1
|
Hernández-Vásquez CI, García-García JH, Pérez-Ortega ER, Martínez-Segundo AG, Damas-Buenrostro LC, Pereyra-Alférez B. Expression patterns of Mal genes and association with differential maltose and maltotriose transport rate of two Saccharomyces pastorianus yeasts. Appl Environ Microbiol 2024; 90:e0039724. [PMID: 38975758 PMCID: PMC11267901 DOI: 10.1128/aem.00397-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Beer brewing is a well-known process that still faces great challenges, such as the total consumption of sugars present in the fermentation media. Lager-style beer, a major worldwide beer type, is elaborated by Saccharomyces pastorianus (Sp) yeast, which must ferment high maltotriose content worts, but its consumption represents a notable problem, especially among Sp strains belonging to group I. Factors, such as fermentation conditions, presence of maltotriose transporters, transporter copy number variation, and genetic regulation variations contribute to this issue. We assess the factors affecting fermentation in two Sp yeast strains: SpIB1, with limited maltotriose uptake, and SpIB2, known for efficient maltotriose transport. Here, SpIB2 transported significantly more maltose (28%) and maltotriose (32%) compared with SpIB1. Furthermore, SpIB2 expressed all MAL transporters (ScMALx1, SeMALx1, ScAGT1, SeAGT1, MTT1, and MPHx) on the first day of fermentation, whereas SpIB1 only exhibited ScMalx1, ScAGT1, and MPH2/3 genes. Some SpIB2 transporters had polymorphic transmembrane domains (TMD) resembling MTT1, accompanied by higher expression of these transporters and its positive regulator genes, such as MAL63. These findings suggest that, in addition to the factors mentioned above, positive regulators of Mal transporters contribute significantly to phenotypic diversity in maltose and maltotriose consumption among the studied lager yeast strains.IMPORTANCEBeer, the third most popular beverage globally with a 90% market share in the alcoholic beverage industry, relies on Saccharomyces pastorianus (Sp) strains for lager beer production. These strains exhibit phenotypic diversity in maltotriose consumption, a crucial process for the acceptable organoleptic profile in lager beer. This diversity ranges from Sp group II strains with a notable maltotriose-consuming ability to Sp group I strains with limited capacity. Our study highlights that differential gene expression of maltose and maltotriose transporters and its upstream trans-elements, such as MAL gene-positive regulators, adds complexity to this variation. This insight can contribute to a more comprehensive analysis needed to the development of controlled and efficient biotechnological processes in the beer brewing industry.
Collapse
Affiliation(s)
- César I. Hernández-Vásquez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Jorge H. García-García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | | | | | | | - Benito Pereyra-Alférez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| |
Collapse
|
2
|
Guan Y, Li Q, Liu C, Wang J. Assess different fermentation characteristics of 54 lager yeasts based on group classification. Food Microbiol 2024; 120:104479. [PMID: 38431325 DOI: 10.1016/j.fm.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Saccharomyces pastorianus, hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus, were generally regarded as authentic lager beer yeasts. In recent years, with more new findings of other Saccharomyces genus hybrids, yeasts used in lager beer brewing have been proved much more complicated than previous cognition. In this study, we analyzed the different fermentation characteristics of 54 yeast strains used for lager brewing in normal and very high gravity brewing based on group classification. The difference between Group Ⅰ and Group Ⅱ lager yeasts were more striking in very high gravity brewing. However, during our research progress, we realized that some yeasts used in this study were actually hybrids of S. cerevisiae and Saccharomyces kudriavzevii. Features of these hybrids could be beneficial to very high gravity brewing. We further discussed about the mechanism behind their outstanding characteristics and the reason why group classification methods of lager beer yeasts had limitations. Hybridization in yeasts is constantly getting richer. Lager yeasts could have more possibilities based on better understandings of their genetic background and roles of other Saccharomyces genus hybrids. Their heterosis shed light on innovation in brewing and other diverse fermentation industries.
Collapse
Affiliation(s)
- Yu Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Laboratory of Brewing Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qi Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Laboratory of Brewing Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Chunfeng Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Laboratory of Brewing Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jinjing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Laboratory of Brewing Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Bergin SA, Allen S, Hession C, Ó Cinnéide E, Ryan A, Byrne KP, Ó Cróinín T, Wolfe KH, Butler G. Identification of European isolates of the lager yeast parent Saccharomyces eubayanus. FEMS Yeast Res 2022; 22:6874782. [PMID: 36473696 PMCID: PMC9726447 DOI: 10.1093/femsyr/foac053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Lager brewing first occurred in Bavaria in the 15th century, associated with restrictions of brewing to colder months. The lager yeast, Saccharomyces pastorianus, is cold tolerant. It is a hybrid between Saccharomyces cerevisiae and Saccharomyces eubayanus, and has been found only in industrial settings. Natural isolates of S. eubayanus were first discovered in Patagonia 11 years ago. They have since been isolated from China, Tibet, New Zealand, and North America, but not from Europe. Here, we describe the first European strains UCD646 and UCD650, isolated from a wooded area on a university campus in Dublin, Ireland. We generated complete chromosome level assemblies of both genomes using long- and short-read sequencing. The UCD isolates belong to the Holarctic clade. Genome analysis shows that isolates similar to the Irish strains contributed to the S. eubayanus component of S. pastorianus, but isolates from Tibet made a larger contribution.
