1
|
Saunders PA, Muyle A. Sex Chromosome Evolution: Hallmarks and Question Marks. Mol Biol Evol 2024; 41:msae218. [PMID: 39417444 PMCID: PMC11542634 DOI: 10.1093/molbev/msae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Sex chromosomes are widespread in species with separate sexes. They have evolved many times independently and display a truly remarkable diversity. New sequencing technologies and methodological developments have allowed the field of molecular evolution to explore this diversity in a large number of model and nonmodel organisms, broadening our vision on the mechanisms involved in their evolution. Diverse studies have allowed us to better capture the common evolutionary routes that shape sex chromosomes; however, we still mostly fail to explain why sex chromosomes are so diverse. We review over half a century of theoretical and empirical work on sex chromosome evolution and highlight pending questions on their origins, turnovers, rearrangements, degeneration, dosage compensation, gene content, and rates of evolution. We also report recent theoretical progress on our understanding of the ultimate reasons for sex chromosomes' existence.
Collapse
Affiliation(s)
- Paul A Saunders
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Wang D, Rastas P, Yi X, Löytynoja A, Kivikoski M, Feng X, Reid K, Merilä J. Improved assembly of the Pungitius pungitius reference genome. G3 (BETHESDA, MD.) 2024; 14:jkae126. [PMID: 38861393 PMCID: PMC11304971 DOI: 10.1093/g3journal/jkae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs, and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species' Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes.
Collapse
Affiliation(s)
- Dandan Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Mikko Kivikoski
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Department of Computer Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Xueyun Feng
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
3
|
Yi X, Kemppainen P, Merilä J. SLRfinder: A method to detect candidate sex-linked regions with linkage disequilibrium clustering. Mol Ecol Resour 2024; 24:e13985. [PMID: 38850116 DOI: 10.1111/1755-0998.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Despite their critical roles in genetic sex determination, sex chromosomes remain unknown in many non-model organisms, especially those having recently evolved sex-linked regions (SLRs). These evolutionarily young and labile sex chromosomes are important for understanding early sex chromosome evolution but are difficult to identify due to the lack of Y/W degeneration and SLRs limited to small genomic regions. Here, we present SLRfinder, a method to identify candidate SLRs using linkage disequilibrium (LD) clustering, heterozygosity and genetic divergence. SLRfinder does not rely on specific sequencing methods or a specific type of reference genome (e.g., from the homomorphic sex). In addition, the input of SLRfinder does not require phenotypic sexes, which may be unknown from population sampling, but sex information can be incorporated and is necessary to validate candidate SLRs. We tested SLRfinder using various published datasets and compared it to the local principal component analysis (PCA) method and the depth-based method Sex Assignment Through Coverage (SATC). As expected, the local PCA method could not be used to identify unknown SLRs. SATC works better on conserved sex chromosomes, whereas SLRfinder outperforms SATC in analysing labile sex chromosomes, especially when SLRs harbour inversions. Power analyses showed that SLRfinder worked better when sampling more populations that share the same SLR. If analysing one population, a relatively larger sample size (around 50) is needed for sufficient statistical power to detect significant SLR candidates, although true SLRs are likely always top-ranked. SLRfinder provides a novel and complementary approach for identifying SLRs and uncovering additional sex chromosome diversity in nature.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Petri Kemppainen
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Eastment RV, Wong BBM, McGee MD. Convergent genomic signatures associated with vertebrate viviparity. BMC Biol 2024; 22:34. [PMID: 38331819 PMCID: PMC10854053 DOI: 10.1186/s12915-024-01837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Viviparity-live birth-is a complex and innovative mode of reproduction that has evolved repeatedly across the vertebrate Tree of Life. Viviparous species exhibit remarkable levels of reproductive diversity, both in the amount of care provided by the parent during gestation, and the ways in which that care is delivered. The genetic basis of viviparity has garnered increasing interest over recent years; however, such studies are often undertaken on small evolutionary timelines, and thus are not able to address changes occurring on a broader scale. Using whole genome data, we investigated the molecular basis of this innovation across the diversity of vertebrates to answer a long held question in evolutionary biology: is the evolution of convergent traits driven by convergent genomic changes? RESULTS We reveal convergent changes in protein family sizes, protein-coding regions, introns, and untranslated regions (UTRs) in a number of distantly related viviparous lineages. Specifically, we identify 15 protein families showing evidence of contraction or expansion associated with viviparity. We additionally identify elevated substitution rates in both coding and noncoding sequences in several viviparous lineages. However, we did not find any convergent changes-be it at the nucleotide or protein level-common to all viviparous lineages. CONCLUSIONS Our results highlight the value of macroevolutionary comparative genomics in determining the genomic basis of complex evolutionary transitions. While we identify a number of convergent genomic changes that may be associated with the evolution of viviparity in vertebrates, there does not appear to be a convergent molecular signature shared by all viviparous vertebrates. Ultimately, our findings indicate that a complex trait such as viviparity likely evolves with changes occurring in multiple different pathways.
