1
|
Luo L, Qu Q, Lin H, Chen J, Lin Z, Shao E, Lin D. Exploring the Evolutionary History and Phylogenetic Relationships of Giant Reed ( Arundo donax) through Comprehensive Analysis of Its Chloroplast Genome. Int J Mol Sci 2024; 25:7936. [PMID: 39063178 PMCID: PMC11277011 DOI: 10.3390/ijms25147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Giant reed (Arundo donax) is widely distributed across the globe and is considered an important energy crop. This study presents the first comprehensive analysis of the chloroplast genome of giant reed, revealing detailed characteristics of this species' chloroplast genome. The chloroplast genome has a total length of 137,153 bp, containing 84 protein-coding genes, 38 tRNA genes, and 8 rRNA genes, with a GC content of 39%. Functional analysis indicates that a total of 45 photosynthesis-related genes and 78 self-replication-related genes were identified, which may be closely associated with its adaptability and growth characteristics. Phylogenetic analysis confirmed that Arundo donax cv. Lvzhou No.1 belongs to the Arundionideae clade and occupies a distinct evolutionary position compared to other Arundo species. The findings of this study not only enhance our understanding of the giant reed genome but also provide valuable genetic resources for its application in biotechnology, bioenergy crop development, and ecological restoration.
Collapse
Affiliation(s)
| | | | | | | | | | - Ensi Shao
- Juncao Science and Ecology College, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Q.Q.); (H.L.); (J.C.); (Z.L.)
| | - Dongmei Lin
- Juncao Science and Ecology College, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Q.Q.); (H.L.); (J.C.); (Z.L.)
| |
Collapse
|
2
|
Yang GS, Qiu Y, Yang ZA. The complete chloroplast genome of Keteleeria evelyniana Mast var. pendula Hsüeh (Pinaceae), a species with extremely small populations in China. Mitochondrial DNA B Resour 2024; 9:557-562. [PMID: 38686317 PMCID: PMC11057466 DOI: 10.1080/23802359.2024.2345780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Keteleeria evelyniana Mast var. pendula Hsüeh, a typical plant species of extremely small population, is faced to be endangered. The complete chloroplast (cp) genome of K. evelyniana var. pendula has been assembled and annotated for the first time in this study. The complete genome in length was found to be 117,139 bp. The genome annotation revealed a total of 118 genes, including 34 transfer RNA (tRNA) genes, 4 ribosomal RNA (rRNA) genes, and 80 protein-coding genes. The maximum-likelihood phylogenetic tree supported that K. evelyniana var. pendula, K. fortune, K. evelyniana, and K. davidiana are clustered in one branch. This complete chloroplast genome helped us to understand the evolution of K. evelyniana var. pendula. These results laid the foundation for future studies on the conservation of this species.
Collapse
Affiliation(s)
- Guan-Song Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Yu Qiu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Zheng-An Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Yu Y, Wang X, Qu R, OuYang Z, Guo J, Zhao Y, Huang L. Extraction and analysis of high-quality chloroplast DNA with reduced nuclear DNA for medicinal plants. BMC Biotechnol 2024; 24:20. [PMID: 38637734 PMCID: PMC11025248 DOI: 10.1186/s12896-024-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.
Collapse
Affiliation(s)
- Yifan Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China
| | - Xinxin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Renjun Qu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhen OuYang
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yujun Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China.
| |
Collapse
|
4
|
Park S, Kwak M, Park S. Complete organelle genomes of Korean fir, Abies koreana and phylogenomics of the gymnosperm genus Abies using nuclear and cytoplasmic DNA sequence data. Sci Rep 2024; 14:7636. [PMID: 38561351 PMCID: PMC10985005 DOI: 10.1038/s41598-024-58253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Abies koreana E.H.Wilson is an endangered evergreen coniferous tree that is native to high altitudes in South Korea and susceptible to the effects of climate change. Hybridization and reticulate evolution have been reported in the genus; therefore, multigene datasets from nuclear and cytoplasmic genomes are needed to better understand its evolutionary history. Using the Illumina NovaSeq 6000 and Oxford Nanopore Technologies (ONT) PromethION platforms, we generated complete mitochondrial (1,174,803 bp) and plastid (121,341 bp) genomes from A. koreana. The mitochondrial genome is highly dynamic, transitioning from cis- to trans-splicing and breaking conserved gene clusters. In the plastome, the ONT reads revealed two structural conformations of A. koreana. The short inverted repeats (1186 bp) of the A. koreana plastome are associated with different structural types. Transcriptomic sequencing revealed 1356 sites of C-to-U RNA editing in the 41 mitochondrial genes. Using A. koreana as a reference, we additionally produced nuclear and organelle genomic sequences from eight Abies species and generated multiple datasets for maximum likelihood and network analyses. Three sections (Balsamea, Momi, and Pseudopicea) were well grouped in the nuclear phylogeny, but the phylogenomic relationships showed conflicting signals in the mitochondrial and plastid genomes, indicating a complicated evolutionary history that may have included introgressive hybridization. The obtained data illustrate that phylogenomic analyses based on sequences from differently inherited organelle genomes have resulted in conflicting trees. Organelle capture, organelle genome recombination, and incomplete lineage sorting in an ancestral heteroplasmic individual can contribute to phylogenomic discordance. We provide strong support for the relationships within Abies and new insights into the phylogenomic complexity of this genus.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Myounghai Kwak
- National Institute of Biological Resources, Incheon, 22689, South Korea.
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
5
|
Li QQ, Khasbagan, Zhang ZP, Wen J, Yu Y. Plastid phylogenomics of the tribe potentilleae (Rosaceae). Mol Phylogenet Evol 2024; 190:107961. [PMID: 37918684 DOI: 10.1016/j.ympev.2023.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/08/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The tribe Potentilleae comprises approximately 1700 species in 13 genera, making it one of the largest of the 16 tribes in Rosaceae. Our understanding of the composition and relationships among members of Potentilleae has advanced dramatically with the application of molecular markers in the last two decades. Yet there is still much work remaining toward a robust phylogenetic framework for the entire Potentilleae and a comprehensive genus-level dating framework for the tribe. The goals of the present study were to establish a phylogenetic framework for Potentilleae, infer the origin and diversification of the tribe using a temporal framework, and explore the taxonomic implications in light of the updated phylogenetic framework. We used the plastome sequences from 158 accessions representing 139 taxa covering all 13 recognized genera of the tribe to reconstruct the Potentilleae phylogeny. High phylogenetic resolution was recovered along the Potentilleae backbone. Two major clades were recovered within Potentilleae, corresponding to the two subtribes Fragariinae and Potentillinae. Within Fragariinae, two subclades were recovered. In one subclade, Sibbaldia sensu stricto is sister to a clade containing Sibbaldianthe, Comarum, Farinopsis, and Alchemilla sensu lato. In the other subclade, Fragaria is sister to a clade comprising Chamaerhodos, Chamaecallis, Drymocallis, Dasiphora, and Potaninia. Within Potentillinae, Argentina is sister to Potentilla sensu stricto. Within Potentilla sensu stricto, clade Himalaya is sister to Alba, and the Himalaya-Alba clade together is sister to a clade comprising Reptans, Potentilla ancistrifolia Bunge, Fragarioides, Ivesioid, and Argentea. Divergence time estimates indicated that tribe Potentilleae originated during the middle Eocene, and subtribes Fragariinae and Potentillinae diverged around the Eocene-Oligocene transition, and divergence times dated for Potentilleae genera ranged from the early Miocene to the late Pleistocene.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China; Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Khasbagan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA.
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
6
|
Sun L, Yin X, Sossah FL, Han X, Li Y. Comparative genomic analysis of pleurotus species reveals insights into the evolution and coniferous utilization of Pleurotus placentodes. Front Mol Biosci 2023; 10:1292556. [PMID: 38028535 PMCID: PMC10658006 DOI: 10.3389/fmolb.2023.1292556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pleurotus placentodes (PPL) and Pleurotus cystidiosus (PCY) are economically valuable species. PPL grows on conifers, while PCY grows on broad-leaved trees. To reveal the genetic mechanism behind PPL's adaptability to conifers, we performed de novo genome sequencing and comparative analysis of PPL and PCY. We determined the size of the genomes for PPL and PCY to be 36.12 and 42.74 Mb, respectively, and found that they contain 10,851 and 15,673 protein-coding genes, accounting for 59.34% and 53.70% of their respective genome sizes. Evolution analysis showed PPL was closely related to P. ostreatus with the divergence time of 62.7 MYA, while PCY was distantly related to other Pleurotus species with the divergence time of 111.7 MYA. Comparative analysis of carbohydrate-active enzymes (CAZYmes) in PPL and PCY showed that the increase number of CAZYmes related to pectin and cellulose degradation (e.g., AA9, PL1) in PPL may be important for the degradation and colonization of conifers. In addition, geraniol degradation and peroxisome pathways identified by comparative genomes should be another factors for PPL's tolerance to conifer substrate. Our research provides valuable genomes for Pleurotus species and sheds light on the genetic mechanism of PPL's conifer adaptability, which could aid in breeding new Pleurotus varieties for coniferous utilization.
Collapse
Affiliation(s)
- Lei Sun
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Xiaolei Yin
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Frederick Leo Sossah
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi, Ghana
| | - Xuerong Han
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Xia Q, Zhang H, Lv D, El-Kassaby YA, Li W. Insights into phylogenetic relationships in Pinus inferred from a comparative analysis of complete chloroplast genomes. BMC Genomics 2023; 24:346. [PMID: 37349702 DOI: 10.1186/s12864-023-09439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Pinus is the largest genus of Pinaceae and the most primitive group of modern genera. Pines have become the focus of many molecular evolution studies because of their wide use and ecological significance. However, due to the lack of complete chloroplast genome data, the evolutionary relationship and classification of pines are still controversial. With the development of new generation sequencing technology, sequence data of pines are becoming abundant. Here, we systematically analyzed and summarized the chloroplast genomes of 33 published pine species. RESULTS Generally, pines chloroplast genome structure showed strong conservation and high similarity. The chloroplast genome length ranged from 114,082 to 121,530 bp with similar positions and arrangements of all genes, while the GC content ranged from 38.45 to 39.00%. Reverse repeats showed a shrinking evolutionary trend, with IRa/IRb length ranging from 267 to 495 bp. A total of 3,205 microsatellite sequences and 5,436 repeats were detected in the studied species chloroplasts. Additionally, two hypervariable regions were assessed, providing potential molecular markers for future phylogenetic studies and population genetics. Through the phylogenetic analysis of complete chloroplast genomes, we offered novel opinions on the genus traditional evolutionary theory and classification. CONCLUSION We compared and analyzed the chloroplast genomes of 33 pine species, verified the traditional evolutionary theory and classification, and reclassified some controversial species classification. This study is helpful in analyzing the evolution, genetic structure, and the development of chloroplast DNA markers in Pinus.