Collapse
Affiliation(s)
- Sean A Bergin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen Allen
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Conor Hession
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Ó Cinnéide
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Adam Ryan
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin P Byrne
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth H Wolfe
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- Corresponding author: School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland. Tel: +353-1-7166885; E-mail:
| |
Collapse
|
5
|
Zhang K, Li J, Li G, Zhao Y, Dong Y, Zhang Y, Sun W, Wang J, Yao J, Ma Y, Wang H, Zhang Z, Wang T, Xie K, Wendel JF, Liu B, Gong L. Compensatory Genetic and Transcriptional Cytonuclear Coordination in Allopolyploid Lager Yeast (Saccharomyces pastorianus). Mol Biol Evol 2022; 39:msac228. [PMID: 36260528 PMCID: PMC9665066 DOI: 10.1093/molbev/msac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cytonuclear coordination between biparental-nuclear genomes and uniparental-cytoplasmic organellar genomes in plants is often resolved by genetic and transcriptional cytonuclear responses. Whether this mechanism also acts in allopolyploid members of other kingdoms is not clear. Additionally, cytonuclear coordination of interleaved allopolyploid cells/individuals within the same population is underexplored. The yeast Saccharomyces pastorianus provides the opportunity to explore cytonuclear coevolution during different growth stages and from novel dimensions. Using S. pastorianus cells from multiple growth stages in the same environment, we show that nuclear mitochondria-targeted genes have undergone both asymmetric gene conversion and growth stage-specific biased expression favoring genes from the mitochondrial genome donor (Saccharomyces eubayanus). Our results suggest that cytonuclear coordination in allopolyploid lager yeast species entails an orchestrated and compensatory genetic and transcriptional evolutionary regulatory shift. The common as well as unique properties of cytonuclear coordination underlying allopolyploidy between unicellular yeasts and higher plants offers novel insights into mechanisms of cytonuclear evolution associated with allopolyploid speciation.
Collapse
Affiliation(s)
- Keren Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yue Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yuefan Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Ying Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Junsheng Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Science, Changchun, Jilin 130033, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang, Liaoning 110036, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Kun Xie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
6
|
de la Cerda Garcia-Caro R, Hokamp K, Roche F, Thompson G, Timouma S, Delneri D, Bond U. Aneuploidy influences the gene expression profiles in Saccharomyces pastorianus group I and II strains during fermentation. PLoS Genet 2022; 18:e1010149. [PMID: 35389986 PMCID: PMC9032419 DOI: 10.1371/journal.pgen.1010149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
The lager yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and are divided into two broad groups, Group I and II. The two groups evolved from at least one common hybridisation event but have subsequently diverged with Group I strains losing many S. cerevisiae chromosomes while the Group II strains retain both sub-genomes. The complex genomes, containing orthologous alleles from the parental chromosomes, pose interesting questions regarding gene regulation and its impact on the fermentation properties of the strains. Superimposed on the presence of orthologous alleles are complexities of gene dosage due to the aneuploid nature of the genomes. We examined the contribution of the S. cerevisiae and S. eubayanus alleles to the gene expression patterns of representative Group I and II strains during fermentation. We show that the relative expression of S. cerevisiae and S. eubayanus orthologues is positively correlated with gene copy number. Despite the reduced S. cerevisiae content in the Group I strain, S. cerevisiae orthologues contribute to biochemical pathways upregulated during fermentation which may explain the retention of specific chromosomes in the strain. Conversely, S. eubayanus genes are significantly overrepresented in the upregulated gene pool in the Group II strain. Comparison of the transcription profiles of the strains during fermentation identified both common and unique gene expression patterns, with gene copy number being a dominant contributory factor. Thus, the aneuploid genomes create complex patterns of gene expression during fermentation with gene dosage playing a crucial role both within and between strains. Saccharomyces pastorianus are yeasts used for making lager type beers and are natural hybrids of two other yeasts, Saccharomyces cerevisiae and Saccharomyces eubayanus. The hybrids formed just 500–600 years ago, and the combined parental genomes are responsible for the clean crisp flavours associated with lager beers. There are two types of lager yeasts: Group I strains have lost a significant portion of S. cerevisiae chromosomes, while the Group II strains contain the full S. cerevisiae complement. Both contain the full set of S. eubayanus chromosomes. An unusual consequence of the hybridisation is that the genomes of lager yeasts are aneuploid with the copy numbers of chromosomes ranging from 1–6. Aneuploidy is often associated with cancer in humans and therefore an understanding of how aneuploidy contributes to gene expression in lager yeasts may provide insights into its role in tumour cells. Here, we show that gene expression patterns are influenced by chromosomal aneuploidy with transcript levels directly correlated with gene dosage. We also examined the role played by the parental genomes in the gene expression profiles under fermentation conditions and show that while both genomes contribute to the transcript pools, S. eubayanus genes are over-represented during fermentation.