Collapse
Affiliation(s)
- Rhiannon V Eastment
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia.
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| |
Collapse
|
5
|
Charlesworth D, Qiu S, Bergero R, Gardner J, Keegan K, Yong L, Hastings A, Konczal M. Has recombination changed during the recent evolution of the guppy Y chromosome? Genetics 2024; 226:iyad198. [PMID: 37956094 DOI: 10.1093/genetics/iyad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Genome sequencing and genetic mapping of molecular markers have demonstrated nearly complete Y-linkage across much of the guppy (Poecilia reticulata) XY chromosome pair. Predominant Y-linkage of factors controlling visible male-specific coloration traits also suggested that these polymorphisms are sexually antagonistic (SA). However, occasional exchanges with the X are detected, and recombination patterns also appear to differ between natural guppy populations, suggesting ongoing evolution of recombination suppression under selection created by partially sex-linked SA polymorphisms. We used molecular markers to directly estimate genetic maps in sires from 4 guppy populations. The maps are very similar, suggesting that their crossover patterns have not recently changed. Our maps are consistent with population genomic results showing that variants within the terminal 5 Mb of the 26.5 Mb sex chromosome, chromosome 12, are most clearly associated with the maleness factor, albeit incompletely. We also confirmed occasional crossovers proximal to the male-determining region, defining a second, rarely recombining, pseudo-autosomal region, PAR2. This fish species may therefore have no completely male-specific region (MSY) more extensive than the male-determining factor. The positions of the few crossover events suggest a location for the male-determining factor within a physically small repetitive region. A sex-reversed XX male had few crossovers in PAR2, suggesting that this region's low crossover rate depends on the phenotypic, not the genetic, sex. Thus, rare individuals whose phenotypic and genetic sexes differ, and/or occasional PAR2 crossovers in males can explain the failure to detect fully Y-linked variants.
Collapse
Affiliation(s)
- Deborah Charlesworth
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Suo Qiu
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Roberta Bergero
- Scottish Rural Agricultural College, Peter Wilson Building, King's Buildings, W Mains Rd, Edinburgh EH9 3JG, UK
| | - Jim Gardner
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Karen Keegan
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
- South Carolina Department of Natural Resources, Marine Resources Research Institute, P.O. Box 12559 Charleston, SC 29422-2559, USA
| | - Abigail Hastings
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland
| |
Collapse
|
6
|
Metzger DCH, Porter I, Mobley B, Sandkam BA, Fong LJM, Anderson AP, Mank JE. Transposon wave remodeled the epigenomic landscape in the rapid evolution of X-Chromosome dosage compensation. Genome Res 2023; 33:1917-1931. [PMID: 37989601 PMCID: PMC10760456 DOI: 10.1101/gr.278127.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
Sex chromosome dosage compensation is a model to understand the coordinated evolution of transcription; however, the advanced age of the sex chromosomes in model systems makes it difficult to study how the complex regulatory mechanisms underlying chromosome-wide dosage compensation can evolve. The sex chromosomes of Poecilia picta have undergone recent and rapid divergence, resulting in widespread gene loss on the male Y, coupled with complete X Chromosome dosage compensation, the first case reported in a fish. The recent de novo origin of dosage compensation presents a unique opportunity to understand the genetic and evolutionary basis of coordinated chromosomal gene regulation. By combining a new chromosome-level assembly of P. picta with whole-genome bisulfite sequencing and RNA-seq data, we determine that the YY1 transcription factor (YY1) DNA binding motif is associated with male-specific hypomethylated regions on the X, but not the autosomes. These YY1 motifs are the result of a recent and rapid repetitive element expansion on the P. picta X Chromosome, which is absent in closely related species that lack dosage compensation. Taken together, our results present compelling support that a disruptive wave of repetitive element insertions carrying YY1 motifs resulted in the remodeling of the X Chromosome epigenomic landscape and the rapid de novo origin of a dosage compensation system.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada;
| | - Imogen Porter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Brendan Mobley
- Biology Department, Reed College, Portland, Oregon 97202, USA
| | - Benjamin A Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Lydia J M Fong
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
7
|
Zhang Y, Reynoso Y, Reznick D, Wang X. Whole Genome Assembly and Annotation of Blackstripe Livebearer Poeciliopsis prolifica. Genome Biol Evol 2023; 15:evad195. [PMID: 37949830 PMCID: PMC10655195 DOI: 10.1093/gbe/evad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
The blackstripe livebearer Poeciliopsis prolifica is a live-bearing fish belonging to the family Poeciliidae with high level of postfertilization maternal investment (matrotrophy). This viviparous matrotrophic species has evolved a structure similarly to the mammalian placenta. Placentas have independently evolved multiple times in Poeciliidae from nonplacental ancestors, which provide an opportunity to study the placental evolution. However, there is a lack of high-quality reference genomes for the placental species in Poeciliidae. In this study, we present a 674 Mb assembly of P. prolifica in 504 contigs with excellent continuity (contig N50 7.7 Mb) and completeness (97.2% Benchmarking Universal Single-Copy Orthologs [BUSCO] completeness score, including 92.6% single-copy and 4.6% duplicated BUSCO score). A total of 27,227 protein-coding genes were annotated from the merged datasets based on bioinformatic prediction, RNA sequencing and homology evidence. Phylogenomic analyses revealed that P. prolifica diverged from the guppy (Poecilia reticulata) ∼19 Ma. Our research provides the necessary resources and the genomic toolkit for investigating the genetic underpinning of placentation.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Yuridia Reynoso
