1
|
Tharp O, Sansbury BM, Kmiec EB. CRISPR-directed gene-editing induces genetic rearrangement within the human globin gene locus. Gene 2024; 931:148879. [PMID: 39179185 DOI: 10.1016/j.gene.2024.148879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
CRISPR-Cas is a revolutionary technology but has already demonstrated significant feasibility for clinical and non-clinical applications. While the efficiency and precision of this remarkable genetic tool is unprecedented, unfortunately, a series of collateral genetic rearrangement have been reported in response to double-stranded DNA breakage. Once these molecular scissions occur, the cascade of DNA repair reactions can lead to genomic rearrangements especially if breakage takes place within a family of sequence related genes. Here, we demonstrate that CRISPR- directed gene editing near the sickle cell mutation site generates a curious genetic outcome; a footprint of the δ globin gene proximal to the CRISPR/Cas cut site(s). This rearrangement is not dependent on the presence of an exogenously added DNA template but is apparently dependent on a double strand break. Our results the highlight recombinational capacity of double strand breaks in human chromosomes where the aim is to edit a human gene.
Collapse
Affiliation(s)
- Olivia Tharp
- Department of Medical and Molecular Sciences, University of Delaware, 210 South College Ave, Newark Delaware, 19716, United States
| | - Brett M Sansbury
- Gene Editing Institute, ChristianaCare, Delaware 550 South College Avenue, Suite 208, Newark, Delaware 19713, United States
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare, Delaware 550 South College Avenue, Suite 208, Newark, Delaware 19713, United States.
| |
Collapse
|
2
|
Bagrova O, Lapshina K, Sidorova A, Shpigun D, Lutsenko A, Belova E. Secondary structure analysis of proteins within the same topology group. Biochem Biophys Res Commun 2024; 734:150613. [PMID: 39222577 DOI: 10.1016/j.bbrc.2024.150613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The native conformation of a protein plays a decisive role in ensuring its functionality. It is established that the spatial structure of proteins may exhibit a greater degree of conservation than the corresponding amino acid sequences. This study aims to clarify structural distinctions between homologous and non-homologous proteins with identical topology. The analysis focuses on secondary structures with special emphasis on their fraction, distribution along the polypeptide chain, and chirality. Three different groups of proteins with identical topology were considered according to the CATH database: a homologous group of Globins, a group of Phycocyanins, which is often considered as a potential relative of globins, and a diverse assembly of other globin-like proteins. Some structural patterns in the distribution of secondary structure have been identified within Globins. A similar profile was observed in Phycocyanins, in contrast to the third group. In addition, a distinguishable structural motif, including structures such as 310-helix and irregular structure, has been found in both Globins and Phycocyanins, which can be proposed as an evolutionary imprint.
Collapse
Affiliation(s)
- Olga Bagrova
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Ksenia Lapshina
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alla Sidorova
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis Shpigun
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aleksey Lutsenko
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina Belova
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Prasad K, Devaraju N, George A, Ravi NS, Paul J, Mahalingam G, Rajendiran V, Panigrahi L, Venkatesan V, Lakhotiya K, Periyasami Y, Pai AA, Nakamura Y, Kurita R, Balasubramanian P, Thangavel S, Velayudhan SR, Newby GA, Marepally S, Srivastava A, Mohankumar KM. Precise correction of a spectrum of β-thalassemia mutations in coding and non-coding regions by base editors. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102205. [PMID: 38817682 PMCID: PMC11137594 DOI: 10.1016/j.omtn.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
β-thalassemia/HbE results from mutations in the β-globin locus that impede the production of functional adult hemoglobin. Base editors (BEs) could facilitate the correction of the point mutations with minimal or no indel creation, but its efficiency and bystander editing for the correction of β-thalassemia mutations in coding and non-coding regions remains unexplored. Here, we screened BE variants in HUDEP-2 cells for their ability to correct a spectrum of β-thalassemia mutations that were integrated into the genome as fragments of HBB. The identified targets were introduced into their endogenous genomic location using BEs and Cas9/homology-directed repair (HDR) to create cellular models with β-thalassemia/HbE. These β-thalassemia/HbE models were then used to assess the efficiency of correction in the native locus and functional β-globin restoration. Most bystander edits produced near target sites did not interfere with adult hemoglobin expression and are not predicted to be pathogenic. Further, the effectiveness of BE was validated for the correction of the pathogenic HbE variant in severe β0/βE-thalassaemia patient cells. Overall, our study establishes a novel platform to screen and select optimal BE tools for therapeutic genome editing by demonstrating the precise, efficient, and scarless correction of pathogenic point mutations spanning multiple regions of HBB including the promoter, intron, and exons.
