Tian B, Sun D, Cheng A. Iron efflux by IetA enhances β-lactam aztreonam resistance and is linked to oxidative stress through cellular respiration in Riemerella anatipestifer. J Antimicrob Chemother 2024; 79:1385-1396. [PMID: 38629469 DOI: 10.1093/jac/dkae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/20/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Riemerella anatipestifer encodes an iron acquisition system, but whether it encodes the iron efflux pump and its role in antibiotic resistance are largely unknown. OBJECTIVES To screen and identify an iron efflux gene in R. anatipestifer and determine whether and how the iron efflux gene is involved in antibiotic resistance. METHODS In this study, gene knockout, streptonigrin susceptibility assay and inductively coupled plasma mass spectrometry were used to screen for the iron efflux gene ietA. The MIC measurements, scanning electron microscopy and reactive oxygen species (ROS) detection were used to verify the role of IetA in aztreonam resistance and its mechanism. Mortality and colonization assay were used to investigate the role of IetA in virulence. RESULTS The deletion mutant ΔietA showed heightened susceptibility to streptonigrin, and prominent intracellular iron accumulation was observed in ΔfurΔietA under excess iron conditions. Additionally, ΔietA exhibited increased sensitivity to H2O2-produced oxidative stress. Under aerobic conditions with abundant iron, ΔietA displayed increased susceptibility to the β-lactam antibiotic aztreonam due to heightened ROS production. However, the killing efficacy of aztreonam was diminished in both WT and ΔietA under anaerobic or iron restriction conditions. Further experiments demonstrated that the efficiency of aztreonam against ΔietA was dependent on respiratory complexes Ⅰ and Ⅱ. Finally, in a duckling model, ΔietA had reduced virulence compared with the WT. CONCLUSION Iron efflux is critical to alleviate oxidative stress damage and β-lactam aztreonam killing in R. anatipestifer, which is linked by cellular respiration.
Collapse
Affiliation(s)
- Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mi Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
Ijaz M, Sabir MJ, Javed MU, Ahmed A, Rasheed H, Jabir AA. Molecular insights into expression and silencing of resistance determinants in Staphylococcus aureus. Trop Med Int Health 2024; 29:526-535. [PMID: 38715472 DOI: 10.1111/tmi.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
OBJECTIVE This study aimed to investigate the status of antimicrobial-resistant strains of Staphylococcus aureus in Pakistan, their association in terms of co-occurrence with the biofilm-forming genes, resistance profiling and associated discrepancies in diagnostic methods. METHODOLOGY A total of 384 milk samples from bovine was collected by using convenient sampling technique and were initially screened for subclinical mastitis, further preceded by isolation and confirmation of S. aureus. The S. aureus isolates were subjected to evaluation of antimicrobial resistance by phenotypic identification using Kirby-Bauer disc diffusion method, while the genotypic estimation was done by polymerase chain reaction to declare isolates as methicillin, beta-lactam, vancomycin, tetracycline, and aminoglycoside resistant S. aureus (MRSA, BRSA, VRSA, TRSA, and ARSA), respectively. RESULTS The current study revealed an overall prevalence of subclinical mastitis and S. aureus to be 59.11% and 46.69%, respectively. On a phenotypic basis, the prevalence of MRSA, BRSA, VRSA, TRSA, and ARSA was found to be 44.33%, 58.49%, 20.75%, 35.84%, and 30.18%, respectively. The results of PCR analysis showed that 46.80% of the tested isolates were declared as MRSA, 37.09% as BRSA, and 36.36% as VRSA, while the occurrence of TRSA and ARSA was observed in 26.31% and 18.75%, respectively. The current study also reported the existence of biofilm-producing genes (icaA and icaD) in 49.06% and 40.57% isolates, respectively. Lastly, this study also reported a high incidence of discrepancies for both genotypic and phenotypic identification methods of resistance evaluation, with the highest discrepancy ratio for the accA-aphD gene, followed by tetK, vanB, blaZ, and mecA genes. CONCLUSION The study concluded that different antibiotic resistance strains of S. aureus are prevalent in study districts with high potential to transmit between human populations. The study also determined that there are multiple resistance determinants and mechanisms that are responsible for the silencing and expression of antibiotic resistance genes.
Collapse
Affiliation(s)
- Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Jawad Sabir
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Umar Javed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arslan Ahmed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hamza Rasheed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Abdullah Jabir
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
18
|
D’Amico F, Messina D, Casalino G, Schiavitto M, Bove A, Romito D, D’Onghia FP, Camarda A, Circella E. Characterisation of Pasteurella multocida Strains from Different Lesions in Rabbits. Animals (Basel) 2024; 14:1569. [PMID: 38891615 PMCID: PMC11171282 DOI: 10.3390/ani14111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Pasteurellosis, a disease caused by Pasteurella multocida, is responsible for economic losses in rabbit industrial farms due to rhinitis, conjunctivitis, pneumonia, metritis, mastitis, orchitis, subcutaneous abscesses, otitis, encephalitis, and septicaemic forms. Although the occurrence of the disease is conditioned by predisposing factors that affect the rabbit immune response, the strains of P. multocida involved in the infection may have a different pathogenic ability. Therefore, typing of strains spread among the rabbits is important to assess their pathogenic potential. The aim of this study is to investigate the P. multocida strains responsible for disease in rabbit industrial farms. A total of 114 strains identified from different lesions were serotyped. Additionally, the presence of virulence-associated genes was investigated using three PCR (polymerase chain reaction) protocols. Capsular type A was prevalently found in strains from respiratory lesions while types D and F in those from metritis, mastitis, and other lesions. Different associations between some virulence-associated genes and both capsular type and lesions found in rabbits were detected. The presence of 8 virulence-associated genes seems to increase the occurrence of metritis. In addition, strains belonging to capsular type A and responsible for respiratory disorders especially, were found equipped with 10 and 11 virulence-associated genes. Nevertheless, the presence of strains responsible only for rhinitis was also detected among the latter, suggesting that the pathogenic ability of the bacteria depends on the expression rather than the presence of a gene.
Collapse
Affiliation(s)
- Francesco D’Amico
- Department of Veterinary Medicine, University of Bari, S. P. Casamassima km 3, 70010 Valenzano, BA, Italy; (F.D.); (A.B.); (D.R.); (F.P.D.); (A.C.); (E.C.)
| | - Davide Messina
- Division of Veterinary Clinical Science, School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK;
| | - Gaia Casalino
- Department of Veterinary Medicine, University of Bari, S. P. Casamassima km 3, 70010 Valenzano, BA, Italy; (F.D.); (A.B.); (D.R.); (F.P.D.); (A.C.); (E.C.)
| | - Michele Schiavitto
- Italian Rabbit Breeders Association, ANCI, Contrada Giancola snc, 71030 Volturara Appula, FG, Italy;
| | - Antonella Bove
- Department of Veterinary Medicine, University of Bari, S. P. Casamassima km 3, 70010 Valenzano, BA, Italy; (F.D.); (A.B.); (D.R.); (F.P.D.); (A.C.); (E.C.)
| | - Diana Romito
- Department of Veterinary Medicine, University of Bari, S. P. Casamassima km 3, 70010 Valenzano, BA, Italy; (F.D.); (A.B.); (D.R.); (F.P.D.); (A.C.); (E.C.)
| | - Francesco Paolo D’Onghia
- Department of Veterinary Medicine, University of Bari, S. P. Casamassima km 3, 70010 Valenzano, BA, Italy; (F.D.); (A.B.); (D.R.); (F.P.D.); (A.C.); (E.C.)
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari, S. P. Casamassima km 3, 70010 Valenzano, BA, Italy; (F.D.); (A.B.); (D.R.); (F.P.D.); (A.C.); (E.C.)
| | - Elena Circella
- Department of Veterinary Medicine, University of Bari, S. P. Casamassima km 3, 70010 Valenzano, BA, Italy; (F.D.); (A.B.); (D.R.); (F.P.D.); (A.C.); (E.C.)
| |
Collapse
|
19
|
Araújo D, Silva AR, Fernandes R, Serra P, Barros MM, Campos AM, Oliveira R, Silva S, Almeida C, Castro J. Emerging Approaches for Mitigating Biofilm-Formation-Associated Infections in Farm, Wild, and Companion Animals. Pathogens 2024; 13:320. [PMID: 38668275 PMCID: PMC11054384 DOI: 10.3390/pathogens13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
The importance of addressing the problem of biofilms in farm, wild, and companion animals lies in their pervasive impact on animal health and welfare. Biofilms, as resilient communities of microorganisms, pose a persistent challenge in causing infections and complicating treatment strategies. Recognizing and understanding the importance of mitigating biofilm formation is critical to ensuring the welfare of animals in a variety of settings, from farms to the wild and companion animals. Effectively addressing this issue not only improves the overall health of individual animals, but also contributes to the broader goals of sustainable agriculture, wildlife conservation, and responsible pet ownership. This review examines the current understanding of biofilm formation in animal diseases and elucidates the complex processes involved. Recognizing the limitations of traditional antibiotic treatments, mechanisms of resistance associated with biofilms are explored. The focus is on alternative therapeutic strategies to control biofilm, with illuminating case studies providing valuable context and practical insights. In conclusion, the review highlights the importance of exploring emerging approaches to mitigate biofilm formation in animals. It consolidates existing knowledge, highlights gaps in understanding, and encourages further research to address this critical facet of animal health. The comprehensive perspective provided by this review serves as a foundation for future investigations and interventions to improve the management of biofilm-associated infections in diverse animal populations.