Collapse
Affiliation(s)
- Qijing Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongbin Zhang
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734031, China
| | - Dong Lv
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734031, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Zhou SM, Wang F, Yan SY, Zhu ZM, Gao XF, Zhao XL. Phylogenomics and plastome evolution of Indigofera (Fabaceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1186598. [PMID: 37346129 PMCID: PMC10280451 DOI: 10.3389/fpls.2023.1186598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Introduction Indigofera L. is the third largest genus in Fabaceae and includes economically important species that are used for indigo dye-producing, medicinal, ornamental, and soil and water conservation. The genus is taxonomically difficult due to the high level of overlap in morphological characters of interspecies, fewer reliability states for classification, and extensive adaptive evolution. Previous characteristic-based taxonomy and nuclear ITS-based phylogenies have contributed to our understanding of Indigofera taxonomy and evolution. However, the lack of chloroplast genomic resources limits our comprehensive understanding of the phylogenetic relationships and evolutionary processes of Indigofera. Methods Here, we newly assembled 18 chloroplast genomes of Indigofera. We performed a series of analyses of genome structure, nucleotide diversity, phylogenetic analysis, species pairwise Ka/Ks ratios, and positive selection analysis by combining with allied species in Papilionoideae. Results and discussion The chloroplast genomes of Indigofera exhibited highly conserved structures and ranged in size from 157,918 to 160,040 bp, containing 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Thirteen highly variable regions were identified, of which trnK-rbcL, ndhF-trnL, and ycf1 were considered as candidate DNA barcodes for species identification of Indigofera. Phylogenetic analysis using maximum likelihood (ML) and Bayesian inference (BI) methods based on complete chloroplast genome and protein-coding genes (PCGs) generated a well-resolved phylogeny of Indigofera and allied species. Indigofera monophyly was strongly supported, and four monophyletic lineages (i.e., the Pantropical, East Asian, Tethyan, and Palaeotropical clades) were resolved within the genus. The species pairwise Ka/Ks ratios showed values lower than 1, and 13 genes with significant posterior probabilities for codon sites were identified in the positive selection analysis using the branch-site model, eight of which were associated with photosynthesis. Positive selection of accD suggested that Indigofera species have experienced adaptive evolution to selection pressures imposed by their herbivores and pathogens. Our study provided insight into the structural variation of chloroplast genomes, phylogenetic relationships, and adaptive evolution in Indigofera. These results will facilitate future studies on species identification, interspecific and intraspecific delimitation, adaptive evolution, and the phylogenetic relationships of the genus Indigofera.
Collapse
Affiliation(s)
- Sheng-Mao Zhou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Fang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Si-Yuan Yan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| | - Xin-Fen Gao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xue-Li Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| |
Collapse
|
9
|
Zhou L, Chen T, Qiu X, Liu J, Guo S. Evolutionary differences in gene loss and pseudogenization among mycoheterotrophic orchids in the tribe Vanilleae (subfamily Vanilloideae). FRONTIERS IN PLANT SCIENCE 2023; 14:1160446. [PMID: 37035052 PMCID: PMC10073425 DOI: 10.3389/fpls.2023.1160446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Galeola lindleyana is a mycoheterotrophic orchid belonging to the tribe Vanilleae within the subfamily Vanilloideae. METHODS In this study, the G. lindleyana plastome was assembled and annotated, and compared with other Vanilleae orchids, revealing the evolutionary variations between the photoautotrophic and mycoheterotrophic plastomes. RESULTS The G. lindleyana plastome was found to include 32 protein-coding genes, 16 tRNA genes and four ribosomal RNA genes, including 11 pseudogenes. Almost all of the genes encoding photosynthesis have been lost physically or functionally, with the exception of six genes encoding ATP synthase and psaJ in photosystem I. The length of the G. lindleyana plastome has decreased to 100,749 bp, while still retaining its typical quadripartite structure. Compared with the photoautotrophic Vanilloideae plastomes, the inverted repeat (IR) regions and the large single copy (LSC) region of the mycoheterotrophic orchid's plastome have contracted, while the small single copy (SSC) region has expanded significantly. Moreover, the difference in length between the two ndhB genes was found to be 682 bp, with one of them spanning the IRb/SSC boundary. The Vanilloideae plastomes were varied in their structural organization, gene arrangement, and gene content. Even the Cyrtosia septentrionalis plastome which was found to be closest in length to the G. lindleyana plastome, differed in terms of its gene arrangement and gene content. In the LSC region, the psbA, psbK, atpA and psaB retained in the G. lindleyana plastome were missing in the C. septentrionalis plastome, while, the matK, rps16, and atpF were incomplete in the C. septentrionalis plastome, yet still complete in that of the G. lindleyana. Lastly, compared with the G. lindleyana plastome, a 15 kb region located in the SSC area between ndhB-rrn16S was found to be inverted in the C. septentrionalis plastome. These changes in gene content, gene arrangment and gene structure shed light on the polyphyletic evolution of photoautotrophic orchid plastomes to mycoheterotrophic orchid plastomes. DISCUSSION Thus, this study's decoding of the mycoheterotrophic G. lindleyana plastome provides valuable resource data for future research and conservation of endangered orchids.
Collapse
Affiliation(s)
| | | | | | - Jinxin Liu
- *Correspondence: Jinxin Liu, ; Shunxing Guo,
| | | |
Collapse
|
10
|
Jiang K, Du C, Huang L, Luo J, Liu T, Huang S. Phylotranscriptomics and evolution of key genes for terpene biosynthesis in Pinaceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1114579. [PMID: 36875589 PMCID: PMC9982022 DOI: 10.3389/fpls.2023.1114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Pinaceae is the largest family of conifers, dominating forest ecosystems and serving as the backbone of northern, temperate and mountain forests. The terpenoid metabolism of conifers is responsive to pests, diseases, and environmental stress. Determining the phylogeny and evolution of terpene synthase genes in Pinaceae may shed light on early adaptive evolution. We used different inference methods and datasets to reconstruct the Pinaceae phylogeny based on our assembled transcriptomes. We identified the final species tree of Pinaceae by comparing and summarizing different phylogenetic trees. The genes encoding terpene synthase (TPS) and cytochrome P450 proteins in Pinaceae showed a trend of expansion compared with those in Cycas. Gene family analysis revealed that the number of TPS genes decreased while the number of P450 genes increased in loblolly pine. Expression profiles showed that TPSs and P450s were mainly expressed in leaf buds and needles, which may be the result of long-term evolution to protect these two vulnerable tissues. Our research provides insights into the phylogeny and evolution of terpene synthase genes in Pinaceae and offers some useful references for the investigation of terpenoids in conifers.
Collapse
Affiliation(s)
- Kaibin Jiang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Chengju Du
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Linwang Huang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Jiexian Luo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Tianyi Liu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Shaowei Huang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Li WJ, Feng T, Li J, He B, Zou S, Liu PJ. The complete chloroplast genome of Pseudotsuga sinensis, a China endemic species. Mitochondrial DNA B Resour 2023; 8:23-25. [PMID: 36632080 PMCID: PMC9828758 DOI: 10.1080/23802359.2022.2080012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this study, we collected plant material from Pseudotsuga sinensis in Guizhou, China, and sequenced it. The complete chloroplast genome consisted of 122,243 bp, including a large single-copy (LSC) region, a small single-copy (SSC) region, and two inverted repeat regions like those in P. sinensis var. wilsoniana. The GC content of P. sinensis and P. sinensis var. wilsoniana are 38.7% and 38.8%, respectively. The reconstructed phylogenetic tree reveals that P. sinensis was a sister species to P. sinensis var. wilsoniana. Hence, the availability of the chloroplast genome of P. sinensis will promote further phylogenetic studies of the family Pinaceae.
Collapse
Affiliation(s)
- Wang Jun Li
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Guizhou University of Engineering Science, Bijie, China
| | - Tu Feng
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Guizhou University of Engineering Science, Bijie, China
| | - Jun Li
- Nature Reserve Service Station for Pseudotsuga sinensis in Weining, Bijie, China
| | - Bin He
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Guizhou University of Engineering Science, Bijie, China
| | - Shun Zou
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Guizhou University of Engineering Science, Bijie, China
| | - Peng Ju Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China,CONTACT Peng Ju Liu CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
12
|
Wei R, Li Q. The Complete Chloroplast Genome of Endangered Species Stemona parviflora: Insight into the Phylogenetic Relationship and Conservation Implications. Genes (Basel) 2022; 13:genes13081361. [PMID: 36011272 PMCID: PMC9407434 DOI: 10.3390/genes13081361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Stemona parviflora is an endangered species, narrowly endemic to Hainan and Southwest Guangdong. The taxonomic classification of S. parviflora remains controversial. Moreover, studying endangered species is helpful for current management and conservation. In this study, the first complete chloroplast genome of S. parviflora was assembled and compared with other Stemona species. The chloroplast genome size of S. parviflora was 154,552 bp, consisting of 87 protein-coding genes, 38 tRNA genes, 8 rRNA genes, and one pseudogene. The ψycf1 gene was lost in the cp genome of S. sessilifolia, but it was detected in four other species of Stemona. The inverted repeats (IR) regions have a relatively lower length variation compared with the large single copy (LSC) and small single copy (SSC) regions. Long repeat sequences and simple sequence repeat (SSR) were detected, and most SSR were distributed in the LSC region. Codon usage bias analyses revealed that the RSCU value of the genus Stemona has almost no difference. As with most angiosperm chloroplast genomes, protein-coding regions were more conservative than the inter-gene spacer. Seven genes (atpI, ccsA, cemA, matK, ndhA, petA, and rpoC1) were detected under positive selection in different Stemona species, which may result from adaptive evolution to different habitats. Phylogenetic analyses show the Stemona cluster in two main groups; S. parviflora were closest to S. tuberosa. A highly suitable region of S. parviflora was simulated by Maxent in this study; it is worth noting that the whole territory of Taiwan has changed to a low fitness area and below in the 2050 s, which may not be suitable for the introduction and cultivation of S. parviflora. In addition, limited by the dispersal capacity of S. parviflora, it is necessary to carry out artificial grafts to expand the survival areas of S. parviflora. Our results provide valuable information on characteristics of the chloroplast genome, phylogenetic relationships, and potential distribution range of the endangered species S. parviflora.
