1
|
Whitla R, Hens K, Hogan J, Martin G, Breuker C, Shreeve TG, Arif S. The last days of Aporia crataegi (L.) in Britain: Evaluating genomic erosion in an extirpated butterfly. Mol Ecol 2024; 33:e17518. [PMID: 39192591 DOI: 10.1111/mec.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Current rates of habitat degradation and climate change are causing unprecedented declines in global biodiversity. Studies on vertebrates highlight how conservation genomics can be effective in identifying and managing threatened populations, but it is unclear how vertebrate-derived metrics of genomic erosion translate to invertebrates, with their markedly different population sizes and life histories. The Black-veined White butterfly (Aporia crataegi) was extirpated from Britain in the 1920s. Here, we sequenced historical DNA from 17 specimens collected between 1854 and 1924 to reconstruct demography and compare levels of genomic erosion between extirpated British and extant European mainland populations. We contrast these results using modern samples of the Common Blue butterfly (Polyommatus icarus); a species with relatively stable demographic trends in Great Britain. We provide evidence for bottlenecks in both these species around the period of post-glacial colonization of the British Isles. Our results reveal different demographic histories and Ne for both species, consistent with their fates in Britain, likely driven by differences in life history, ecology and genome size. Despite a difference, by an order of magnitude, in historical effective population sizes (Ne), reduction in genome-wide heterozygosity in A. crataegi was comparable to that in P. icarus. Symptomatic of A. crataegi's disappearance were marked increases in runs-of-homozygosity (RoH), potentially indicative of recent inbreeding, and accumulation of putatively mildly and weakly deleterious variants. Our results provide a rare glimpse of genomic erosion in a regionally extinct insect and support the potential use of genomic erosion metrics in identifying invertebrate populations or species in decline.
Collapse
Affiliation(s)
- Rebecca Whitla
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Korneel Hens
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - James Hogan
- Oxford University Museum of Natural History, Oxford, UK
| | - Geoff Martin
- Insects Division, Natural History Museum, London, UK
| | - Casper Breuker
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - Timothy G Shreeve
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| |
Collapse
|
2
|
Boddé M, Makunin A, Teltscher F, Akorli J, Andoh NE, Bei A, Chaumeau V, Desamours I, Ekpo UF, Govella NJ, Kayondo J, Kobylinski K, Ngom EM, Niang EHA, Okumu F, Omitola OO, Ponlawat A, Rakotomanga MN, Rasolonjatovoniaina MT, Ayala D, Lawniczak M. Improved species assignments across the entire Anopheles genus using targeted sequencing. Front Genet 2024; 15:1456644. [PMID: 39364005 PMCID: PMC11446804 DOI: 10.3389/fgene.2024.1456644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
Accurate species identification of the mosquitoes in the genus Anopheles is of crucial importance to implement malaria control measures and monitor their effectiveness. We use a previously developed amplicon panel (ANOSPP) that retrieves sequence data from multiple short nuclear loci for any species in the genus. Species assignment is based on comparison of samples to a reference index using k-mer distance. Here, we provide a protocol to generate version controlled updates of the reference index and present its latest release, NNv2, which contains 91 species, compared to 56 species represented in its predecessor NNv1. With the updated reference index, we are able to assign samples to species level that previously could not be assigned. We discuss what happens if a species is not represented in the reference index and how this can be addressed in a future update. To demonstrate the increased power of NNv2, we showcase the assignments of 1789 wild-caught mosquitoes from Madagascar and demonstrate that we can detect within species population structure from the amplicon sequencing data.