Collapse
Affiliation(s)
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
| | - Fiona Roche
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
| | - Georgia Thompson
- Moyne Institute, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
| | - Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ursula Bond
- Moyne Institute, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
- * E-mail:
| |
Collapse
|
7
|
Krogerus K, Magalhães F, Castillo S, Peddinti G, Vidgren V, De Chiara M, Yue JX, Liti G, Gibson B. Lager Yeast Design Through Meiotic Segregation of a Saccharomyces cerevisiae × Saccharomyces eubayanus Hybrid. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733655. [PMID: 37744092 PMCID: PMC10512403 DOI: 10.3389/ffunb.2021.733655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 09/26/2023]
Abstract
Yeasts in the lager brewing group are closely related and consequently do not exhibit significant genetic variability. Here, an artificial Saccharomyces cerevisiae × Saccharomyces eubayanus tetraploid interspecies hybrid was created by rare mating, and its ability to sporulate and produce viable gametes was exploited to generate phenotypic diversity. Four spore clones obtained from a single ascus were isolated, and their brewing-relevant phenotypes were assessed. These F1 spore clones were found to differ with respect to fermentation performance under lager brewing conditions (15°C, 15 °Plato), production of volatile aroma compounds, flocculation potential and temperature tolerance. One spore clone, selected for its rapid fermentation and acetate ester production was sporulated to produce an F2 generation, again comprised of four spore clones from a single ascus. Again, phenotypic diversity was introduced. In two of these F2 clones, the fermentation performance was maintained and acetate ester production was improved relative to the F1 parent and the original hybrid strain. Strains also performed well in comparison to a commercial lager yeast strain. Spore clones varied in ploidy and chromosome copy numbers, and faster wort fermentation was observed in strains with a higher ploidy. An F2 spore clone was also subjected to 10 consecutive wort fermentations, and single cells were isolated from the resulting yeast slurry. These isolates also exhibited variable fermentation performance and chromosome copy numbers, highlighting the instability of polyploid interspecific hybrids. These results demonstrate the value of this natural approach to increase the phenotypic diversity of lager brewing yeast strains.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Espoo, Finland
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Espoo, Finland
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Espoo, Finland
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Espoo, Finland
| | | | - Gopal Peddinti
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matteo De Chiara
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, Nice, France
| | - Jia-Xing Yue
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, Nice, France
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, Nice, France
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Espoo, Finland
- Brewing and Beverage Technology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Interspecific hybridization as a driver of fungal evolution and adaptation. Nat Rev Microbiol 2021; 19:485-500. [PMID: 33767366 DOI: 10.1038/s41579-021-00537-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Cross-species gene transfer is often associated with bacteria, which have evolved several mechanisms that facilitate horizontal DNA exchange. However, the increased availability of whole-genome sequences has revealed that fungal species also exchange DNA, leading to intertwined lineages, blurred species boundaries or even novel species. In contrast to prokaryotes, fungal DNA exchange originates from interspecific hybridization, where two genomes are merged into a single, often highly unstable, polyploid genome that evolves rapidly into stabler derivatives. The resulting hybrids can display novel combinations of genetic and phenotypic variation that enhance fitness and allow colonization of new niches. Interspecific hybridization led to the emergence of important pathogens of humans and plants (for example, various Candida and 'powdery mildew' species, respectively) and industrially important yeasts, such as Saccharomyces hybrids that are important in the production of cold-fermented lagers or cold-cellared Belgian ales. In this Review, we discuss the genetic processes and evolutionary implications of fungal interspecific hybridization and highlight some of the best-studied examples. In addition, we explain how hybrids can be used to study molecular mechanisms underlying evolution, adaptation and speciation, and serve as a route towards development of new variants for industrial applications.
Collapse
|
9
|
Alsammar H, Delneri D. An update on the diversity, ecology and biogeography of the Saccharomyces genus. FEMS Yeast Res 2021; 20:5810663. [PMID: 32196094 PMCID: PMC7150579 DOI: 10.1093/femsyr/foaa013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Saccharomyces cerevisiae is the most extensively studied yeast and, over the last century, provided insights on the physiology, genetics, cellular biology and molecular mechanisms of eukaryotes. More recently, the increase in the discovery of wild strains, species and hybrids of the genus Saccharomyces has shifted the attention towards studies on genome evolution, ecology and biogeography, with the yeast becoming a model system for population genomic studies. The genus currently comprises eight species, some of clear industrial importance, while others are confined to natural environments, such as wild forests devoid from human domestication activities. To date, numerous studies showed that some Saccharomyces species form genetically diverged populations that are structured by geography, ecology or domestication activity and that the yeast species can also hybridize readily both in natural and domesticated environments. Much emphasis is now placed on the evolutionary process that drives phenotypic diversity between species, hybrids and populations to allow adaptation to different niches. Here, we provide an update of the biodiversity, ecology and population structure of the Saccharomyces species, and recapitulate the current knowledge on the natural history of Saccharomyces genus.
Collapse
Affiliation(s)
- Haya Alsammar
- Department of Biological Sciences, Faculty of Science, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
10
|
Lin CL, García-Caro RDLC, Zhang P, Carlin S, Gottlieb A, Petersen MA, Vrhovsek U, Bond U. Packing a punch: understanding how flavours are produced in lager fermentations. FEMS Yeast Res 2021; 21:6316108. [PMID: 34227660 PMCID: PMC8310685 DOI: 10.1093/femsyr/foab040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
Beer is one of the most popular beverages in the world and it has an irreplaceable place in culture. Although invented later than ale, lager beers dominate the current market. Many factors relating to the appearance (colour, clarity and foam stability) and sensory characters (flavour, taste and aroma) of beer, and other psychological determinants affect consumers' perception of the product and defines its drinkability. This review takes a wholistic approach to scrutinise flavour generation in the brewing process, focusing particularly on the contribution of the raw ingredients and the yeasts to the final flavour profiles of lager beers. In addition, we examine current developments to improve lager beer flavour profiles for the modern consumers.