Collapse
Affiliation(s)
- Daniela Araújo
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Rita Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Rúben Fernandes
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Patrícia Serra
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Maria Margarida Barros
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Maria Campos
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Ricardo Oliveira
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sónia Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Almeida
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Castro
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
21
|
Hampton JP, Zhou JY, Kameni FN, Espiritu JR, Manasherob R, Cheung E, Miller MD, Huddleston JI, Maloney WJ, Goodman SB, Amanatullah DF. Host and microbial characteristics associated with recurrent prosthetic joint infections. J Orthop Res 2024; 42:560-567. [PMID: 38093490 DOI: 10.1002/jor.25768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
Approximately 20% of patients after resection arthroplasty and antibiotic spacer placement for prosthetic joint infection develop repeat infections, requiring an additional antibiotic spacer before definitive reimplantation. The host and bacterial characteristics associated with the development of recurrent infection is poorly understood. A case-control study was conducted for 106 patients with intention to treat by two-stage revision arthroplasty for prosthetic joint infection at a single institution between 2009 and 2020. Infection was defined according to the 2018 Musculoskeletal Infection Society criteria. Thirty-nine cases ("recurrent-periprosthetic joint infection [PJI]") received at least two antibiotic spacers before clinical resolution of their infection, and 67 controls ("single-PJI") received a single antibiotic cement spacer before infection-free prosthesis reimplantation. Patient demographics, McPherson host grade, and culture results including antibiotic susceptibilities were compared. Fifty-two (78%) single-PJI and 32 (82%) recurrent-PJI patients had positive intraoperative cultures at the time of their initial spacer procedure. The odds of polymicrobial infections were 11-fold higher among recurrent-PJI patients, and the odds of significant systemic compromise (McPherson host-grade C) were more than double. Recurrent-PJI patients were significantly more likely to harbor Staphylococcus aureus. We found no differences between cases and controls in pathogen resistance to the six most tested antibiotics. Among recurrent-PJI patients, erythromycin-resistant infections were more prevalent at the final than initial spacer, despite no erythromycin exposure. Our findings suggest that McPherson host grade, polymicrobial infection, and S. aureus infection are key indicators of secondary or persistent joint infection following resection arthroplasty and antibiotic spacer placement, while bacterial resistance does not predict infection-related arthroplasty failure.
Collapse
Affiliation(s)
- Jessica P Hampton
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Joanne Y Zhou
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California, USA
| | | | | | - Robert Manasherob
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California, USA
| | - Emilie Cheung
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California, USA
- Department of Orthopaedic Surgery, Stanford University, Shoulder and Elbow Division, Redwood City, California, USA
| | - Matthew D Miller
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California, USA
- Department of Orthopaedic Surgery, Joint Replacement Center, Redwood City, California, USA
| | - James I Huddleston
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California, USA
- Department of Orthopaedic Surgery, Joint Replacement Center, Redwood City, California, USA
| | - William J Maloney
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California, USA
- Department of Orthopaedic Surgery, Joint Replacement Center, Redwood City, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California, USA
- Department of Orthopaedic Surgery, Joint Replacement Center, Redwood City, California, USA
| | - Derek F Amanatullah
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California, USA
- Department of Orthopaedic Surgery, Joint Replacement Center, Redwood City, California, USA
| |
Collapse
|
22
|
Öner SZ, Karaday E, Çalışkan A, Demir M, Şenol H, Kaleli İ. Integron distribution and relationship to antimicrobial resistance in E. coli isolated from blood culture. Indian J Med Microbiol 2024; 48:100554. [PMID: 38408609 DOI: 10.1016/j.ijmmb.2024.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE The aim of this study was to evaluate the distribution of integrons in strains of E. coli isolated from blood culture and the relationship between integrons and antimicrobial resistance. METHODS The study included 100 E. coli strains sent to the Medical Microbiology Laboratory from different clinics between September 2022 and June 2023. Antibiotic susceptibility was evaluated according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). The presence of integrons was determined by the inhouse polymerase chain reaction (PCR). RESULTS Integron positivity was detected in 45 (45%) of isolates, and class 1 integrons were found in 41 (41%), class 2 integrons in 2 (2%), and both class 1 integrons and class 2 integrons in 2 (2%). Class 3 integron positivity was not detected. In total, 63 cases of community origin and 37 cases of hospital origin were identified. When antibiotic resistance was evaluated, the highest sensitivity was noted for amikacin (1%), meropenem (5%), imipenem (6%), and the highest resistant antibiotics were ampicillin (82%), cepfuroxime sodium (65%), and amoxicillin/clavulanate (62%), respectively. Of the 16 antimicrobial substances evaluated, 10 had an antibiotic resistance rate of over 45%. In class 1 integron-positive samples, ampicillin resistance and trimethoprim/sulfamethoxazole resistance were higher than in negative samples (p = 0.02, p = 0.0001, respectively). Fifty-one (51%) samples were found to have multiple drug resistance (MDR). In total, 59.5% of hospital-acquired isolates and 46% of community-acquired isolates were considered to be MDR. The class 1 integron positivity in MDR samples was high (p = 0.038). CONCLUSION The high MDR rates in both hospital-acquired and community-acquired isolates are alarming. In particular, class 1 integron monitoring is very important to prevent the spread of MDR isolates.
Collapse
Affiliation(s)
- Sedef Zeliha Öner
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Esra Karaday
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Ahmet Çalışkan
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Melek Demir
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Hande Şenol
- Department of Biostatistics, Pamukkale University, Denizli, Turkey.
| | - İlknur Kaleli
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
23
|
Rossi F, Duchaine C, Tignat-Perrier R, Joly M, Larose C, Dommergue A, Turgeon N, Veillette M, Sellegri K, Baray JL, Amato P. Temporal variations of antimicrobial resistance genes in aerosols: A one-year monitoring at the puy de Dôme summit (Central France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169567. [PMID: 38145686 DOI: 10.1016/j.scitotenv.2023.169567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The recent characterization of antibiotic resistance genes (ARGs) in clouds evidenced that the atmosphere actively partakes in the global spreading of antibiotic resistance worldwide. Indeed, the outdoor atmosphere continuously receives large quantities of particles of biological origins, emitted from both anthropogenic or natural sources at the near Earth's surface. Nonetheless, our understanding of the composition of the atmospheric resistome, especially at mid-altitude (i.e. above 1000 m a.s.l.), remains largely limited. The atmosphere is vast and highly dynamic, so that the diversity and abundance of ARGs are expected to fluctuate both spatially and temporally. In this work, the abundance and diversity of ARGs were assessed in atmospheric aerosol samples collected weekly between July 2016 and August 2017 at the mountain site of puy de Dôme (1465 m a.s.l., central France). Our results evidence the presence of 33 different subtypes of ARGs in atmospheric aerosols, out of 34 assessed, whose total concentration fluctuated seasonally from 59 to 1.1 × 105 copies m-3 of air. These were heavily dominated by genes from the quinolone resistance family, notably the qepA gene encoding efflux pump mechanisms, which represented >95 % of total ARGs concentration. Its abundance positively correlated with that of bacteria affiliated with the genera Kineococcus, Neorhizobium, Devosia or Massilia, ubiquitous in soils. This, along with the high abundance of Sphingomonas species, points toward a large contribution of natural sources to the airborne ARGs. Nonetheless, the increased contribution of macrolide resistance (notably the erm35 gene) during winter suggests a sporadic diffusion of ARGs from human activities. Our observations depict the atmosphere as an important vector of ARGs from terrestrial sources. Therefore, monitoring ARGs in airborne microorganisms appears necessary to fully understand the dynamics of antimicrobial resistances in the environment and mitigate the threats they may represent.