Collapse
Affiliation(s)
- Ran Wei
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Qiang Li
- Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Correspondence:
| |
Collapse
|
13
|
Chen C, Xia X, Peng J, Wang D. Comparative Analyses of Six Complete Chloroplast Genomes from the Genus Cupressus and Juniperus (Cupressaceae). Gene 2022; 837:146696. [PMID: 35738448 DOI: 10.1016/j.gene.2022.146696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Cupressaceae is a conifer family distributed around the world. Cupressus and Juniperus are the main genera of the Cupressaceae family and have important medicinal value. This leads to confusion between Cupressus and Juniperus due to similar morphologies. Here, the complete cp genomes of two Cupressus (C. duclouxiana and C. funebri) and four Juniperus (J. chinensis, J. gaussenii J. pingii and J. procumbens) were sequenced. The results revealed that the length of the cp genomes ranged from 126,996 bp to 129,959 bp, with 119 genes comprising 82 protein-coding genes, 33 transfer RNAs and 4 ribosomal RNAs. All chloroplast genomes of Cupressus and Juniperus lost whole IR regions, which is consistent with gymnosperm cp genome studies. In addition, the number of SSRs per species ranged from 54 to 73 and was dominated by mononucleotide repeats. In the six cp genomes of Cupressus and Juniperus, five highly divergent regions, including accD, accD-rpl2, ycf1, ycf2 and rrn23-rrn4.5, can be used as DNA barcodes of interspecific relationships and potential genetic markers. We compared the gene selection pressures (C. chengiana as reference species), and 6 genes underwent positive selection, the majority of which were related to photosynthesis. Phylogenetic results showed that the monophyly of Cupressus and Juniperus supported most bootstrap support. Cupressus funebris and J. chinensis were resolved to be early diverging species within Cupressus and Juniperus, and the two genera were sister groups to each other. This research revealed a new understanding of the structural pluralism and phylogenetic relationships of Cupressaceae cp genomes. These results will facilitate comprehension of the complexity and diversity of conifer cp genomes. SIGNIFICANCE:: Phylogenetic relationships among Cupressus, Juniperus, and their closest relatives are controversial, and generic delimitations have been in flux for the past decade. To address relationships and attempt to produce a more robust classification, we sequenced 6 new plastid genomes (plastomes) from the two variously described genera in this complex (Cupressus and Juniperus) and compared them with additional plastomes from diverse members of Cupressaceae. Our study corroborated the accD of Cupressophytes have a tendency to expand in size and strongly supported a sister relationship between Cupressus and Juniperus. The disparity in these results could be traced to the facts that the chloroplast genome is uniparentally inherited, also the usage of the whole chloroplast genome for this research is of a better advantage compared to usage of selected genes or portion of the plastome. The complete CP genomic data will provide useful information for studying genetic diversity and species identification, which is important for the overarching goal of biodiversity conservation.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Xi Xia
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Jingyu Peng
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| | - Dawei Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
14
|
Qu XJ, Zhang XJ, Cao DL, Guo XX, Mower JP, Fan SJ. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes. Mol Phylogenet Evol 2022; 174:107544. [PMID: 35690375 DOI: 10.1016/j.ympev.2022.107544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Koenigia, a genus proposed by Linnaeus, has a contentious taxonomic history. In particular, relationships among species and the circumscription of the genus relative to Aconogonon remain uncertain. To explore phylogenetic relationships of Koenigia with other members of tribe Persicarieae and to establish the timing of major evolutionary diversification events, genome skimming of organellar sequences was used to assemble plastomes and mitochondrial genes from 15 individuals representing 13 species. Most Persicarieae plastomes exhibit a conserved structure and content relative to other flowering plants. However, Koenigia delicatula has lost functional copies of all ndh genes and the intron from atpF. In addition, the rpl32 gene was relocated in the K. delicatula plastome, which likely occurred via overlapping inversions or differential expansion and contraction of the inverted repeat. The highly supported but conflicting relationships between plastome and mitochondrial trees and among gene trees complicates the circumscription of Koenigia, which could be caused by rapid diversification within a short period. Moreover, the plastome and mitochondrial trees revealed correlated variation in substitution rates among Persicarieae species, suggesting a shared underlying mechanism promoting evolutionary rate variation in both organellar genomes. The divergence of dwarf K. delicatula from other Koenigia species may be associated with the well-known Eocene Thermal Maximum 2 or Early Eocene Climatic Optimum event, while diversification of the core-Koenigia clade associates with the Mid-Miocene Climatic Optimum and the uplift of Qinghai-Tibetan Plateau and adjacent areas.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xiu-Xiu Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China.
| |
Collapse
|
15
|
Zhang R, Shi XF, Liu PG, Wilson AW, Mueller GM. Host Shift Speciation of the Ectomycorrhizal Genus Suillus (Suillineae, Boletales) and Biogeographic Comparison With Its Host Pinaceae. Front Microbiol 2022; 13:831450. [PMID: 35432238 PMCID: PMC9009389 DOI: 10.3389/fmicb.2022.831450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Suillus is a genus of ectomycorrhizal fungi associated almost exclusively with Pinaceae. Lack of sample collections in East Asia and unresolved basal phylogenetic relationships of the genus are the major obstacles for better understanding the Suillus evolution. A resolved phylogeny of Suillus representing global diversity was achieved by sequencing multiple nuclear ribosomal and protein coding genes and extensive samples collected in East Asia. Fungal fossils are extremely rare, and the Eocene ectomycorrhizal symbiosis (ECM) fossil of Pinus root has been widely used for calibration. This study explored an alternative calibration scenario of the ECM fossil for controversy. Ancestral host associations of Suillus were estimated by maximum likelihood and Bayesian Markov chain Monte Carlo (MCMC) analyses, inferred from current host information from root tips and field observation. Host shift speciation explains the diversification of Suillus major clades. The three basal subgenera of Suillus were inferred to be associated with Larix, and diverged in early Eocene or Upper Cretaceous. In the early Oligocene or Paleocene, subgenus Suillus diverged and switched host to Pinus subgenus Strobus, and then switched to subgenus Pinus four times. Suillus subgenus Douglasii switched host from Larix to Pseudotsuga in Oligocene or Eocene. Increased species diversity occurred in subgenus Suillus after it switched host to Pinus but no associated speciation rate shifts were detected. Ancestral biogeographic distributions of Suillus and Pinaceae were estimated under the Dispersal Extinction Cladogenesis (DEC) model. Ancestral distribution patterns of Suillus and Pinaceae are related but generally discordant. Dispersals between Eurasia and North America explain the prevalence of disjunct Suillus taxa.
Collapse
Affiliation(s)
- Rui Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL, United States
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Conservation Science, Chicago Botanic Garden, Glencoe, IL, United States
| | - Xiao-fei Shi
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Conservation Science, Chicago Botanic Garden, Glencoe, IL, United States
| | - Pei-gui Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Conservation Science, Chicago Botanic Garden, Glencoe, IL, United States
| | - Andrew W. Wilson
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL, United States
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Sam Mitchel Herbarium of Fungi, Denver Botanic Garden, Denver, CO, United States
| | - Gregory M. Mueller
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL, United States
- Plant Conservation Science, Chicago Botanic Garden, Glencoe, IL, United States
| |
Collapse
|
16
|
Guzmán-Díaz S, Núñez FAA, Veltjen E, Asselman P, Larridon I, Samain MS. Comparison of Magnoliaceae Plastomes: Adding Neotropical Magnolia to the Discussion. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030448. [PMID: 35161429 PMCID: PMC8838774 DOI: 10.3390/plants11030448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 05/13/2023]
Abstract
Chloroplast genomes are considered to be highly conserved. Nevertheless, differences in their sequences are an important source of phylogenetically informative data. Chloroplast genomes are increasingly applied in evolutionary studies of angiosperms, including Magnoliaceae. Recent studies have focused on resolving the previously debated classification of the family using a phylogenomic approach and chloroplast genome data. However, most Neotropical clades and recently described species have not yet been included in molecular studies. We performed sequencing, assembly, and annotation of 15 chloroplast genomes from Neotropical Magnoliaceae species. We compared the newly assembled chloroplast genomes with 22 chloroplast genomes from across the family, including representatives from each genus and section. Family-wide, the chloroplast genomes presented a length of about 160 kb. The gene content in all species was constant, with 145 genes. The intergenic regions showed a higher level of nucleotide diversity than the coding regions. Differences were higher among genera than within genera. The phylogenetic analysis in Magnolia showed two main clades and corroborated that the current infrageneric classification does not represent natural groups. Although chloroplast genomes are highly conserved in Magnoliaceae, the high level of diversity of the intergenic regions still resulted in an important source of phylogenetically informative data, even for closely related taxa.
Collapse
Affiliation(s)
- Salvador Guzmán-Díaz
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Correspondence:
| | - Fabián Augusto Aldaba Núñez
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
| | - Emily Veltjen
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Ghent University Botanical Garden, Ghent University, 9000 Gent, Belgium
| | - Pieter Asselman
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| | - Isabel Larridon
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Marie-Stéphanie Samain
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| |
Collapse
|
17
|
Wang XW, Jiang JH, Liu SL, Gafforov Y, Zhou LW. Species Diversification of the Coniferous Pathogenic Fungal Genus Coniferiporia (Hymenochaetales, Basidiomycota) in Association with Its Biogeography and Host Plants. PHYTOPATHOLOGY 2022; 112:404-413. [PMID: 34170760 DOI: 10.1094/phyto-05-21-0181-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coniferiporia, belonging to Hymenochaetaceae and now segregated from Phellinidium, is a wood-inhabiting fungal genus with three species, each having a specific geographic distribution and a strong host specificity as a forest pathogen of coniferous trees. In this study, the species diversity of Coniferiporia is further clarified with the aid of a wider sampling and multilocus-based phylogenetic analysis, which reveals a new species Coniferiporia uzbekistanensis. The molecular clock and ancestral geographic origin analyses indicate that the ancestor of Coniferiporia emerged in one of the Pinaceae and Cupressaceae, then jumped to the other plant family originated in eastern Eurasia 17.01 million years ago (Mya; 95% highest posterior density: 9.46 to 25.86 Mya), and later extended its distribution to western North America, Central Asia, and eastern Europe. Coniferiporia sulphurascens speciated on Pinaceae in eastern Eurasia 8.78 Mya (9.46 to 25.86 Mya) and then extended its distribution to western North America and eastern Europe. Coniferiporia qilianensis and C. uzbekistanensis speciated on Juniperus przewalskii in eastern Eurasia 3.67 Mya (0.36 to 8.02 Mya) and on Juniperus polycarpos in Central Asia 4.35 Mya (0.94 to 8.37 Mya), respectively. The speciation event of Coniferiporia weirii occurred 4.45 Mya (0.77 to 9.33 Mya) right after the emergence of its host, the endemic Cupressaceae species Thuja plicata, and soon after, this fungus evolved to also inhabit another endemic Cupressaceae species Calocedrus decurrens. In summary, this study for the first time unambiguously clarified and timed the adaptive evolutionary event of Coniferiporia in association with its biogeography and host plants.