Collapse
Affiliation(s)
- Kirti Prasad
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Nivedhitha Devaraju
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Joshua Paul
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Lokesh Panigrahi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Kartik Lakhotiya
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston MA 02111, USA
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 3050074, Japan
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Gregory A. Newby
- Departments of Genetic Medicine and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Kumarasamypet M. Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| |
Collapse
|
4
|
Boontanrart MY, Mächler E, Ponta S, Nelis JC, Preiano VG, Corn JE. Engineering of the endogenous HBD promoter increases HbA2. eLife 2023; 12:e85258. [PMID: 37265399 PMCID: PMC10270685 DOI: 10.7554/elife.85258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
The β-hemoglobinopathies, such as sickle cell disease and β-thalassemia, are one of the most common genetic diseases worldwide and are caused by mutations affecting the structure or production of β-globin subunits in adult hemoglobin. Many gene editing efforts to treat the β-hemoglobinopathies attempt to correct β-globin mutations or increase γ-globin for fetal hemoglobin production. δ-globin, the subunit of adult hemoglobin A2, has high homology to β-globin and is already pan-cellularly expressed at low levels in adult red blood cells. However, upregulation of δ-globin is a relatively unexplored avenue to increase the amount of functional hemoglobin. Here, we use CRISPR-Cas9 to repair non-functional transcriptional elements in the endogenous promoter region of δ-globin to increase overall expression of adult hemoglobin 2 (HbA2). We find that insertion of a KLF1 site alone is insufficient to upregulate δ-globin. Instead, multiple transcription factor elements are necessary for robust upregulation of δ-globin from the endogenous locus. Promoter edited HUDEP-2 immortalized erythroid progenitor cells exhibit striking increases of HBD transcript, from less than 5% to over 20% of total β-like globins in clonal populations. Edited CD34 +hematopoietic stem and progenitors (HSPCs) differentiated to primary human erythroblasts express up to 46% HBD in clonal populations. These findings add mechanistic insight to globin gene regulation and offer a new therapeutic avenue to treat β-hemoglobinopathies.
Collapse
Affiliation(s)
| | - Elia Mächler
- Department of Biology, ETH ZurichZurichSwitzerland
| | - Simone Ponta
- Department of Biology, ETH ZurichZurichSwitzerland
| | - Jan C Nelis
- Department of Biology, ETH ZurichZurichSwitzerland
| | | | - Jacob E Corn
- Department of Biology, ETH ZurichZurichSwitzerland
| |
Collapse
|
5
|
Ortega DC, Cárdenas H, González R, Barreto G. Ancestral reconstruction and correlation of the frequencies of the hemoglobin S allele and the Duffy blood group alleles in human populations. Am J Hum Biol 2023; 35:e23832. [PMID: 36376949 DOI: 10.1002/ajhb.23832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Malaria is an important selective force for human genetic adaptation due to the sustained, lethal impact it has had on populations worldwide. High frequencies of both hemoglobin S and the null allele FYBES of the Duffy blood group have been found in areas where this disease is endemic, attributed to the protective action of the carriers of these variants against malaria infection. The objective of this work was to perform ancestral reconstruction and analyze the correlation of the frequencies of these alleles throughout the phylogeny of 24 human populations. METHODS A tree topology and the allelic frequencies reported in the literature for the 24 populations were used. The ancestral frequencies for the two alleles were reconstructed using the maximum likelihood method and the Brownian model of evolution (CI = 95%), and the correlation analysis was performed using phylogenetically independent contrasts (PICs). Statistical analyses were performed with the statistical software R version 3.4.1. RESULTS For both alleles, a correspondence was found in the reconstruction of the ancestral frequencies, and a significant statistical correlation (p = .001) was observed between the S and FYBES alleles. CONCLUSIONS These results provide evidence of an epistatic relationship between the two alleles, which may influence the fitness of the individuals who present with them when they are subjected to a selective force such as malaria.
