1
|
Pergel E, Tóth DJ, Baukál D, Veres I, Czirják G. The Ubiquitin Ligase Adaptor NDFIP1 Interacts with TRESK and Negatively Regulates the Background K + Current. Int J Mol Sci 2024; 25:8879. [PMID: 39201565 PMCID: PMC11355008 DOI: 10.3390/ijms25168879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The TRESK (K2P18.1, KCNK18) background potassium channel is expressed in primary sensory neurons and has been reported to contribute to the regulation of pain sensations. In the present study, we examined the interaction of TRESK with NDFIP1 (Nedd4 family-interacting protein 1) in the Xenopus oocyte expression system by two-electrode voltage clamp and biochemical methods. We showed that the coexpression of NDFIP1 abolished the TRESK current under the condition where the other K+ channels were not affected. Mutations in the three PPxY motifs of NDFIP1, which are responsible for the interaction with the Nedd4 ubiquitin ligase, prevented a reduction in the TRESK current. Furthermore, the overexpression of a dominant-negative Nedd4 construct in the oocytes coexpressing TRESK with NDFIP1 partially reversed the down-modulating effect of the adaptor protein on the K+ current. The biochemical data were also consistent with the functional results. An interaction between epitope-tagged versions of TRESK and NDFIP1 was verified by co-immunoprecipitation experiments. The coexpression of NDFIP1 with TRESK induced the ubiquitination of the channel protein. Altogether, the results suggest that TRESK is directly controlled by and highly sensitive to the activation of the NDFIP1-Nedd4 system. The NDFIP1-mediated reduction in the TRESK component may induce depolarization, increase excitability, and attenuate the calcium dependence of the membrane potential by reducing the calcineurin-activated fraction in the ensemble background K+ current.
Collapse
Affiliation(s)
- Enikő Pergel
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Dániel J. Tóth
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, 1094 Budapest, Hungary
| | - Dóra Baukál
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Irén Veres
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| |
Collapse
|
2
|
Weng PW, Liu CH, Jheng PR, Chiang CC, Chen YT, Rethi L, Hsieh YSY, Chuang AEY. Spermatozoon-propelled microcellular submarines combining innate magnetic hyperthermia with derived nanotherapies for thrombolysis and ischemia mitigation. J Nanobiotechnology 2024; 22:470. [PMID: 39118029 PMCID: PMC11308583 DOI: 10.1186/s12951-024-02716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Thrombotic cardiovascular diseases are a prevalent factor contributing to both physical impairment and mortality. Thrombolysis and ischemic mitigation have emerged as leading contemporary therapeutic approaches for addressing the consequences of ischemic injury and reperfusion damage. Herein, an innovative cellular-cloaked spermatozoon-driven microcellular submarine (SPCS), comprised of multimodal motifs, was designed to integrate nano-assembly thrombolytics with an immunomodulatory ability derived from innate magnetic hyperthermia. Rheotaxis-based navigation was utilized to home to and cross the clot barrier, and finally accumulate in ischemic vascular organs, where the thrombolytic motif was "switched-on" by the action of thrombus magnetic red blood cell-driven magnetic hyperthermia. In a murine model, the SPCS system combining innate magnetic hyperthermia demonstrated the capacity to augment delivery efficacy, produce nanotherapeutic outcomes, exhibit potent thrombolytic activity, and ameliorate ischemic tissue damage. These findings underscore the multifaceted potential of our designed approach, offering both thrombolytic and ischemia-mitigating effects. Given its extended therapeutic effects and thrombus-targeting capability, this biocompatible SPCS system holds promise as an innovative therapeutic agent for enhancing efficacy and preventing risks after managing thrombosis.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Alba Nova University Centre, Stockholm, SE106 91, Sweden
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
3
|
Lee S, Martinez-Valbuena I, Lang AE, Kovacs GG. Cellular iron deposition patterns predict clinical subtypes of multiple system atrophy. Neurobiol Dis 2024; 197:106535. [PMID: 38761956 DOI: 10.1016/j.nbd.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a primary oligodendroglial synucleinopathy, characterized by elevated iron burden in early-affected subcortical nuclei. Although neurotoxic effects of brain iron deposition and its relationship with α-synuclein pathology have been demonstrated, the exact role of iron dysregulation in MSA pathogenesis is unknown. Therefore, advancing the understanding of iron dysregulation at the cellular level is critical, especially in relation to α-synuclein cytopathology. METHODS Iron burden in subcortical and brainstem regions were histologically mapped in human post-mortem brains of 4 MSA-parkinsonian (MSA-P), 4 MSA-cerebellar (MSA-C), and 1 MSA case with both parkinsonian and cerebellar features. We then performed the first cell type-specific evaluation of pathological iron deposition