Collapse
Affiliation(s)
- Florent Rossi
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Caroline Duchaine
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada; Canada Research Chair on Bioaerosols, Canada.
| | - Romie Tignat-Perrier
- Laboratoire Ampère, École Centrale de Lyon, CNRS, Université de Lyon, Ecully, France; Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP, Grenoble, France
| | - Muriel Joly
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Catherine Larose
- Laboratoire Ampère, École Centrale de Lyon, CNRS, Université de Lyon, Ecully, France
| | - Aurélien Dommergue
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP, Grenoble, France
| | - Nathalie Turgeon
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Marc Veillette
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Karine Sellegri
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie physique, UMR 6016, Clermont-Ferrand, France
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de physique du Globe de Clermont-Ferrand, UAR 833, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie physique, UMR 6016, Clermont-Ferrand, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
24
|
Nafea AM, Wang Y, Wang D, Salama AM, Aziz MA, Xu S, Tong Y. Application of next-generation sequencing to identify different pathogens. Front Microbiol 2024; 14:1329330. [PMID: 38348304 PMCID: PMC10859930 DOI: 10.3389/fmicb.2023.1329330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Early and precise detection and identification of various pathogens are essential for epidemiological monitoring, disease management, and reducing the prevalence of clinical infectious diseases. Traditional pathogen detection techniques, which include mass spectrometry, biochemical tests, molecular testing, and culture-based methods, are limited in application and are time-consuming. Next generation sequencing (NGS) has emerged as an essential technology for identifying pathogens. NGS is a cutting-edge sequencing method with high throughput that can create massive volumes of sequences with a broad application prospects in the field of pathogen identification and diagnosis. In this review, we introduce NGS technology in detail, summarizes the application of NGS in that identification of different pathogens, including bacteria, fungi, and viruses, and analyze the challenges and outlook for using NGS to identify clinical pathogens. Thus, this work provides a theoretical basis for NGS studies and provides evidence to support the application of NGS in distinguishing various clinical pathogens.
Collapse
Affiliation(s)
- Aljuboori M. Nafea
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- College of Medicine, Department of Microbiology, Ibn Sina University of Medical and Pharmaceutical Science, Baghdad, Iraq
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Duanyang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ahmed M. Salama
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
- Medical Laboratory at Sharkia Health Directorate, Ministry of Health, Sharkia, Egypt
| | - Manal A. Aziz
- College of Medicine, Department of Microbiology, Ibn Sina University of Medical and Pharmaceutical Science, Baghdad, Iraq
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
25
|
Heidarian S, Guliaev A, Nicoloff H, Hjort K, Andersson DI. High prevalence of heteroresistance in Staphylococcus aureus is caused by a multitude of mutations in core genes. PLoS Biol 2024; 22:e3002457. [PMID: 38175839 PMCID: PMC10766187 DOI: 10.1371/journal.pbio.3002457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Heteroresistance (HR) is an enigmatic phenotype where, in a main population of susceptible cells, small subpopulations of resistant cells exist. This is a cause for concern, as this small subpopulation is difficult to detect by standard antibiotic susceptibility tests, and upon antibiotic exposure the resistant subpopulation may increase in frequency and potentially lead to treatment complications or failure. Here, we determined the prevalence and mechanisms of HR for 40 clinical Staphylococcus aureus isolates, against 6 clinically important antibiotics: daptomycin, gentamicin, linezolid, oxacillin, teicoplanin, and vancomycin. High frequencies of HR were observed for gentamicin (69.2%), oxacillin (27%), daptomycin (25.6%), and teicoplanin (15.4%) while none of the isolates showed HR toward linezolid or vancomycin. Point mutations in various chromosomal core genes, including those involved in membrane and peptidoglycan/teichoic acid biosynthesis and transport, tRNA charging, menaquinone and chorismite biosynthesis and cyclic-di-AMP biosynthesis, were the mechanisms responsible for generating the resistant subpopulations. This finding is in contrast to gram-negative bacteria, where increased copy number of bona fide resistance genes via tandem gene amplification is the most prevalent mechanism. This difference can be explained by the observation that S. aureus has a low content of resistance genes and absence of the repeat sequences that allow tandem gene amplification of these genes as compared to gram-negative species.
Collapse
Affiliation(s)
- Sheida Heidarian
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andrei Guliaev
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Caliskan-Aydogan O, Sharief SA, Alocilja EC. Rapid Isolation of Low-Level Carbapenem-Resistant E. coli from Water and Foods Using Glycan-Coated Magnetic Nanoparticles. BIOSENSORS 2023; 13:902. [PMID: 37887095 PMCID: PMC10605215 DOI: 10.3390/bios13100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are one of the major global issues needing attention. Among them, carbapenemase-producing (CP) E. coli strains are commonly found in clinical and biological samples. Rapid and cost-effective detection of such strains is critical in minimizing their deleterious impact. While promising progress is being made in rapid detection platforms, separation and enrichment of bacteria are required to ensure the detection of low bacterial counts. The current separation methods, such as centrifugation, filtration, electrophoresis, and immunomagnetic separation, are often tedious, expensive, or ineffective for clinical and biological samples. Further, the extraction and concentration of antimicrobial-resistant bacteria (ARB) are not well documented. Thus, this study assessed the applicability of cost-effective glycan-coated magnetic nanoparticles (gMNPs) for simple and rapid extraction of CP E. coli. The study included two resistant (R)strains: Klebsiella pneumoniae carbapenemase (KPC)-producing E. coli (R: KPC) and New Delhi metallo-β-lactamase (NDM)-producing E. coli (R: NDM). A susceptible E. coli (S) strain was used as a control, a reference bacterium. The gMNPs successfully extracted and concentrated E. coli (R) and E. coli (S) at low concentrations from large volumes of buffer solution, water, and food samples. The gMNPs concentrated up to two and five times their initial concentration for E. coli (R) and E. coli (S) in the buffer solution, respectively. In water and food samples, the concentration of E. coli (S) and E. coli (R) were similar and ranged 1-3 times their initial inoculation. A variation in the concentration from different food samples was seen, displaying the impact of food microstructure and natural microflora. The cost-effective and rapid bacterial cell capture by gMNPs was achieved in 15 min, and its successful binding to the bacterial cells in the buffer solution and food matrices was also confirmed using Transmission Electron Microscopy (TEM). These results show promising applications of gMNPs to extract pathogens and ARB from biological samples.
Collapse
Affiliation(s)
- Oznur Caliskan-Aydogan
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (O.C.-A.); (S.A.S.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Saad Asadullah Sharief
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (O.C.-A.); (S.A.S.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C. Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (O.C.-A.); (S.A.S.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Farooq A, Lee M, Han S, Jung GY, Kim SJ, Jung MY. Kinetic, genomic, and physiological analysis reveals diversity in the ecological adaptation and metabolic potential of Brachybacterium equifaecis sp. nov. isolated from horse feces. Microbiol Spectr 2023; 11:e0504822. [PMID: 37707449 PMCID: PMC10581053 DOI: 10.1128/spectrum.05048-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
Brachybacterium species have been identified in various ecological niches and belong to the family Dermabacteriaceae within the phylum Actinobacteria. In this study, we isolated a novel Brachybacterium equifaecis JHP9 strain from horse feces and compared its kinetic, biochemical, and genomic features with those of other Brachybacterium strains. Moreover, comparative genomic analysis using publicly available Brachybacterium genomes was performed to determine the properties involved in their ecological adaptation and metabolic potential. Novel species delineation was determined phylogenetically through 16S rRNA gene similarity (up to 97.9%), average nucleotide identity (79.5-82.5%), average amino acid identity (66.7-75.8%), and in silico DNA-DNA hybridization (23.7-27.9) using closely related strains. This study also presents the first report of the kinetic properties of Brachybacterium species. Most of the Brachybacterium strains displayed high oxygen (K m(app) =1.6-24.2 µM) and glucose (K m(app) =0.73-1.22 µM) affinities, which may manifest niche adaptations. Various carbohydrate metabolisms under aerobic and anaerobic conditions, antibiotic resistance, mobile genetic elements, carbohydrate-active enzymes, lactic acid production, and the clustered regularly interspaced short palindromic repeats-Cas and bacteriophage exclusion systems were observed in the genotypic and/or phenotypic properties of Brachybacterium species, suggesting their genome flexibility, defense mechanisms, and adaptability. Our study contributes to the knowledge of the kinetic, physiological, and genomic properties of Brachybacterium species, including the novel JHP9 strain, which advocates for their tolerant and thriving nature in various environments, leading to their ecological adaptation. IMPORTANCE Basic physiological and genomic properties of most of the Brachybacterium isolates have been studied; however, the ability of this bacterium to adapt to diverse environments, which may demonstrate its role in niche differentiation, is to be identified yet. Therefore, here, we explored cellular kinetics, metabolic diversity, and ecological adaptation/defensive properties of the novel Brachybacterium strain through physiological and comparative genomic analysis. In addition, we presented the first report examining Brachybacterium kinetics, indicating that all strains of Brachybacterium, including the novel one, have high oxygen and glucose affinity. Furthermore, the comparative genomic analysis also revealed that the novel bacterium contains versatile genomic properties, which provide the novel bacterium with significant competitive advantages. Thus, in-depth genotypic and phenotypic analysis with kinetic properties at the species level of this genus is beneficial in clarifying its differential characteristics, conferring the ability to inhabit diverse ecological niches.