Collapse
Affiliation(s)
- Claire Lin Lin
- Brewing 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens, Lyngby, Denmark.,Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | | | - Penghan Zhang
- Metabolomic Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Edmund Mach Foundation, Via E.Mach 1, 38010 S.Michele all'Adige, Italy
| | - Silvia Carlin
- Metabolomic Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Edmund Mach Foundation, Via E.Mach 1, 38010 S.Michele all'Adige, Italy
| | - Andrea Gottlieb
- Brewing 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens, Lyngby, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Urska Vrhovsek
- Metabolomic Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Edmund Mach Foundation, Via E.Mach 1, 38010 S.Michele all'Adige, Italy
| | - Ursula Bond
- School of Genetics and Microbiology, The Moyne Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
11
|
Generation of new hybrids by crossbreeding between bottom-fermenting yeast strains. J Biosci Bioeng 2020; 131:61-67. [PMID: 33190800 DOI: 10.1016/j.jbiosc.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022]
Abstract
The genetic diversity of bottom-fermenting yeast classified as Saccharomyces pastorianus is poor because strains are restricted to a few genetically distinct groups. Crossbreeding is an effective approach to construct novel yeast strains, but it is difficult because of inefficiency to obtain mating-competent cells (MCCs) of bottom-fermenting yeast. By using mating pheromone-supersensitive mutants, we previously isolated several mating-competent meiotic segregants from two bottom-fermenting yeast strains: high isoamyl acetate-producing KY1247, and low diacetyl-producing KY2645. Here, we constructed novel non-GM hybrids carrying preferable characteristics from both parents by crossbreeding these bottom-fermenting strains for the first time. Sixteen a/a-type meiotic segregants from KY2645 and 12 α/α-type meiotic segregants from KY1247 were mixed, and cells resembling zygotes were isolated via micromanipulation. In total, 149 hybrids were obtained and verified by examining known single-nucleotide polymorphisms (SNPs) between the parental strains. A sporulation test showed that some of the hybrids were able to sporulate. Moreover, fermentation tests on a test-tube and pilot-plant scale identified two hybrids with production levels of isoamyl acetate and diacetyl that were almost the same as KY1247 and KY2645, respectively. Both of these hybrids produced satisfactory beer in terms of taste, flavor, and overall quality, comparable to that produced by the parental strains. Collectively, our results suggest that crossbreeding between bottom-fermenting yeast strains has the potential to increase the diversity of yeast strains available for brewing, and our method of isolating MCCs provides a huge advance for crossbreeding of bottom-fermenting yeast without using DNA recombination techniques.
Collapse
|
12
|
Timouma S, Schwartz JM, Delneri D. HybridMine: A Pipeline for Allele Inheritance and Gene Copy Number Prediction in Hybrid Genomes and Its Application to Industrial Yeasts. Microorganisms 2020; 8:microorganisms8101554. [PMID: 33050146 PMCID: PMC7600756 DOI: 10.3390/microorganisms8101554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 12/31/2022] Open
Abstract
Genome-scale computational approaches are opening opportunities to model and predict favorable combination of traits for strain development. However, mining the genome of complex hybrids is not currently an easy task, due to the high level of redundancy and presence of homologous. For example, Saccharomyces pastorianus is an allopolyploid sterile yeast hybrid used in brewing to produce lager-style beers. The development of new yeast strains with valuable industrial traits such as improved maltose utilization or balanced flavor profiles are now a major ambition and challenge in craft brewing and distilling industries. Moreover, no genome annotation for most of these industrial strains have been published. Here, we developed HybridMine, a new user-friendly, open-source tool for functional annotation of hybrid aneuploid genomes of any species by predicting parental alleles including paralogs. Our benchmark studies showed that HybridMine produced biologically accurate results for hybrid genomes compared to other well-established software. As proof of principle, we carried out a comprehensive structural and functional annotation of complex yeast hybrids to enable system biology prediction studies. HybridMine is developed in Python, Perl, and Bash programming languages and is available in GitHub.
Collapse
Affiliation(s)
- Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, M1 7DN Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, M13 9PT Manchester, UK
- Correspondence: (S.T.); (J.-M.S.); (D.D.)
| | - Jean-Marc Schwartz
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, M13 9PT Manchester, UK
- Correspondence: (S.T.); (J.-M.S.); (D.D.)
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, M1 7DN Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, M13 9PT Manchester, UK
- Correspondence: (S.T.); (J.-M.S.); (D.D.)
| |
Collapse
|
13
|
Koonthongkaew J, Toyokawa Y, Ohashi M, Large CRL, Dunham MJ, Takagi H. Effect of the Ala234Asp replacement in mitochondrial branched-chain amino acid aminotransferase on the production of BCAAs and fusel alcohols in yeast. Appl Microbiol Biotechnol 2020. [PMID: 32776205 DOI: 10.1101/2020.06.26.166157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the mitochondrial branched-chain amino acid (BCAA) aminotransferase Bat1 plays an important role in the synthesis of BCAAs (valine, leucine, and isoleucine). Our upcoming study (Large et al. bioRχiv. 10.1101/2020.06.26.166157, Large et al. 2020) will show that the heterozygous tetraploid beer yeast strain, Wyeast 1056, which natively has a variant causing one amino acid substitution of Ala234Asp in Bat1 on one of the four chromosomes, produced higher levels of BCAA-derived fusel alcohols in the brewer's wort medium than a derived strain lacking this mutation. Here, we investigated the physiological role of the A234D variant Bat1 in S. cerevisiae. Both bat1∆ and bat1A234D cells exhibited the same phenotypes relative to the wild-type Bat1 strain-namely, a repressive growth rate in the logarithmic phase; decreases in intracellular valine and leucine content in the logarithmic and stationary growth phases, respectively; an increase in fusel alcohol content in culture medium; and a decrease in the carbon dioxide productivity. These results indicate that amino acid change from Ala to Asp at position 234 led to a functional impairment of Bat1, although homology modeling suggests that Asp234 in the variant Bat1 did not inhibit enzymatic activity directly. KEY POINTS: • Yeast cells expressing Bat1A234D exhibited a slower growth phenotype. • The Val and Leu levels were decreased in yeast cells expressing Bat1A234D. • The A234D substitution causes a loss-of-function in Bat1. • The A234D substitution in Bat1 increased fusel alcohol production in yeast cells.