Collapse
Affiliation(s)
- Marilou Boddé
- LIB Leibniz Institute for the Analysis of Biodiversity Change, Center for Molecular Biodiversity Research, Bonn, Germany
- Institut Pasteur de Madagascar, Medical Entomology Unit, Antananarivo, Madagascar
- Wellcome Sanger Institute, Tree of Life, Hinxton, United Kingdom
| | - Alex Makunin
- Wellcome Sanger Institute, Tree of Life, Hinxton, United Kingdom
| | - Fiona Teltscher
- Wellcome Sanger Institute, Tree of Life, Hinxton, United Kingdom
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Nana Efua Andoh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Amy Bei
- School of Public Health, Yale University, New Haven, CT, United States
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Research, Mahidol University, Mae Ramat, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Ife Desamours
- School of Public Health, Yale University, New Haven, CT, United States
| | - Uwem F. Ekpo
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | | | - Kevin Kobylinski
- Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | | | - El Hadji Amadou Niang
- Laboratory of Vector and Parasite Ecology, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Olaitan O. Omitola
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Alongkot Ponlawat
- Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | | | | | - Diego Ayala
- Institut Pasteur de Madagascar, Medical Entomology Unit, Antananarivo, Madagascar
- Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control (MIVEGEC), University Montpellier, National Centre for Scientific Research (CNRS), Research and Development Institute (IRD), Montpellier, France
| | - Mara Lawniczak
- Wellcome Sanger Institute, Tree of Life, Hinxton, United Kingdom
| |
Collapse
|
3
|
Rayo E, Ulrich GF, Zemp N, Greeff M, Schuenemann VJ, Widmer A, Fischer MC. Minimally destructive hDNA extraction method for retrospective genetics of pinned historical Lepidoptera specimens. Sci Rep 2024; 14:12875. [PMID: 38834639 DOI: 10.1038/s41598-024-63587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
The millions of specimens stored in entomological collections provide a unique opportunity to study historical insect diversity. Current technologies allow to sequence entire genomes of historical specimens and estimate past genetic diversity of present-day endangered species, advancing our understanding of anthropogenic impact on genetic diversity and enabling the implementation of conservation strategies. A limiting challenge is the extraction of historical DNA (hDNA) of adequate quality for sequencing platforms. We tested four hDNA extraction protocols on five body parts of pinned false heath fritillary butterflies, Melitaea diamina, aiming to minimise specimen damage, preserve their scientific value to the collections, and maximise DNA quality and yield for whole-genome re-sequencing. We developed a very effective approach that successfully recovers hDNA appropriate for short-read sequencing from a single leg of pinned specimens using silica-based DNA extraction columns and an extraction buffer that includes SDS, Tris, Proteinase K, EDTA, NaCl, PTB, and DTT. We observed substantial variation in the ratio of nuclear to mitochondrial DNA in extractions from different tissues, indicating that optimal tissue choice depends on project aims and anticipated downstream analyses. We found that sufficient DNA for whole genome re-sequencing can reliably be extracted from a single leg, opening the possibility to monitor changes in genetic diversity maintaining the scientific value of specimens while supporting current and future conservation strategies.
Collapse
Affiliation(s)
- Enrique Rayo
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
- Institut Für Veterinärpathologie, University of Zurich, Zurich, Switzerland
| | - Gabriel F Ulrich
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
| | - Michael Greeff
- Institute of Agricultural Sciences (IAS), ETH Zurich, Zurich, Switzerland
| | - Verena J Schuenemann
- Department of Environmental Sciences (DUW), University of Basel, Basel, Switzerland
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Martin C Fischer
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Nelder MP, Schats R, Poinar HN, Cooke A, Brickley MB. Pathogen prospecting of museums: Reconstructing malaria epidemiology. Proc Natl Acad Sci U S A 2024; 121:e2310859121. [PMID: 38527214 PMCID: PMC11009618 DOI: 10.1073/pnas.2310859121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Malaria is a disease of global significance. Ongoing changes to the earth's climate, antimalarial resistance, insecticide resistance, and socioeconomic decline test the resilience of malaria prevention programs. Museum insect specimens present an untapped resource for studying vector-borne pathogens, spurring the question: Do historical mosquito collections contain Plasmodium DNA, and, if so, can museum specimens be used to reconstruct the historical epidemiology of malaria? In this Perspective, we explore molecular techniques practical to pathogen prospecting, which, more broadly, we define as the science of screening entomological museum specimens for human, animal, or plant pathogens. Historical DNA and pathogen prospecting provide a means of describing the coevolution of human, vector, and parasite, informing the development of insecticides, diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Mark P. Nelder
- Enteric, Zoonotic and Vector-Borne Diseases, Health Protection, Public Health Ontario, Toronto, ONM5G 1M1, Canada
| | - Rachel Schats
- Laboratory for Human Osteoarchaeology, Faculty of Archaeology, Leiden University, 2333 CCLeiden, The Netherlands
| | - Hendrik N. Poinar
- Department of Anthropology, McMaster University, Hamilton, ONL8S 4L9, Canada
- Department of Biochemistry, McMaster University, Hamilton, ONL8S 4L9, Canada
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ONL8S 4L9, Canada
| | - Amanda Cooke
- Department of Anthropology, McMaster University, Hamilton, ONL8S 4L9, Canada
| | - Megan B. Brickley
- Department of Anthropology, McMaster University, Hamilton, ONL8S 4L9, Canada
| |
Collapse
|
5
|
Cobb L, de Muinck E, Kollias S, Skage M, Gilfillan GD, Sydenham MAK, Qiao SW, Star B. High-throughput sequencing of insect specimens with sub-optimal DNA preservation using a practical, plate-based Illumina-compatible Tn5 transposase library preparation method. PLoS One 2024; 19:e0300865. [PMID: 38517905 PMCID: PMC10959394 DOI: 10.1371/journal.pone.0300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Entomological sampling and storage conditions often prioritise efficiency, practicality and conservation of morphological characteristics, and may therefore be suboptimal for DNA preservation. This practice can impact downstream molecular applications, such as the generation of high-throughput genomic libraries, which often requires substantial DNA input amounts. Here, we use a practical Tn5 transposase tagmentation-based library preparation method optimised for 96-well plates and low yield DNA extracts from insect legs that were stored under sub-optimal conditions for DNA preservation. The samples were kept in field vehicles for extended periods of time, before long-term storage in ethanol in the freezer, or dry at room temperature. By reducing DNA input to 6ng, more samples with sub-optimal DNA yields could be processed. We matched this low DNA input with a 6-fold dilution of a commercially available tagmentation enzyme, significantly reducing library preparation costs. Costs and workload were further suppressed by direct post-amplification pooling of individual libraries. We generated medium coverage (>3-fold) genomes for 88 out of 90 specimens, with an average of approximately 10-fold coverage. While samples stored in ethanol yielded significantly less DNA compared to those which were stored dry, these samples had superior sequencing statistics, with longer sequencing reads and higher rates of endogenous DNA. Furthermore, we find that the efficiency of tagmentation-based library preparation can be improved by a thorough post-amplification bead clean-up which selects against both short and large DNA fragments. By opening opportunities for the use of sub-optimally preserved, low yield DNA extracts, we broaden the scope of whole genome studies of insect specimens. We therefore expect these results and this protocol to be valuable for a range of applications in the field of entomology.
