1
|
Gorczyca M, Korpys-Woźniak P, Celińska E. An Interplay between Transcription Factors and Recombinant Protein Synthesis in Yarrowia lipolytica at Transcriptional and Functional Levels-The Global View. Int J Mol Sci 2024; 25:9450. [PMID: 39273402 PMCID: PMC11395014 DOI: 10.3390/ijms25179450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional regulatory networks (TRNs) associated with recombinant protein (rProt) synthesis in Yarrowia lipolytica are still under-described. Yet, it is foreseen that skillful manipulation with TRNs would enable global fine-tuning of the host strain's metabolism towards a high-level-producing phenotype. Our previous studies investigated the transcriptomes of Y. lipolytica strains overproducing biochemically different rProts and the functional impact of transcription factors (TFs) overexpression (OE) on rProt synthesis capacity in this species. Hence, much knowledge has been accumulated and deposited in public repositories. In this study, we combined both biological datasets and enriched them with further experimental data to investigate an interplay between TFs and rProts synthesis in Y. lipolytica at transcriptional and functional levels. Technically, the RNAseq datasets were extracted and re-analyzed for the TFs' expression profiles. Of the 140 TFs in Y. lipolytica, 87 TF-encoding genes were significantly deregulated in at least one of the strains. The expression profiles were juxtaposed against the rProt amounts from 125 strains co-overexpressing TF and rProt. In addition, several strains bearing knock-outs (KOs) in the TF loci were analyzed to get more insight into their actual involvement in rProt synthesis. Different profiles of the TFs' transcriptional deregulation and the impact of their OE or KO on rProts synthesis were observed, and new engineering targets were pointed.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| | - Paulina Korpys-Woźniak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
2
|
Celińska E, Gorczyca M. 'Small volume-big problem': culturing Yarrowia lipolytica in high-throughput micro-formats. Microb Cell Fact 2024; 23:184. [PMID: 38915032 PMCID: PMC11197222 DOI: 10.1186/s12934-024-02465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
With the current progress in the 'design' and 'build' stages of the 'design-build-test-learn' cycle, many synthetic biology projects become 'test-limited'. Advances in the parallelization of microbes cultivations are of great aid, however, for many species down-scaling leaves a metabolic footprint. Yarrowia lipolytica is one such demanding yeast species, for which scaling-down inevitably leads to perturbations in phenotype development. Strictly aerobic metabolism, propensity for filamentation and adhesion to hydrophobic surfaces, spontaneous flocculation, and high acidification of media are just several characteristics that make the transfer of the micro-scale protocols developed for the other microbial species very challenging in this case. It is well recognized that without additional 'personalized' optimization, either MTP-based or single-cell-based protocols are useless for accurate studies of Y. lipolytica phenotypes. This review summarizes the progress in the scaling-down and parallelization of Y. lipolytica cultures, highlighting the challenges that occur most frequently and strategies for their overcoming. The problem of Y. lipolytica cultures down-scaling is illustrated by calculating the costs of micro-cultivations, and determining the unintentionally introduced, thus uncontrolled, variables. The key research into culturing Y. lipolytica in various MTP formats and micro- and pico-bioreactors is discussed. Own recently developed and carefully pre-optimized high-throughput cultivation protocol is presented, alongside the details from the optimization stage. We hope that this work will serve as a practical guide for those working with Y. lipolytica high-throughput screens.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60‑637, Poznań, Poland.
| | - Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60‑637, Poznań, Poland
| |
Collapse
|
3
|
Gorczyca M, Białas W, Nicaud JM, Celińska E. 'Mother(Nature) knows best' - hijacking nature-designed transcriptional programs for enhancing stress resistance and protein production in Yarrowia lipolytica; presentation of YaliFunTome database. Microb Cell Fact 2024; 23:26. [PMID: 38238843 PMCID: PMC10797999 DOI: 10.1186/s12934-023-02285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism-Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities-stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion. RESULTS Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors-transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog - the YaliFunTome database ( https://sparrow.up.poznan.pl/tsdatabase/ )-to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision. CONCLUSIONS All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
4
|
Gorczyca M, Nicaud JM, Celińska E. Transcription factors enhancing synthesis of recombinant proteins and resistance to stress in Yarrowia lipolytica. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12607-z. [PMID: 37318637 DOI: 10.1007/s00253-023-12607-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Resistance to environmental stress and synthesis of recombinant proteins (r-Prots) are both complex, strongly interconnected biological traits relying on orchestrated contribution of multiple genes. This, in turn, makes their engineering a challenging task. One of the possible strategies is to modify the operation of transcription factors (TFs) associated with these complex traits. The aim of this study was to examine the potential implications of selected five TFs (HSF1-YALI0E13948g, GZF1-YALI0D20482g, CRF1-YALI0B08206g, SKN7-YALI0D14520g, and YAP-like-YALI0D07744g) in stress resistance and/or r-Prot synthesis in Yarrowia lipolytica. The selected TFs were over-expressed or deleted (OE/KO) in a host strain synthesizing a reporter r-Prot. The strains were subjected to phenotype screening under different environmental conditions (pH, oxygen availability, temperature, and osmolality), and the obtained data processing was assisted by mathematical modeling. The results demonstrated that growth and the r-Prot yields under specific conditions can be significantly increased or decreased due to the TFs' engineering. Environmental factors "awakening" individual TFs were indicated, and their contribution was mathematically described. For example, OE of Yap-like TF was proven to alleviate growth retardation under high pH, while Gzf1 and Hsf1 were shown to serve as universal enhancers of r-Prot production in Y. lipolytica. On the other hand, KO of SKN7 and HSF1 disabled growth under hyperosmotic stress. This research demonstrates the usefulness of the TFs engineering approach in the manipulation of complex traits and evidences newly identified functions of the studied TFs. KEY POINTS: • Function and implication in complex traits of 5 TFs in Y. lipolytica were studied. • Gzf1 and Hsf1 are the universal r-Prots synthesis enhancers in Y. lipolytica. • Yap-like TF's activity is pH-dependent; Skn7 and Hsf1 act in osmostress response.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
5
|
Cao L, Li J, Yang Z, Hu X, Wang P. A review of synthetic biology tools in Yarrowia lipolytica. World J Microbiol Biotechnol 2023; 39:129. [PMID: 36944859 DOI: 10.1007/s11274-023-03557-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Yarrowia lipolytica is a non-conventional oleaginous yeast with great potential for industrial production. Y. lipolytica has a high propensity for flux through tricarboxylic acid cycle intermediates. Therefore, this host is currently being developed as a workhorse, and is rapidly emerging in biotechnology fields, especially for industrial chemical production, whole-cell bioconversion, and the treatment and recycling of industrial waste. In recent studies, Y. lipolytica has been rewritten and introduced with non-native metabolites of certain compounds of interest owing to the advancement in synthetic biology tools. In this review, we collate recent progress to present a detailed and insightful summary of the major developments in synthetic biology tools and techniques for Y. lipolytica, including promoters, terminators, selection markers, autonomously replicating sequences, DNA assembly techniques, genome editing techniques, and subcellular organelle engineering. This comprehensive overview would be a useful resource for future genetic engineering studies to improve the yield of desired metabolic products in Y. lipolytica.
Collapse
Affiliation(s)
- Linshan Cao
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jiajie Li
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Zihan Yang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xiao Hu
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Pengchao Wang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China.
- Northeast Forestry University, No. 26 Hexing Road, Harbin, 150000, People's Republic of China.