Collapse
Affiliation(s)
- Adeel Farooq
- Research Institute for Basic Sciences (RIBS), Jeju National University, Jeju, South Korea
| | - Myunglip Lee
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Saem Han
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Gi-Yong Jung
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - So-Jeong Kim
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
- Department of Science Education, Jeju National University, Jeju, South Korea
- Jeju Microbiome Center, Jeju National University, Jeju, South Korea
| |
Collapse
|
28
|
Iwu CD, Nontongana N, Iwu-Jaja CJ, Anyanwu BO, du Plessis E, Korsten L, Okoh AI. Spatial diarrheal disease risks and antibiogram diversity of diarrheagenic Escherichia coli in selected access points of the Buffalo River, South Africa. PLoS One 2023; 18:e0288809. [PMID: 37616257 PMCID: PMC10449160 DOI: 10.1371/journal.pone.0288809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/04/2023] [Indexed: 08/26/2023] Open
Abstract
Freshwater sources, often used for domestic and agricultural purposes in low- and middle-income countries are repositories of clinically significant bacterial pathogens. These pathogens are usually diversified in their antibiogram profiles posing public health threats. This study evaluated the spatial diarrhoeal disease risk and antibiogram diversity of diarrheagenic Escherichia coli (DEC) in four access points of the Buffalo River, Eastern Cape Province, South Africa using standard epidemiological, culture, and molecular methods. The diarrhoeal disease risk was characterised using the Monte Carlo simulation, while the antibiogram diversity was assessed using the species observed Whittaker's single alpha-diversity modelling. E. coli mean count was highest in King William's Town dam [16.0 × 102 CFU/100ml (SD: 100.0, 95% CI: 13.5 × 102 to 18.5 × 102)]. Enterohemorrhagic E. coli (stx1/stx2) was the most prevalent DEC pathotype across the study sites. A high diarrhoeal disease risk of 25.0 ×10-2 exceeding the World Health Organization's standard was recorded across the study sites. The average single and multiple antimicrobial resistance indices of the DEC to test antimicrobials were highest in the Eluxolzweni dam [0.52 (SD: 0.25, 95% CI: 0.37 to 0.67)] and King William's Town dam [0.42 (SD: 0.25, 95% CI: 0.27 to 0.57)] respectively. The prevalent antibiotic resistance genes detected were tetA, blaFOX and blaMOX plasmid-mediated AmpC, blaTEM and blaSHV extended-spectrum β-lactamases, which co-occurred across the study sites on network analysis. The phenotypic and genotypic resistance characteristics of the DEC in Maden dam (r = 0.93, p<0.00), Rooikrantz dam (r = 0.91, p<0.00), King William's Town dam (r = 0.83, p = 0.0), and Eluxolzweni dam (r = 0.91, p<0.00) were strongly correlated. At least, three phylogenetic clades of the DEC with initial steep descent alpha-diversity curves for most of the test antimicrobials were observed across the study sites, indicating high diversity. The occurrence of diversified multi drug resistant DEC with diarrhoeal disease risks in the Buffalo River substantiates the role surface water bodies play in the dissemination of drug-resistant bacterial pathogens with public health implications.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | | | - Brilliance Onyinyechi Anyanwu
- Centre for Occupational Health, Safety and Environment, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Erika du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
- Department of Science and Technology-National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
- Department of Science and Technology-National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Anthony Ifeanyin Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| |
Collapse
|
29
|
Myintzaw P, Pennone V, McAuliffe O, Begley M, Callanan M. Association of Virulence, Biofilm, and Antimicrobial Resistance Genes with Specific Clonal Complex Types of Listeria monocytogenes. Microorganisms 2023; 11:1603. [PMID: 37375105 DOI: 10.3390/microorganisms11061603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Precise classification of foodborne pathogen Listeria monocytogenes is a necessity in efficient foodborne disease surveillance, outbreak detection, and source tracking throughout the food chain. In this study, a total of 150 L. monocytogenes isolates from various food products, food processing environments, and clinical sources were investigated for variations in virulence, biofilm formation, and the presence of antimicrobial resistance genes based on their Whole-Genome Sequences. Clonal complex (CC) determination based on Multi-Locus Sequence Typing (MLST) revealed twenty-eight CC-types including eight isolates representing novel CC-types. The eight isolates comprising the novel CC-types share the majority of the known (cold and acid) stress tolerance genes and are all genetic lineage II, serogroup 1/2a-3a. Pan-genome-wide association analysis by Scoary using Fisher's exact test identified eleven genes specifically associated with clinical isolates. Screening for the presence of antimicrobial and virulence genes using the ABRicate tool uncovered variations in the presence of Listeria Pathogenicity Islands (LIPIs) and other known virulence genes. Specifically, the distributions of actA, ecbA, inlF, inlJ, lapB, LIPI-3, and vip genes across isolates were found to be significantly CC-dependent while the presence of ami, inlF, inlJ, and LIPI-3 was associated with clinical isolates specifically. In addition, Roary-derived phylogenetic grouping based on Antimicrobial-Resistant Genes (AMRs) revealed that the thiol transferase (FosX) gene was present in all lineage I isolates, and the presence of the lincomycin resistance ABC-F-type ribosomal protection protein (lmo0919_fam) was also genetic-lineage-dependent. More importantly, the genes found to be specific to CC-type were consistent when a validation analysis was performed with fully assembled, high-quality complete L. monocytogenes genome sequences (n = 247) extracted from the National Centre for Biotechnology Information (NCBI) microbial genomes database. This work highlights the usefulness of MLST-based CC typing using the Whole-Genome Sequence as a tool in classifying isolates.
Collapse
Affiliation(s)
- Peter Myintzaw
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Callanan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
30
|
Sierra TAO, Acosta AC, de Melo RPB, de Oliveira PRF, de Moraes Peixoto R, Cavalcanti EFTSF, Junior JWP, Mota RA. Occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae in raw milk from cows with subclinical mastitis in northeast Brazil. Braz J Microbiol 2023; 54:1303-1307. [PMID: 36964326 PMCID: PMC10235308 DOI: 10.1007/s42770-023-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Gram negative bacteria are becoming increasingly important in veterinary and human medicine because they can hydrolyze the third generation β-lactams, penicillins, and monobactams. The aim of this study was to identify ESBL-producing Enterobacteriaceae in raw cow milk samples from northeast Brazil. Twenty-six bacterial isolates belonging to the Enterobacteriaceae family were obtained from milk samples from 257 cows with subclinical mastitis. Using microbiological tests, 53.85% (14/26) were identified as Escherichia coli, 15.38% (4/26) as Proteus mirabilis, 26.92% (7/26) as Klebsiella spp., and 3.85% (1/26) as Citrobacter spp. Of all the isolates, 61.54% (16/26) were positive in the ESBL screening test, of which 12.5% (2/16) were positive in the double-disc synergy test using three types of cephalosporins and amoxicillin/clavulanic acid. The two isolates were identified as Klebsiella spp. Among all the isolates, 53.85% (14/26) were positive for one or both ESBL-encoding genes, blaSHV and blaTEM; among these, 71.43% (10/14) were identified as E. coli. This study demonstrates that ESBL-producing bacteria can be found in raw cow milk from northeast Brazil. Cows with subclinical mastitis should be recognized as reservoirs of these strains, which can propagate to humans.
