1
|
Lopez-Barbera A, Abasolo N, Torrell H, Canela N, Fernández-Arroyo S. Integrative Transcriptomic and Target Metabolite Analysis as a New Tool for Designing Metabolic Engineering in Yeast. Biomolecules 2024; 14:1536. [PMID: 39766243 PMCID: PMC11673430 DOI: 10.3390/biom14121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Precision fermentation processes, especially when using edited microorganisms, demand accuracy in the bioengineering process to maximize the desired outcome and to avoid adverse effects. The selection of target sites to edit using CRISPR/Cas9 can be complex, resulting in non-controlled consequences. Therefore, the use of multi-omics strategies can help in the design, selection and efficiency of genetic editing. In this study, we present a multi-omics approach based on targeted metabolite analysis and transcriptomics for the designing of CRISPR/Cas9 in baker's yeast as a more efficient strategy to select editing regions. Multi-omics shows potential to reveal new metabolic bottlenecks and to elucidate new metabolic fluxes, which could be a key factor in minimizing the metabolic burden in edited microorganisms. In our model, we focus our attention on the isoprenoid synthesis due to their industrial interest. Targeted metabolite detection combined with a transcriptomic analysis revealed hydroxymethylglutaryl-CoA reductases (HMGs) as the best target gene to induce an increase in isoprenoid synthesis. Thus, an extra copy of HMG1 was introduced using, for the first time, the synthetic UADH1 promoter. The multi-omics analysis of the recombinant strain results in an accurate assessment of yeast behavior during the most important growth phases, highlighting the metabolic burden, Crabtree effect or the diauxic shift during culture.
Collapse
Affiliation(s)
| | | | | | | | - Salvador Fernández-Arroyo
- Centre for Omic Sciences, Eurecat, Centre Tecnològic de Catalunya, Joint Unit Eurecat—Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (A.L.-B.); (N.C.)
| |
Collapse
|
2
|
Cohen A, Lubenski L, Mouzon A, Kupiec M, Weisman R. TORC2 is required for the accumulation of γH2A in response to DNA damage. J Biol Chem 2024; 300:107531. [PMID: 38971312 PMCID: PMC11321321 DOI: 10.1016/j.jbc.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
TOR protein kinases serve as the catalytic subunit of the TORC1 and TORC2 complexes, which regulate cellular growth, proliferation, and survival. In the fission yeast, Schizosaccharomyces pombe, cells lacking TORC2 or its downstream kinase Gad8 (AKT or SGK1 in human cells) exhibit sensitivity to a wide range of stress conditions, including DNA damage stress. One of the first responses to DNA damage is the phosphorylation of C-terminal serine residues within histone H2AX in human cells (γH2AX), or histone H2A in yeast cells (γH2A). The kinases responsible for γH2A in S. pombe are the two DNA damage checkpoint kinases Rad3 and Tel1 (ATR and ATM, respectively, in human cells). Here we report that TORC2-Gad8 signaling is required for accumulation of γH2A in response to DNA damage and during quiescence. Using the TOR-specific inhibitor, Torin1, we demonstrate that the effect of TORC2 on γH2A in response to DNA damage is immediate, rather than adaptive. The lack of γH2A is restored by deletion mutations of transcription and chromatin modification factors, including loss of components of Paf1C, SAGA, Mediator, and the bromo-domain proteins Bdf1/Bdf2. Thus, we suggest that TORC2-Gad8 may affect the accumulation of γH2A by regulating chromatin structure and function.