| |
Collapse
|
6
|
Wang J, Xu Y, Holic R, Yu X, Singer SD, Chen G. Improving the Production of Punicic Acid in Baker's Yeast by Engineering Genes in Acyl Channeling Processes and Adjusting Precursor Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9616-9624. [PMID: 34428902 DOI: 10.1021/acs.jafc.1c03256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Punicic acid (PuA) is a high-value edible conjugated fatty acid with strong bioactivities and has important potential applications in nutraceutical, pharmaceutical, feeding, and oleochemical industries. Since the production of PuA is severely limited by the fact that its natural source (pomegranate seed oil) is not readily available on a large scale, there is considerable interest in understanding the biosynthesis and accumulation of this plant-based unusual fatty acid in transgenic microorganisms to support the rational design of biotechnological approaches for PuA production via fermentation. Here, we tested the effectiveness of genetic engineering and precursor supply in PuA production in the model yeast strain Saccharomyces cerevisiae. The results revealed that the combination of precursor feeding and co-expression of selected genes in acyl channeling processes created an effective "push-pull" approach to increase PuA content, which could prove valuable in future efforts to produce PuA in industrial yeast and other microorganisms via fermentation.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Xiaochen Yu
- Diamond V, 2525 60th Avenue SW, Cedar Rapids, Iowa 52404, United States
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue South, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
7
|
Exploring Proteomes of Robust Yarrowia lipolytica Isolates Cultivated in Biomass Hydrolysate Reveals Key Processes Impacting Mixed Sugar Utilization, Lipid Accumulation, and Degradation. mSystems 2021; 6:e0044321. [PMID: 34342539 PMCID: PMC8407480 DOI: 10.1128/msystems.00443-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yarrowia lipolytica is an oleaginous yeast exhibiting robust phenotypes beneficial for industrial biotechnology. The phenotypic diversity found within the undomesticated Y. lipolytica clade from various origins illuminates desirable phenotypic traits not found in the conventional laboratory strain CBS7504 (or W29), which include xylose utilization, lipid accumulation, and growth on undetoxified biomass hydrolysates. Currently, the related phenotypes of lipid accumulation and degradation when metabolizing nonpreferred sugars (e.g., xylose) associated with biomass hydrolysates are poorly understood, making it difficult to control and engineer in Y. lipolytica. To fill this knowledge gap, we analyzed the genetic diversity of five undomesticated Y. lipolytica strains and identified singleton genes and genes exclusively shared by strains exhibiting desirable phenotypes. Strain characterizations from controlled bioreactor cultures revealed that the undomesticated strain YB420 used xylose to support cell growth and maintained high lipid levels, while the conventional strain CBS7504 degraded cell biomass and lipids when xylose was the sole remaining carbon source. From proteomic analysis, we identified carbohydrate transporters, xylose metabolic enzymes, and pentose phosphate pathway proteins stimulated during the xylose uptake stage for both strains. Furthermore, we distinguished proteins involved in lipid metabolism (e.g., lipase, NADPH generation, lipid regulators, and β-oxidation) activated by YB420 (lipid maintenance phenotype) or CBS7504 (lipid degradation phenotype) when xylose was the sole remaining carbon source. Overall, the results relate genetic diversity of undomesticated Y. lipolytica strains to complex phenotypes of superior growth, sugar utilization, lipid accumulation, and degradation in biomass hydrolysates. IMPORTANCE Yarrowia lipolytica is an important industrial oleaginous yeast due to its robust phenotypes for effective conversion of inhibitory lignocellulosic biomass hydrolysates into neutral lipids. While lipid accumulation has been well characterized in this organism, its interconnected lipid degradation phenotype is poorly understood during fermentation of biomass hydrolysates. Our investigation into the genetic diversity of undomesticated Y. lipolytica strains, coupled with detailed strain characterization and proteomic analysis, revealed metabolic processes and regulatory elements conferring desirable phenotypes for growth, sugar utilization, and lipid accumulation in undetoxified biomass hydrolysates by these natural variants. This study provides a better understanding of the robust metabolism of Y. lipolytica and suggests potential metabolic engineering strategies to enhance its performance.