Collapse
Affiliation(s)
- Lauren Cobb
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Erik de Muinck
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Spyros Kollias
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Morten Skage
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Gregor D. Gilfillan
- Department of Medical Genetics, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | | | - Shuo-Wang Qiao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Ferrari G, Esselens L, Hart ML, Janssens S, Kidner C, Mascarello M, Peñalba JV, Pezzini F, von Rintelen T, Sonet G, Vangestel C, Virgilio M, Hollingsworth PM. Developing the Protocol Infrastructure for DNA Sequencing Natural History Collections. Biodivers Data J 2023; 11:e102317. [PMID: 38327316 PMCID: PMC10848826 DOI: 10.3897/bdj.11.e102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 02/09/2024] Open
Abstract
Intentionally preserved biological material in natural history collections represents a vast repository of biodiversity. Advances in laboratory and sequencing technologies have made these specimens increasingly accessible for genomic analyses, offering a window into the genetic past of species and often permitting access to information that can no longer be sampled in the wild. Due to their age, preparation and storage conditions, DNA retrieved from museum and herbarium specimens is often poor in yield, heavily fragmented and biochemically modified. This not only poses methodological challenges in recovering nucleotide sequences, but also makes such investigations susceptible to environmental and laboratory contamination. In this paper, we review the practical challenges associated with making the recovery of DNA sequence data from museum collections more routine. We first review key operational principles and issues to address, to guide the decision-making process and dialogue between researchers and curators about when and how to sample museum specimens for genomic analyses. We then outline the range of steps that can be taken to reduce the likelihood of contamination including laboratory set-ups, workflows and working practices. We finish by presenting a series of case studies, each focusing on protocol practicalities for the application of different mainstream methodologies to museum specimens including: (i) shotgun sequencing of insect mitogenomes, (ii) whole genome sequencing of insects, (iii) genome skimming to recover plant plastid genomes from herbarium specimens, (iv) target capture of multi-locus nuclear sequences from herbarium specimens, (v) RAD-sequencing of bird specimens and (vi) shotgun sequencing of ancient bovid bone samples.
Collapse
Affiliation(s)
- Giada Ferrari
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Lore Esselens
- Royal Museum for Central Africa, Tervuren, BelgiumRoyal Museum for Central AfricaTervurenBelgium
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Michelle L Hart
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Steven Janssens
- Meise Botanic Garden, Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Leuven Plant Institute, Department of Biology, Leuven, BelgiumLeuven Plant Institute, Department of BiologyLeuvenBelgium
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | - Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Flávia Pezzini
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Gontran Sonet
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Massimiliano Virgilio
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, BelgiumRoyal Museum for Central Africa, Department of African ZoologyTervurenBelgium
| | - Peter M Hollingsworth
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| |
Collapse
|
7
|
Shpak M, Ghanavi HR, Lange JD, Pool JE, Stensmyr MC. Genomes from historical Drosophila melanogaster specimens illuminate adaptive and demographic changes across more than 200 years of evolution. PLoS Biol 2023; 21:e3002333. [PMID: 37824452 PMCID: PMC10569592 DOI: 10.1371/journal.pbio.3002333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
The ability to perform genomic sequencing on long-dead organisms is opening new frontiers in evolutionary research. These opportunities are especially notable in the case of museum collections, from which countless documented specimens may now be suitable for genomic analysis-if data of sufficient quality can be obtained. Here, we report 25 newly sequenced genomes from museum specimens of the model organism Drosophila melanogaster, including the oldest extant specimens of this species. By comparing historical samples ranging from the early 1800s to 1933 against modern-day genomes, we document evolution across thousands of generations, including time periods that encompass the species' initial occupation of northern Europe and an era of rapidly increasing human activity. We also find that the Lund, Sweden population underwent local genetic differentiation during the early 1800s to 1933 interval (potentially due to drift in a small population) but then became more similar to other European populations thereafter (potentially due to increased migration). Within each century-scale time period, our temporal sampling allows us to document compelling candidates for recent natural selection. In some cases, we gain insights regarding previously implicated selection candidates, such as ChKov1, for which our inferred timing of selection favors the hypothesis of antiviral resistance over insecticide resistance. Other candidates are novel, such as the circadian-related gene Ahcy, which yields a selection signal that rivals that of the DDT resistance gene Cyp6g1. These insights deepen our understanding of recent evolution in a model system, and highlight the potential of future museomic studies.