Collapse
Affiliation(s)
- Adiel Cohen
- Department of Natural Sciences, The Open University of Israel, Ranana, Israel
| | - Lea Lubenski
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ava Mouzon
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural Sciences, The Open University of Israel, Ranana, Israel.
| |
Collapse
|
3
|
Joli N, Concia L, Mocaer K, Guterman J, Laude J, Guerin S, Sciandra T, Bruyant F, Ait-Mohamed O, Beguin M, Forget MH, Bourbousse C, Lacour T, Bailleul B, Nef C, Savoie M, Tremblay JE, Campbell DA, Lavaud J, Schwab Y, Babin M, Bowler C. Hypometabolism to survive the long polar night and subsequent successful return to light in the diatom Fragilariopsis cylindrus. THE NEW PHYTOLOGIST 2024; 241:2193-2208. [PMID: 38095198 DOI: 10.1111/nph.19387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 02/09/2024]
Abstract
Diatoms, the main eukaryotic phytoplankton of the polar marine regions, are essential for the maintenance of food chains specific to Arctic and Antarctic ecosystems, and are experiencing major disturbances under current climate change. As such, it is fundamental to understand the physiological mechanisms and associated molecular basis of their endurance during the long polar night. Here, using the polar diatom Fragilariopsis cylindrus, we report an integrative analysis combining transcriptomic, microscopic and biochemical approaches to shed light on the strategies used to survive the polar night. We reveal that in prolonged darkness, diatom cells enter a state of quiescence with reduced metabolic and transcriptional activity, during which no cell division occurs. We propose that minimal energy is provided by respiration and degradation of protein, carbohydrate and lipid stores and that homeostasis is maintained by autophagy in prolonged darkness. We also report internal structural changes that manifest the morphological acclimation of cells to darkness, including the appearance of a large vacuole. Our results further show that immediately following a return to light, diatom cells are able to use photoprotective mechanisms and rapidly resume photosynthesis, demonstrating the remarkable robustness of polar diatoms to prolonged darkness at low temperature.
Collapse
Affiliation(s)
- Nathalie Joli
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Lorenzo Concia
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Karel Mocaer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) & Collaboration for Joint PhD Degree between the European Molecular Biology Laboratory and the Heidelberg University, Faculty of Biosciences, 69117, Heidelberg, Germany
| | - Julie Guterman
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Juliette Laude
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Sebastien Guerin
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Theo Sciandra
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Flavienne Bruyant
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Ouardia Ait-Mohamed
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Marine Beguin
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marie-Helene Forget
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Clara Bourbousse
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Thomas Lacour
- Laboratoire PHYSiologie des micro ALGues (PDG-ODE-PHYTOX-PHYSALG), Centre Atlantique, 44 311, Nantes, France
| | - Benjamin Bailleul
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, Institut de Biologie Physico Chimique, CNRS, Sorbonne Université, Paris, 75005, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Mireille Savoie
- Département de Biologie, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | | | - Johann Lavaud
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
- UMR 6539 LEMAR-Laboratory of Environmental Marine Sciences, CNRS/Univ Brest/Ifremer/IRD, IUEM-Institut Européen de la Mer, Technopôle Brest-Iroise, rue Dumont d'Urville, 29280, Plouzané, France
| | - Yannick Schwab
- Cell Biology and Biophysics Unit and Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Marcel Babin
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| |
Collapse
|
4
|
Arcangioli B, Gangloff S. The Fission Yeast Mating-Type Switching Motto: "One-for-Two" and "Two-for-One". Microbiol Mol Biol Rev 2023; 87:e0000821. [PMID: 36629411 PMCID: PMC10029342 DOI: 10.1128/mmbr.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Schizosaccharomyces pombe is an ascomycete fungus that divides by medial fission; it is thus commonly referred to as fission yeast, as opposed to the distantly related budding yeast Saccharomyces cerevisiae. The reproductive lifestyle of S. pombe relies on an efficient genetic sex determination system generating a 1:1 sex ratio and using alternating haploid/diploid phases in response to environmental conditions. In this review, we address how one haploid cell manages to generate two sister cells with opposite mating types, a prerequisite to conjugation and meiosis. This mating-type switching process depends on two highly efficient consecutive asymmetric cell divisions that rely on DNA replication, repair, and recombination as well as the structure and components of heterochromatin. We pay special attention to the intimate interplay between the genetic and epigenetic partners involved in this process to underscore the importance of basic research and its profound implication for a better understanding of chromatin biology.