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California, USA
| | - David Reznick
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California, USA
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Alabama, USA
- Center for Advanced Science, Innovation and Commerce, Alabama Agricultural Experiment Station, Auburn, Alabama, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| |
Collapse
|
8
|
Smith SH, Hsiung K, Böhne A. Evaluating the role of sexual antagonism in the evolution of sex chromosomes: new data from fish. Curr Opin Genet Dev 2023; 81:102078. [PMID: 37379742 DOI: 10.1016/j.gde.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
The recent increase in available molecular and genomic data for diverse taxa helps to shed new light on long-standing theories. Research into sex chromosome evolution has particularly benefited from a growing number of studies of fish, motivated by their highly diverse mechanisms of sex determination. Sexual antagonism is regularly cited as an influential force in sex chromosome emergence; however, this so far proves difficult to demonstrate. In this review, we highlight recent developments in the investigation of sexual antagonism in sex chromosome research in fish. We find strong emphasis placed on study-organism specific genomic features and patterns of recombination, rather than evidence for a comprehensive role of sexual antagonism. In this light, we discuss the alternative models of sex chromosome evolution. We conclude that fish represents a key resource for further research, provided attention is given to species-specific effects while simultaneously integrating comparative studies across taxa for a vital and comprehensive understanding of sex chromosome evolution and investigation of proposed models.
Collapse
Affiliation(s)
- Sophie Helen Smith
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany. https://twitter.com/@shg_smith
| | - Kevin Hsiung
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany. https://twitter.com/@KevinKHsiung
| | - Astrid Böhne
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany.
| |
Collapse
|
9
|
Darolti I, Fong LJM, Sandkam BA, Metzger DCH, Mank JE. Sex chromosome heteromorphism and the Fast-X effect in poeciliids. Mol Ecol 2023; 32:4599-4609. [PMID: 37309716 DOI: 10.1111/mec.17048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Fast-X evolution has been observed in a range of heteromorphic sex chromosomes. However, it remains unclear how early in the process of sex chromosome differentiation the Fast-X effect becomes detectible. Recently, we uncovered an extreme variation in sex chromosome heteromorphism across poeciliid fish species. The common guppy, Poecilia reticulata, Endler's guppy, P. wingei, swamp guppy, P. picta and para guppy, P. parae, appear to share the same XY system and exhibit a remarkable range of heteromorphism. Species outside this group lack this sex chromosome system. We combined analyses of sequence divergence and polymorphism data across poeciliids to investigate X chromosome evolution as a function of hemizygosity and reveal the causes for Fast-X effects. Consistent with the extent of Y degeneration in each species, we detect higher rates of divergence on the X relative to autosomes, a signal of Fast-X evolution, in P. picta and P. parae, species with high levels of X hemizygosity in males. In P. reticulata, which exhibits largely homomorphic sex chromosomes and little evidence of hemizygosity, we observe no change in the rate of evolution of X-linked relative to autosomal genes. In P. wingei, the species with intermediate sex chromosome differentiation, we see an increase in the rate of nonsynonymous substitutions on the older stratum of divergence only. We also use our comparative approach to test for the time of origin of the sex chromosomes in this clade. Taken together, our study reveals an important role of hemizygosity in Fast-X evolution.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lydia J M Fong
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin A Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - David C H Metzger
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Fong LJM, Darolti I, Metzger DCH, Morris J, Lin Y, Sandkam BA, Mank JE. Evolutionary History of the Poecilia picta Sex Chromosomes. Genome Biol Evol 2023; 15:evad030. [PMID: 36802329 PMCID: PMC10003743 DOI: 10.1093/gbe/evad030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
The degree of divergence between the sex chromosomes is not always proportional to their age. In poeciliids, four closely related species all exhibit a male heterogametic sex chromosome system on the same linkage group, yet show a remarkable diversity in X and Y divergence. In Poecilia reticulata and P. wingei, the sex chromosomes remain homomorphic, yet P. picta and P. parae have a highly degraded Y chromosome. To test alternative theories about the origin of their sex chromosomes, we used a combination of pedigrees and RNA-seq data from P. picta families in conjunction with DNA-seq data collected from P. reticulata, P. wingei, P. parae, and P. picta. Phylogenetic clustering analysis of X and Y orthologs, identified through segregation patterns, and their orthologous sequences in closely related species demonstrates a similar time of origin for both the P. picta and P. reticulata sex chromosomes. We next used k-mer analysis to identify shared ancestral Y sequence across all four species, suggesting a single origin to the sex chromosome system in this group. Together, our results provide key insights into the origin and evolution of the poeciliid Y chromosome and illustrate that the rate of sex chromosome divergence is often highly heterogenous, even over relatively short evolutionary time frames.
