1
|
Ward CM, Onetto CA, Van Den Heuvel S, Cuijvers KM, Hale LJ, Borneman AR. Recombination, admixture and genome instability shape the genomic landscape of Saccharomyces cerevisiae derived from spontaneous grape ferments. PLoS Genet 2024; 20:e1011223. [PMID: 38517929 PMCID: PMC10990190 DOI: 10.1371/journal.pgen.1011223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/03/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Cultural exchange of fermentation techniques has driven the spread of Saccharomyces cerevisiae across the globe, establishing natural populations in many countries. Despite this, Oceania is thought to lack native populations of S. cerevisiae, only being introduced after colonisation. Here we investigate the genomic landscape of 411 S. cerevisiae isolated from spontaneous grape fermentations in Australia across multiple locations, years, and grape cultivars. Spontaneous fermentations contained highly recombined mosaic strains that exhibited high levels of genome instability. Assigning genomic windows to putative ancestral origin revealed that few closely related starter lineages have come to dominate the genetic landscape, contributing most of the genetic variation. Fine-scale phylogenetic analysis of loci not observed in strains of commercial wine origin identified widespread admixture with European derived beer yeast along with three independent admixture events from potentially endemic Oceanic lineages that was associated with genome instability. Finally, we investigated Australian ecological niches for basal isolates, identifying phylogenetically distinct S. cerevisiae of non-European, non-domesticated origin associated with admixture loci. Our results illustrate the effect commercial use of microbes may have on local microorganism genetic diversity and demonstrates the presence of non-domesticated, potentially endemic lineages of S. cerevisiae in Australian niches that are actively admixing.
Collapse
Affiliation(s)
- Chris M. Ward
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
| | - Cristobal A. Onetto
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Laura J. Hale
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
| | - Anthony R. Borneman
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Chen J, Garfinkel DJ, Bergman CM. Horizontal transfer and recombination fuel Ty4 retrotransposon evolution in Saccharomyces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572574. [PMID: 38187645 PMCID: PMC10769310 DOI: 10.1101/2023.12.20.572574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes, however the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely-related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two S. mikatae strains. We find evidence for multiple independent HTT events introducing the Tsu4 subfamily into specific lineages of S. paradoxus, S. cerevisiae, S. eubayanus, S. kudriavzevii and the ancestor of the S. mikatae/S. jurei species pair. In both S. mikatae and S. kudriavzevii, we identified novel Ty4 clades that were independently generated through recombination between resident and horizontally-transferred subfamilies. Our results reveal that recurrent HTT and lineage-specific extinction events lead to a complex pattern of Ty4 subfamily content across the genus Saccharomyces. Moreover, our results demonstrate how HTT can lead to coexistence of related retrotransposon subfamilies in the same genome that can fuel evolution of new retrotransposon clades via recombination.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Casey M. Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Marr RA, Moore J, Formby S, Martiniuk JT, Hamilton J, Ralli S, Konwar K, Rajasundaram N, Hahn A, Measday V. Whole genome sequencing of Canadian Saccharomyces cerevisiae strains isolated from spontaneous wine fermentations reveals a new Pacific West Coast Wine clade. G3 (BETHESDA, MD.) 2023; 13:jkad130. [PMID: 37307358 PMCID: PMC10411583 DOI: 10.1093/g3journal/jkad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Vineyards in wine regions around the world are reservoirs of yeast with oenological potential. Saccharomyces cerevisiae ferments grape sugars to ethanol and generates flavor and aroma compounds in wine. Wineries place a high-value on identifying yeast native to their region to develop a region-specific wine program. Commercial wine strains are genetically very similar due to a population bottleneck and in-breeding compared to the diversity of S. cerevisiae from the wild and other industrial processes. We have isolated and microsatellite-typed hundreds of S. cerevisiae strains from spontaneous fermentations of grapes from the Okanagan Valley wine region in British Columbia, Canada. We chose 75 S. cerevisiae strains, based on our microsatellite clustering data, for whole genome sequencing using Illumina paired-end reads. Phylogenetic analysis shows that British Columbian S. cerevisiae strains cluster into 4 clades: Wine/European, Transpacific Oak, Beer 1/Mixed Origin, and a new clade that we have designated as Pacific West Coast Wine. The Pacific West Coast Wine clade has high nucleotide diversity and shares genomic characteristics with wild North American oak strains but also has gene flow from Wine/European and Ecuadorian clades. We analyzed gene copy number variations to find evidence of domestication and found that strains in the Wine/European and Pacific West Coast Wine clades have gene copy number variation reflective of adaptations to the wine-making environment. The "wine circle/Region B", a cluster of 5 genes acquired by horizontal gene transfer into the genome of commercial wine strains is also present in the majority of the British Columbian strains in the Wine/European clade but in a minority of the Pacific West Coast Wine clade strains. Previous studies have shown that S. cerevisiae strains isolated from Mediterranean Oak trees may be the living ancestors of European wine yeast strains. This study is the first to isolate S. cerevisiae strains with genetic similarity to nonvineyard North American Oak strains from spontaneous wine fermentations.