Collapse
Affiliation(s)
- Jirasin Koonthongkaew
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Yoichi Toyokawa
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Masataka Ohashi
- Nara Prefecture Institute of Industrial Development, 129-1 Kashiwagi-cho, Nara, Nara, 630-8031, Japan
| | - Christopher R L Large
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Hiroshi Takagi
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
14
|
Gorter de Vries AR, Pronk JT, Daran JMG. Lager-brewing yeasts in the era of modern genetics. FEMS Yeast Res 2020; 19:5573808. [PMID: 31553794 PMCID: PMC6790113 DOI: 10.1093/femsyr/foz063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
The yeast Saccharomyces pastorianus is responsible for the annual worldwide production of almost 200 billion liters of lager-type beer. S. pastorianus is a hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been studied for well over a century. Scientific interest in S. pastorianus intensified upon the discovery, in 2011, of its S. eubayanus ancestor. Moreover, advances in whole-genome sequencing and genome editing now enable deeper exploration of the complex hybrid and aneuploid genome architectures of S. pastorianus strains. These developments not only provide novel insights into the emergence and domestication of S. pastorianus but also generate new opportunities for its industrial application. This review paper combines historical, technical and socioeconomic perspectives to analyze the evolutionary origin and genetics of S. pastorianus. In addition, it provides an overview of available methods for industrial strain improvement and an outlook on future industrial application of lager-brewing yeasts. Particular attention is given to the ongoing debate on whether current S. pastorianus originates from a single or multiple hybridization events and to the potential role of genome editing in developing industrial brewing yeast strains.
Collapse
Affiliation(s)
- Arthur R Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
15
|
Roach MJ, Borneman AR. New genome assemblies reveal patterns of domestication and adaptation across Brettanomyces (Dekkera) species. BMC Genomics 2020; 21:194. [PMID: 32122298 PMCID: PMC7052964 DOI: 10.1186/s12864-020-6595-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/19/2020] [Indexed: 01/05/2023] Open
Abstract
Background Yeasts of the genus Brettanomyces are of significant interest, both for their capacity to spoil, as well as their potential to positively contribute to different industrial fermentations. However, considerable variance exists in the depth of research and knowledgebase of the five currently known species of Brettanomyces. For instance, Brettanomyces bruxellensis has been heavily studied and many resources are available for this species, whereas Brettanomyces nanus is rarely studied and lacks a publicly available genome assembly altogether. The purpose of this study is to fill this knowledge gap and explore the genomic adaptations that have shaped the evolution of this genus. Results Strains for each of the five widely accepted species of Brettanomyces (Brettanomyces anomalus, B. bruxellensis, Brettanomyces custersianus, Brettanomyces naardenensis, and B. nanus) were sequenced using a combination of long- and short-read sequencing technologies. Highly contiguous assemblies were produced for each species. Structural differences between the species’ genomes were observed with gene expansions in fermentation-relevant genes (particularly in B. bruxellensis and B. nanus) identified. Numerous horizontal gene transfer (HGT) events in all Brettanomyces species’, including an HGT event that is probably responsible for allowing B. bruxellensis and B. anomalus to utilize sucrose were also observed. Conclusions Genomic adaptations and some evidence of domestication that have taken place in Brettanomyces are outlined. These new genome assemblies form a valuable resource for future research in Brettanomyces.
Collapse
Affiliation(s)
- Michael J Roach
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5046, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5046, Australia.
| |
Collapse
|
16
|
Designing New Yeasts for Craft Brewing: When Natural Biodiversity Meets Biotechnology. BEVERAGES 2020. [DOI: 10.3390/beverages6010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beer is a fermented beverage with a history as old as human civilization. Ales and lagers are by far the most common beers; however, diversification is becoming increasingly important in the brewing market and the brewers are continuously interested in improving and extending the range of products, especially in the craft brewery sector. Fermentation is one of the widest spaces for innovation in the brewing process. Besides Saccharomyces cerevisiae ale and Saccharomyces pastorianus lager strains conventionally used in macro-breweries, there is an increasing demand for novel yeast starter cultures tailored for producing beer styles with diversified aroma profiles. Recently, four genetic engineering-free approaches expanded the genetic background and the phenotypic biodiversity of brewing yeasts and allowed novel costumed-designed starter cultures to be developed: (1) the research for new performant S. cerevisiae yeasts from fermented foods alternative to beer; (2) the creation of synthetic hybrids between S. cerevisiae and Saccharomyces non-cerevisiae in order to mimic lager yeasts; (3) the exploitation of evolutionary engineering approaches; (4) the usage of non-Saccharomyces yeasts. Here, we summarized the pro and contra of these approaches and provided an overview on the most recent advances on how brewing yeast genome evolved and domestication took place. The resulting correlation maps between genotypes and relevant brewing phenotypes can assist and further improve the search for novel craft beer starter yeasts, enhancing the portfolio of diversified products offered to the final customer.