Collapse
Affiliation(s)
- Lydia J M Fong
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - David C H Metzger
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Jake Morris
- Department of Zoology, University of Cambridge, United Kingdom
| | - Yuying Lin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | | | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| |
Collapse
|
11
|
Nacif CL, Kratochwil CF, Kautt AF, Nater A, Machado-Schiaffino G, Meyer A, Henning F. Molecular parallelism in the evolution of a master sex-determining role for the anti-Mullerian hormone receptor 2 gene (amhr2) in Midas cichlids. Mol Ecol 2023; 32:1398-1410. [PMID: 35403749 DOI: 10.1111/mec.16466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022]
Abstract
The evolution of sex chromosomes and their differentiation from autosomes is a major event during genome evolution that happened many times in several lineages. The repeated evolution and lability of sex-determination mechanisms in fishes makes this a well-suited system to test for general patterns in evolution. According to current theory, differentiation is triggered by the suppression of recombination following the evolution of a new master sex-determining gene. However, the molecular mechanisms that establish recombination suppression are known from few examples, owing to the intrinsic difficulties of assembling sex-determining regions (SDRs). The development of forward-genetics and long-read sequencing have generated a wealth of data questioning central aspects of the current theory. Here, we demonstrate that sex in Midas cichlids is determined by an XY system, and identify and assemble the SDR by combining forward-genetics, long-read sequencing and optical mapping. We show how long-reads aid in the detection of artefacts in genotype-phenotype mapping that arise from incomplete genome assemblies. The male-specific region is restricted to a 100-kb segment on chromosome 4 that harbours transposable elements and a Y-specific duplicate of the anti-Mullerian receptor 2 gene, which has evolved master sex-determining functions repeatedly. Our data suggest that amhr2Y originated by an interchromosomal translocation from chromosome 20 to 4 pre-dating the split of Midas and Flier cichlids. In the latter, it is pseudogenized and translocated to another chromosome. Duplication of anti-Mullerian genes is a common route to establishing new sex determiners, highlighting the role of molecular parallelism in the evolution of sex determination.
Collapse
Affiliation(s)
- Camila L Nacif
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | - Andreas F Kautt
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander Nater
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Frederico Henning
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
13
|
Darolti I, Almeida P, Wright AE, Mank JE. Comparison of methodological approaches to the study of young sex chromosomes: A case study in Poecilia. J Evol Biol 2022; 35:1646-1658. [PMID: 35506576 PMCID: PMC10084049 DOI: 10.1111/jeb.14013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Studies of sex chromosome systems at early stages of divergence are key to understanding the initial process and underlying causes of recombination suppression. However, identifying signatures of divergence in homomorphic sex chromosomes can be challenging due to high levels of sequence similarity between the X and the Y. Variations in methodological precision and underlying data can make all the difference between detecting subtle divergence patterns or missing them entirely. Recent efforts to test for X-Y sequence differentiation in the guppy have led to contradictory results. Here, we apply different analytical methodologies to the same data set to test for the accuracy of different approaches in identifying patterns of sex chromosome divergence in the guppy. Our comparative analysis reveals that the most substantial source of variation in the results of the different analyses lies in the reference genome used. Analyses using custom-made genome assemblies for the focal population or species successfully recover a signal of divergence across different methodological approaches. By contrast, using the distantly related Xiphophorus reference genome results in variable patterns, due to both sequence evolution and structural variations on the sex chromosomes between the guppy and Xiphophorus. Changes in mapping and filtering parameters can additionally introduce noise and obscure the signal. Our results illustrate how analytical differences can alter perceived results and we highlight best practices for the study of nascent sex chromosomes.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
14
|
Qiu S, Yong L, Wilson A, Croft DP, Graham C, Charlesworth D. Partial sex linkage and linkage disequilibrium on the guppy sex chromosome. Mol Ecol 2022; 31:5524-5537. [PMID: 36005298 PMCID: PMC9826361 DOI: 10.1111/mec.16674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
The guppy Y chromosome has been considered a model system for the evolution of suppressed recombination between sex chromosomes, and it has been proposed that complete sex-linkage has evolved across about 3 Mb surrounding this fish's sex-determining locus, followed by recombination suppression across a further 7 Mb of the 23 Mb XY pair, forming younger "evolutionary strata". Sequences of the guppy genome show that Y is very similar to the X chromosome. Knowing which parts of the Y are completely nonrecombining, and whether there is indeed a large completely nonrecombining region, are important for understanding its evolution. Here, we describe analyses of PoolSeq data in samples from within multiple natural populations from Trinidad, yielding new results that support previous evidence for occasional recombination between the guppy Y and X. We detected recent demographic changes, notably that downstream populations have higher synonymous site diversity than upstream ones and other expected signals of bottlenecks. We detected evidence of associations between sequence variants and the sex-determining locus, rather than divergence under a complete lack of recombination. Although recombination is infrequent, it is frequent enough that associations with SNPs can suggest the region in which the sex-determining locus must be located. Diversity is elevated across a physically large region of the sex chromosome, conforming to predictions for a genome region with infrequent recombination that carries one or more sexually antagonistic polymorphisms. However, no consistently male-specific variants were found, supporting the suggestion that any completely sex-linked region may be very small.