in α-synuclein-affected and -unaffected cells of the globus pallidus, putamen, and the substantia nigra, regions of highest iron concentration, using a combination of iron staining with immunolabelling. Selective regional and cellular vulnerability patterns of iron deposition were compared between disease subtypes. In 7 MSA cases, expression of key iron- and closely related oxygen-homeostatic genes were examined. RESULTS MSA-P and MSA-C showed different patterns of regional iron burden across the pathology-related systems. We identified subcortical microglia to predominantly accumulate iron, which was more distinct in MSA-P. MSA-C showed relatively heterogenous iron accumulation, with greater or similar deposition in astroglia. Iron deposition was also found outside cellular bodies. Cellular iron burden associated with oligodendrocytic, and not neuronal, α-synuclein cytopathology. Gene expression analysis revealed dysregulation of oxygen homeostatic genes, rather than of cellular iron. Importantly, hierarchal cluster analysis revealed the pattern of cellular vulnerability to iron accumulation, distinctly to α-synuclein pathology load in the subtype-related systems, to distinguish MSA subtypes. CONCLUSIONS Our comprehensive evaluation of iron deposition in MSA brains identified distinct regional, and for the first time, cellular distribution of iron deposition in MSA-P and MSA-C and revealed cellular vulnerability patterns to iron deposition as a novel neuropathological characteristic that predicts MSA clinical subtypes. Our findings suggest distinct iron-related pathomechanisms in MSA clinical subtypes that are therefore not a consequence of a uniform down-stream pathway to α-synuclein pathology, and inform current efforts in iron chelation therapies at the disease and cellular-specific levels.
Collapse
Affiliation(s)
- Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada; Laboratory Medicine Program, University Health Network, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
4
|
Li B, Yu W, Verkhratsky A. Trace metals and astrocytes physiology and pathophysiology. Cell Calcium 2024; 118:102843. [PMID: 38199057 DOI: 10.1016/j.ceca.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Several trace metals, including iron, copper, manganese and zinc are essential for normal function of the nervous system. Both deficiency and excessive accumulation of these metals trigger neuropathological developments. The central nervous system (CNS) is in possession of dedicated homeostatic system that removes, accumulates, stores and releases these metals to fulfil nervous tissue demand. This system is mainly associated with astrocytes that act as dynamic reservoirs for trace metals, these being a part of a global system of CNS ionostasis. Here we overview physiological and pathophysiological aspects of astrocyte-cantered trace metals regulation.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, Ikerbasque, Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius LT-01102, Lithuania.
| |
Collapse
|
5
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Glaß H, Jonitz-Heincke A, Petters J, Lukas J, Bader R, Hermann A. Corrosion Products from Metallic Implants Induce ROS and Cell Death in Human Motoneurons In Vitro. J Funct Biomater 2023; 14:392. [PMID: 37623637 PMCID: PMC10455184 DOI: 10.3390/jfb14080392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Due to advances in surgical procedures and the biocompatibility of materials used in total joint replacement, more and younger patients are undergoing these procedures. Although state-of-the-art joint replacements can last 20 years or longer, wear and corrosion is still a major risk for implant failure, and patients with these implants are exposed for longer to these corrosive products. It is therefore important to investigate the potential effects on the whole organism. Released nanoparticles and ions derived from commonly used metal implants consist, among others, of cobalt, nickel, and chromium. The effect of these metallic products in the process of osteolysis and aseptic implant loosening has already been studied; however, the systemic effect on other cell types, including neurons, remains elusive. To this end, we used human iPSC-derived motoneurons to investigate the effects of metal ions on human neurons. We treated human motoneurons with ion concentrations regularly found in patients, stained them with MitoSOX and propidium iodide, and analyzed them with fluorescence-assisted cell sorting (FACS). We found that upon treatment human motoneurons suffered from the formation of ROS and subsequently died. These effects were most prominent in motoneurons treated with 500 μM of cobalt or nickel, in which we observed significant cell death, whereas chromium showed fewer ROS and no apparent impairment of motoneurons. Our results show that the wear and corrosive products of metal implants at concentrations readily available in peri-implant tissues induced ROS and subsequently cell death in an iPSC-derived motoneuron cell model. We therefore conclude that monitoring of neuronal impairment is important in patients undergoing total joint replacement.