Collapse
Affiliation(s)
- R Alexander Marr
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jackson Moore
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sean Formby
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Jonathan T Martiniuk
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Food Science Graduate Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonah Hamilton
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sneha Ralli
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive East K9625, Burnaby, BC V5A 1S6, Canada
| | - Kishori Konwar
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Nisha Rajasundaram
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Aria Hahn
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Vivien Measday
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Cordero-Bueso G, Vigentini I, Foschino R, Maghradze D, Ruiz-Muñoz M, Benitez-Trujillo F, Cantoral JM. Culturable Yeast Diversity of Grape Berries from Vitis vinifera ssp. sylvestris (Gmelin) Hegi. J Fungi (Basel) 2022; 8:410. [PMID: 35448641 PMCID: PMC9025944 DOI: 10.3390/jof8040410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi is recognized as the dioecious parental generation of today's cultivars. Climatic change and the arrival of pathogens and pests in Europe led it to be included on the International Union for Conservation of Nature (IUCN) Red List of Threatened Species in 1997. The present work focused on the study of culturable yeast occurrence and diversity of grape berries collected from wild vines. Sampling was performed in 29 locations of Azerbaijan, Georgia, Italy, Romania, and Spain. In total, 3431 yeast colonies were isolated and identified as belonging to 49 species, including Saccharomyces cerevisiae, by 26S rDNA D1/D2 domains and ITS region sequencing. Isolates of S. cerevisiae were also analyzed by SSR-PCR obtaining 185 different genotypes. Classical ecology indices were used to obtain the richness (S), the biodiversity (H'), and the dominance (D) of the species studied. This study highlights the biodiversity potential of natural environments that still represent a fascinating source of solutions to common problems in winemaking.
Collapse
Affiliation(s)
- Gustavo Cordero-Bueso
- Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11009 Cádiz, Spain; (M.R.-M.); (J.M.C.)
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20122 Milan, Italy; (I.V.); (R.F.)
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20122 Milan, Italy; (I.V.); (R.F.)
| | - David Maghradze
- Department of Agriculture, Faculty of Viticulture and Winemaking, Caucasus International University, 0141 Tbilisi, Georgia;
| | - Marina Ruiz-Muñoz
- Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11009 Cádiz, Spain; (M.R.-M.); (J.M.C.)
| | | | - Jesús M. Cantoral
- Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11009 Cádiz, Spain; (M.R.-M.); (J.M.C.)
| |
Collapse
|
5
|
Mozzachiodi S, Bai FY, Baldrian P, Bell G, Boundy-Mills K, Buzzini P, Čadež N, Riffo FC, Dashko S, Dimitrov R, Fisher KJ, Gibson BR, Gouliamova D, Greig D, Heistinger L, Hittinger CT, Jecmenica M, Koufopanou V, Landry CR, Mašínová T, Naumova ES, Opulente D, Peña JJ, Petrovič U, Tsai IJ, Turchetti B, Villarreal P, Yurkov A, Liti G, Boynton P. Yeasts from temperate forests. Yeast 2022; 39:4-24. [PMID: 35146791 DOI: 10.1002/yea.3699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Yeasts are ubiquitous in temperate forests. While this broad habitat is well-defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats, and no doubt contribute to broader ecosystem-wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well-studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.