Collapse
Affiliation(s)
- Suo Qiu
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Lengxob Yong
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK,Marine Resources Research InstituteSouth Carolina Department of Natural ResourcesCharlestonSouth CarolinaUSA
| | - Alastair Wilson
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Darren P. Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Chay Graham
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
15
|
Mank JE. Are plant and animal sex chromosomes really all that different? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210218. [PMID: 35306885 PMCID: PMC8935310 DOI: 10.1098/rstb.2021.0218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sex chromosomes in plants have often been contrasted with those in animals with the goal of identifying key differences that can be used to elucidate fundamental evolutionary properties. For example, the often homomorphic sex chromosomes in plants have been compared to the highly divergent systems in some animal model systems, such as birds, Drosophila and therian mammals, with many hypotheses offered to explain the apparent dissimilarities, including the younger age of plant sex chromosomes, the lesser prevalence of sexual dimorphism, or the greater extent of haploid selection. Furthermore, many plant sex chromosomes lack complete sex chromosome dosage compensation observed in some animals, including therian mammals, Drosophila, some poeciliids, and Anolis, and plant dosage compensation, where it exists, appears to be incomplete. Even the canonical theoretical models of sex chromosome formation differ somewhat between plants and animals. However, the highly divergent sex chromosomes observed in some animal groups are actually the exception, not the norm, and many animal clades are far more similar to plants in their sex chromosome patterns. This begs the question of how different are plant and animal sex chromosomes, and which of the many unique properties of plants would be expected to affect sex chromosome evolution differently than animals? In fact, plant and animal sex chromosomes exhibit more similarities than differences, and it is not at all clear that they differ in terms of sexual conflict, dosage compensation, or even degree of divergence. Overall, the largest difference between these two groups is the greater potential for haploid selection in plants compared to animals. This may act to accelerate the expansion of the non-recombining region at the same time that it maintains gene function within it. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
16
|
van der Zee MJ, Whiting JR, Paris JR, Bassar RD, Travis J, Weigel D, Reznick DN, Fraser BA. Rapid genomic convergent evolution in experimental populations of Trinidadian guppies ( Poecilia reticulata). Evol Lett 2022; 6:149-161. [PMID: 35386829 PMCID: PMC8966473 DOI: 10.1002/evl3.272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
Although rapid phenotypic evolution has been documented often, the genomic basis of rapid adaptation to natural environments is largely unknown in multicellular organisms. Population genomic studies of experimental populations of Trinidadian guppies (Poecilia reticulata) provide a unique opportunity to study this phenomenon. Guppy populations that were transplanted from high-predation (HP) to low-predation (LP) environments have been shown to evolve toward the phenotypes of naturally colonized LP populations in as few as eight generations. These changes persist in common garden experiments, indicating that they have a genetic basis. Here, we report results of whole genome variation in four experimental populations colonizing LP sites along with the corresponding HP source population. We examined genome-wide patterns of genetic variation to estimate past demography and used a combination of genome scans, forward simulations, and a novel analysis of allele frequency change vectors to uncover the signature of selection. We detected clear signals of population growth and bottlenecks at the genome-wide level that matched the known history of population numbers. We found a region on chromosome 15 under strong selection in three of the four populations and with our multivariate approach revealing subtle parallel changes in allele frequency in all four populations across this region. Investigating patterns of genome-wide selection in this uniquely replicated experiment offers remarkable insight into the mechanisms underlying rapid adaptation, providing a basis for comparison with other species and populations experiencing rapidly changing environments.