Collapse
Affiliation(s)
- Xue-Wei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yusufjon Gafforov
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100125, Uzbekistan
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
18
|
Yang T, Sahu SK, Yang L, Liu Y, Mu W, Liu X, Strube ML, Liu H, Zhong B. Comparative Analyses of 3,654 Plastid Genomes Unravel Insights Into Evolutionary Dynamics and Phylogenetic Discordance of Green Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:808156. [PMID: 35498716 PMCID: PMC9038950 DOI: 10.3389/fpls.2022.808156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The plastid organelle is essential for many vital cellular processes and the growth and development of plants. The availability of a large number of complete plastid genomes could be effectively utilized to understand the evolution of the plastid genomes and phylogenetic relationships among plants. We comprehensively analyzed the plastid genomes of Viridiplantae comprising 3,654 taxa from 298 families and 111 orders and compared the genomic organizations in their plastid genomic DNA among major clades, which include gene gain/loss, gene copy number, GC content, and gene blocks. We discovered that some important genes that exhibit similar functions likely formed gene blocks, such as the psb family presumably showing co-occurrence and forming gene blocks in Viridiplantae. The inverted repeats (IRs) in plastid genomes have doubled in size across land plants, and their GC content is substantially higher than non-IR genes. By employing three different data sets [all nucleotide positions (nt123), only the first and second codon positions (nt12), and amino acids (AA)], our phylogenomic analyses revealed Chlorokybales + Mesostigmatales as the earliest-branching lineage of streptophytes. Hornworts, mosses, and liverworts forming a monophylum were identified as the sister lineage of tracheophytes. Based on nt12 and AA data sets, monocots, Chloranthales and magnoliids are successive sister lineages to the eudicots + Ceratophyllales clade. The comprehensive taxon sampling and analysis of different data sets from plastid genomes recovered well-supported relationships of green plants, thereby contributing to resolving some long-standing uncertainties in the plant phylogeny.
Collapse
Affiliation(s)
- Ting Yang
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sunil Kumar Sahu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- *Correspondence: Sunil Kumar Sahu,
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yang Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Weixue Mu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Xin Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Huan Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Bojian Zhong,
| |
Collapse
|
19
|
Ping J, Hao J, Li J, Yang Y, Su Y, Wang T. Loss of the IR region in conifer plastomes: Changes in the selection pressure and substitution rate of protein-coding genes. Ecol Evol 2022; 12:e8499. [PMID: 35136556 PMCID: PMC8809450 DOI: 10.1002/ece3.8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein-coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non-conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non-conifers. It is more obvious that in non-conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6- to 3.1-fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2- to 3.6-fold of non-conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein-coding genes due to gene function, plant habitat, or newly acquired IRs.
Collapse
Affiliation(s)
- Jingyao Ping
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jinye Li
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yiqing Yang
- College of Life Science and TechnologyCentral South University of Forestry and TechnologyChangshaChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
20
|
Comparative Genomics Analysis of Repetitive Elements in Ten Gymnosperm Species: "Dark Repeatome" and Its Abundance in Conifer and Gnetum Species. Life (Basel) 2021; 11:life11111234. [PMID: 34833110 PMCID: PMC8620675 DOI: 10.3390/life11111234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Repetitive elements (RE) and transposons (TE) can comprise up to 80% of some plant genomes and may be essential for regulating their evolution and adaptation. The “repeatome” information is often unavailable in assembled genomes because genomic areas of repeats are challenging to assemble and are often missing from final assembly. However, raw genomic sequencing data contain rich information about RE/TEs. Here, raw genomic NGS reads of 10 gymnosperm species were studied for the content and abundance patterns of their “repeatome”. We utilized a combination of alignment on databases of repetitive elements and de novo assembly of highly repetitive sequences from genomic sequencing reads to characterize and calculate the abundance of known and putative repetitive elements in the genomes of 10 conifer plants: Pinus taeda, Pinus sylvestris, Pinus sibirica, Picea glauca, Picea abies, Abies sibirica, Larix sibirica, Juniperus communis, Taxus baccata, and Gnetum gnemon. We found that genome abundances of known and newly discovered putative repeats are specific to phylogenetically close groups of species and match biological taxa. The grouping of species based on abundances of known repeats closely matches the grouping based on abundances of newly discovered putative repeats (kChains) and matches the known taxonomic relations.
Collapse
|
21
|
Asaf S, Khan AL, Jan R, Khan A, Khan A, Kim KM, Lee IJ. The dynamic history of gymnosperm plastomes: Insights from structural characterization, comparative analysis, phylogenomics, and time divergence. THE PLANT GENOME 2021; 14:e20130. [PMID: 34505399 DOI: 10.1002/tpg2.20130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 05/25/2023]
Abstract
Gymnosperms are among the most endangered groups of plant species; they include ginkgo, pines (Conifers I), cupressophytes (Conifers II), cycads, and gnetophytes. The relationships among the five extant gymnosperm groups remain equivocal. We analyzed 167 available gymnosperm plastomes and investigated their diversity and phylogeny. We found that plastome size, structure, and gene order were highly variable in the five gymnosperm groups, of which Parasitaxus usta (Vieill.) de Laub. and Macrozamia mountperriensis F.M.Bailey had the smallest and largest plastomes, respectively. The inverted repeats (IRs) of the five groups were shown to have evolved through distinctive evolutionary scenarios. The IRs have been lost in all conifers but retained in cycads and gnetophytes. A positive association between simple sequence repeat (SSR) abundance and plastome size was observed, and the SSRs with the most variation were found in Pinaceae. Furthermore, the number of repeats was negatively correlated with IR length; thus, the highest number of repeats was detected in Conifers I and II, in which the IRs had been lost. We constructed a phylogeny based on 29 shared genes from 167 plastomes. With the plastome tree and 13 calibrations, we estimated the tree height between present-day angiosperms and gymnosperms to be ∼380 million years ago (mya). The placement of Gnetales in the tree agreed with the Gnetales-other gymnosperms hypothesis. The divergence between Ginkgo and cycads was estimated as ∼284 mya; the crown age of the cycads was 251 mya. Our time-calibrated plastid-based phylogenomic tree provides a framework for comparative studies of gymnosperm evolution.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Center, Univ. of Nizwa, Nizwa, 616, Oman
| | - Abdul Latif Khan
- Dep. of Biotechnology, College of Technology, Univ. of Houston, Houston, TX, 77204, USA
| | - Rahmatullah Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National Univ., Daegu, 41566, Republic of Korea
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord Univ., Bodø, 8049, Norway
| | - Adil Khan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Dep. of Plant and Soil Science, Texas Tech Univ., Lubbock, TX, 79409, USA
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National Univ., Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National Univ., Daegu, 41566, Republic of Korea
| |
Collapse
|
22
|
Tian C, Li X, Wu Z, Li Z, Hou X, Li FY. Characterization and Comparative Analysis of Complete Chloroplast Genomes of Three Species From the Genus Astragalus (Leguminosae). Front Genet 2021; 12:705482. [PMID: 34422006 PMCID: PMC8378255 DOI: 10.3389/fgene.2021.705482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Astragalus is the largest genus in Leguminosae. Several molecular studies have investigated the potential adulterants of the species within this genus; nonetheless, the evolutionary relationships among these species remain unclear. Herein, we sequenced and annotated the complete chloroplast genomes of three Astragalus species—Astragalus adsurgens, Astragalus mongholicus var. dahuricus, and Astragalus melilotoides using next-generation sequencing technology and plastid genome annotator (PGA) tool. All species belonged to the inverted repeat lacking clade (IRLC) and had similar sequences concerning gene contents and characteristics. Abundant simple sequence repeat (SSR) loci were detected, with single-nucleotide repeats accounting for the highest proportion of SSRs, most of which were A/T homopolymers. Using Astragalus membranaceus var. membranaceus as reference, the divergence was evident in most non-coding regions of the complete chloroplast genomes of these species. Seven genes (atpB, psbD, rpoB, rpoC1, trnV, rrn16, and rrn23) showed high nucleotide variability (Pi), and could be used as DNA barcodes for Astragalus sp. cemA and rpl33 were found undergoing positive selection by the section patterns in the coded protein. Phylogenetic analysis showed that Astragalus is a monophyletic group closely related to the genus Oxytropis within the tribe Galegeae. The newly sequenced chloroplast genomes provide insight into the unresolved evolutionary relationships within Astragalus spp. and are expected to contribute to species identification.
Collapse
Affiliation(s)
- Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.,School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xiansong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.,Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.,Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.,Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Xiangyang Hou
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Frank Yonghong Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
23
|
Zhao F, Chen YP, Salmaki Y, Drew BT, Wilson TC, Scheen AC, Celep F, Bräuchler C, Bendiksby M, Wang Q, Min DZ, Peng H, Olmstead RG, Li B, Xiang CL. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biol 2021; 19:2. [PMID: 33419433 PMCID: PMC7796571 DOI: 10.1186/s12915-020-00931-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A robust molecular phylogeny is fundamental for developing a stable classification and providing a solid framework to understand patterns of diversification, historical biogeography, and character evolution. As the sixth largest angiosperm family, Lamiaceae, or the mint family, consitutes a major source of aromatic oil, wood, ornamentals, and culinary and medicinal herbs, making it an exceptionally important group ecologically, ethnobotanically, and floristically. The lack of a reliable phylogenetic framework for this family has thus far hindered broad-scale biogeographic studies and our comprehension of diversification. Although significant progress has been made towards clarifying Lamiaceae relationships during the past three decades, the resolution of a phylogenetic backbone at the tribal level has remained one of the greatest challenges due to limited availability of genetic data. RESULTS We performed phylogenetic analyses of Lamiaceae to infer relationships at the tribal level using 79 protein-coding plastid genes from 175 accessions representing 170 taxa, 79 genera, and all 12 subfamilies. Both maximum likelihood and Bayesian analyses yielded a more robust phylogenetic hypothesis relative to previous studies and supported the monophyly of all 12 subfamilies, and a classification for 22 tribes, three of which are newly recognized in this study. As a consequence, we propose an updated phylogenetically informed tribal classification for Lamiaceae that is supplemented with a detailed summary of taxonomic history, generic and species diversity, morphology, synapomorphies, and distribution for each subfamily and tribe. CONCLUSIONS Increased taxon sampling conjoined with phylogenetic analyses based on plastome sequences has provided robust support at both deep and shallow nodes and offers new insights into the phylogenetic relationships among tribes and subfamilies of Lamiaceae. This robust phylogenetic backbone of Lamiaceae will serve as a framework for future studies on mint classification, biogeography, character evolution, and diversification.