Collapse
Affiliation(s)
- Hannes Glaß
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (H.G.)
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Janine Petters
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (H.G.)
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (H.G.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (H.G.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| |
Collapse
|
8
|
Li X, Chen B, Zhang D, Wang S, Feng Y, Wu X, Cui L, Ji M, Gong W, Verkhratsky A, Xia M, Li B. A novel murine model of mania. Mol Psychiatry 2023; 28:3044-3054. [PMID: 36991130 PMCID: PMC10615760 DOI: 10.1038/s41380-023-02037-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Neuropathological mechanisms of manic syndrome or manic episodes in bipolar disorder remain poorly characterised, as the research progress is severely limited by the paucity of appropriate animal models. Here we developed a novel mania mice model by combining a series of chronic unpredictable rhythm disturbances (CURD), which include disruption of circadian rhythm, sleep deprivation, exposure to cone light, with subsequent interference of followed spotlight, stroboscopic illumination, high-temperature stress, noise disturbance and foot shock. Multiple behavioural and cell biology tests comparing the CURD-model with healthy controls and depressed mice were deployed to validate the model. The manic mice were also tested for the pharmacological effects of various medicinal agents used for treating mania. Finally, we compared plasma indicators of the CURD-model mice and the patients with the manic syndrome. The CURD protocol produced a phenotype replicating manic syndrome. Mice exposed to CURD presented manic behaviours similar to that observed in the amphetamine manic model. These behaviours were distinct from depressive-like behaviours recorded in mice treated with a depression-inducing protocol of chronic unpredictable mild restraint (CUMR). Functional and molecular indicators in the CURD mania model showed multiple similarities with patients with manic syndrome. Treatment with LiCl and valproic acid resulted in behavioural improvements and recovery of molecular indicators. A novel manic mice model induced by environmental stressors and free from genetic or pharmacological interventions is a valuable tool for research into pathological mechanisms of mania.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Binjie Chen
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yuliang Feng
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Ming Ji
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Wenliang Gong
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
9
|
Duan Y, Sun J. Preparation of Iron-Based Sulfides and Their Applications in Biomedical Fields. Biomimetics (Basel) 2023; 8:biomimetics8020177. [PMID: 37218763 DOI: 10.3390/biomimetics8020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Recently, iron-based sulfides, including iron sulfide minerals and biological iron sulfide clusters, have attracted widespread interest, owing to their excellent biocompatibility and multi-functionality in biomedical applications. As such, controlled synthesized iron sulfide nanomaterials with elaborate designs, enhanced functionality and unique electronic structures show numerous advantages. Furthermore, iron sulfide clusters produced through biological metabolism are thought to possess magnetic properties and play a crucial role in balancing the concentration of iron in cells, thereby affecting ferroptosis processes. The electrons in the Fenton reaction constantly transfer between Fe2+ and Fe3+, participating in the production and reaction process of reactive oxygen species (ROS). This mechanism is considered to confer advantages in various biomedical fields such as the antibacterial field, tumor treatment, biosensing and the treatment of neurodegenerative diseases. Thus, we aim to systematically introduce recent advances in common iron-based sulfides.