Collapse
Affiliation(s)
| | - Atzel Candido Acosta
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), PE, Recife, 52171-900, Brazil
| | | | | | - Rodolfo de Moraes Peixoto
- Federal Institute of Education, Science and Technology of the Sertão Pernambucano (IF SERTÃO-PE)-R. Maria Luzia de Araújo Gomes Cabral, 791-João de Deus, CEP, Petrolina, PE, 56316-686, Brazil
| | | | - José Wilton Pinheiro Junior
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), PE, Recife, 52171-900, Brazil
| | - Rinaldo Aparecido Mota
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), PE, Recife, 52171-900, Brazil
| |
Collapse
|
31
|
Gautam P, Sinha SK. Theoretical investigation of functional responses of bio-molecular assembly networks. SOFT MATTER 2023; 19:3803-3817. [PMID: 37191191 DOI: 10.1039/d2sm01530g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cooperative protein-protein and protein-DNA interactions form programmable complex assemblies, often performing non-linear gene regulatory operations involved in signal transductions and cell fate determination. The apparent structure of those complex assemblies is very similar, but their functional response strongly depends on the topology of the protein-DNA interaction networks. Here, we demonstrate how the coordinated self-assembly creates gene regulatory network motifs that corroborate the existence of a precise functional response at the molecular level using thermodynamic and dynamic analyses. Our theoretical and Monte Carlo simulations show that a complex network of interactions can form a decision-making loop, such as feedback and feed-forward circuits, only by a few molecular mechanisms. We characterize each possible network of interactions by systematic variations of free energy parameters associated with the binding among biomolecules and DNA looping. We also find that the higher-order networks exhibit alternative steady states from the stochastic dynamics of each network. We capture this signature by calculating stochastic potentials and attributing their multi-stability features. We validate our findings against the Gal promoter system in yeast cells. Overall, we show that the network topology is vital in phenotype diversity in regulatory circuits.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Sudipta Kumar Sinha
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
32
|
Liu L, Dong Z, Ai S, Chen S, Dong M, Li Q, Zhou Z, Liu H, Zhong Z, Ma X, Hu Y, Ren Z, Fu H, Shu G, Qiu X, Peng G. Virulence-related factors and antimicrobial resistance in Proteus mirabilis isolated from domestic and stray dogs. Front Microbiol 2023; 14:1141418. [PMID: 37234544 PMCID: PMC10206225 DOI: 10.3389/fmicb.2023.1141418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Proteus mirabilis is a multi-host pathogen that causes diseases of varying severity in a wide range of mammals, including humans. Proteus mirabilis is resistant to multiple antibiotics and has acquired the ability to produce expanded spectrum of β-lactamases, leading to serious public health problems. However, the available information on P. mirabilis isolated from feces of dogs, is still poorly understood, as is the correlation between its virulence-associated genes (VAGs) and antibiotic resistance genes (ARGs). Method In this study, we isolated 75 strains of P. mirabilis from 241 samples, and investigated the swarming motility, biofilm formation, antimicrobial resistance (AMR), distribution of VAGs and ARGs, as well as the presence of class 1, 2, and 3 integrons in these isolates. Results Our findings suggest a high prevalence of intensive swarming motility and strong biofilm formation ability among P. mirabilis isolates. Isolates were primarily resistant to cefazolin (70.67%) and imipenem (70.67%). These isolates were found to carry ureC, FliL, ireA, zapA, ptA, hpmA, hpmB, pmfA, rsbA, mrpA, and ucaA with varying prevalence levels of 100.00, 100.00, 100.00, 98.67, 98.67, 90.67, 90.67, 90.67, 90.67, 89.33, and 70.67%, respectively. Additionally, the isolates were found to carry aac(6')-Ib, qnrD, floR, blaCTX-M, blaCTX-M-2, blaOXA-1, blaTEM, tetA, tetB and tetM with varying prevalence levels of 38.67, 32.00, 25.33, 17.33, 16.00, 10.67, 5.33, 2.67, 1.33, and 1.33%, respectively. Among 40 MDR strains, 14 (35.00%) were found to carry class 1 integrons, 12 (30.00%) strains carried class 2 integrons, while no class 3 integrons was detected. There was a significant positive correlation between the class 1 integrons and three ARGs: blaTEM, blaCTX-M, and blaCTX-M-2. This study revealed that P. mirabilis strains isolated from domestic dogs exhibited a higher prevalence of MDR, and carried fewer VAGs but more ARGs compared to those isolated from stay dogs. Furthermore, a negative correlation was observed between VAGs and ARGs. Discussion Given the increasing antimicrobial resistance of P. mirabilis, veterinarians should adopt a prudent approach towards antibiotics administration in dogs to mitigate the emergence and dissemination of MDR strains that pose a potential threat to public health.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shengquan Ai
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Shanyu Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Dong
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Uezen JD, Ficoseco CA, Fátima Nader-Macías ME, Vignolo GM. Identification and characterization of potential probiotic lactic acid bacteria isolated from pig feces at various production stages. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:127-145. [PMID: 37020571 PMCID: PMC10069149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 04/07/2023]
Abstract
Lactic acid bacteria (LAB) were isolated, identified, and characterized from pig feces at various growth stages and feed rations in order to be used as probiotic feed additives. Lactic acid bacteria numbers ranged from 7.10 ± 1.50 to 9.40 log CFUs/g for growing and lactating pigs, respectively. Isolates (n = 230) were identified by (GTG)5-polymerase chain reaction and partial sequence analysis of 16S rRNA. Major LAB populations were Limosilactobacillus reuteri (49.2%), Pediococcus pentosaceus (20%), Lactobacillus amylovorus (11.4%), and L. johnsonii (8.7%). In-vitro assays were performed, including surface characterization and tolerance to acid and bile salts. Several lactobacilli exhibited hydrophobic and aggregative characteristics and were able to withstand gastrointestinal tract conditions. In addition, lactobacilli showed starch- and phytate-degrading ability, as well as antagonistic activity against Gram-negative pathogens and the production of bacteriocin-like inhibitory substances. When resistance or susceptibility to antibiotics was evaluated, high phenotypic resistance to ampicillin, gentamicin, kanamycin, streptomycin, and tetracycline and susceptibility towards clindamycin and chloramphenicol was observed in the assayed LAB. Genotypic characterization showed that 5 out of 15 resistance genes were identified in lactobacilli; their presence did not correlate with phenotypic traits. Genes erm(B), strA, strB, and aadE conferring resistance to erythromycin and streptomycin were reported among all lactobacilli, whereas tet(M) gene was harbored by L. reuteri and L. amylovorus strains. Based on these results, 6 probiotic LAB strains (L. reuteri F207R/G9R/B66R, L. amylovorus G636T/S244T, and L. johnsonii S92R) can be selected to explore their potential as direct feed additives to promote swine health and replace antibiotics.
Collapse
Affiliation(s)
- José D Uezen
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Pharmabiotic Department, Batalla de Chacabuco 145 (CP: T4000ILC). San Miguel de Tucumán, Tucumán, Argentina
| | - Cecilia Aristimuño Ficoseco
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Pharmabiotic Department, Batalla de Chacabuco 145 (CP: T4000ILC). San Miguel de Tucumán, Tucumán, Argentina
| | - María E Fátima Nader-Macías
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Pharmabiotic Department, Batalla de Chacabuco 145 (CP: T4000ILC). San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela M Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Pharmabiotic Department, Batalla de Chacabuco 145 (CP: T4000ILC). San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
34
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
35
|
Bain C, Rathor G, Jones BP, Hassan MM, Papke P, South B, Elliott M, Jones I, La Ragione RM, Betson M. β-Lactam resistance genes present in UK pheasants and red-legged partridges. Vet Rec 2023; 192:e2540. [PMID: 36572951 DOI: 10.1002/vetr.2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Despite considerable recent reductions in antimicrobial use, the UK gamebird industry continues to struggle with production diseases during the rearing season, necessitating significant antibiotic use. This observational study investigated the presence of genes conferring resistance to β-lactam antibiotics within industry-reared pheasants and red-legged partridges in the UK. METHODS DNA was extracted from 60 pooled caecal samples collected from gamebirds at routine postmortem examinations during the rearing season. Genes encoding extended-spectrum β-lactamases (ESBL) were detected by PCR and the corresponding alleles were determined. RESULTS Over half (53%) of the samples harboured genes encoding blaTEM resistance, with blaSHV identified in 20% of samples. The blaTEM gene was more common on sites with higher antibiotic use, whereas blaSHV was predominantly found in birds younger than 5 weeks. Genotyping of the identified resistance genes revealed the presence of blaTEM-1 , blaSHV-1 and blaSHV-11 alleles. LIMITATIONS This was a small-scale study conducted at four sites in southern England. CONCLUSION This is the first report of the presence of ESBL genes in gamebirds, highlighting the need for further research into antimicrobial resistance in UK gamebirds.