Collapse
|
8
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|
9
|
Poorinmohammad N, Kerkhoven EJ. Systems-level approaches for understanding and engineering of the oleaginous cell factory Yarrowia lipolytica. Biotechnol Bioeng 2021; 118:3640-3654. [PMID: 34129240 DOI: 10.1002/bit.27859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/07/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Concerns about climate change and the search for renewable energy sources together with the goal of attaining sustainable product manufacturing have boosted the use of microbial platforms to produce fuels and high-value chemicals. In this regard, Yarrowia lipolytica has been known as a promising yeast with potentials in diverse array of biotechnological applications such as being a host for different oleochemicals, organic acid, and recombinant protein production. Having a rapidly increasing number of molecular and genetic tools available, Y. lipolytica has been well studied amongst oleaginous yeasts and metabolic engineering has been used to explore its potentials. More recently, with the advancement in systems biotechnology and the implementation of mathematical modeling and high throughput omics data-driven approaches, in-depth understanding of cellular mechanisms of cell factories have been made possible resulting in enhanced rational strain design. In case of Y. lipolytica, these systems-level studies and the related cutting-edge technologies have recently been initiated which is expected to result in enabling the biotechnology sector to rationally engineer Y. lipolytica-based cell factories with favorable production metrics. In this regard, here, we highlight the current status of systems metabolic engineering research and assess the potential of this yeast for future cell factory design development.
Collapse
Affiliation(s)
- Naghmeh Poorinmohammad
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Ramamurthy PC, Singh S, Kapoor D, Parihar P, Samuel J, Prasad R, Kumar A, Singh J. Microbial biotechnological approaches: renewable bioprocessing for the future energy systems. Microb Cell Fact 2021; 20:55. [PMID: 33653344 PMCID: PMC7923469 DOI: 10.1186/s12934-021-01547-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
The accelerating energy demands of the increasing global population and industrialization has become a matter of great concern all over the globe. In the present scenario, the world is witnessing a considerably huge energy crisis owing to the limited availability of conventional energy resources and rapid depletion of non-renewable fossil fuels. Therefore, there is a dire need to explore the alternative renewable fuels that can fulfil the energy requirements of the growing population and overcome the intimidating environmental issues like greenhouse gas emissions, global warming, air pollution etc. The use of microorganisms such as bacteria has captured significant interest in the recent era for the conversion of the chemical energy reserved in organic compounds into electrical energy. The versatility of the microorganisms to generate renewable energy fuels from multifarious biological and biomass substrates can abate these ominous concerns to a great extent. For instance, most of the microorganisms can easily transform the carbohydrates into alcohol. Establishing the microbial fuel technology as an alternative source for the generation of renewable energy sources can be a state of art technology owing to its reliability, high efficiency, cleanliness and production of minimally toxic or inclusively non-toxic byproducts. This review paper aims to highlight the key points and techniques used for the employment of bacteria to generate, biofuels and bioenergy, and their foremost benefits.
Collapse
Affiliation(s)
- Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore, India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab, India
| | - Parul Parihar
- Department of Botany, Lovely Professional University, Phagwara, Punjab, India
| | - Jastin Samuel
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India
- Waste Valorization Research Lab, Lovely Professional University, Phagwara, Punjab, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| | - Alok Kumar
- School of Plant Sciences, College of Agriculture and Environmental Sciences, Haramaya University, Box-138, Dire Dawa, Ethiopia.
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
11
|
Mamaev D, Zvyagilskaya R. Yarrowia lipolytica: a multitalented yeast species of ecological significance. FEMS Yeast Res 2021; 21:6141120. [PMID: 33595651 DOI: 10.1093/femsyr/foab008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Yarrowia lipolytica is characterized by GRAS (Generally regarded as safe) status, the versatile substrate utilization profile, rapid utilization rates, metabolic diversity and flexibility, the unique abilities to tolerate to extreme environments (acidic, alkaline, hypersaline, heavy metal-pollutions and others) and elevated biosynthesis and secreting capacities. These advantages of Y. lipolytica allow us to consider it as having great ecological significance. Unfortunately, there is still a paucity of relevant review data. This mini-review highlights ecological ubiquity of Y. lipolytica species, their ability to diversify and colonize specialized niches. Different Y. lipolytica strains, native and engineered, are beneficial in degrading many environmental pollutants causing serious ecological problems worldwide. In agriculture has a potential to be a bio-control agent by stimulating plant defense response, and an eco-friendly bio-fertilizer. Engineered strains of Y. lipolytica have become a very promising platform for eco-friendly production of biofuel, commodities, chemicals and secondary metabolites of plant origin, obtaining which by other method were limited or economically infeasible, or were accompanied by stringent environmental problems. Perspectives to use potential of Y. lipolytica's capacities for industrial scale production of valuable compounds in an eco-friendly manner are proposed.