Collapse
|
17
|
Salazar AN, Gorter de Vries AR, van den Broek M, Brouwers N, de la Torre Cortès P, Kuijpers NGA, Daran JMG, Abeel T. Chromosome level assembly and comparative genome analysis confirm lager-brewing yeasts originated from a single hybridization. BMC Genomics 2019; 20:916. [PMID: 31791228 PMCID: PMC6889557 DOI: 10.1186/s12864-019-6263-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The lager brewing yeast, S. pastorianus, is a hybrid between S. cerevisiae and S. eubayanus with extensive chromosome aneuploidy. S. pastorianus is subdivided into Group 1 and Group 2 strains, where Group 2 strains have higher copy number and a larger degree of heterozygosity for S. cerevisiae chromosomes. As a result, Group 2 strains were hypothesized to have emerged from a hybridization event distinct from Group 1 strains. Current genome assemblies of S. pastorianus strains are incomplete and highly fragmented, limiting our ability to investigate their evolutionary history. RESULTS To fill this gap, we generated a chromosome-level genome assembly of the S. pastorianus strain CBS 1483 from Oxford Nanopore MinION DNA sequencing data and analysed the newly assembled subtelomeric regions and chromosome heterozygosity. To analyse the evolutionary history of S. pastorianus strains, we developed Alpaca: a method to compute sequence similarity between genomes without assuming linear evolution. Alpaca revealed high similarities between the S. cerevisiae subgenomes of Group 1 and 2 strains, and marked differences from sequenced S. cerevisiae strains. CONCLUSIONS Our findings suggest that Group 1 and Group 2 strains originated from a single hybridization involving a heterozygous S. cerevisiae strain, followed by different evolutionary trajectories. The clear differences between both groups may originate from a severe population bottleneck caused by the isolation of the first pure cultures. Alpaca provides a computationally inexpensive method to analyse evolutionary relationships while considering non-linear evolution such as horizontal gene transfer and sexual reproduction, providing a complementary viewpoint beyond traditional phylogenetic approaches.
Collapse
Affiliation(s)
- Alex N Salazar
- Delft Bioinformatics Lab, Delft University of Technology, 2628, CD, Delft, The Netherlands
| | - Arthur R Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Pilar de la Torre Cortès
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Niels G A Kuijpers
- HEINEKEN Supply Chain B.V., Global Innovation and Research, Zoeterwoude, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, 2628, CD, Delft, The Netherlands.
- Broad Institute of MIT and Harvard, Boston, MA, 02142, USA.
| |
Collapse
|
18
|
Vakirlis N, Monerawela C, McManus G, Ribeiro O, McLysaght A, James T, Bond U. Evolutionary journey and characterisation of a novel pan-gene associated with beer strains of Saccharomyces cerevisiae. Yeast 2019; 36:425-437. [PMID: 30963617 DOI: 10.1002/yea.3391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022] Open
Abstract
The sequencing of over a thousand Saccharomyces cerevisiae genomes revealed a complex pangenome. Over one third of the discovered genes are not present in the S. cerevisiae core genome but instead are often restricted to a subset of yeast isolates and thus may be important for adaptation to specific environmental niches. We refer to these genes as "pan-genes," being part of the pangenome but not the core genome. Here, we describe the evolutionary journey and characterisation of a novel pan-gene, originally named hypothetical (HYPO) open-reading frame. Phylogenetic analysis reveals that HYPO has been predominantly retained in S. cerevisiae strains associated with brewing but has been repeatedly lost in most other fungal species during evolution. There is also evidence that HYPO was horizontally transferred at least once, from S. cerevisiae to Saccharomyces paradoxus. The phylogenetic analysis of HYPO exemplifies the complexity and intricacy of evolutionary trajectories of genes within the S. cerevisiae pangenome. To examine possible functions for Hypo, we overexpressed a HYPO-GFP fusion protein in both S. cerevisiae and Saccharomyces pastorianus. The protein localised to the plasma membrane where it accumulated initially in distinct foci. Time-lapse fluorescent imaging revealed that when cells are grown in wort, Hypo-gfp fluorescence spreads throughout the membrane during cell growth. The overexpression of Hypo-gfp in S. cerevisiae or S. pastorianus strains did not significantly alter cell growth in medium-containing glucose, maltose, maltotriose, or wort at different concentrations.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Chandre Monerawela
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Orquidea Ribeiro
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Aoife McLysaght
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Tharappel James
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Ursula Bond
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
19
|
Lauterbach A, Geissler AJ, Eisenbach L, Behr J, Vogel RF. Novel diagnostic marker genes differentiate Saccharomyces
with respect to their potential application. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Lauterbach
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Andreas J. Geissler
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Lara Eisenbach
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Jürgen Behr
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
- Bavarian Center for Biomolecular Mass Spectrometry; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| |
Collapse
|
20
|
Lopandic K. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments. Yeast 2018; 35:21-38. [PMID: 29131388 DOI: 10.1002/yea.3294] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ksenija Lopandic
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11/3, A-1190, Vienna, Austria
| |
Collapse
|
21
|
Loviso CL, Libkind D. [Synthesis and regulation of flavor compounds derived from brewing yeast: Esters]. Rev Argent Microbiol 2018; 50:436-446. [PMID: 29627148 DOI: 10.1016/j.ram.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 11/14/2017] [Indexed: 01/21/2023] Open
Abstract
During brewing process yeast produce more than 500 chemical compounds that can negatively and positively impact beer at the organoleptic level. In recent years, and particularly thanks to the advancement of molecular biology and genomics, there has been considerable progress in our understanding about the molecular and cellular basis of the synthesis and regulation of many of these flavor compounds. This article focuses on esters, responsible for the floral and fruity beer flavor. Its formation depends on various enzymes and factors such as the concentration of wort nutrients, the amount of dissolved oxygen and carbon dioxide, fermentation temperature and mainly the genetics of the yeast used. We provide information about how the esters originate and how is the impact of different fermentative parameters on the final concentrations of these compounds and the quality of the end product.