Collapse
Affiliation(s)
- Charlotte Bain
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Getika Rathor
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Ben P Jones
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Marwa M Hassan
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Przemyslaw Papke
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Ben South
- St David's Poultry Team, Exmouth, UK
| | - Mark Elliott
- South Downs Veterinary Consultancy, Hambrook, UK
| | - Ian Jones
- Hafren Veterinary Group, Newtown, UK
| | - Roberto M La Ragione
- School of Veterinary Medicine, University of Surrey, Guildford, UK
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Martha Betson
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
36
|
RecA inactivation as a strategy to reverse the heteroresistance phenomenon in clinical isolates of Escherichia coli. Int J Antimicrob Agents 2023; 61:106721. [PMID: 36642235 DOI: 10.1016/j.ijantimicag.2023.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/25/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
RecA inhibition could be an important strategy to combat antimicrobial resistance because of its key role in the SOS response, DNA repair and homologous recombination contributing to bacterial survival. This study evaluated the impact of RecA inactivation on heteroresistance in clinical isolates of Escherichia coli and their corresponding recA-deficient isogenic strains to multiple classes of antimicrobial agents. A high frequency (>30%) of heteroresistance was observed in this collection of clinical isolates. Deletion of the recA gene led to a marked reduction in heteroresistant subpopulations, especially against quinolones or β-lactams. The molecular basis of heteroresistance was associated with an increase in copy number of plasmid-borne resistance genes (blaTEM-1B) or tandem gene amplifications (qnrA1). Of note, in the absence of the recA gene, the increase in copy number of resistance genes was suppressed. This makes the recA gene a promising target for combating heteroresistance.
Collapse
|
37
|
Spatiotemporal Investigation of Antibiotic Resistance in the Urban Water Cycle Influenced by Environmental and Anthropogenic Activity. Microbiol Spectr 2022; 10:e0247322. [PMID: 36036576 PMCID: PMC9603458 DOI: 10.1128/spectrum.02473-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
With increasing emergence of antimicrobial resistant bacteria (ARB) and the risk this poses to public health, there are growing concerns regarding water pollution contributing to the spread of antimicrobial resistance (AMR) through inadequate amenities and the rapid rate of urbanization. In this study, the impact of different anthropogenic factors on the prevalence of AMR in the urban water cycle in Stellenbosch, South Africa (SA) was examined. Carbapenem, colistin, gentamicin and sulfamethoxazole resistant Gram-negative bacteria were recovered by selectively culturing aqueous, biofilm and sediment samples from sites impacted to varying degrees by informal settlements, residential, industrial, and agricultural activities, as well as a municipal wastewater treatment works (WWTW). A metagenomic approach determined community profiles and dominant AMR genes at various sites, while carbapenem resistant colonies were characterized using whole genome sequencing (WGS). Isolates recovered from agricultural sites exhibited relatively high levels of resistance to carbapenems and colistin, whereas sites impacted by domestic run-off had a higher prevalence of resistance to gentamicin and sulfamethoxazole, corresponding to usage data in SA. Similar microbial taxa were identified in raw sewage, sites downstream of informal settlements, and industrial areas that have limited waste removal infrastructure while WWTW were seen to reduce the prevalence of ARB in treated wastewater when operating efficiently. The results indicate the multiple complex drivers underpinning environmental dissemination of AMR and suggest that WWTW assist in removing AMR from the environment, reinforcing the necessity of adequate waste removal infrastructure and antibiotic stewardship measures to mitigate AMR transmission. IMPORTANCE The results from this study are of importance as they fill a gap in the data available on environmental AMR in South Africa to date. This study was done in parallel with co-investigators focusing on the prevalence of various antimicrobials at the same sites selected in our study, verifying that the sites that are influenced by informal settlements and WWTW influent had higher concentrations of antimicrobials and antimicrobial metabolites. The various locations of the sample sites selected, the frequency of the samples collected over a year, and the different types of samples collected at each site all contribute to informing how AMR in the environment might be affected by anthropogenic activity.
Collapse
|
38
|
Peri AM, Ling W, Furuya-Kanamori L, Harris PNA, Paterson DL. Performance of BioFire Blood Culture Identification 2 Panel (BCID2) for the detection of bloodstream pathogens and their associated resistance markers: a systematic review and meta-analysis of diagnostic test accuracy studies. BMC Infect Dis 2022; 22:794. [PMID: 36266641 PMCID: PMC9585790 DOI: 10.1186/s12879-022-07772-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Early identification of bloodstream pathogens and their associated antimicrobial resistance may shorten time to optimal therapy in patients with sepsis. The BioFire Blood Culture Identification 2 Panel (BCID2) is a novel multiplex PCR detecting 43 targets directly from positive blood cultures, reducing turnaround times.
Methods We have performed a systematic review and meta-analysis of diagnostic test accuracy studies to assess the BCID2 performance for pathogen identification and resistance markers detection compared to gold standard culture-based methods (including phenotypic and/or genotypic characterization). Results Nine studies were identified reporting data to build 2 × 2 tables for each BCID2 target, including 2005 blood cultures. The pooled specificity of the assay was excellent (> 97%) across most subgroups of targets investigated, with a slightly broader confidence interval for S. epidermidis (98.1%, 95% CI 93.1 to 99.5). Pooled sensitivity was also high for the major determinants of bloodstream infection, including Enterobacterales (98.2%, 95% CI 96.3 to 99.1), S. aureus (96.0%, 95% CI 90.4 to 98.4), Streptococcus spp. (96.7%, 95% CI 92.8 to 98.5), P. aeruginosa (92.7%, 95% CI 83.1 to 97.0), E. faecalis (92.3%, 95% CI 83.5 to 96.6), as well as blaCTX-M (94.9, 95% CI 85.7 to 98.3), carbapenemases (94.9%, 95% CI 83.4 to 98.6) and mecA/C & MREJ (93.9%, 95% CI 83.0 to 98.0). Sensitivity for less common targets was slightly lower, possibly due to their under-representation in the included studies. Conclusions BCID2 showed good performance for detecting major determinants of bloodstream infection and could support early antimicrobial treatment, especially for ESBL or carbapenemase-producing Gram-negative bacilli and methicillin-resistant S. aureus. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07772-x.
Collapse
Affiliation(s)
- Anna Maria Peri
- University of Queensland Centre for Clinical Research, Herston, QLD, 4029, Australia.
| | - Weiping Ling
- University of Queensland Centre for Clinical Research, Herston, QLD, 4029, Australia
| | - Luis Furuya-Kanamori
- University of Queensland Centre for Clinical Research, Herston, QLD, 4029, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Herston, QLD, 4029, Australia.,Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - David L Paterson
- University of Queensland Centre for Clinical Research, Herston, QLD, 4029, Australia.,Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| |
Collapse
|
39
|
Integrative Assessment of Reduced Listeria monocytogenes Susceptibility to Benzalkonium Chloride in Produce Processing Environments. Appl Environ Microbiol 2022; 88:e0126922. [PMID: 36226965 PMCID: PMC9642021 DOI: 10.1128/aem.01269-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For decades, quaternary ammonium compounds (QAC)-based sanitizers have been broadly used in food processing environments to control foodborne pathogens such as Listeria monocytogenes. Still, there is a lack of consensus on the likelihood and implication of reduced Listeria susceptibility to benzalkonium chloride (BC) that may emerge due to sublethal exposure to the sanitizers in food processing environments. With a focus on fresh produce processing, we attempted to fill multiple data and evidence gaps surrounding the debate. We determined a strong correlation between tolerance phenotypes and known genetic determinants of BC tolerance with an extensive set of fresh produce isolates. We assessed BC selection on L. monocytogenes through a large-scale and source-structured genomic survey of 25,083 publicly available L. monocytogenes genomes from diverse sources in the United States. With the consideration of processing environment constraints, we monitored the temporal onset and duration of adaptive BC tolerance in both tolerant and sensitive isolates. Finally, we examined residual BC concentrations throughout a fresh produce processing facility at different time points during daily operation. While genomic evidence supports elevated BC selection and the recommendation for sanitizer rotation in the general context of food processing environments, it also suggests a marked variation in the occurrence and potential impact of the selection among different commodities and sectors. For the processing of fresh fruits and vegetables, we conclude that properly sanitized and cleaned facilities are less affected by BC selection and unlikely to provide conditions that are conducive for the emergence of adaptive BC tolerance in L. monocytogenes. IMPORTANCE Our study demonstrates an integrative approach to improve food safety assessment and control strategies in food processing environments through the collective leveraging of genomic surveys, laboratory assays, and processing facility sampling. In the example of assessing reduced Listeria susceptibility to a widely used sanitizer, this approach yielded multifaceted evidence that incorporates population genetic signals, experimental findings, and real-world constraints to help address a lasting debate of policy and practical importance.