Collapse
Affiliation(s)
- Fei Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya-Ping Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yasaman Salmaki
- Center of Excellence in Phylogeny of Living Organisms, Department of Plant Science, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Bryan T Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, 68849, USA
| | - Trevor C Wilson
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, Australia
| | | | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Kırıkkale, Turkey
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christian Bräuchler
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010, Wien, Austria
| | - Mika Bendiksby
- NTNU University Museum, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Qiang Wang
- State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinense Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Dao-Zhang Min
- Research Centre of Ecological Sciences, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | - Bo Li
- Research Centre of Ecological Sciences, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
24
|
Wei N, Pérez-Escobar OA, Musili PM, Huang WC, Yang JB, Hu AQ, Hu GW, Grace OM, Wang QF. Plastome Evolution in the Hyperdiverse Genus Euphorbia (Euphorbiaceae) Using Phylogenomic and Comparative Analyses: Large-Scale Expansion and Contraction of the Inverted Repeat Region. FRONTIERS IN PLANT SCIENCE 2021; 12:712064. [PMID: 34421963 PMCID: PMC8372406 DOI: 10.3389/fpls.2021.712064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 05/09/2023]
Abstract
With c. 2,000 species, Euphorbia is one of the largest angiosperm genera, yet a lack of chloroplast genome (plastome) resources impedes a better understanding of its evolution. In this study, we assembled and annotated 28 plastomes from Euphorbiaceae, of which 15 were newly sequenced. Phylogenomic and comparative analyses of 22 plastome sequences from all four recognized subgenera within Euphorbia revealed that plastome length in Euphorbia is labile, presenting a range of variation c. 42 kb. Large-scale expansions of the inverted repeat (IR) region were identified, and at the extreme opposite, the near-complete loss of the IR region (with only 355 bp left) was detected for the first time in Euphorbiaceae. Other structural variations, including gene inversion and duplication, and gene loss/pseudogenization, were also observed. We screened the most promising molecular markers from both intergenic and coding regions for phylogeny-based utilities, and estimated maximum likelihood and Bayesian phylogenies from four datasets including whole plastome sequences. The monophyly of Euphorbia is supported, and its four subgenera are recovered in a successive sister relationship. Our study constitutes the first comprehensive investigation on the plastome structural variation in Euphorbia and it provides resources for phylogenetic research in the genus, facilitating further studies on its taxonomy, evolution, and conservation.
Collapse
Affiliation(s)
- Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Paul M. Musili
- East African Herbarium, National Museums of Kenya, Nairobi, Kenya
| | - Wei-Chang Huang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ai-Qun Hu
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Olwen M. Grace
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- *Correspondence: Olwen M. Grace,
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Qing-Feng Wang,
| |
Collapse
|
25
|
Zhang R, Xu B, Li J, Zhao Z, Han J, Lei Y, Yang Q, Peng F, Liu ZL. Transit From Autotrophism to Heterotrophism: Sequence Variation and Evolution of Chloroplast Genomes in Orobanchaceae Species. Front Genet 2020; 11:542017. [PMID: 33133143 PMCID: PMC7573133 DOI: 10.3389/fgene.2020.542017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/07/2020] [Indexed: 01/15/2023] Open
Abstract
The family Orobanchaceae including autotrophic, hemiparasitic, and holoparasitic species, is becoming a key taxa to study the evolution of chloroplast genomes in different lifestyles. But the early evolutionary trajectory in the transit from autotrophism to hemiparasitism still maintains unclear for the inadequate sampling. In this study, we compared 50 complete chloroplast genomes in Orobanchaceae, containing four newly sequenced plastomes from hemiparasitic Pedicularis, to elucidate the sequence variation patterns in the evolution of plastomes. Contrasted to the sequence and structural hypervariabilities in holoparasites, hemiparasitic plastomes exhibited high similarity to those of autotrophs in gene and GC contents. They are generally characterized with functional or physical loss of ndh/tRNA genes and the inverted small-single-copy region. Gene losses in Orobanchaceae were lineage-specific and convergent, possibly related to structural reconfiguration and expansion/contraction of the inverted region. Pseudogenization of ndh genes was unique in hemiparasites. At least in Pedicularis, the ndhF gene might be most sensitive to the environmental factors and easily pseudogenized when autotrophs transit to hemiparasites. And the changes in gene contents and structural variation potentially deeply rely on the feeding type. Selective pressure, together with mutational bias, was the dominant factor of shaping the codon usage patterns. The relaxed selective constraint, potentially with genome-based GC conversion (gBGC) and preferential codon usage, drive the fluctuation of GC contents among taxa with different lifestyles. Phylogenetic analysis in Orobanchaceae supported that parasitic species were single-originated while holoparasites were multiple-originated. Overall, the comparison of plastomes provided a good opportunity to understand the evolution process in Orobanchaceae with different lifestyles.
Collapse
Affiliation(s)
- Ruiting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Bei Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Jianfang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Zhe Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Jie Han
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Yunjing Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Fangfang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
26
|
Plastome Phylogenomic and Biogeographical Study on Thuja (Cupressaceae). BIOMED RESEARCH INTERNATIONAL 2020; 2020:8426287. [PMID: 32685531 PMCID: PMC7335403 DOI: 10.1155/2020/8426287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/29/2020] [Indexed: 11/29/2022]
Abstract
Investigating the biogeographical disjunction of East Asian and North American flora is key to understanding the formation and dynamics of biodiversity in the Northern Hemisphere. The small Cupressaceae genus Thuja, comprising five species, exhibits a typical disjunct distribution in East Asia and North America. Owing to obscure relationships, the biogeographical history of the genus remains controversial. Here, complete plastomes were employed to investigate the plastome evolution, phylogenetic relationships, and biogeographic history of Thuja. All plastomes of Thuja share the same gene content arranged in the same order. The loss of an IR was evident in all Thuja plastomes, and the B-arrangement as previously recognized was detected. Phylogenomic analyses resolved two sister pairs, T. standishii-T. koraiensis and T. occidentalis-T. sutchuenensis, with T. plicata sister to T. occidentalis-T. sutchuenensis. Molecular dating and biogeographic results suggest the diversification of Thuja occurred in the Middle Miocene, and the ancestral area of extant species was located in northern East Asia. Incorporating the fossil record, we inferred that Thuja likely originated from the high-latitude areas of North America in the Paleocene with a second diversification center in northern East Asia. The current geographical distribution of Thuja was likely shaped by dispersal events attributed to the Bering Land Bridge in the Miocene and subsequent vicariance events accompanying climate cooling. The potential effect of extinction may have profound influence on the biogeographical history of Thuja.
Collapse
|
27
|
Sudianto E, Wu CS, Chaw SM. The Origin and Evolution of Plastid Genome Downsizing in Southern Hemispheric Cypresses (Cupressaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:901. [PMID: 32655606 PMCID: PMC7324783 DOI: 10.3389/fpls.2020.00901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 05/08/2023]
Abstract
Plastome downsizing is rare in photosynthetic seed plants. However, a large-scale study of five cupressophyte families (conifers II) indicated that the plastomes of some Cupressaceous genera are notably reduced and compact. Here, we enriched taxon sampling in Cupressaceae by adding plastomes of ten previously unreported genera to determine the origin, evolution, and consequences of plastome reduction in this family. We discovered that plastome downsizing is specific to Callitroideae (a Southern Hemispheric subfamily). Their plastomes are the smallest, encode the fewest plastid genes, and contain the fewest GC-end codons among Cupressaceae. We show that repeated tRNA losses and shrinkage of intergenic spacers together contributed to the plastome downsizing in Callitroideae. Moreover, our absolute nucleotide substitution rate analyses suggest relaxed functional constraints in translation-related plastid genes (clpP, infA, rpl, and rps), but not in photosynthesis- or transcription-related ones, of Callitris (the most diverse genus in Callitroideae). We hypothesize that the small and low-GC plastomes of Callitroideae emerged ca. 112-75 million years ago as an adaptation to increased competition with angiosperms on the Gondwana supercontinent. Our findings highlight Callitroideae as another case of plastome downsizing in photosynthetic seed plant lineages.
Collapse
|
28
|
Li J, Han LH, Liu XB, Zhao ZW, Yang ZL. The saprotrophic Pleurotus ostreatus species complex: late Eocene origin in East Asia, multiple dispersal, and complex speciation. IMA Fungus 2020; 11:10. [PMID: 32617259 PMCID: PMC7325090 DOI: 10.1186/s43008-020-00031-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 12/02/2022] Open
Abstract
The Pleurotus ostreatus species complex is saprotrophic and of significant economic and ecological importance. However, species delimitation has long been problematic because of phenotypic plasticity and morphological stasis. In addition, the evolutionary history is poorly understood due to limited sampling and insufficient gene fragments employed for phylogenetic analyses. Comprehensive sampling from Asia, Europe, North and South America and Africa was used to run phylogenetic analyses of the P. ostreatus species complex based on 40 nuclear single-copy orthologous genes using maximum likelihood and Bayesian inference analyses. Here, we present a robust phylogeny of the P. ostreatus species complex, fully resolved from the deepest nodes to species level. The P. ostreatus species complex was strongly supported as monophyletic, and 20 phylogenetic species were recognized, with seven putatively new species. Data from our molecular clock analyses suggested that divergence of the genus Pleurotus probably occurred in the late Jurassic, while the most recent common ancestor of the P. ostreatus species complex diversified about 39 Ma in East Asia. Species of the P. ostreatus complex might migrate from the East Asia into North America across the North Atlantic Land Bridge or the Bering Land Bridge at different times during the late Oligocene, late Miocene and late Pliocene, and then diversified in the Old and New Worlds simultaneously through multiple dispersal and vicariance events. The dispersal from East Asia to South America in the middle Oligocene was probably achieved by a long-distance dispersal event. Intensification of aridity and climate cooling events in the late Miocene and Quaternary glacial cycling probably had a significant influence on diversification patterns of the complex. The disjunctions among East Asia, Europe, North America and Africa within Clade IIc are hypothesized to be a result of allopatric speciation. Substrate transitions to Apiaceae probably occurred no earlier than 6 Ma. Biogeographic analyses suggested that the global cooling of the late Eocene, intensification of aridity caused by rapid uplift of the QTP and retreat of the Tethys Sea in the late Miocene, climate cooling events in Quaternary glacial cycling, and substrate transitions have contributed jointly to diversification of the species complex.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201 Yunnan China
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan China
| | - Li-Hong Han
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Xiao-Bin Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201 Yunnan China
| | - Zhi-Wei Zhao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan China
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201 Yunnan China
| |
Collapse
|
29
|
Complete chloroplast genome sequencing of sago palm (Metroxylon sagu Rottb.): Molecular structures, comparative analysis and evolutionary significance. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Ly SN, Garavito A, De Block P, Asselman P, Guyeux C, Charr JC, Janssens S, Mouly A, Hamon P, Guyot R. Chloroplast genomes of Rubiaceae: Comparative genomics and molecular phylogeny in subfamily Ixoroideae. PLoS One 2020; 15:e0232295. [PMID: 32353023 PMCID: PMC7192488 DOI: 10.1371/journal.pone.0232295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/11/2020] [Indexed: 11/19/2022] Open
Abstract
In Rubiaceae phylogenetics, the number of markers often proved a limitation with authors failing to provide well-supported trees at tribal and generic levels. A robust phylogeny is a prerequisite to study the evolutionary patterns of traits at different taxonomic levels. Advances in next-generation sequencing technologies have revolutionized biology by providing, at reduced cost, huge amounts of data for an increased number of species. Due to their highly conserved structure, generally recombination-free, and mostly uniparental inheritance, chloroplast DNA sequences have long been used as choice markers for plant phylogeny reconstruction. The main objectives of this study are: 1) to gain insight in chloroplast genome evolution in the Rubiaceae (Ixoroideae) through efficient methodology for de novo assembly of plastid genomes; and, 2) to test the efficiency of mining SNPs in the nuclear genome of Ixoroideae based on the use of a coffee reference genome to produce well-supported nuclear trees. We assembled whole chloroplast genome sequences for 27 species of the Rubiaceae subfamily Ixoroideae using next-generation sequences. Analysis of the plastid genome structure reveals a relatively good conservation of gene content and order. Generally, low variation was observed between taxa in the boundary regions with the exception of the inverted repeat at both the large and short single copy junctions for some taxa. An average of 79% of the SNP determined in the Coffea genus are transferable to Ixoroideae, with variation ranging from 35% to 96%. In general, the plastid and the nuclear genome phylogenies are congruent with each other. They are well-resolved with well-supported branches. Generally, the tribes form well-identified clades but the tribe Sherbournieae is shown to be polyphyletic. The results are discussed relative to the methodology used and the chloroplast genome features in Rubiaceae and compared to previous Rubiaceae phylogenies.