Collapse
Affiliation(s)
- Claudia L Loviso
- Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Argentina
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Bariloche, Argentina.
| |
Collapse
|
22
|
Gallone B, Mertens S, Gordon JL, Maere S, Verstrepen KJ, Steensels J. Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Curr Opin Biotechnol 2018; 49:148-155. [DOI: 10.1016/j.copbio.2017.08.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 11/27/2022]
|
23
|
Peris D, Pérez-Torrado R, Hittinger CT, Barrio E, Querol A. On the origins and industrial applications ofSaccharomyces cerevisiae×Saccharomyces kudriavzeviihybrids. Yeast 2017; 35:51-69. [DOI: 10.1002/yea.3283] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- David Peris
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
| | - Eladio Barrio
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
- Department of Genetics; University of Valencia; Valencia Spain
| | - Amparo Querol
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| |
Collapse
|
24
|
Monerawela C, Bond U. The hybrid genomes of Saccharomyces pastorianus
: A current perspective. Yeast 2017; 35:39-50. [DOI: 10.1002/yea.3250] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Chandre Monerawela
- Moyne Institute, School of Genetics and Microbiology; Trinity College Dublin; Dublin 2 Ireland
| | - Ursula Bond
- Moyne Institute, School of Genetics and Microbiology; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
25
|
Factors Influencing the Production of Sensory Active Substances in Brewer's and Wine Yeast. KVASNY PRUMYSL 2017. [DOI: 10.18832/kp201720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Abstract
ABSTRACT
In this article, we review some of the best-studied fungi used as food sources, in particular, the cheese fungi, the truffles, and the fungi used for drink fermentation such as beer, wine, and sake. We discuss their history of consumption by humans and the genomic mechanisms of adaptation during artificial selection.
Collapse
|
27
|
Monerawela C, Bond U. Brewing up a storm: The genomes of lager yeasts and how they evolved. Biotechnol Adv 2017; 35:512-519. [PMID: 28284994 DOI: 10.1016/j.biotechadv.2017.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/16/2017] [Accepted: 03/04/2017] [Indexed: 10/20/2022]
Abstract
Yeasts used in the production of lager beers belong to the species Saccharomyces pastorianus, an interspecies hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus. The hybridisation event happened approximately 500-600years ago and therefore S. pastorianus may be considered as a newly evolving species. The happenstance of the hybridisation event created a novel species, with unique genetic characteristics, ideal for the fermentation of sugars to produce flavoursome beer. Lager yeast strains retain the chromosomes of both parental species and also have sets of novel hybrid chromosomes that arose by recombination between the homeologous parental chromosomes. The lager yeasts are subdivided into two groups (I and II) based on the S. cerevisiae: S. eubayanus gene content and the types and numbers of hybrid chromosomes. Recently, whole genome sequences for several Group I and II lager yeasts and for many S. cerevisiae and S. eubayanus isolates have become available. Here we review the available genome data and discuss the likely origins of the parental species that gave rise to S. pastorianus. We review the compiled data on the composition of the lager yeast genomes and consider several evolutionary models to account for the emergence of the two distinct types of lager yeasts.
Collapse
Affiliation(s)
- Chandre Monerawela
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Ireland
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Ireland.
| |
Collapse
|
28
|
Krogerus K, Magalhães F, Vidgren V, Gibson B. Novel brewing yeast hybrids: creation and application. Appl Microbiol Biotechnol 2016; 101:65-78. [PMID: 27885413 PMCID: PMC5203825 DOI: 10.1007/s00253-016-8007-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland. .,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|
29
|
Adamczyk J, Deregowska A, Skoneczny M, Skoneczna A, Natkanska U, Kwiatkowska A, Rawska E, Potocki L, Kuna E, Panek A, Lewinska A, Wnuk M. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts. Cell Stress Chaperones 2016; 21:849-64. [PMID: 27299603 PMCID: PMC5003802 DOI: 10.1007/s12192-016-0710-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022] Open
Abstract
The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement.
Collapse
Affiliation(s)
- Jagoda Adamczyk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Natkanska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Rawska
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Leszek Potocki
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Ewelina Kuna
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Anita Panek
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland.
| |
Collapse
|
30
|
Magalhães F, Vidgren V, Ruohonen L, Gibson B. Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast Saccharomyces pastorianus. FEMS Yeast Res 2016; 16:fow053. [PMID: 27364826 PMCID: PMC5815069 DOI: 10.1093/femsyr/fow053] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2016] [Accepted: 06/26/2016] [Indexed: 11/13/2022] Open
Abstract
Brewer's wort is a challenging environment for yeast as it contains predominantly α-glucoside sugars. There exist two subgroups of the lager yeast Saccharomyces pastorianus which differ in sugar utilisation. We performed wort fermentations and compared representative strains from both groups with respect to their ability to transport and ferment maltose and maltotriose. Additionally, we mapped the transporters MALx1, AGT1, MPHx and MTT1 by Southern blotting. Contrary to previous observations, group I comprises a diverse set of strains, with varying ability to transport and ferment maltotriose. Of the eight group I strains, three efficiently utilised maltotriose, a property enabled by the presence of transmembrane transporters SeAGT1 and MTT1 A58, a variant of the group I type strain (CBS1513) performed particularly well, taking up maltotriose at a higher rate than maltose and retaining significant transport activity at temperatures as low as 0°C. Analysis of transporter distribution in this strain revealed an increased copy number of the MTT1 gene, which encodes the only permease known with higher affinity for maltotriose than maltose and low temperature dependence for transport. We propose that much of the variation in lager yeast fermentation behaviour is determined by the presence or absence of specific transmembrane transporters.