Collapse
|
40
|
Huang Y, Zou K, Qing T, Feng B, Zhang P. Metagenomics and metatranscriptomics analyses of antibiotic synthesis in activated sludge. ENVIRONMENTAL RESEARCH 2022; 213:113741. [PMID: 35750126 DOI: 10.1016/j.envres.2022.113741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The generic of antibiotics is considered to be a main reason for the generation of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). However, little has been reported about the antibiotic biosynthesis by activated sludge. In this study, the distribution and expression of antibiotic biosynthetic genes (ABGs) in the floc sludge and biofilm from two WWTPs were deciphered using metagenomics and metatranscriptomics. The results showed that 2% of the community were in general well-linked to antibiotic production, indicating a non-negligible antibiotic synthetic ability of WWTPs. 93 ABGs belonging to 26 antibiotics were determined, among which aminoglycosides, β-lactams, ansamycins, peptides, macrolides were majority. The relative abundances of detected ABGs had a large interval, ranging from 0.000006% to 0.042%. The predominant antibiotic types of synthetic genes with higher relative expression levels were monobactams, penicillin & cephalosporins and streptomycin, primarily belonging to β-lactams and aminoglycosides. The hypothetical synthetic pathways of streptomycin synthesis and penicillin & cephalosporin synthesis were proposed. And the coexistence of ABGs and ARGs for these two antibiotics was also pronounced in activated sludge from meta-omics data. These findings for the first time demonstrated the antibiotic synthetic potential in activated sludges, revealing new sources of antibiotics and resistance genes in WWTPs, and thereby aggravating environmental pollution.
Collapse
Affiliation(s)
- Yu Huang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Kui Zou
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
41
|
Presence of Extended Spectrum Beta Lactamase, Virulence Genes and Resistance Determinants in Biofilm Forming Klebsiella pneumoniae Isolated from Food Sources: A Potent Risk to the Consumers. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foodborne diseases and infection caused by associated pathogens is a public health concern. Majority of the investigations focus on common foodborne pathogens like Vibrio parahaemolyticus, Escherichia coli, Listeria monocytogenes, Shigella, Salmonella and Staphylococcus aureus. Limited knowledge has been accounted on Klebsiella pneumoniae. Presence of multidrug-resistant K. pneumoniae in the food supply is disturbing. Hence, this study assessed the presence of K. pneumoniae isolates from food samples (fresh vegetables and chicken), ascertained the presence of drug-resistant phenotypes, extended spectrum beta lactamase production, antibiotic resistance determinants, genes associated with virulence and their ability to form biofilm. Resistance towards ceftazidime and tetracycline was noted among all the isolates in the study, while they exhibited sensitivity to chloramphenicol and co-trimoxazole. All the isolates were potent ESBL producers carrying at least one ESBL encoding genes. Plasmid mediated quinolone resistance gene was detected in one isolate each from onion and chicken respectively. The isolates marked the absence of tetracycline and chloramphenicol resistance genes. Multiple virulence genes (ureA, khe, fimH, mrkD, wabG, uge and elt) were possessed by each of the isolates. K. pneumoniae from chicken and cucumber were moderate biofilm formers and those from tomato exhibited weak biofilm formation. Increased expression of the mrkA gene and reduction in the expression of the biofilm forming gene fimH gene was observed among the biofilm formers. One of the moderate and non-biofilm formers exhibited increased mrkD gene expression. The results from our study stipulate, that raw vegetables and meat serve as dormant source of drug-resistant and virulent K. pneumoniae.
Collapse
|
42
|
Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Food Sci Biotechnol 2022; 31:1481-1499. [PMID: 36065433 PMCID: PMC9435411 DOI: 10.1007/s10068-022-01157-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.
Collapse
|
43
|
WGS-Based Lineage and Antimicrobial Resistance Pattern of Salmonella Typhimurium Isolated during 2000-2017 in Peru. Antibiotics (Basel) 2022; 11:antibiotics11091170. [PMID: 36139949 PMCID: PMC9495214 DOI: 10.3390/antibiotics11091170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella Typhimurium is associated with foodborne diseases worldwide, including in Peru, and its emerging antibiotic resistance (AMR) is now a global public health problem. Therefore, country-specific monitoring of the AMR emergence is vital to control this pathogen, and in these aspects, whole genome sequence (WGS)—based approaches are better than gene-based analyses. Here, we performed the antimicrobial susceptibility test for ten widely used antibiotics and WGS-based various analyses of 90 S. Typhimurium isolates (human, animal, and environment) from 14 cities of Peru isolated from 2000 to 2017 to understand the lineage and antimicrobial resistance pattern of this pathogen in Peru. Our results suggest that the Peruvian isolates are of Typhimurium serovar and predominantly belong to sequence type ST19. Genomic diversity analyses indicate an open pan-genome, and at least ten lineages are circulating in Peru. A total of 48.8% and 31.0% of isolates are phenotypically and genotypically resistant to at least one antibiotic, while 12.0% are multi-drug resistant (MDR). Genotype−phenotype correlations for ten tested drugs show >80% accuracy, and >90% specificity. Sensitivity above 90% was only achieved for ciprofloxacin and ceftazidime. Two lineages exhibit the majority of the MDR isolates. A total of 63 different AMR genes are detected, of which 30 are found in 17 different plasmids. Transmissible plasmids such as lncI-gamma/k, IncI1-I(Alpha), Col(pHAD28), IncFIB, IncHI2, and lncI2 that carry AMR genes associated with third-generation antibiotics are also identified. Finally, three new non-synonymous single nucleotide variations (SNVs) for nalidixic acid and eight new SNVs for nitrofurantoin resistance are predicted using genome-wide association studies, comparative genomics, and functional annotation. Our analysis provides for the first time the WGS-based details of the circulating S. Typhimurium lineages and their antimicrobial resistance pattern in Peru.
Collapse
|
44
|
Vasconcellos HVGD, Silva KFB, Montenegro H, Miguel CB, Tizioto P, Agostinho F, Araújo MC, Ribas RM, Silva MVD, Soares SDC, Rodrigues Júnior V, Batistão DWDF, Oliveira CJF, Rodrigues WF. Staphylococcus aureus and Enterococcus faecium isolated from pigeon droppings (Columba livia) in the external environment close to hospitals. Rev Soc Bras Med Trop 2022; 55:e0353. [PMID: 36000617 PMCID: PMC9405951 DOI: 10.1590/0037-8682-0353-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Domestic pigeons carry pathogens in their droppings, posing a potential public health problem. Methods: The phenotypic and genotypic antimicrobial resistances of Staphylococcus aureus and Enterococcus faecium in the feces of urban pigeons near hospitals with intensive care units were measured. Results: Twenty-nine samples showed Enterococcus growth, whereas one was positive for S. aureus. The S. aureus isolate was sensitive to the antibiotics tested via antibiogram, however resistance genes were identified. E. faecium isolates showed phenotypic resistance to gentamicin, erythromycin, and ciprofloxacin. Conclusions: Antimicrobial profiles harmful to health were demonstrated in bacterial pathogens isolated from the external environment of hospitals.
Collapse
Affiliation(s)
- Henrique Vieira Gartz de Vasconcellos
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| | - Kerollyn Fernandes Bernardes Silva
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| | | | - Camila Botelho Miguel
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| | | | - Ferdinando Agostinho
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| | - Marcelo Costa Araújo
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| | - Rosineide Marques Ribas
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Laboratório de Microbiologia Molecular, Uberlândia, MG, Brasil
| | - Marcos Vinícius da Silva
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| | - Siomar de Castro Soares
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| | - Virmondes Rodrigues Júnior
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| | - Deivid William da Fonseca Batistão
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Laboratório de Microbiologia Molecular, Uberlândia, MG, Brasil.,Universidade Federal de Uberlândia, Escola de Medicina, Uberlândia, MG, Brasil
| | - Carlo José Freire Oliveira
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| | - Wellington Francisco Rodrigues
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Laboratório de Imunologia e Bioinformática, Uberaba, MG, Brasil
| |
Collapse
|
45
|
Su Z, Hu W, Ye L, Gao D, Lin JM. An integrated microfluidic chip-mass spectrometry system for rapid antimicrobial resistance analysis of bacteria producing β-lactamases. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Zarzecka U, Chajęcka-Wierzchowska W, Zadernowska A. Occurrence of antibiotic resistance among Enterobacterales isolated from raw and ready-to-eat food - phenotypic and genotypic characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1733-1744. [PMID: 33784901 DOI: 10.1080/09603123.2021.1908522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was phenotypic and genotypic characterization of antibiotic-resistant food-borne Enterobacterales. The largest number of isolates was identified as Enterobacter cloacae (42.4%) followed by Escherichia coli (9.8%), Proteus mirabilis, Salmonella enterica, Proteus penneri, Citrobacter freundii (7.6% each), Citrobacter braakii (6.6%), Klebsiella pneumoniae and Klebsiella oxytoca (5.4% each). More than half of isolates (52.2%) were resistant to at least one antibiotic. The majority were resistant to amoxicillin-clavulanate (28.3%) and ampicillin (19.5%). ESBL(+) phenotype was showed by 26 isolates and AmpC(+) phenotype by 32 isolates. The blaCTX-M gene was carried by 53.8% of ESBL-positive isolates, gene from CIT family by 43.8% of AmpC-positive isolates. Our results suggest that more attention should be paid to antibiotic resistance of food-borne Enterobacterales. The presence of transmissible antibiotic resistance markers is an important criterion in the evaluation of food safety.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Anna Zadernowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
47
|
Nielsen TK, Browne PD, Hansen LH. Antibiotic resistance genes are differentially mobilized according to resistance mechanism. Gigascience 2022; 11:6652189. [PMID: 35906888 PMCID: PMC9338424 DOI: 10.1093/gigascience/giac072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Screening for antibiotic resistance genes (ARGs) in especially environmental samples with (meta)genomic sequencing is associated with false-positive predictions of phenotypic resistance. This stems from the fact that most acquired ARGs require being overexpressed before conferring resistance, which is often caused by decontextualization of putative ARGs by mobile genetic elements (MGEs). Consequent overexpression of ARGs can be caused by strong promoters often present in insertion sequence (IS) elements and integrons and the copy number effect of plasmids, which may contribute to high expression of accessory genes. RESULTS Here, we screen all complete bacterial RefSeq genomes for ARGs. The genetic contexts of detected ARGs are investigated for IS elements, integrons, plasmids, and phylogenetic dispersion. The ARG-MOB scale is proposed, which indicates how mobilized detected ARGs are in bacterial genomes. It is concluded that antibiotic efflux genes are rarely mobilized and even 80% of β-lactamases have never, or very rarely, been mobilized in the 15,790 studied genomes. However, some ARGs are indeed mobilized and co-occur with IS elements, plasmids, and integrons. CONCLUSIONS In this study, ARGs in all complete bacterial genomes are classified by their association with MGEs, using the proposed ARG-MOB scale. These results have consequences for the design and interpretation of studies screening for resistance determinants, as mobilized ARGs pose a more concrete risk to human health. An interactive table of all results is provided for future studies targeting highly mobilized ARGs.