Collapse
Affiliation(s)
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Graham Bell
- Biology Department and Redpath Museum, McGill University, Québec, Canada
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Pietro Buzzini
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | - Neža Čadež
- Biotechnical Faculty, Food Science and Technology Department, University of Ljubljana, Ljubljana, Slovenia
| | - Francisco Cubillos Riffo
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sofia Dashko
- DSM Food Specialties, Center for Food Innovation, AX, Delft, The Netherlands
| | - Roumen Dimitrov
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kaitlin J Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian R Gibson
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Chair of Brewing and Beverage Technology, Berlin, Germany
| | - Dilnora Gouliamova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Duncan Greig
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Lina Heistinger
- ETH Zurich, Department of Biology, Institute of Biochemistry, Switzerland
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Canada.,PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Canada.,Centre de Recherche sur les Données Massives, Université Laval, Canada.,Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Canada
| | - Tereza Mašínová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Elena S Naumova
- State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Dana Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | - Uroš Petrovič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.,Jožef Stefan Institute, Department of Molecular and Biomedical Sciences, Ljubljana, Slovenia
| | | | - Benedetta Turchetti
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | - Pablo Villarreal
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | | |
Collapse
|
6
|
Bai FY, Han DY, Duan SF, Wang QM. The Ecology and Evolution of the Baker's Yeast Saccharomyces cerevisiae. Genes (Basel) 2022; 13:230. [PMID: 35205274 PMCID: PMC8871604 DOI: 10.3390/genes13020230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
Abstract
The baker's yeast Saccharomyces cerevisiae has become a powerful model in ecology and evolutionary biology. A global effort on field survey and population genetics and genomics of S. cerevisiae in past decades has shown that the yeast distributes ubiquitously in nature with clearly structured populations. The global genetic diversity of S. cerevisiae is mainly contributed by strains from Far East Asia, and the ancient basal lineages of the species have been found only in China, supporting an 'out-of-China' origin hypothesis. The wild and domesticated populations are clearly separated in phylogeny and exhibit hallmark differences in sexuality, heterozygosity, gene copy number variation (CNV), horizontal gene transfer (HGT) and introgression events, and maltose utilization ability. The domesticated strains from different niches generally form distinct lineages and harbor lineage-specific CNVs, HGTs and introgressions, which contribute to their adaptations to specific fermentation environments. However, whether the domesticated lineages originated from a single, or multiple domestication events is still hotly debated and the mechanism causing the diversification of the wild lineages remains to be illuminated. Further worldwide investigations on both wild and domesticated S. cerevisiae, especially in Africa and West Asia, will be helpful for a better understanding of the natural and domestication histories and evolution of S. cerevisiae.
Collapse
Affiliation(s)
- Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
- College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Qi-Ming Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China;
| |
Collapse
|
7
|
Buser CC, Jokela J, Martin OY. Scent of a killer: How could killer yeast boost its dispersal? Ecol Evol 2021; 11:5809-5814. [PMID: 34141185 PMCID: PMC8207343 DOI: 10.1002/ece3.7534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
Vector-borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit-colonizing yeast in a tripartite symbiosis-the so-called "killer yeast" system. "Killer yeast" consists of Saccharomyces cerevisiae yeast hosting two double-stranded RNA viruses (M satellite dsRNAs, L-A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing "killer yeast" phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non-killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.