Collapse
Affiliation(s)
- Frederico Magalhães
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, PO Box 16100, FI-00076 Aalto, Espoo, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| | - Laura Ruohonen
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
31
|
Peris D, Langdon QK, Moriarty RV, Sylvester K, Bontrager M, Charron G, Leducq JB, Landry CR, Libkind D, Hittinger CT. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus. PLoS Genet 2016; 12:e1006155. [PMID: 27385107 PMCID: PMC4934787 DOI: 10.1371/journal.pgen.1006155] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/08/2016] [Indexed: 12/05/2022] Open
Abstract
Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Quinn K. Langdon
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan V. Moriarty
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kayla Sylvester
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Martin Bontrager
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec City, Québec, Canada
| | - Jean-Baptiste Leducq
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec City, Québec, Canada
| | - Christian R. Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec City, Québec, Canada
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagonico de Tecnologías Biológicas y Geoambientales, IPATEC (CONICET-UNComahue), Centro Regional Universitario Bariloche, Bariloche, Río Negro, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
32
|
Okuno M, Kajitani R, Ryusui R, Morimoto H, Kodama Y, Itoh T. Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of interspecies hybridization. DNA Res 2016; 23:67-80. [PMID: 26732986 PMCID: PMC4755528 DOI: 10.1093/dnares/dsv037] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/19/2015] [Indexed: 01/01/2023] Open
Abstract
The lager beer yeast Saccharomyces pastorianus is considered an allopolyploid hybrid species between S. cerevisiae and S. eubayanus. Many S. pastorianus strains have been isolated and classified into two groups according to geographical origin, but this classification remains controversial. Hybridization analyses and partial PCR-based sequence data have indicated a separate origin of these two groups, whereas a recent intertranslocation analysis suggested a single origin. To clarify the evolutionary history of this species, we analysed 10 S. pastorianus strains and the S. eubayanus type strain as a likely parent by Illumina next-generation sequencing. In addition to assembling the genomes of five of the strains, we obtained information on interchromosomal translocation, ploidy, and single-nucleotide variants (SNVs). Collectively, these results indicated that the two groups of strains share S. cerevisiae haploid chromosomes. We therefore conclude that both groups of S. pastorianus strains share at least one interspecific hybridization event and originated from a common parental species and that differences in ploidy and SNVs between the groups can be explained by chromosomal deletion or loss of heterozygosity.
Collapse
Affiliation(s)
- Miki Okuno
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Rei Kajitani
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Rie Ryusui
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroya Morimoto
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yukiko Kodama
- Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Takehiko Itoh
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
33
|
A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers. Appl Environ Microbiol 2015; 81:8202-14. [PMID: 26407881 DOI: 10.1128/aem.02464-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 01/29/2023] Open
Abstract
Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma.
Collapse
|
34
|
Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA, Adams M, Libkind D, Hittinger CT. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts. Mol Biol Evol 2015; 32:2818-31. [PMID: 26269586 PMCID: PMC4651232 DOI: 10.1093/molbev/msv168] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions.
Collapse
Affiliation(s)
- EmilyClare Baker
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison
| | - Bing Wang
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison
| | - Nicolas Bellora
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, Bariloche, Argentina
| | - David Peris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison
| | | | - Marie Adams
- Biotechnology Center, University of Wisconsin-Madison
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison
| |
Collapse
|
35
|
Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass. Microb Cell Fact 2015; 14:61. [PMID: 25928878 PMCID: PMC4417197 DOI: 10.1186/s12934-015-0242-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 01/24/2023] Open
Abstract
Background Lignocellulosic biomass is a viable source of renewable energy for bioethanol production. For the efficient conversion of biomass into bioethanol, it is essential that sugars from both the cellulose and hemicellulose fractions of lignocellulose be utilised. Results We describe the development of a recombinant yeast system for the fermentation of cellulose and xylose, the most abundant pentose sugar in the hemicellulose fraction of biomass. The brewer’s yeast Saccharomyces pastorianus was chosen as a host as significantly higher recombinant enzyme activities are achieved, when compared to the more commonly used S. cerevisiae. When expressed in S. pastorianus, the Trichoderma reesei xylose oxidoreductase pathway was more efficient at alcohol production from xylose than the xylose isomerase pathway. The alcohol yield was influenced by the concentration of xylose in the medium and was significantly improved by the additional expression of a gene encoding for xylulose kinase. The xylose reductase, xylitol dehydrogenase and xylulose kinase genes were co-expressed with genes encoding for the three classes of T. reesei cellulases, namely endoglucanase (EG2), cellobiohydrolysase (CBH2) and β-glucosidase (BGL1). The initial metabolism of xylose by the engineered strains facilitated production of cellulases at fermentation temperatures. The sequential metabolism of xylose and cellulose generated an alcohol yield of 82% from the available sugars. Several different types of biomass, such as the energy crop Miscanthus sinensis and the industrial waste, brewer’s spent grains, were examined as biomass sources for fermentation using the developed yeast strains. Xylose metabolism and cell growth were inhibited in fermentations carried out with acid-treated spent grain liquor, resulting in a 30% reduction in alcohol yield compared to fermentations carried out with mixed sugar substrates. Conclusions Reconstitution of complete enzymatic pathways for cellulose hydrolysis and xylose utilisation in S. pastorianus facilitates the co-fermentation of cellulose and xylose without the need for added exogenous cellulases and provides a basis for the development of a consolidated process for co-utilisation of hemicellulose and cellulose sugars. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0242-4) contains supplementary material, which is available to authorized users.
Collapse
|