Collapse
Affiliation(s)
| | | | | | - Ron D. Bassar
- Department of BiologyWilliams CollegeWilliamstownMassachusetts01267
| | - Joseph Travis
- Department of Biological ScienceFlorida State UniversityTallahasseeFlorida32306
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingen72076Germany
| | - David N. Reznick
- Department of BiologyUniversity of California, RiversideRiversideCalifornia92521
| | | |
Collapse
|
17
|
Evolution of the Degenerated Y-Chromosome of the Swamp Guppy, Micropoecilia picta. Cells 2022; 11:cells11071118. [PMID: 35406682 PMCID: PMC8997885 DOI: 10.3390/cells11071118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler’s and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel.
Collapse
|
18
|
Paris JR, Whiting JR, Daniel MJ, Ferrer Obiol J, Parsons PJ, van der Zee MJ, Wheat CW, Hughes KA, Fraser BA. A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy. Nat Commun 2022; 13:1233. [PMID: 35264556 PMCID: PMC8907176 DOI: 10.1038/s41467-022-28895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male colour patterns of the Trinidadian guppy (Poecilia reticulata) are typified by extreme variation governed by both natural and sexual selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been hypothesised that many of the colour trait genes must be physically linked to sex determining loci as a ‘supergene’ on the sex chromosome. Here, we phenotype and genotype four guppy ‘Iso-Y lines’, where colour was inherited along the patriline for 40 generations. Using an unbiased phenotyping method, we confirm the breeding design was successful in creating four distinct colour patterns. We find that genetic differentiation among the Iso-Y lines is repeatedly associated with a diverse haplotype on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype exhibits elevated linkage disequilibrium and evidence of sex-specific diversity in the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis. Extreme colour pattern variation in male Trinidadian guppies are influenced by natural selection and sexual selection. Here, the authors phenotype and genotype four guppy lineages finding that colour pattern is associated with a diverse haplotype on an autosome.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - James R Whiting
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Mitchel J Daniel
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Joan Ferrer Obiol
- Departament de Microbiologia, Genètica i Estadística and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Paul J Parsons
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.,NERC Environmental Omics Facility, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mijke J van der Zee
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | | | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Bonnie A Fraser
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
19
|
On the genetic architecture of rapidly adapting and convergent life history traits in guppies. Heredity (Edinb) 2022; 128:250-260. [PMID: 35256765 PMCID: PMC8986872 DOI: 10.1038/s41437-022-00512-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
The genetic basis of traits shapes and constrains how adaptation proceeds in nature; rapid adaptation can proceed using stores of polygenic standing genetic variation or hard selective sweeps, and increasing polygenicity fuels genetic redundancy, reducing gene re-use (genetic convergence). Guppy life history traits evolve rapidly and convergently among natural high- and low-predation environments in northern Trinidad. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use four independent F2 QTL crosses to examine the genetic basis of seven (five female, two male) guppy life history phenotypes and discuss how these genetic architectures may facilitate or constrain rapid adaptation and convergence. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many loci of small-effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid, repeatable phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but subsequent genetic redundancy may limit gene re-use across populations, in agreement with an absence of strong signatures of genetic convergence from recent analyses of wild guppies.
Collapse
|
20
|
Kirkpatrick M, Sardell JM, Pinto BJ, Dixon G, Peichel CL, Schartl M. Evolution of the canonical sex chromosomes of the guppy and its relatives. G3 (BETHESDA, MD.) 2022; 12:jkab435. [PMID: 35100353 PMCID: PMC9335935 DOI: 10.1093/g3journal/jkab435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022]
Abstract
The sex chromosomes of the guppy, Poecilia reticulata, and its close relatives are of particular interest: they are much younger than the highly degenerate sex chromosomes of model systems such as humans and Drosophila melanogaster, and they carry many of the genes responsible for the males' dramatic coloration. Over the last decade, several studies have analyzed these sex chromosomes using a variety of approaches including sequencing genomes and transcriptomes, cytology, and linkage mapping. Conflicting conclusions have emerged, in particular concerning the history of the sex chromosomes and the evolution of suppressed recombination between the X and Y. Here, we address these controversies by reviewing the evidence and reanalyzing data. We find no evidence of a nonrecombining sex-determining region or evolutionary strata in P. reticulata. Furthermore, we find that the data most strongly support the hypothesis that the sex-determining regions of 2 close relatives of the guppy, Poecilia wingei and Micropoecilia picta, evolved independently after their lineages diverged. We identify possible causes of conflicting results in previous studies and suggest best practices going forward.