Collapse
Affiliation(s)
| | - Heiber Cárdenas
- Department of Biology, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
6
|
Manco L, Santos R, Rocha C, Relvas L, Bento C, Maia T, Gomes V, Amorim A, Prata MJ. Hb F Levels in β-Thalassemia Carriers and Normal Individuals: Known and Unknown Quantitative Trait Loci in the β-Globin Gene Cluster. Hemoglobin 2022; 46:168-175. [PMID: 35635444 DOI: 10.1080/03630269.2022.2070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In the already identified quantitative trait loci (QTL), modulating Hb F levels are cis-acting haplotypes of the β-globin gene cluster itself, although the single nucleotide polymorphisms (SNPs) accounting more for the association, remain uncertain. In this study, the role in Hb F production of previously reported candidate SNPs within the β-globin gene cluster was reexamined, along with a yet poorly studied variation in the BGLT3 gene. In a sample of β-thalassemia (β-thal) carriers, we succeeded in replicating the significant association between increased Hb F levels and rs7482144 (C>T) (HBG2 XmnI), which is the most well-established variation in the cluster influencing the trait. This SNP was found to be in strong linkage disequilibrium (LD) with a variation in the HBBP1 gene [rs10128556 (G>A)], which consistently revealed a similar association signal. Remarkably, much stronger than the latter associations were those involving both rs968857 (T allele) (3' HBBP1) and rs7924684 (G allele) (BGLT3), two SNPs that were also in strong LD. As the pattern of LD detected in the β-globin gene cluster does not correlate with a tight linkage between markers, complex interactions between SNPs at the cluster seem to modulate Hb F. Seeing that no such associations were detected in normal subjects, the question can be raised on whether, under erythropoiesis stress, epigenetic mechanisms contribute to change the regulation of the entire β-globin gene cluster. In conclusion, we provide statistical evidence for a new player within the β-globin gene cluster, BGLT3, that in cooperation with other regions influences Hb F levels in β-thal carriers.
Collapse
Affiliation(s)
- Licínio Manco
- Department of Life Sciences, Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
| | - Raquel Santos
- Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Catarina Rocha
- Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luís Relvas
- Department of Haematology, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal
| | - Celeste Bento
- Department of Life Sciences, Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal.,Department of Haematology, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal
| | - Tabita Maia
- Department of Haematology, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal
| | - Verónica Gomes
- Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
| | - António Amorim
- Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Maria J Prata
- Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Jaing TH, Chang TY, Chen SH, Lin CW, Wen YC, Chiu CC. Molecular genetics of β-thalassemia: A narrative review. Medicine (Baltimore) 2021; 100:e27522. [PMID: 34766559 PMCID: PMC8589257 DOI: 10.1097/md.0000000000027522] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT β-thalassemia is a hereditary hematological disease caused by over 350 mutations in the β-globin gene (HBB). Identifying the genetic variants affecting fetal hemoglobin (HbF) production combined with the α-globin genotype provides some prediction of disease severity for β-thalassemia. However, the generation of an additive composite genetic risk score predicts prognosis, and guide management requires a larger panel of genetic modifiers yet to be discovered.Presently, using data from prior clinical trials guides the design of further research and academic studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene therapy approaches.Genetic studies have successfully characterized the causal variants and pathways involved in HbF regulation, providing novel therapeutic targets for HbF reactivation. In addition to these HBB mutation-independent strategies involving HbF synthesis de-repression, the expanding genome editing toolkit provides increased accuracy to HBB mutation-specific strategies encompassing adult hemoglobin restoration for personalized treatment of hemoglobinopathies. Allogeneic hematopoietic stem cell transplantation was, until very recently, the curative option available for patients with transfusion-dependent β-thalassemia. Gene therapy currently represents a novel therapeutic promise after many years of extensive preclinical research to optimize gene transfer protocols.We summarize the current state of developments in the molecular genetics of β-thalassemia over the last decade, including the mechanisms associated with ineffective erythropoiesis, which have also provided valid therapeutic targets, some of which have been shown as a proof-of-concept.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Yen Chang
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Wei Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chuan Wen
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
8
|
Long J, Hoban MD, Cooper AR, Kaufman ML, Kuo CY, Campo-Fernandez B, Lumaquin D, Hollis RP, Wang X, Kohn DB, Romero Z. Characterization of Gene Alterations following Editing of the β-Globin Gene Locus in Hematopoietic Stem/Progenitor Cells. Mol Ther 2018; 26:468-479. [PMID: 29221806 PMCID: PMC5835144 DOI: 10.1016/j.ymthe.2017.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 02/09/2023] Open
Abstract
The use of engineered nucleases combined with a homologous DNA donor template can result in targeted gene correction of the sickle cell disease mutation in hematopoietic stem and progenitor cells. However, because of the high homology between the adjacent human β- and δ-globin genes, off-target cleavage is observed at δ-globin when using some endonucleases targeted to the sickle mutation in β-globin. Introduction of multiple double-stranded breaks by endonucleases has the potential to induce intergenic alterations. Using a novel droplet digital PCR assay and high-throughput sequencing, we characterized the frequency of rearrangements between the β- and δ-globin paralogs when delivering these nucleases. Pooled CD34+ cells and colony-forming units from sickle bone marrow were treated with nuclease only or including a donor template and then analyzed for potential gene rearrangements. It was observed that, in pooled CD34+ cells and colony-forming units, the intergenic β-δ-globin deletion was the most frequent rearrangement, followed by inversion of the intergenic fragment, with the inter-chromosomal translocation as the least frequent. No rearrangements were observed when endonuclease activity was restricted to on-target β-globin cleavage. These findings demonstrate the need to develop site-specific endonucleases with high specificity to avoid unwanted gene alterations.