Collapse
Affiliation(s)
- Benoît Arcangioli
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
| | - Serge Gangloff
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
- UMR3525, Genetics of Genomes, CNRS-Pasteur Institute, Paris, France
| |
Collapse
|
5
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Daignan-Fornier B, Laporte D, Sagot I. Quiescence Through the Prism of Evolution. Front Cell Dev Biol 2021; 9:745069. [PMID: 34778256 PMCID: PMC8586652 DOI: 10.3389/fcell.2021.745069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
Being able to reproduce and survive is fundamental to all forms of life. In primitive unicellular organisms, the emergence of quiescence as a reversible proliferation arrest has most likely improved cell survival under unfavorable environmental conditions. During evolution, with the repeated appearances of multicellularity, several aspects of unicellular quiescence were conserved while new quiescent cell intrinsic abilities arose. We propose that the formation of a microenvironment by neighboring cells has allowed disconnecting quiescence from nutritional cues. In this new context, non-proliferative cells can stay metabolically active, potentially authorizing the emergence of new quiescent cell properties, and thereby favoring cell specialization. Through its co-evolution with cell specialization, quiescence may have been a key motor of the fascinating diversity of multicellular complexity.
Collapse
|
7
|
Matsui K, Okamoto K, Hasegawa T, Ohtsuka H, Shimasaki T, Ihara K, Goto Y, Aoki K, Aiba H. Identification of ksg1 mutation showing long-lived phenotype in fission yeast. Genes Cells 2021; 26:967-978. [PMID: 34534388 DOI: 10.1111/gtc.12897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Fission yeast is a good model organism for the study of lifespan. To elucidate the mechanism, we screened for long-lived mutants. We found a nonsense mutation in the ksg1+ gene, which encodes an ortholog of mammalian PDK1 (phosphoinositide-dependent protein kinase). The mutation was in the PH domain of Ksg1 and caused defect in membrane localization and protein stability. Analysis of the ksg1 mutant revealed that the reduced amounts and/or activity of the Ksg1 protein are responsible for the increased lifespan. Ksg1 is essential for growth and known to phosphorylate multiple substrates, but the substrate responsible for the long-lived phenotype of ksg1 mutation is not yet known. Genetic analysis showed that deletion of pck2 suppressed the long-lived phenotype of ksg1 mutant, suggesting that Pck2 might be involved in the lifespan extension caused by ksg1 mutation.
Collapse
Affiliation(s)
- Kotaro Matsui
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Keisuke Okamoto
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tomoka Hasegawa
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Yuhei Goto
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Aichi, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Shoemaker WR, Polezhaeva E, Givens KB, Lennon JT. Molecular Evolutionary Dynamics of Energy Limited Microorganisms. Mol Biol Evol 2021; 38:4532-4545. [PMID: 34255090 PMCID: PMC8476154 DOI: 10.1093/molbev/msab195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Microorganisms have the unique ability to survive extended periods of time in environments with extremely low levels of exploitable energy. To determine the extent that energy limitation affects microbial evolution, we examined the molecular evolutionary dynamics of a phylogenetically diverse set of taxa over the course of 1,000 days. We found that periodic exposure to energy limitation affected the rate of molecular evolution, the accumulation of genetic diversity, and the rate of extinction. We then determined the degree that energy limitation affected the spectrum of mutations as well as the direction of evolution at the gene level. Our results suggest that the initial depletion of energy altered the direction and rate of molecular evolution within each taxon, though after the initial depletion the rate and direction did not substantially change. However, this consistent pattern became diminished when comparisons were performed across phylogenetically distant taxa, suggesting that while the dynamics of molecular evolution under energy limitation are highly generalizable across the microbial tree of life, the targets of adaptation are specific to a given taxon.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USACurrent affiliation