Collapse
Affiliation(s)
- Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, Section for Environmental Microbiology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Patrick Denis Browne
- Department of Plant and Environmental Sciences, Section for Environmental Microbiology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, Section for Environmental Microbiology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| |
Collapse
|
48
|
Genotyping of Extended Spectrum Beta-Lactamase-Producing Pseudomonas aeruginosa Isolated from People with Nosocomial Infections. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-119802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Pseudomonas aeruginosa nosocomial infections are among major problems associated with increased mortality and mobility among patients. Objectives: The aim of this research was to determine the molecular epidemiology of extended spectrum beta-lactamase (ESBL)-producing P. aeruginosa genotypes isolated from patients with nosocomial infections. Methods: One hundred forty-six clinical isolates of Pseudomonas spp. were obtained from a tertiary referral hospital. Phenotypic identification and PCR detection of gyrB were used to characterize P. aeruginosa. Extended spectrum beta-lactamases in samples were identified using the disk approximation test and the combination disk test (CDT). The blaSHV and blaTEM genes were detected by PCR. The strains were typed by the pulse field gel electrophoresis (PFGE), repetitive element sequence (Rep)-PCR, and enterobacterial repetitive intergenic consensus (ERIC)–PCR methods. Results: A total of 134 (91.78%) P. aeruginosa isolates were separated, 41.79% of whom were related to nosocomial infections. The extended spectrum beta-lactamase analysis test revealed that 5.97% and 66.41% of the isolates harbored the blaSHV and blaTEM genes, respectively. Enterobacterial repetitive intergenic consensus PCR, Rep-PCR, and PFGE each showed 56, 55, and 55 different patterns, respectively. Pulse-field gel electrophoresis indicated that pulso types C3 were dominant. Conclusions: The associations between ESBL production, blaSHV and blaTEM positivity, and ERIC, Rep-PCR, and PFGE patterns were not significant (P ≥ 0.05). Among nosocomial infections, a relatively high prevalence of ESBL-producing P. aeruginosa isolates was observed in the Kurdistan province of Iran. Periodic review of antibiotic resistance and molecular characterization of P. aeruginosa isolates is recommended to prevent the spread of nosocomial infections in hospitals.
Collapse
|
49
|
Peri AM, Bauer MJ, Bergh H, Butkiewicz D, Paterson DL, Harris PN. Performance of the BioFire Blood Culture Identification 2 panel for the diagnosis of bloodstream infections. Heliyon 2022; 8:e09983. [PMID: 35874050 PMCID: PMC9304729 DOI: 10.1016/j.heliyon.2022.e09983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/01/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Background Conventional blood cultures methods are associated with long turnaround times, preventing early treatment optimization in bloodstream infections. The BioFire Blood Culture Identification 2 (BCID2) Panel is a new multiplex PCR applied on positive blood cultures, reducing time to pathogen identification and resistant markers detection. Methods We conducted a prospective observational study including positive blood cultures from Intensive Care Units and Emergency Departments and performed BCID2 in addition to conventional testing. Concordance between the two methods was assessed and BCID2 performance characteristics were evaluated. Resistance markers detected by BCID2 were confirmed by in-house PCR. Whole genome sequencing was performed in discordant cases. Results Among 60 monomicrobial blood cultures, BCID2 correctly identified 55/56 (91.7%) on-panel pathogens, showing an overall concordance of 98%. In 4/60 cases BCID2 did not detect any target and these all grew BCID2 off-panel bacteria. Only one discordant case was found. Sensitivity and specificity for Gram-positive bacteria on monomicrobial samples were 100% (95% CI 85.8-100%) and 100% (95% CI 90.3-100%) respectively, while for Gram-negatives 100% (95% CI 87.7-100) and 96.9% (95% CI 83.8-99.9%), respectively. Among two polymicrobial blood cultures, full concordance was observed in one case only. BCID2 identified antimicrobial resistance genes in 6/62 samples, all confirmed by in-house PCR (3 mecA/C S. epidermidis, 3 bla CTX-M E. coli). Estimated time to results gained using BCID2 as compared to conventional testing was 9.69 h (95% CI: 7.85-11.53). Conclusions BCID2 showed good agreement with conventional methods. Studies to assess its clinical impact are warranted.
Collapse
Affiliation(s)
- Anna Maria Peri
- University of Queensland Centre for Clinical Research, Herston, Brisbane City, QLD, 4029, Australia
| | - Michelle J Bauer
- University of Queensland Centre for Clinical Research, Herston, Brisbane City, QLD, 4029, Australia
| | - Haakon Bergh
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Brisbane City, QLD, 4029, Australia
| | - Dominika Butkiewicz
- University of Queensland Centre for Clinical Research, Herston, Brisbane City, QLD, 4029, Australia
| | - David L Paterson
- University of Queensland Centre for Clinical Research, Herston, Brisbane City, QLD, 4029, Australia.,Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Herston, Brisbane City, QLD, 4029, Australia
| | - Patrick Na Harris
- University of Queensland Centre for Clinical Research, Herston, Brisbane City, QLD, 4029, Australia.,Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Brisbane City, QLD, 4029, Australia
| |
Collapse
|
50
|
Ciechonska M, Sturrock M, Grob A, Larrouy-Maumus G, Shahrezaei V, Isalan M. Emergent expression of fitness-conferring genes by phenotypic selection. PNAS NEXUS 2022; 1:pgac069. [PMID: 36741458 PMCID: PMC9896880 DOI: 10.1093/pnasnexus/pgac069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
Genotypic and phenotypic adaptation is the consequence of ongoing natural selection in populations and is key to predicting and preventing drug resistance. Whereas classic antibiotic persistence is all-or-nothing, here we demonstrate that an antibiotic resistance gene displays linear dose-responsive selection for increased expression in proportion to rising antibiotic concentration in growing Escherichia coli populations. Furthermore, we report the potentially wide-spread nature of this form of emergent gene expression (EGE) by instantaneous phenotypic selection process under bactericidal and bacteriostatic antibiotic treatment, as well as an amino acid synthesis pathway enzyme under a range of auxotrophic conditions. We propose an analogy to Ohm's law in electricity (V = IR), where selection pressure acts similarly to voltage (V), gene expression to current (I), and resistance (R) to cellular machinery constraints and costs. Lastly, mathematical modeling using agent-based models of stochastic gene expression in growing populations and Bayesian model selection reveal that the EGE mechanism requires variability in gene expression within an isogenic population, and a cellular "memory" from positive feedbacks between growth and expression of any fitness-conferring gene. Finally, we discuss the connection of the observed phenomenon to a previously described general fluctuation-response relationship in biology.
Collapse
Affiliation(s)
| | | | - Alice Grob
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | |
Collapse
|