Collapse
Affiliation(s)
- Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Jason M Sardell
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Brendan J Pinto
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Catherine L Peichel
- Institute of Ecology and Evolution, University of Bern, Bern 3012, Switzerland
| | - Manfred Schartl
- Developmental Biochemistry, University of Würzburg, Würzburg97074, Germany
- Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
21
|
Lin Y, Darolti I, Furman BLS, Almeida P, Sandkam BA, Breden F, Wright AE, Mank JE. Gene duplication to the Y chromosome in Trinidadian Guppies. Mol Ecol 2022; 31:1853-1863. [PMID: 35060220 DOI: 10.1111/mec.16355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
Differences in allele frequencies at autosomal genes between males and females in a population can result from two scenarios. First, unresolved sexual conflict over survival can produce allelic differentiation between the sexes. However, given the substantial mortality costs required to produce allelic differences between males and females at each generation, it remains unclear how many loci within the genome experience significant sexual conflict over survival. Alternatively, recent studies have shown that similarity between autosomal and Y sequences can create perceived allelic differences between the sexes. However, Y duplications are most likely in species with large non-recombining regions, in part because they simply represent larger targets for duplications. We assessed the genomes of 120 wild-caught guppies, which experience extensive predation- and pathogen-induced mortality and have a relatively small ancestral Y chromosome. We identified seven autosomal genes that show allelic differences between male and female adults. Five of these genes show clear evidence of whole or partial gene duplication between the Y chromosome and the autosomes. The remaining two genes show evidence of partial homology to the Y. Overall, our findings suggest that the guppy genome experiences a very low level of unresolved sexual conflict over survival, and instead the Y chromosome, despite its small ancestral size and recent origin, may nonetheless accumulate genes with male-specific functions.
Collapse
Affiliation(s)
- Yuying Lin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Benjamin L S Furman
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Benjamin A Sandkam
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Canada
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada.,Biosciences, University of Exeter, Penryn Campus, United Kingdom
| |
Collapse
|
22
|
Genetic basis of orange spot formation in the guppy (Poecilia reticulata). BMC Ecol Evol 2021; 21:211. [PMID: 34823475 PMCID: PMC8613973 DOI: 10.1186/s12862-021-01942-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background To understand the evolutionary significance of female mate choice for colorful male ornamentation, the underlying regulatory mechanisms of such ornamentation must be understood for examining how the ornaments are associated with “male qualities” that increase the fitness or sexual attractiveness of offspring. In the guppy (Poecilia reticulata), an established model system for research on sexual selection, females prefer males possessing larger and more highly saturated orange spots as potential mates. Although previous studies have identified some chromosome regions and genes associated with orange spot formation, the regulation and involvement of these genetic elements in orange spot formation have not been elucidated. In this study, the expression patterns of genes specific to orange spots and certain color developmental stages were investigated using RNA-seq to reveal the genetic basis of orange spot formation. Results Comparing the gene expression levels of male guppy skin with orange spots (orange skin) with those without any color spots (dull skin) from the same individuals identified 1102 differentially expressed genes (DEGs), including 630 upregulated genes and 472 downregulated genes in the orange skin. Additionally, the gene expression levels of the whole trunk skin were compared among the three developmental stages and 2247 genes were identified as DEGs according to color development. These analyses indicated that secondary differentiation of xanthophores may affect orange spot formation. Conclusions The results suggested that orange spots might be formed by secondary differentiation, rather than de novo generation, of xanthophores, which is induced by Csf1 and thyroid hormone signaling pathways. Furthermore, we suggested candidate genes associated with the areas and saturation levels of orange spots, which are both believed to be important for female mate choice and independently regulated. This study provides insights into the genetic and cellular regulatory mechanisms underlying orange spot formation, which would help to elucidate how these processes are evolutionarily maintained as ornamental traits relevant to sexual selection. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01942-2.