| | | | - Kenzie B Givens
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USACurrent affiliation
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
9
|
Sun S, Gresham D. Cellular quiescence in budding yeast. Yeast 2021; 38:12-29. [PMID: 33350503 DOI: 10.1002/yea.3545] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cellular quiescence, the temporary and reversible exit from proliferative growth, is the predominant state of all cells. However, our understanding of the biological processes and molecular mechanisms that underlie cell quiescence remains incomplete. As with the mitotic cell cycle, budding and fission yeast are preeminent model systems for studying cellular quiescence owing to their rich experimental toolboxes and the evolutionary conservation across eukaryotes of pathways and processes that control quiescence. Here, we review current knowledge of cell quiescence in budding yeast and how it pertains to cellular quiescence in other organisms, including multicellular animals. Quiescence entails large-scale remodeling of virtually every cellular process, organelle, gene expression, and metabolic state that is executed dynamically as cells undergo the initiation, maintenance, and exit from quiescence. We review these major transitions, our current understanding of their molecular bases, and highlight unresolved questions. We summarize the primary methods employed for quiescence studies in yeast and discuss their relative merits. Understanding cell quiescence has important consequences for human disease as quiescent single-celled microbes are notoriously difficult to kill and quiescent human cells play important roles in diseases such as cancer. We argue that research on cellular quiescence will be accelerated through the adoption of common criteria, and methods, for defining cell quiescence. An integrated approach to studying cell quiescence, and a focus on the behavior of individual cells, will yield new insights into the pathways and processes that underlie cell quiescence leading to a more complete understanding of the life cycle of cells. TAKE AWAY: Quiescent cells are viable cells that have reversibly exited the cell cycle Quiescence is induced in response to a variety of nutrient starvation signals Quiescence is executed dynamically through three phases: initiation, maintenance, and exit Quiescence entails large-scale remodeling of gene expression, organelles, and metabolism Single-cell approaches are required to address heterogeneity among quiescent cells.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| | - David Gresham
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| |
Collapse
|
10
|
Sudharshan SJ, Dyavaiah M. Astaxanthin protects oxidative stress mediated DNA damage and enhances longevity in Saccharomyces cerevisiae. Biogerontology 2020; 22:81-100. [PMID: 33108581 DOI: 10.1007/s10522-020-09904-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Reactive oxygen species (ROS) have long been found to play an important role in oxidative mediated DNA damage. Fortunately, cells possess an antioxidant system that can neutralize ROS. However, oxidative stress occurs when antioxidants are overwhelmed by ROS or impaired antioxidant pathways. This study was carried out to find the protective effect of astaxanthin on the yeast DNA repair-deficient mutant cells under hydrogen peroxide stress. The results showed that astaxanthin enhances the percent cell growth of rad1∆, rad51∆, apn1∆, apn2∆ and ogg1∆ cells. Further, the spot test and colony-forming unit count results confirmed that astaxanthin protects DNA repair mutant cells from oxidative stress. The DNA binding property of astaxanthin studied by in silico and in vitro methods indicated that astaxanthin binds to the DNA in the major and minor groove, and that might protect DNA against oxidative stress induced by Fenton's reagent. The intracellular ROS, 8-OHdG level and the DNA fragmentation as measured by comet tail was reduced by astaxanthin under oxidative stress. Similarly, reduced nuclear fragmentation and chromatin condensation results suggest that astaxanthin might reduce apoptosis. Finally, we show that astaxanthin decreases the accumulation of mutation rate and enhances the longevity of DNA repair-deficient mutants' cells during a chronological lifespan.