Collapse
Affiliation(s)
- Yefan Duan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
10
|
Nordberg A, Semyanov A, Parpura V, Zorec R. Alexei Verkhratsky, the Philosopher of Neuroglia. Preface for the Honorary Issue of Neurochemical Research. Neurochem Res 2023; 48:1009-1014. [PMID: 36899208 DOI: 10.1007/s11064-023-03894-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, 314033, Zhejiang, China
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Robert Zorec
- Medical Faculty & Celica Biomedical, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Iron Brain Menace: The Involvement of Ferroptosis in Parkinson Disease. Cells 2022; 11:3829. [PMID: 36497089 PMCID: PMC9735800 DOI: 10.3390/cells11233829] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson disease (PD) is the second-most common neurodegenerative disease. The characteristic pathology of progressive dopaminergic neuronal loss in people with PD is associated with iron accumulation and is suggested to be driven in part by the novel cell death pathway, ferroptosis. A unique modality of cell death, ferroptosis is mediated by iron-dependent phospholipid peroxidation. The mechanisms of ferroptosis inhibitors enhance antioxidative capacity to counter the oxidative stress from lipid peroxidation, such as through the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis and the coenzyme Q10 (CoQ10)/FSP1 pathway. Another means to reduce ferroptosis is with iron chelators. To date, there is no disease-modifying therapy to cure or slow PD progression, and a recent topic of research seeks to intervene with the development of PD via regulation of ferroptosis. In this review, we provide a discussion of different cell death pathways, the molecular mechanisms of ferroptosis, the role of ferroptosis in blood-brain barrier damage, updates on PD studies in ferroptosis, and the latest progress of pharmacological agents targeting ferroptosis for the intervention of PD in clinical trials.
Collapse
Affiliation(s)
- Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Pao Chien Hospital, Pingtung 90064, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jong-Jer Lee
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| |
Collapse
|
12
|
Guan W, Xia M, Ji M, Chen B, Li S, Zhang M, Liang S, Chen B, Gong W, Dong C, Wen G, Zhan X, Zhang D, Li X, Zhou Y, Guan D, Verkhratsky A, Li B. Iron induces two distinct Ca 2+ signalling cascades in astrocytes. Commun Biol 2021; 4:525. [PMID: 33953326 PMCID: PMC8100120 DOI: 10.1038/s42003-021-02060-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is the fundamental element for numerous physiological functions. Plasmalemmal divalent metal ion transporter 1 (DMT1) is responsible for cellular uptake of ferrous (Fe2+), whereas transferrin receptors (TFR) carry transferrin (TF)-bound ferric (Fe3+). In this study we performed detailed analysis of the action of Fe ions on cytoplasmic free calcium ion concentration ([Ca2+]i) in astrocytes. Administration of Fe2+ or Fe3+ in μM concentrations evoked [Ca2+]i in astrocytes in vitro and in vivo. Iron ions trigger increase in [Ca2+]i through two distinct molecular cascades. Uptake of Fe2+ by DMT1 inhibits astroglial Na+-K+-ATPase, which leads to elevation in cytoplasmic Na+ concentration, thus reversing Na+/Ca2+ exchanger and thereby generating Ca2+ influx. Uptake of Fe3+ by TF-TFR stimulates phospholipase C to produce inositol 1,4,5-trisphosphate (InsP3), thus triggering InsP3 receptor-mediated Ca2+ release from endoplasmic reticulum. In summary, these findings reveal the mechanisms of iron-induced astrocytic signalling operational in conditions of iron overload.
Collapse
Affiliation(s)
- Wenzheng Guan
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- The First Department of Reproduction, Shengjing Hospital, China Medical University, Shenyang, China
| | - Maosheng Xia
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Ming Ji
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shuai Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shanshan Liang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Binjie Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Wenliang Gong
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Chengyi Dong
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Gehua Wen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xiaoni Zhan
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Dianjun Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinyu Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yuefei Zhou
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Lee S, Kovacs GG. Astrocytic-Neuronal Teamwork Against External Iron Attacks: Does It Always Work? FUNCTION 2021; 2:zqab009. [PMID: 35330815 PMCID: PMC8788877 DOI: 10.1093/function/zqab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Seojin Lee
- Department of Laboratory Medicine and Pathobiology, Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology, Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|