Collapse
Affiliation(s)
- Claudia C. Buser
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - Jukka Jokela
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - Oliver Y. Martin
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
8
|
Griggs RG, Steenwerth KL, Mills DA, Cantu D, Bokulich NA. Sources and Assembly of Microbial Communities in Vineyards as a Functional Component of Winegrowing. Front Microbiol 2021; 12:673810. [PMID: 33927711 PMCID: PMC8076609 DOI: 10.3389/fmicb.2021.673810] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Microbiomes are integral to viticulture and winemaking – collectively termed winegrowing – where diverse fungi and bacteria can exert positive and negative effects on grape health and wine quality. Wine is a fermented natural product, and the vineyard serves as a key point of entry for quality-modulating microbiota, particularly in wine fermentations that are conducted without the addition of exogenous yeasts. Thus, the sources and persistence of wine-relevant microbiota in vineyards critically impact its quality. Site-specific variations in microbiota within and between vineyards may contribute to regional wine characteristics. This includes distinctions in microbiomes and microbiota at the strain level, which can contribute to wine flavor and aroma, supporting the role of microbes in the accepted notion of terroir as a biological phenomenon. Little is known about the factors driving microbial biodiversity within and between vineyards, or those that influence annual assembly of the fruit microbiome. Fruit is a seasonally ephemeral, yet annually recurrent product of vineyards, and as such, understanding the sources of microbiota in vineyards is critical to the assessment of whether or not microbial terroir persists with inter-annual stability, and is a key factor in regional wine character, as stable as the geographic distances between vineyards. This review examines the potential sources and vectors of microbiota within vineyards, general rules governing plant microbiome assembly, and how these factors combine to influence plant-microbe interactions relevant to winemaking.
Collapse
Affiliation(s)
- Reid G Griggs
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Kerri L Steenwerth
- USDA-ARS, Crops Pathology and Genetics Research Unit, Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, United States
| | - David A Mills
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Nicholas A Bokulich
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Higgins P, Grace CA, Lee SA, Goddard MR. Whole-genome sequencing from the New Zealand Saccharomyces cerevisiae population reveals the genomic impacts of novel microbial range expansion. G3-GENES GENOMES GENETICS 2021; 11:6044130. [PMID: 33561237 PMCID: PMC7849907 DOI: 10.1093/g3journal/jkaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 11/14/2022]
Abstract
Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.
Collapse
Affiliation(s)
- Peter Higgins
- The School of Life Sciences, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Cooper A Grace
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.,Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Soon A Lee
- The School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Matthew R Goddard
- The School of Life Sciences, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.,The School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Quantifying the effect of human practices on S. cerevisiae vineyard metapopulation diversity. Sci Rep 2020; 10:16214. [PMID: 33004911 PMCID: PMC7530672 DOI: 10.1038/s41598-020-73279-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/27/2020] [Indexed: 12/04/2022] Open
Abstract
Saccharomyces cerevisiae is the main actor of wine fermentation but at present, still little is known about the factors impacting its distribution in the vineyards. In this study, 23 vineyards and 7 cellars were sampled over 2 consecutive years in the Bordeaux and Bergerac regions. The impact of geography and farming system and the relation between grape and vat populations were evaluated using a collection of 1374 S. cerevisiae merlot grape isolates and 289 vat isolates analyzed at 17 microsatellites loci. A very high genetic diversity of S. cerevisiae strains was obtained from grape samples, higher in conventional farming system than in organic one. The geographic appellation and the wine estate significantly impact the S. cerevisiae population structure, whereas the type of farming system has a weak global effect. When comparing cellar and vineyard populations, we evidenced the tight connection between the two compartments, based on the high proportion of grape isolates (25%) related to the commercial starters used in the cellar and on the estimation of bidirectional geneflows between the vineyard and the cellar compartments.