Collapse
Affiliation(s)
- S J Sudharshan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India.
| |
Collapse
|
11
|
Homchan A, Sukted J, Mongkolsuk S, Jeruzalmi D, Matangkasombut O, Pakotiprapha D. Wss1 homolog from Candida albicans and its role in DNA-protein crosslink tolerance. Mol Microbiol 2020; 114:409-422. [PMID: 32302440 DOI: 10.1111/mmi.14518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Candida albicans is an opportunistic yeast that can cause life-threatening systemic infection in immunocompromised individuals. During infections, C. albicans has to cope with genotoxic stresses generated by the host immune system. DNA-protein crosslink (DPC), the covalent linkage of proteins with DNA, is one type of DNA damages that can be caused by the host immune response. DPCs are bulky lesions that interfere with the progression of replication and transcription machineries, and hence threaten genomic integrity. Accordingly, either a DPC tolerance mechanism or a DPC repair pathway is essential for C. albicans to maintain genomic stability and survive in the host. Here, we identified Wss1 (weak suppressor of Smt3) in C. albicans (CaWss1) using bioinformatics, genetic complementation, and biochemical studies. We showed that CaWss1 promotes cell survival under genotoxic stress conditions that generate DPCs and that the catalytic metalloprotease domain of CaWss1 is essential for its cellular function. Interactions of CaWss1 with Cdc48 and small ubiquitin-like modifier, although not strictly required, contribute to the function of CaWss1 in the suppression of the growth defects under DPC-inducing conditions. This report is the first investigation of the role of CaWss1 in DPC tolerance in C. albicans.
Collapse
Affiliation(s)
- Aimorn Homchan
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Juthamas Sukted
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, USA.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Oranart Matangkasombut
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Long LJ, Lee PH, Small EM, Hillyer C, Guo Y, Osley MA. Regulation of UV damage repair in quiescent yeast cells. DNA Repair (Amst) 2020; 90:102861. [PMID: 32403026 DOI: 10.1016/j.dnarep.2020.102861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022]
Abstract
Non-growing quiescent cells face special challenges when repairing lesions produced by exogenous DNA damaging agents. These challenges include the global repression of transcription and translation and a compacted chromatin structure. We investigated how quiescent yeast cells regulated the repair of DNA lesions produced by UV irradiation. We found that UV lesions were excised and repaired in quiescent cells before their re-entry into S phase, and that lesion repair was correlated with high levels of Rad7, a recognition factor in the global genome repair sub-pathway of nucleotide excision repair (GGR-NER). UV exposure led to an increased frequency of mutations that included C->T transitions and T > A transversions. Mutagenesis was dependent on the error-prone translesion synthesis (TLS) DNA polymerase, Pol zeta, which was the only DNA polymerase present in detectable levels in quiescent cells. Across the genome of quiescent cells, UV-induced mutations showed an association with exons that contained H3K36 or H3K79 trimethylation but not with those bound by RNA polymerase II. Together, the data suggest that the distinct physiological state and chromatin structure of quiescent cells contribute to its regulation of UV damage repair.
Collapse
Affiliation(s)
- Lindsey J Long
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Po-Hsuen Lee
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Eric M Small
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Cory Hillyer
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Yan Guo
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
13
|
Nitrogen starvation reveals the mitotic potential of mutants in the S/MAPK pathways. Nat Commun 2020; 11:1973. [PMID: 32332728 PMCID: PMC7181643 DOI: 10.1038/s41467-020-15880-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
The genetics of quiescence is an emerging field compared to that of growth, yet both states generate spontaneous mutations and genetic diversity fueling evolution. Reconciling mutation rates in dividing conditions and mutation accumulation as a function of time in non-dividing situations remains a challenge. Nitrogen-starved fission yeast cells reversibly arrest proliferation, are metabolically active and highly resistant to a variety of stresses. Here, we show that mutations in stress- and mitogen-activated protein kinase (S/MAPK) signaling pathways are enriched in aging cultures. Targeted resequencing and competition experiments indicate that these mutants arise in the first month of quiescence and expand clonally during the second month at the expense of the parental population. Reconstitution experiments show that S/MAPK modules mediate the sacrifice of many cells for the benefit of some mutants. These findings suggest that non-dividing conditions promote genetic diversity to generate a social cellular environment prone to kin selection. Nitrogen-starved fission yeast cells survive for weeks without dividing. Here, the authors show that some of these surviving cells accumulate mutations in the stress- and mitogen-activated protein kinase pathways and outcompete their parental cells, which provide nutrients for the mutant cells.