Collapse
Affiliation(s)
- Serigne Ndiawar Ly
- Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
| | - Andrea Garavito
- Departamento Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | | | - Pieter Asselman
- Meise Botanic Garden, Meise, Belgium
- University of Ghent, Ghent, Belgium
| | - Christophe Guyeux
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Jean-Claude Charr
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | | | - Arnaud Mouly
- Laboratory Chrono-Environment, UMR CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France
- Besançon Botanic Garden, Université de Bourgogne Franche-Comté, Besançon, France
| | - Perla Hamon
- Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
| | - Romain Guyot
- Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
- Department of Electronics and Automatization, Universidad Autónoma de Manizales, Manizales, Colombia
| |
Collapse
|
31
|
Asaf S, Khan AL, Lubna, Khan A, Khan A, Khan G, Lee IJ, Al-Harrasi A. Expanded inverted repeat region with large scale inversion in the first complete plastid genome sequence of Plantago ovata. Sci Rep 2020; 10:3881. [PMID: 32127603 PMCID: PMC7054531 DOI: 10.1038/s41598-020-60803-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
Plantago ovata (Plantaginaceae) is an economically and medicinally important species, however, least is known about its genomics and evolution. Here, we report the first complete plastome genome of P. ovata and comparison with previously published genomes of related species from Plantaginaceae. The results revealed that P. ovata plastome size was 162,116 bp and that it had typical quadripartite structure containing a large single copy region of 82,084 bp and small single copy region of 5,272 bp. The genome has a markedly higher inverted repeat (IR) size of 37.4 kb, suggesting large-scale inversion of 13.8 kb within the expanded IR regions. In addition, the P. ovata plastome contains 149 different genes, including 43 tRNA, 8 rRNA, and 98 protein-coding genes. The analysis revealed 139 microsatellites, of which 71 were in the non-coding regions. Approximately 32 forward, 34 tandem, and 17 palindromic repeats were detected. The complete genome sequences, 72 shared genes, matK gene, and rbcL gene from related species generated the same phylogenetic signals, and phylogenetic analysis revealed that P. ovata formed a single clade with P. maritima and P. media. The divergence time estimation as employed in BEAST revealed that P. ovata diverged from P. maritima and P. media about 11.0 million years ago (Mya; 95% highest posterior density, 10.06-12.25 Mya). In conclusion, P. ovata had significant variation in the IR region, suggesting a more stable P. ovata plastome genome than that of other Plantaginaceae species.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049, Norway
| | - Gulzar Khan
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Oldenburg, Germany
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
| |
Collapse
|
32
|
Munyao JN, Dong X, Yang JX, Mbandi EM, Wanga VO, Oulo MA, Saina JK, Musili PM, Hu GW. Complete Chloroplast Genomes of Chlorophytum comosum and Chlorophytum gallabatense: Genome Structures, Comparative and Phylogenetic Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E296. [PMID: 32121524 PMCID: PMC7154914 DOI: 10.3390/plants9030296] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
The genus Chlorophytum includes many economically important species well-known for medicinal, ornamental, and horticultural values. However, to date, few molecular genomic resources have been reported for this genus. Therefore, there is limited knowledge of phylogenetic studies, and the available chloroplast (cp) genome of Chlorophytum (C. rhizopendulum) does not provide enough information on this genus. In this study, we present genomic resources for C. comosum and C. gallabatense, which had lengths of 154,248 and 154,154 base pairs (bp), respectively. They had a pair of inverted repeats (IRa and IRb) of 26,114 and 26,254 bp each in size, separating the large single-copy (LSC) region of 84,004 and 83,686 bp from the small single-copy (SSC) region of 18,016 and 17,960 bp in C. comosum and C. gallabatense, respectively. There were 112 distinct genes in each cp genome, which were comprised of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative analysis with five other selected species displayed a generally high level of sequence resemblance in structural organization, gene content, and arrangement. Additionally, the phylogenetic analysis confirmed the previous phylogeny and produced a phylogenetic tree with similar topology. It showed that the Chlorophytum species (C. comosum, C. gallabatense and C. rhizopendulum) were clustered together in the same clade with a closer relationship than other plants to the Anthericum ramosum. This research, therefore, presents valuable records for further molecular evolutionary and phylogenetic studies which help to fill the gap in genomic resources and resolve the taxonomic complexes of the genus.
Collapse
Affiliation(s)
- Jacinta N. Munyao
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Dong
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Xin Yang
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Elijah M. Mbandi
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vincent O. Wanga
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Millicent A. Oulo
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Josphat K. Saina
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul M. Musili
- East Africa Herbarium, National Museums of Kenya, P.O. Box 45166 00100 Nairobi, Kenya;
| | - Guang-Wan Hu
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Shen TT, Ran JH, Wang XQ. Phylogenomics disentangles the evolutionary history of spruces (Picea) in the Qinghai-Tibetan Plateau: Implications for the design of population genetic studies and species delimitation of conifers. Mol Phylogenet Evol 2019; 141:106612. [DOI: 10.1016/j.ympev.2019.106612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
|
34
|
Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus bawanglingensis Huang, Li et Xing, a Vulnerable Oak Tree in China. FORESTS 2019. [DOI: 10.3390/f10070587] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quercus bawanglingensis Huang, Li et Xing, an endemic evergreen oak of the genus Quercus (Fagaceae) in China, is currently listed in the Red List of Chinese Plants as a vulnerable (VU) plant. No chloroplast (cp) genome information is currently available for Q. bawanglingensis, which would be essential for the establishment of guidelines for its conservation and breeding. In the present study, the cp genome of Q. bawanglingensis was sequenced and assembled into double-stranded circular DNA with a length of 161,394 bp. Two inverted repeats (IRs) with a total of 51,730 bp were identified, and the rest of the sequence was separated into two single-copy regions, namely, a large single-copy (LSC) region (90,628 bp) and a small single-copy (SSC) region (19,036 bp). The genome of Q. bawanglingensis contains 134 genes (86 protein-coding genes, 40 tRNAs and eight rRNAs). More forward (29) than inverted long repeats (21) are distributed in the cp genome. A simple sequence repeat (SSR) analysis showed that the genome contains 82 SSR loci, involving 84.15% A/T mononucleotides. Sequence comparisons among the nine complete cp genomes, including the genomes of Q. bawanglingensis, Q. tarokoensis Hayata (NC036370), Q. aliena var. acutiserrata Maxim. ex Wenz. (KU240009), Q. baronii Skan (KT963087), Q. aquifolioides Rehd. et Wils. (KX911971), Q. variabilis Bl. (KU240009), Fagus engleriana Seem. (KX852398), Lithocarpus balansae (Drake) A. Camus (KP299291) and Castanea mollissima Bl. (HQ336406), demonstrated that the diversity of SC regions was higher than that of IR regions, which might facilitate identification of the relationships within this extremely complex family. A phylogenetic analysis showed that Fagus engleriana and Trigonobalanus doichangensis form the basis of the produced evolutionary tree. Q. bawanglingensis and Q. tarokoensis, which belong to the group Ilex, share the closest relationship. The analysis of the cp genome of Q. bawanglingensis provides crucial genetic information for further studies of this vulnerable species and the taxonomy, phylogenetics and evolution of Quercus.
Collapse
|
35
|
Zimmermann HH, Harms L, Epp LS, Mewes N, Bernhardt N, Kruse S, Stoof-Leichsenring KR, Pestryakova LA, Wieczorek M, Trense D, Herzschuh U. Chloroplast and mitochondrial genetic variation of larches at the Siberian tundra-taiga ecotone revealed by de novo assembly. PLoS One 2019; 14:e0216966. [PMID: 31291259 PMCID: PMC6619608 DOI: 10.1371/journal.pone.0216966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix.