Collapse
|
11
|
Cheng E, Martiniuk JT, Hamilton J, McCarthy G, Castellarin SD, Measday V. Characterization of Sub-Regional Variation in Saccharomyces Populations and Grape Phenolic Composition in Pinot Noir Vineyards of a Canadian Wine Region. Front Genet 2020; 11:908. [PMID: 33110416 PMCID: PMC7489054 DOI: 10.3389/fgene.2020.00908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/22/2020] [Indexed: 01/02/2023] Open
Abstract
Wine is a product of grape juice fermentation by yeast. Terroir is a term that encompasses all environmental factors and interactions at a specific geographical site, resulting in the development of regional-specific microbial strains and grape metabolites. In this study we determine the distribution of vineyard-associated wine yeast strains and characterize the flavonoid profile of Pinot Noir grapes among 3 sub-regions in the Okanagan Valley (OV), a major wine region in British Columbia, Canada. Pinot Noir grape samples were collected from 13 vineyards among 3 sub-regions of the OV, namely Kelowna (KE), Naramata-Penticton (NP) and Oliver-Osoyoos (OO), within a week prior to the winery harvesting date in 2016 and 2017. A total of 156 spontaneous Pinot Noir fermentations were conducted and vineyard-associated Saccharomyces strains were isolated from fermentations that reached two-thirds sugar depletion. Using microsatellite genotyping, we identified 103 Saccharomyces cerevisiae strains and 9 Saccharomyces uvarum strains. We also identified Saccharomyces paradoxus in one vineyard using ITS sequencing. We developed a microsatellite database of 160 commercial S. cerevisiae strains to determine the identity of the isolated strains and we include the database herein. Commercial strains were widely distributed across the three sub-regions. Forty-two of our 103 S. cerevisiae strains were equivalent or highly similar to commercial strains whereas the remaining 61 were considered as ‘unknown’ strains. Two S. uvarum strains were previously isolated in other OV studies and none matched the S. uvarum commercial strain BMV58. S. cerevisiae population structure was driven by sub-region, although S. cerevisiae populations did not differ significantly across vintages. S. uvarum and S. paradoxus were only identified in the 2017 vintage, demonstrating dynamic wine yeast populations between vintages. We found that the flavonoid profile of Pinot Noir grapes from the same 13 vineyards was also affected by sub-regional terroir. The anthocyanin content was lower and the proportion of methoxylated anthocyanins and flavonols was higher in Pinot Noir grapes from OO, the warmer sub-region as compared to KE, the cooler sub-region. Our study demonstrates that both yeast populations and metabolites associated with the Pinot Noir variety have sub-regional variation within a viticultural area.
Collapse
Affiliation(s)
- Elaine Cheng
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jonathan T Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jonah Hamilton
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Garrett McCarthy
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Biology, The University of British Columbia, Kelowna, BC, Canada
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Vivien Measday
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
García-Ríos E, Guillamón JM. Sulfur dioxide resistance in Saccharomyces cerevisiae: beyond SSU1. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:527-530. [PMID: 31832424 PMCID: PMC6883346 DOI: 10.15698/mic2019.12.699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023]
Abstract
Sulfite resistance is an important oenological trait for wine yeasts because this compound is used during winemaking as a microbial inhibitor and antioxidant. The molecular mechanisms by which Saccharomyces cerevisiae responds and tolerates SO2 have been mainly focused on the sulfite efflux pump encoded by SSU1. Different chromosomal rearrangements in the regulatory region of this gene have been correlated with improved sulfite tolerance. However, other molecular factors must contribute to this trait because the SSU1 gene activity does not always fit with sulfite tolerance. An interesting approach to shed light onto this issue could be found by Lage et al. (2019). These authors have combined transcriptomic and genome-wide analysis to describe how the poorly characterized transcription factor Com2 controls, directly or indirectly, the expression of more than 80% of the genes activated by SO2. Additionally, large-scale phenotyping revealed the identification of 50 Com2-targets contributing to the protection against SO2. This information is very interesting for gaining knowledge regarding this important industrial trait.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
13
|
Langdon QK, Peris D, Baker EP, Opulente DA, Nguyen HV, Bond U, Gonçalves P, Sampaio JP, Libkind D, Hittinger CT. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat Ecol Evol 2019; 3:1576-1586. [PMID: 31636426 DOI: 10.1038/s41559-019-0998-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The most common fermented beverage, lager beer, is produced by interspecies hybrids of the brewing yeast Saccharomyces cerevisiae and its wild relative S. eubayanus. Lager-brewing yeasts are not the only example of hybrid vigour or heterosis in yeasts, but the full breadth of interspecies hybrids associated with human fermentations has received less attention. Here we present a comprehensive genomic analysis of 122 Saccharomyces hybrids and introgressed strains. These strains arose from hybridization events between two to four species. Hybrids with S. cerevisiae contributions originated from three lineages of domesticated S. cerevisiae, including the major wine-making lineage and two distinct brewing lineages. In contrast, the undomesticated parents of these interspecies hybrids were all from wild Holarctic or European lineages. Most hybrids have inherited a mitochondrial genome from a parent other than S. cerevisiae, which recent functional studies suggest could confer adaptation to colder temperatures. A subset of hybrids associated with crisp flavour profiles, including both lineages of lager-brewing yeasts, have inherited inactivated S. cerevisiae alleles of critical phenolic off-flavour genes and/or lost functional copies from the wild parent through multiple genetic mechanisms. These complex hybrids shed light on the convergent and divergent evolutionary trajectories of interspecies hybrids and their impact on innovation in lager brewing and other diverse fermentation industries.