Collapse
|
14
|
Moreno AD, González-Fernández C, Ballesteros M, Tomás-Pejó E. Insoluble solids at high concentrations repress yeast's response against stress and increase intracellular ROS levels. Sci Rep 2019; 9:12236. [PMID: 31439886 PMCID: PMC6706384 DOI: 10.1038/s41598-019-48733-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/09/2019] [Indexed: 11/09/2022] Open
Abstract
Lignocellulosic ethanol production requires high substrate concentrations for its cost-competitiveness. This implies the presence of high concentrations of insoluble solids (IS) at the initial stages of the process, which may limit the fermentation performance of the corresponding microorganism. The presence of 40-60% IS (w/w) resulted in lower glucose consumption rates and reduced ethanol volumetric productivities of Saccharomyces cerevisiae F12. Yeast cells exposed to IS exhibited a wrinkled cell surface and a reduced mean cell size due to cavity formation. In addition, the intracellular levels of reactive oxygen species (ROS) increased up to 40%. These ROS levels increased up to 70% when both lignocellulose-derived inhibitors and IS were simultaneously present. The general stress response mechanisms (e.g. DDR2, TPS1 or ZWF1 genes, trehalose and glycogen biosynthesis, and DNA repair mechanisms) were found repressed, and ROS formation could not be counteracted by the induction of the genes involved in repairing the oxidative damage such as glutathione, thioredoxin and methionine scavenging systems (e.g. CTA1, GRX4, MXR1, and TSA1; and the repression of cell cycle progression, CLN3). Overall, these results clearly show the role of IS as an important microbial stress factor that affect yeast cells at physical, physiological, and molecular levels.
Collapse
Affiliation(s)
- Antonio D Moreno
- CIEMAT, Department of Energy, Biofuels Unit, 28040, Madrid, Spain.
| | | | - Mercedes Ballesteros
- CIEMAT, Department of Energy, Biofuels Unit, 28040, Madrid, Spain
- IMDEA Energy Institute, Biotechnological Processes Unit, 28935, Móstoles, Spain
| | - Elia Tomás-Pejó
- IMDEA Energy Institute, Biotechnological Processes Unit, 28935, Móstoles, Spain.
| |
Collapse
|
15
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
16
|
Sagot I, Laporte D. The cell biology of quiescent yeast – a diversity of individual scenarios. J Cell Sci 2019; 132:132/1/jcs213025. [DOI: 10.1242/jcs.213025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Most cells, from unicellular to complex organisms, spend part of their life in quiescence, a temporary non-proliferating state. Although central for a variety of essential processes including tissue homeostasis, development and aging, quiescence is poorly understood. In fact, quiescence encompasses various cellular situations depending on the cell type and the environmental niche. Quiescent cell properties also evolve with time, adding another layer of complexity. Studying quiescence is, above all, limited by the fact that a quiescent cell can be recognized as such only after having proved that it is capable of re-proliferating. Recent cellular biology studies in yeast have reported the relocalization of hundreds of proteins and the reorganization of several cellular machineries upon proliferation cessation. These works have revealed that quiescent cells can display various properties, shedding light on a plethora of individual behaviors. The deciphering of the molecular mechanisms beyond these reorganizations, together with the understanding of their cellular functions, have begun to provide insights into the physiology of quiescent cells. In this Review, we discuss recent findings and emerging concepts in Saccharomyces cerevisiae quiescent cell biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| |
Collapse
|
17
|
Chin SF, Megat Mohd Azlan PIH, Mazlan L, Neoh HM. Identification of Schizosaccharomyces pombe in the guts of healthy individuals and patients with colorectal cancer: preliminary evidence from a gut microbiome secretome study. Gut Pathog 2018; 10:29. [PMID: 30008808 PMCID: PMC6040075 DOI: 10.1186/s13099-018-0258-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/03/2018] [Indexed: 12/01/2022] Open
Abstract
Over the years, genetic profiling of the gut microbiome of patients with colorectal cancer (CRC) using genome sequencing has suggested over-representation of several bacterial taxa. However, little is known about the protein or metabolite secretions from the microbiota that could lead to CRC pathology. Proteomic studies on the role of microbial secretome in CRC are relatively rare. Here, we report the identification of proteins from Schizosaccharomyces pombe found in the stool samples of both healthy individuals and patients with CRC. We found that distinctive sets of S. pombe proteins were present exclusively and in high intensities in each group. Our finding may trigger a new interest in the role of gut mycobiota in carcinogenesis.