Collapse
Affiliation(s)
- Max Shpak
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | | | - Jeremy D. Lange
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Marcus C. Stensmyr
- Department of Biology, Lund University, Lund, Scania, Sweden
- Max Planck Center on Next Generation Insect Chemical Ecology, Lund, Sweden
| |
Collapse
|
8
|
Giordani G, Whitmore D, Vanin S. A New, Non-Invasive Methodology for the Molecular Identification of Adult Sarcophagidae from Collections. INSECTS 2023; 14:635. [PMID: 37504641 PMCID: PMC10380211 DOI: 10.3390/insects14070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Correct species identification is the cornerstone of all scientific studies that involve insects. Alongside traditional morphological identification techniques, molecular identification based on the characterization and analysis of specific mitochondrial or nuclear gene regions is becoming commonplace. Despite the good results that can be achieved, DNA extraction usually involves invasive techniques that lead to the partial or total destruction of specimens. In this work, a non-invasive DNA extraction technique is described. The technique was tested on the abdomens of dry-preserved Sarcophagidae (Diptera) specimens collected between 1889 and 2015. This allowed for the correct identification of species without impairing diagnostic morphological structures useful for further studies.
Collapse
Affiliation(s)
- Giorgia Giordani
- Dipartimento di Farmacia e Biotecnologie (FABIT), Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy
| | - Daniel Whitmore
- Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany
| | - Stefano Vanin
- Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), Università di Genova, 16132 Genova, Italy
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), 16149 Genova, Italy
| |
Collapse
|
9
|
Meireles ACA, Rios FGF, Feitoza LHM, da Silva LR, Julião GR. Nondestructive Methods of Pathogen Detection: Importance of Mosquito Integrity in Studies of Disease Transmission and Control. Pathogens 2023; 12:816. [PMID: 37375506 DOI: 10.3390/pathogens12060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Mosquitoes are vectors of many pathogens, including viruses, protozoans, and helminths, spreading these pathogens to humans as well as to wild and domestic animals. As the identification of species and the biological characterization of mosquito vectors are cornerstones for understanding patterns of disease transmission, and the design of control strategies, we conducted a literature review on the current use of noninvasive and nondestructive techniques for pathogen detection in mosquitoes, highlighting the importance of their taxonomic status and systematics, and some gaps in the knowledge of their vectorial capacity. Here, we summarized the alternative techniques for pathogen detection in mosquitoes based on both laboratory and field studies. Parasite infection and dissemination by mosquitoes can also be obtained via analyses of saliva- and excreta-based techniques or of the whole mosquito body, using a near-infrared spectrometry (NIRS) approach. Further research should be encouraged to seek strategies for detecting target pathogens while preserving mosquito morphology, especially in biodiversity hotspot regions, thus enabling the discovery of cryptic or new species, and the determination of more accurate taxonomic, parasitological, and epidemiological patterns.
Collapse
Affiliation(s)
- Anne Caroline Alves Meireles
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Biodiversity and Health, PhD in Sciences-Fiocruz Rondônia/Oswaldo Cruz Institute, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
| | - Flávia Geovana Fontineles Rios
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
| | - Luiz Henrique Maciel Feitoza
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
| | - Lucas Rosendo da Silva
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
| | - Genimar Rebouças Julião
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
- National Institute of Epidemiology of Western Amazônia-INCT-EpiAmO, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
| |
Collapse
|
10
|
Donald ML, Bolstridge N, Ridden JD. Precision glycerine jelly swab for removing pollen from small and fragile insect specimens. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marion L. Donald
- Manaaki Whenua Landcare Research, 54 Gerald St Lincoln, NZ, 7608
| | - Nic Bolstridge
- Manaaki Whenua Landcare Research, 54 Gerald St Lincoln, NZ, 7608
| | - Johnathon D. Ridden
- Canterbury Museum, 11 Rolleston Avenue, Christchurch Central City Christchurch, NZ, 8013
| |
Collapse
|