Collapse
Affiliation(s)
- Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, CSIC, Valencia, Spain
| | - EmilyClare P Baker
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA. .,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA. .,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
García-Ríos E, Nuévalos M, Barrio E, Puig S, Guillamón JM. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite. Environ Microbiol 2019; 21:1771-1781. [PMID: 30859719 DOI: 10.1111/1462-2920.14586] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 03/06/2019] [Indexed: 11/27/2022]
Abstract
Sulfite-generating compounds are widely used during winemaking as preservatives because of its antimicrobial and antioxidant properties. Thus, wine yeast strains have developed different genetic strategies to increase its sulfite resistance. The most efficient sulfite detoxification mechanism in Saccharomyces cerevisiae uses a plasma membrane protein called Ssu1 to efflux sulfite. In wine yeast strains, two chromosomal translocations (VIIItXVI and XVtXVI) involving the SSU1 promoter region have been shown to upregulate SSU1 expression and, as a result, increase sulfite tolerance. In this study, we have identified a novel chromosomal rearrangement that triggers wine yeast sulfite adaptation. An inversion in chromosome XVI (inv-XVI) probably due to sequence microhomology, which involves SSU1 and GCR1 regulatory regions, increases the expression of SSU1 and the sulfite resistance of a commercial wine yeast strain. A detailed dissection of this chimeric SSU1 promoter indicates that both the removed SSU1 promoter sequence and the relocated GCR1 sequence contribute to SSU1 upregulation and sulfite tolerance. However, no relevant function has been attributed to the SSU1-promoter-binding transcription factor Fzf1. These results unveil a new genomic event that confers an evolutive advantage to wine yeast strains.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| | - Marcos Nuévalos
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain.,Departament de Genètica, Universitat de València, Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| |
Collapse
|
15
|
Drumonde-Neves J, Franco-Duarte R, Vieira E, Mendes I, Lima T, Schuller D, Pais C. Differentiation of Saccharomyces cerevisiae populations from vineyards of the Azores Archipelago: Geography vs Ecology. Food Microbiol 2018; 74:151-162. [DOI: 10.1016/j.fm.2018.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
|
16
|
Morrison-Whittle P, Goddard MR. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environ Microbiol 2017; 20:75-84. [PMID: 29052965 DOI: 10.1111/1462-2920.13960] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/12/2017] [Indexed: 11/30/2022]
Abstract
Humans have been making wine for thousands of years and microorganisms play an integral part in this process as they not only drive fermentation, but also significantly influence the flavour, aroma and quality of finished wines. Since fruits are ephemeral, they cannot comprise a permanent microbial habitat; thus, an age-old unanswered question concerns the origin of fruit and ferment associated microbes. Here we use next-generation sequencing approaches to examine and quantify the roles of native forest, vineyard soil, bark and fruit habitats as sources of fungal diversity in ferments. We show that microbial communities in harvested juice and ferments vary significantly across regions, and that while vineyard fungi account for ∼40% of the source of this diversity, uncultivated ecosystems outside of vineyards also prove a significant source. We also show that while communities in harvested juice resemble those found on grapes, these increasingly resemble fungi present on vine bark as the ferment proceeds.
Collapse
Affiliation(s)
- Peter Morrison-Whittle
- The School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Matthew R Goddard
- The School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand.,School of Life Sciences and Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN6 7DL, UK
| |
Collapse
|