Collapse
Affiliation(s)
- Siok-Fong Chin
- 1UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | | | - Luqman Mazlan
- 2Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Hui-Min Neoh
- 1UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Gangloff S, Achaz G, Francesconi S, Villain A, Miled S, Denis C, Arcangioli B. Quiescence unveils a novel mutational force in fission yeast. eLife 2017; 6. [PMID: 29252184 PMCID: PMC5734874 DOI: 10.7554/elife.27469] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 12/02/2017] [Indexed: 12/18/2022] Open
Abstract
To maintain life across a fluctuating environment, cells alternate between phases of cell division and quiescence. During cell division, the spontaneous mutation rate is expressed as the probability of mutations per generation (Luria and Delbrück, 1943; Lea and Coulson, 1949), whereas during quiescence it will be expressed per unit of time. In this study, we report that during quiescence, the unicellular haploid fission yeast accumulates mutations as a linear function of time. The novel mutational landscape of quiescence is characterized by insertion/deletion (indels) accumulating as fast as single nucleotide variants (SNVs), and elevated amounts of deletions. When we extended the study to 3 months of quiescence, we confirmed the replication-independent mutational spectrum at the whole-genome level of a clonally aged population and uncovered phenotypic variations that subject the cells to natural selection. Thus, our results support the idea that genomes continuously evolve under two alternating phases that will impact on their size and composition.
Collapse
Affiliation(s)
- Serge Gangloff
- Genomes and Genetics, Institut Pasteur, Paris, France.,UMR 3525, CNRS-Institut Pasteur, Paris, France
| | - Guillaume Achaz
- ISYEB UMR7505 CNRS MNHN UPMC EPHE CIRB UMR 7241 CNRS Collège de France INSERM, UPMC, Paris, France
| | - Stefania Francesconi
- Genomes and Genetics, Institut Pasteur, Paris, France.,UMR 3525, CNRS-Institut Pasteur, Paris, France
| | | | - Samia Miled
- Genomes and Genetics, Institut Pasteur, Paris, France.,UMR 3525, CNRS-Institut Pasteur, Paris, France
| | - Claire Denis
- Genomes and Genetics, Institut Pasteur, Paris, France.,UMR 3525, CNRS-Institut Pasteur, Paris, France
| | - Benoit Arcangioli
- Genomes and Genetics, Institut Pasteur, Paris, France.,UMR 3525, CNRS-Institut Pasteur, Paris, France
| |
Collapse
|
19
|
Abstract
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases: RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other eukaryotes and mammalian systems, in particular stem cells.
Collapse
Affiliation(s)
- Benjamin Roche
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoit Arcangioli
- b Genome Dynamics Unit , UMR 3525 CNRS, Institut Pasteur, 25-28 rue du Docteur Roux , Paris , France
| | - Robert Martienssen
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute-Gordon and Betty Moore Foundation (HHMI-GBM) Investigator , NY , USA
| |
Collapse
|