Collapse
Affiliation(s)
- Dmitry Mamaev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| | - Renata Zvyagilskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| |
Collapse
|
12
|
Choi KR, Jiao S, Lee SY. Metabolic engineering strategies toward production of biofuels. Curr Opin Chem Biol 2020; 59:1-14. [DOI: 10.1016/j.cbpa.2020.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
|
13
|
Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica - A Review. BIORESOURCE TECHNOLOGY 2020; 313:123707. [PMID: 32595069 DOI: 10.1016/j.biortech.2020.123707] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Current energy security and climate change policies encourage the development and utilization of bioenergy. Oleaginous yeasts provide a particularly attractive platform for the sustainable production of biofuels and industrial chemicals due to their ability to accumulate high amounts of lipids. In particular, microbial lipids in the form of triacylglycerides (TAGs) produced from renewable feedstocks have attracted considerable attention because they can be directly used in the production of biodiesel and oleochemicals analogous to petrochemicals. As an oleaginous yeast that is generally regarded as safe, Yarrowia lipolytica has been extensively studied, with large amounts of data on its lipid metabolism, genetic tools, and genome sequencing and annotation. In this review, we highlight the newest strategies for increasing lipid accumulation using metabolic engineering and summarize the research advances on the overaccumulation of lipids in Y. lipolytica. Finally, perspectives for future engineering approaches are proposed.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
14
|
Engineering an oleaginous yeast Candida tropicalis SY005 for enhanced lipid production. Appl Microbiol Biotechnol 2020; 104:8399-8411. [DOI: 10.1007/s00253-020-10830-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022]
|
15
|
Konzock O, Norbeck J. Deletion of MHY1 abolishes hyphae formation in Yarrowia lipolytica without negative effects on stress tolerance. PLoS One 2020; 15:e0231161. [PMID: 32243483 PMCID: PMC7122783 DOI: 10.1371/journal.pone.0231161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need for development of sustainable production processes for production of fats/oils and lipid derived chemicals. The dimorphic oleaginous yeast Yarrowia lipolytica is a promising organism for conversion of biomass hydrolysate to lipids, but in many such processes hyphae formation will be problematic. We have therefore constructed and compared the performance of strains carrying deletions in several published gene targets suggested to abolish hyphae formation (MHY1, HOY1 and CLA4). The MHY1-deletion was the only of the tested strains which did not exhibit hyphae formation under any of the conditions tested. The MHY1-deletion also had a weak positive effect on lipid accumulation without affecting the total fatty acid composition, irrespective of the nitrogen source used. MHY1 has been suggested to constitute a functional homolog of the stress responsive transcription factors MSN2/4 in Saccharomyces cerevisiae, the deletion of which are highly stress sensitive. However, the deletion of MHY1 displayed only minor difference on survival of a range of acute or long term stress and starvation conditions. We conclude that the deletion of MHY1 in Y.lipolytica is a reliable way of abolishing hyphae formation with few detectable negative side effects regarding growth, stress tolerance and lipid accumulation and composition.
Collapse
Affiliation(s)
- Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Joakim Norbeck
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
16
|
Larroude M, Rossignol T, Nicaud JM, Ledesma-Amaro R. Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol Adv 2018; 36:2150-2164. [PMID: 30315870 PMCID: PMC6261845 DOI: 10.1016/j.biotechadv.2018.10.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/11/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
The non-conventional oleaginous yeast Yarrowia lipolytica shows great industrial promise. It naturally produces certain compounds of interest but can also artificially generate non-native metabolites, thanks to an engineering process made possible by the significant expansion of a dedicated genetic toolbox. In this review, we present recently developed synthetic biology tools that facilitate the manipulation of Y. lipolytica, including 1) DNA assembly techniques, 2) DNA parts for constructing expression cassettes, 3) genome-editing techniques, and 4) computational tools.
Collapse
Affiliation(s)
- M Larroude
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - T Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - J-M Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - R Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| |
Collapse
|