Collapse
|
23
|
Charlesworth D, Bergero R, Graham C, Gardner J, Keegan K. How did the guppy Y chromosome evolve? PLoS Genet 2021; 17:e1009704. [PMID: 34370728 PMCID: PMC8376059 DOI: 10.1371/journal.pgen.1009704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/19/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
The sex chromosome pairs of many species do not undergo genetic recombination, unlike the autosomes. It has been proposed that the suppressed recombination results from natural selection favouring close linkage between sex-determining genes and mutations on this chromosome with advantages in one sex, but disadvantages in the other (these are called sexually antagonistic mutations). No example of such selection leading to suppressed recombination has been described, but populations of the guppy display sexually antagonistic mutations (affecting male coloration), and would be expected to evolve suppressed recombination. In extant close relatives of the guppy, the Y chromosomes have suppressed recombination, and have lost all the genes present on the X (this is called genetic degeneration). However, the guppy Y occasionally recombines with its X, despite carrying sexually antagonistic mutations. We describe evidence that a new Y evolved recently in the guppy, from an X chromosome like that in these relatives, replacing the old, degenerated Y, and explaining why the guppy pair still recombine. The male coloration factors probably arose after the new Y evolved, and have already evolved expression that is confined to males, a different way to avoid the conflict between the sexes. We report new findings concerning the long-studied the guppy XY pair, which has remained somewhat mystifying. We show that it can be understood as a case of a recent sex chromosome turnover event in which an older, highly degenerated Y chromosome was lost, and creation of a new sex chromosome from the ancestral X. This chromosome acquired a male-determining factor, possibly by a mutation in (or a duplication of) a previously X-linked gene, or (less likely) by movement of an ancestral Y-linked maleness factor onto the X. We relate the findings to theoretical models of such events, and argue that the proposed change was free from factors thought to impede such turnovers. The change resulted in the intriguing situation where the X chromosome is old and the Y is much younger, and we discuss some other species where a similar change seems likely to have occurred.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chay Graham
- University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Court Road, Cambridge, United Kingdom
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Keegan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Charlesworth D, Graham C, Trivedi U, Gardner J, Bergero R. PromethION sequencing and assembly of the genome of Micropoecilia picta, a fish with a highly Degenerated Y chromosome. Genome Biol Evol 2021; 13:6326803. [PMID: 34297069 PMCID: PMC8449826 DOI: 10.1093/gbe/evab171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
We here describe sequencing and assembly of both the autosomes and the sex chromosome in M. picta, the closest related species to the guppy, Poecilia reticulata. Poecilia ()Micropoecilia) picta is a close outgroup for studying the guppy, an important organism for studies in evolutionary ecology and in sex chromosome evolution. The guppy XY pair (LG12) has long been studied as a test case for the importance of sexually antagonistic variants in selection for suppressed recombination between Y and X chromosomes. The guppy Y chromosome is not degenerated, but appears to carry functional copies of all genes that are present on its X counterpart. The X chromosomes of M. picta (and its relative M. parae) are homologous to the guppy XY pair, but their Y chromosomes are highly degenerated, and no genes can be identified in the fully Y-linked region. A complete genome sequence of a M. picta male may therefore contribute to understanding how the guppy Y evolved. These fish species' genomes are estimated to be about 750 Mb, with high densities of repetitive sequences, suggesting that long-read sequencing is needed. We evaluated several assembly approaches, and used our results to investigate the extent of Y chromosome degeneration in this species.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| | - Chay Graham
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK.,University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Ct Rd, Cambridge, CB2 1GA, UK
| | - Urmi Trivedi
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| |
Collapse
|
25
|
Whiting JR, Paris JR, van der Zee MJ, Parsons PJ, Weigel D, Fraser BA. Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies. PLoS Genet 2021; 17:e1009566. [PMID: 34029313 PMCID: PMC8177651 DOI: 10.1371/journal.pgen.1009566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/04/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023] Open
Abstract
Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.
Collapse
Affiliation(s)
- James R. Whiting
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | | | - Paul J. Parsons
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bonnie A. Fraser
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
26
|
Gutiérrez-Valencia J, Hughes PW, Berdan EL, Slotte T. The Genomic Architecture and Evolutionary Fates of Supergenes. Genome Biol Evol 2021; 13:6178796. [PMID: 33739390 PMCID: PMC8160319 DOI: 10.1093/gbe/evab057] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
27
|
Charlesworth D, Bergero R, Graham C, Gardner J, Yong L. Locating the Sex Determining Region of Linkage Group 12 of Guppy ( Poecilia reticulata). G3 (BETHESDA, MD.) 2020; 10:3639-3649. [PMID: 32753367 PMCID: PMC7534449 DOI: 10.1534/g3.120.401573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023]
Abstract
Despite over 100 years of study, the location of the fully sex-linked region of the guppy (Poecilia reticulata) carrying the male-determining locus, and the regions where the XY pair recombine, remain unclear. Previous population genomics studies to determine these regions used small samples from recently bottlenecked captive populations, which increase the false positive rate of associations between individuals' sexes and SNPs. Using new data from multiple natural populations, we show that a recently proposed candidate for this species' male-determining gene is probably not completely sex-linked, leaving the maleness factor still unidentified. Variants in the chromosome 12 region carrying the candidate gene sometimes show linkage disequilibrium with the sex-determining factor, but no consistently male-specific variant has yet been found. Our genetic mapping with molecular markers spread across chromosome 12 confirms that this is the guppy XY pair. We describe two families with recombinants between the X and Y chromosomes, which confirm that the male-determining locus is in the region identified by all previous studies, near the terminal pseudo-autosomal region (PAR), which crosses over at a very high rate in males. We correct the PAR marker order, and assign two unplaced scaffolds to the PAR. We also detect a duplication, with one copy in the male-determining region, explaining signals of sex linkage in a more proximal region.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Chay Graham
- University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Ct Rd, Cambridge CB2 1GA, UK
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, University of Exeter, Penryn, Falmouth, Cornwall, TR10 9FE, UK
| |
Collapse
|