Collapse
MESH Headings
- Chromosome Mapping
- DNA, Ancient
- DNA, Chloroplast/genetics
- DNA, Mitochondrial/genetics
- DNA, Plant/genetics
- Genetic Variation
- Genetics, Population
- Genome, Chloroplast
- Genome, Mitochondrial
- Genome, Plant
- Haplotypes
- History, Ancient
- Larix/classification
- Larix/genetics
- Polymorphism, Single Nucleotide
- Siberia
- Taiga
- Tundra
Collapse
Affiliation(s)
- Heike H. Zimmermann
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| | - Lars Harms
- Scientific Computing, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laura S. Epp
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nick Mewes
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Nadine Bernhardt
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Stefan Kruse
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Kathleen R. Stoof-Leichsenring
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | | | - Mareike Wieczorek
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Daronja Trense
- Institute for Integrated Natural Sciences, Biology, Koblenz-Landau University, Koblenz, Germany
| | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| |
Collapse
|
36
|
|
37
|
Ouyang F, Hu J, Wang J, Ling J, Wang Z, Wang N, Ma J, Zhang H, Mao JF, Wang J. Complete plastome sequences of Picea asperata and P. crassifolia and comparative analyses with P. abies and P. morrisonicola. Genome 2019; 62:317-328. [PMID: 30998854 DOI: 10.1139/gen-2018-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Picea asperata and P. crassifolia have sympatric ranges and are closely related, but the differences between these species at the plastome level are unknown. To better understand the patterns of variation among Picea plastomes, the complete plastomes of P. asperata and P. crassifolia were sequenced. Then, the plastomes were compared with the complete plastomes of P. abies and P. morrisonicola, which are closely and distantly related to the focal species, respectively. We also used these sequences to construct phylogenetic trees to determine the relationships among and between the four species as well as additional taxa from Pinaceae and other gymnosperms. Analysis of our sequencing data allowed us to identify 438 single nucleotide polymorphism (SNPs) point mutation events, 95 indel events, four inversion events, and seven highly variable regions, including six gene spacer regions (psbJ-petA, trnT-psaM, trnS-trnD, trnL-rps4, psaC-ccsA, and rps7-trnL) and one gene (ycf1). The highly variable regions are appropriate targets for future use in the phylogenetic reconstructions of closely related, sympatric species of Picea as well as Pinaceae in general.
Collapse
Affiliation(s)
- Fangqun Ouyang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Jiwen Hu
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Junchen Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China.,b Northwest Agriculture & Forestry University, Xi'an, P.R. China
| | - Juanjuan Ling
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Zhi Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Nan Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Jianwei Ma
- c Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Gansu, P.R. China
| | - Hanguo Zhang
- d State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, P.R. China
| | - Jian-Feng Mao
- e National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Junhui Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| |
Collapse
|
38
|
Forgione I, Bonavita S, Regina TMR. Mitochondria of Cedrus atlantica and allied species: A new chapter in the horizontal gene transfer history. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:93-101. [PMID: 30824066 DOI: 10.1016/j.plantsci.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/30/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The extraordinary incidence of Horizontal Gene Transfer (HGT) mostly in mitochondrial genomes of flowering plants is well known. Here, we report another episode of HGT affecting a large mitochondrial gene region in the evergreen conifer Atlas cedar (Cedrus atlantica). Mitochondria of this Pinaceae species possess an rps3 gene that harbours two introns and shares the same genomic context with a downstream overlapping rpl16 gene, like in the major groups of gymnosperms and angiosperms analyzed so far. Interestingly, C. atlantica contains additional copies of the rps3 and rpl16 sequences that are more closely related to angiosperm counterparts than to those from gymnosperms, as also confirmed by phylogenetic analyses. This suggests that a lateral transfer from a flowering plant donor is the most likely mechanism for the origin of the Atlas cedar extra sequences. Quantitative PCR and reverse-transcription (RT)-PCR analyses demonstrate, respectively, mitochondrial location and lack of expression for the rps3 and rpl16 additional sequences in C. atlantica. Furthermore, our study provides evidence that a similar HGT event takes place in two other Cedrus species, which occurr in Cyprus and North Africa. Only the West Himalayan C. deodara lacks the transferred genes. The potential donor and the molecular mechanism underlying this lateral DNA transfer remain still unclear.
Collapse
Affiliation(s)
- Ivano Forgione
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via Ponte P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Savino Bonavita
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via Ponte P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Teresa Maria Rosaria Regina
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via Ponte P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
39
|
The First Record of a North American Poplar Leaf Rust Fungus, Melampsora medusae, in China. FORESTS 2019. [DOI: 10.3390/f10020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A wide range of species and hybrids of black and balsam poplars or cottonwoods (Populus L., sections Aigeiros and Tacamahaca) grow naturally, or have been introduced to grow in plantations in China. Many species of Melampsora can cause poplar leaf rust in China, and their distributions and host specificities are not entirely known. This study was prompted by the new susceptibility of a previously resistant cultivar, cv. ‘Zhonghua hongye’ of Populus deltoides (section Aigeiros), as well as by the need to know more about the broader context of poplar leaf rust in China. Rust surveys from 2015 through 2018 in Shaanxi, Sichuan, Gansu, Henan, Shanxi, Qinghai, Beijing, and Inner Mongolia revealed some samples with urediniospores with the echinulation pattern of M. medusae. The morphological characteristics of urediniospores and teliospores from poplar species of the region were further examined with light and scanning electron microscopy. Phylogenetic analysis based on sequences of the rDNA ITS region (ITS1, 5.8S rRNA gene, and ITS2) and the nuclear large subunit rDNA (D1/D2) was used to further confirm morphology-based identification. Based on combined analyses, five of the fifteen fully characterized samples were identified as Melampsora medusae: one from Shaanxi and four from Sichuan. Two of the five were from Populus deltoides cv. ‘Zhonghua hongye’. Three others were identified on Populus szechuanica, P. simonii, and P. yunnanensis. Additional samples of M. medusae were collected in Shaanxi in 2017 and 2018, and from Henan in 2015 through 2018. Altogether these findings show that this introduced pathogen is widespread and persistent from year to year in China. This is the first report of this North American poplar leaf rust species, Melampsora medusae, in China. It has previously been reported outside North America in Argentina, Europe, Australia, New Zealand, Japan, and Russia.
Collapse
|
40
|
Mujic AB, Zheng N, Kim K, Spatafora JW, Castellano MA, Smith ME. The Cedrus-associated truffle Trappeindia himalayensis is a morphologically unique and phylogenetically divergent species of Rhizopogon. Mycologia 2019; 111:225-234. [PMID: 30753119 DOI: 10.1080/00275514.2018.1542864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the northwestern Himalayan mountains of India, the hypogeous sequestrate fungus Trappeindia himalayensis is harvested from forests dominated by the ectomycorrhizal tree Cedrus deodara (Himalayan cedar). This truffle has basidiospores that are ornamented with raised reticulation. The original description of Trappeindia himalayensis suggested that the gleba of this species is similar to young specimens of Scleroderma (Boletales), whereas its basidiospores are ornamented with raised reticulation, suggesting a morphological affinity to Leucogaster (Russulales) or Strobilomyces (Boletales). Given this systematic ambiguity, we have generated DNA sequence data from type material and other herbarium specimens and present the first molecular phylogenetic analysis of this unusual Cedrus-associated truffle. Despite the irregular ornamented basidiospore morphology, T. himalayensis is resolved within the genus Rhizopogon (Suillineae, Boletales) and represents a unique lineage that has not been previously detected. All known Rhizopogon species possess an ectomycorrhizal trophic mode, and because of its placement in this lineage, it is likely that Trappeindia himalayensis is an ectomycorrhizal partner of Cedrus deodara. This study highlights the importance of generating sequence data from herbarium specimens in order to identify fungal biodiversity and clarify the systematic relationships of poorly documented fungi.
Collapse
Affiliation(s)
- Alija B Mujic
- a Department of Plant Pathology , University of Florida , Gainesville , Florida 32611
| | - Nan Zheng
- a Department of Plant Pathology , University of Florida , Gainesville , Florida 32611
| | - Kristy Kim
- a Department of Plant Pathology , University of Florida , Gainesville , Florida 32611
| | - Joseph W Spatafora
- b Department of Botany and Plant Pathology , Oregon State University , Corvallis , Oregon 97331
| | - Michael A Castellano
- c US Department of Agriculture, Forest Service , Northern Research Station , 3200 SW Jefferson Way, Corvallis , Oregon 97331
| | - Matthew E Smith
- a Department of Plant Pathology , University of Florida , Gainesville , Florida 32611
| |
Collapse
|
41
|
Hernández-León S, Little DP, Acevedo-Sandoval O, Gernandt DS, Rodríguez-Laguna R, Saucedo-García M, Arce-Cervantes O, Razo-Zárate R, Espitia-López J. Plant core DNA barcode performance at a local scale: identification of the conifers of the state of Hidalgo, Mexico. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2018.1546240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sergio Hernández-León
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, C.P. 43600, A.P. 32, México
| | - Damon P. Little
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, 10458-5126, USA
| | - Otilio Acevedo-Sandoval
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, C.P. 43600, A.P. 32, México
| | - David S. Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, AP 70-233, México
| | - Rodrigo Rodríguez-Laguna
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, C.P. 43600, A.P. 32, México
| | - Mariana Saucedo-García
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, C.P. 43600, A.P. 32, México
| | - Oscar Arce-Cervantes
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, C.P. 43600, A.P. 32, México
| | - Ramón Razo-Zárate
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, C.P. 43600, A.P. 32, México
| | - Josefa Espitia-López
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, C.P. 43600, A.P. 32, México
| |
Collapse
|
42
|
Wang S, Yang C, Zhao X, Chen S, Qu GZ. Complete chloroplast genome sequence of Betula platyphylla: gene organization, RNA editing, and comparative and phylogenetic analyses. BMC Genomics 2018; 19:950. [PMID: 30572840 PMCID: PMC6302522 DOI: 10.1186/s12864-018-5346-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Betula platyphylla is a common tree species in northern China that has high economic and medicinal value. Our laboratory has been devoted to genome research on B. platyphylla for approximately 10 years. As primary organelle genomes, the complete genome sequences of chloroplasts are important to study the divergence of species, RNA editing and phylogeny. In this study, we sequenced and analyzed the complete chloroplast (cp) genome sequence of B. platyphylla. RESULTS The complete cp genome of B. platyphylla was 160,518 bp in length, which included a pair of inverted repeats (IRs) of 26,056 bp that separated a large single copy (LSC) region of 89,397 bp and a small single copy (SSC) region of 19,009 bp. The annotation contained a total of 129 genes, including 84 protein-coding genes, 37 tRNA genes and 8 rRNA genes. There were 3 genes using alternative initiation codons. Comparative genomics showed that the sequence of the Fagales species cp genome was relatively conserved, but there were still some high variation regions that could be used as molecular markers. The IR expansion event of B. platyphylla resulted in larger cp genomes and rps19 pseudogene formation. The simple sequence repeat (SSR) analysis showed that there were 105 SSRs in the cp genome of B. platyphylla. RNA editing sites recognition indicated that at least 80 RNA editing events occurred in the cp genome. Most of the substitutions were C to U, while a small proportion of them were not. In particular, three editing loci on the rRNA were converted to more than two other bases that had never been reported. For synonymous conversion, most of them increased the relative synonymous codon usage (RSCU) value of the codons. The phylogenetic analysis suggested that B. platyphylla had a closer evolutionary relationship with B. pendula than B. nana. CONCLUSIONS In this study, we not only obtained and annotated the complete cp genome sequence of B. platyphylla, but we also identified new RNA editing sites and predicted the phylogenetic relationships among Fagales species. These findings will facilitate genomic, genetic engineering and phylogenetic studies of this important species.
Collapse
Affiliation(s)
- Sui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Guan-Zheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| |
Collapse
|
43
|
Sudianto E, Wu CS, Leonhard L, Martin WF, Chaw SM. Enlarged and highly repetitive plastome of Lagarostrobos and plastid phylogenomics of Podocarpaceae. Mol Phylogenet Evol 2018; 133:24-32. [PMID: 30553879 DOI: 10.1016/j.ympev.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022]
Abstract
Podocarpaceae is the largest family in cupressophytes (conifers II), but its plastid genomes (plastomes) are poorly studied, with plastome data currently existing for only four of the 19 Podocarpaceous genera. In this study, we sequenced and assembled the complete plastomes from representatives of eight additional genera, including Afrocarpus, Dacrydium, Lagarostrobos, Lepidothamnus, Pherosphaera, Phyllocladus, Prumnopitys, and Saxegothaea. We found that Lagarostrobos, a monotypic genus native to Tasmania, has the largest plastome (151,496 bp) among any cupressophytes studied to date. Plastome enlargement in Lagarostrobos coincides with increased intergenic spacers, repeats, and duplicated genes. Among the Podocarpaceae, Lagarostrobos has the most rearranged plastome, but its substitution rates are modest. Plastid phylogenomic analyses based on 81 plastid genes clarify the positions of previously conflicting Podocarpaceous genera. Tree topologies firmly support the division of Podocarpaceae into two sister clades: (1) the Prumnopityoid clade and (2) the clade containing Podocarpoid, Dacrydioid, Pherosphaera, and Saxegothaea. The Phyllocladus is nested within the Podocarpaceae, thus familial status of the monotypic Phyllocladaceae is not supported.
Collapse
Affiliation(s)
- Edi Sudianto
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei 11529, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Lars Leonhard
- Botanical Garden, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| | - Shu-Miaw Chaw
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei 11529, Taiwan; Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
44
|
Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol Phylogenet Evol 2018; 129:106-116. [DOI: 10.1016/j.ympev.2018.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
|
45
|
Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. THE NEW PHYTOLOGIST 2018; 220:1012-1030. [PMID: 29573278 DOI: 10.1111/nph.15076] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/14/2018] [Indexed: 05/05/2023]
Abstract
Contents Summary 1012 I. Introduction 1013 II. The mycorrhizal symbiosis at the dawn and rise of the land flora 1014 III. From early land plants to early trees: the origin of roots and true mycorrhizas 1016 IV. The diversification of the AM symbiosis 1019 V. The ECM symbiosis 1021 VI. The recently evolved ericoid and orchid mycorrhizas 1023 VII. Limits of paleontological vs genetic approaches and perspectives 1023 Acknowledgements 1025 References 1025 SUMMARY: The ability of fungi to form mycorrhizas with plants is one of the most remarkable and enduring adaptations to life on land. The occurrence of mycorrhizas is now well established in c. 85% of extant plants, yet the geological record of these associations is sparse. Fossils preserved under exceptional conditions provide tantalizing glimpses into the evolutionary history of mycorrhizas, showing the extent of their occurrence and aspects of their evolution in extinct plants. The fossil record has important roles to play in establishing a chronology of when key fungal associations evolved and in understanding their importance in ecosystems through time. Together with calibrated phylogenetic trees, these approaches extend our understanding of when and how groups evolved in the context of major environmental change on a global scale. Phylogenomics furthers this understanding into the evolution of different types of mycorrhizal associations, and genomic studies of both plants and fungi are shedding light on how the complex set of symbiotic traits evolved. Here we present a review of the main phases of the evolution of mycorrhizal interactions from palaeontological, phylogenetic and genomic perspectives, with the aim of highlighting the potential of fossil material and a geological perspective in a cross-disciplinary approach.
Collapse
Affiliation(s)
- Christine Strullu-Derrien
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Lorraine, Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 INRA-Université de Lorraine, 54280, Champenoux, France
| | - Marc-André Selosse
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP39, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Francis M Martin
- Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Lorraine, Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 INRA-Université de Lorraine, 54280, Champenoux, France
| |
Collapse
|
46
|
D'Agostino N, Tamburino R, Cantarella C, De Carluccio V, Sannino L, Cozzolino S, Cardi T, Scotti N. The Complete Plastome Sequences of Eleven Capsicum Genotypes: Insights into DNA Variation and Molecular Evolution. Genes (Basel) 2018; 9:E503. [PMID: 30336638 PMCID: PMC6210379 DOI: 10.3390/genes9100503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022] Open
Abstract
Members of the genus Capsicum are of great economic importance, including both wild forms and cultivars of peppers and chilies. The high number of potentially informative characteristics that can be identified through next-generation sequencing technologies gave a huge boost to evolutionary and comparative genomic research in higher plants. Here, we determined the complete nucleotide sequences of the plastomes of eight Capsicum species (eleven genotypes), representing the three main taxonomic groups in the genus and estimated molecular diversity. Comparative analyses highlighted a wide spectrum of variation, ranging from point mutations to small/medium size insertions/deletions (InDels), with accD, ndhB, rpl20, ycf1, and ycf2 being the most variable genes. The global pattern of sequence variation is consistent with the phylogenetic signal. Maximum-likelihood tree estimation revealed that Capsicum chacoense is sister to the baccatum complex. Divergence and positive selection analyses unveiled that protein-coding genes were generally well conserved, but we identified 25 positive signatures distributed in six genes involved in different essential plastid functions, suggesting positive selection during evolution of Capsicum plastomes. Finally, the identified sequence variation allowed us to develop simple PCR-based markers useful in future work to discriminate species belonging to different Capsicum complexes.
Collapse
Affiliation(s)
- Nunzio D'Agostino
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy.
| | - Rachele Tamburino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Via Università 133, 80055 Portici (NA), Italy.
| | - Concita Cantarella
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy.
| | - Valentina De Carluccio
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy.
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy.
| | - Lorenza Sannino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Via Università 133, 80055 Portici (NA), Italy.
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy.
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy.
| | - Nunzia Scotti
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Via Università 133, 80055 Portici (NA), Italy.
| |
Collapse
|
47
|
From America to Eurasia: a multigenomes history of the genus Abies. Mol Phylogenet Evol 2018; 125:14-28. [DOI: 10.1016/j.ympev.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/24/2022]
|
48
|
Andruchow-Colombo A, Escapa IH, Cúneo NR, Gandolfo MA. Araucaria lefipanensis (Araucariaceae), a new species with dimorphic leaves from the Late Cretaceous of Patagonia, Argentina. AMERICAN JOURNAL OF BOTANY 2018; 105:1067-1087. [PMID: 29995329 DOI: 10.1002/ajb2.1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY We describe a new araucarian species, Araucaria lefipanensis, from the Late Cretaceous flora of the Lefipán Formation, in Patagonia (Argentina) based on reproductive and vegetative remains, with a combination of characters that suggest mosaic evolution in the Araucaria lineage. METHODS The studied fossils were found at the Cañadón del Loro locality. Specimens were separated into two leaf morphotypes, and their morphological differences were tested with MANOVA. KEY RESULTS The new species Araucaria lefipanensis is erected based on the association of dimorphic leaves with cuticle remains and isolated cone scale complexes. The reproductive morphology is characteristic of the extant section Eutacta, whereas the vegetative organs resemble those of the sections Intermedia, Bunya, and Araucaria (the broad-leaved clade). CONCLUSIONS The leaf dimorphism of A. lefipanensis is similar to that of extant A. bidwillii, where dimorphism is considered to be related to seasonal growth. The leaf dimorphism in A. lefipanensis is consistent with the paleoclimatic and paleoenvironmental reconstructions previously suggested for the Lefipán Formation, which is thought to have been a seasonal subtropical forest. The new species shows evidence of mosaic evolution, with cone scale complexes morphologically similar to section Eutacta and leaves similar to the sections of the broad-leaved clade, constituting a possible transitional form between these two well-defined lineages. More complete plant concepts, especially those including both reproductive and vegetative remains are necessary to understand the evolution of ancient plant lineages. This work contributes to this aim by documenting a new species that may add to the understanding of the early evolution of the sections of Araucaria.
Collapse
Affiliation(s)
- Ana Andruchow-Colombo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Museo Paleontológico Egidio Feruglio (MEF), Av. Fontana 140, 9100, Trelew, Chubut, Argentina
| | - Ignacio H Escapa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Museo Paleontológico Egidio Feruglio (MEF), Av. Fontana 140, 9100, Trelew, Chubut, Argentina
| | - N Rubén Cúneo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Museo Paleontológico Egidio Feruglio (MEF), Av. Fontana 140, 9100, Trelew, Chubut, Argentina
| | - María A Gandolfo
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, 410 Mann Library Building, Ithaca, NY, 14853, USA
| |
Collapse
|
49
|
Kim HT, Chase MW. Independent degradation in genes of the plastid ndh gene family in species of the orchid genus Cymbidium (Orchidaceae; Epidendroideae). PLoS One 2017; 12:e0187318. [PMID: 29140976 PMCID: PMC5695243 DOI: 10.1371/journal.pone.0187318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022] Open
Abstract
In this paper, we compare ndh genes in the plastid genome of many Cymbidium species and three closely related taxa in Orchidaceae looking for evidence of ndh gene degradation. Among the 11 ndh genes, there were frequently large deletions in directly repeated or AT-rich regions. Variation in these degraded ndh genes occurs between individual plants, apparently at population levels in these Cymbidium species. It is likely that ndh gene transfers from the plastome to mitochondrial genome (chondriome) occurred independently in Orchidaceae and that ndh genes in the chondriome were also relatively recently transferred between distantly related species in Orchidaceae. Four variants of the ycf1-rpl32 region, which normally includes the ndhF genes in the plastome, were identified, and some Cymbidium species contained at least two copies of that region in their organellar genomes. The four ycf1-rpl32 variants seem to have a clear pattern of close relationships. Patterns of ndh degradation between closely related taxa and translocation of ndh genes to the chondriome in Cymbidium suggest that there have been multiple bidirectional intracellular gene transfers between two organellar genomes, which have produced different levels of ndh gene degradation among even closely related species.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- College of Agriculture and Life Sciences, Kyungpook University, Daegu, Korea
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Li Z, De La Torre AR, Sterck L, Cánovas FM, Avila C, Merino I, Cabezas JA, Cervera MT, Ingvarsson PK, Van de Peer Y. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biol Evol 2017; 9:1130-1147. [PMID: 28460034 PMCID: PMC5414570 DOI: 10.1093/gbe/evx070] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 01/02/2023] Open
Abstract
Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny.
Collapse
Affiliation(s)
- Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Amanda R De La Torre
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Sciences, University of California-Davis, Davis, CA
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Irene Merino
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|