Collapse
Affiliation(s)
- Joseph Long
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Biology Department, California State University, Northridge, Northridge, CA 91330, USA
| | - Megan D Hoban
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aaron R Cooper
- Molecular Biology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael L Kaufman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Caroline Y Kuo
- Division of Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dianne Lumaquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Department of Internal Medicine and Health Services Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Jomoui W. Novel Tag SNPs of Beta-Globin Gene Cluster in Chinese Han Population: Biological Marker for Genetic Backgrounds and Clinical Studies. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1385916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wittaya Jomoui
- Department of Pathology, Maha Chakri Sirindhorn Medical Center, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Nakhon Nayok, Thailand
| |
Collapse
|
10
|
Liu Y, Wang W, Li Y, Sun F, Lin J, Li L. CKS1BP7, a Pseudogene of CKS1B, is Co-Amplified with IGF1R in Breast Cancers. Pathol Oncol Res 2017; 24:223-229. [PMID: 28439706 DOI: 10.1007/s12253-017-0224-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Pseudogenes have been reported to exhibit functional roles. Amplification or overexpression of CDC28 protein kinase regulatory subunit 1B (CKS1B) was found in various human cancers. But it was known little about CKS1B pseudogene 7 (CKS1BP7), a pseudogene sharing considerable sequence identity with CKS1B. The aim of this study was to evaluate copy number alterations (CNAs) of CKS1BP7 and address its potential roles in breast cancer. We detected copy numbers of CKS1BP7 and insulin-like growth factor 1 receptor (IGF1R) using quantitative multi-gene fluorescence in situ hybridization (QM-FISH) technique, compared their status in both invasive carcinoma and ductal carcinoma in situ (DCIS) components within the same tumors, and investigated the associations of CNAs with tumor features and patients outcomes. Amplification of CKS1BP7 (dot-like pattern) was found in 28.8% of all cases, while amplified IGF1R (cluster pattern) was identified in 24.2% of all patients. The two events often co-existed (p = 0.01). Within the same tumors, identical CNAs of CKS1BP7 and IGF1R were found in DCIS and invasive carcinoma. Moreover, amplification of both genes was more frequent in aneuploidy tumors and the tumors with high ki67, but wasn't associated with patients' outcome. In summary, CKS1BP7 amplification is a frequent event in breast cancer and often co-occurs with amplified IGF1R, which provides evidence supporting the interactions between CKS1BP7 and IGF1R during mammary carcinogenesis. Our findings suggest that CKS1BP7 as well as IGF1R may serve as potential biomarkers for early detection and predict prognosis in breast cancer.
Collapse
Affiliation(s)
- Yansong Liu
- Department of Breast Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, 250117, People's Republic of China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Western Hospital, Jinan, Shandong, 250022, People's Republic of China
| | - Yan Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute Affiliated to Shandong University, Jinan, Shandong, 250117, People's Republic of China
| | - Feifei Sun
- Department of Pathology, School of Medicine, Shandong University, 44#Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jiaxiang Lin
- Department of Pathology, School of Medicine, Shandong University, 44#Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Li Li
- Department of Pathology, School of Medicine, Shandong University, 44#Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
11
|
Zaldívar-López S, Rowell JL, Fiala EM, Zapata I, Couto CG, Alvarez CE. Comparative genomics of canine hemoglobin genes reveals primacy of beta subunit delta in adult carnivores. BMC Genomics 2017; 18:141. [PMID: 28178945 PMCID: PMC5299747 DOI: 10.1186/s12864-017-3513-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background The main function of hemoglobin (Hb) is to transport oxygen in the circulation. It is among the most highly studied proteins due to its roles in physiology and disease, and most of our understanding derives from comparative research. There is great diversity in Hb gene evolution in placental mammals, mostly in the repertoire and regulation of the β-globin subunits. Dogs are an ideal model in which to study Hb genes because: 1) they are members of Laurasiatheria, our closest relatives outside of Euarchontoglires (including primates, rodents and rabbits), 2) dog breeds are isolated populations with their own Hb-associated genetics and diseases, and 3) their high level of health care allows for development of biomedical investigation and translation. Results We established that dogs have a complement of five α and five β-globin genes, all of which can be detected as spliced mRNA in adults. Strikingly, HBD, the allegedly-unnecessary adult β-globin protein in humans, is the primary adult β-globin in dogs and other carnivores; moreover, dogs have two active copies of the HBD gene. In contrast, the dominant adult β-globin of humans, HBB, has high sequence divergence and is expressed at markedly lower levels in dogs. We also showed that canine HBD and HBB genes are complex chimeras that resulted from multiple gene conversion events between them. Lastly, we showed that the strongest signal of evolutionary selection in a high-altitude breed, the Bernese Mountain Dog, lies in a haplotype block that spans the β-globin locus. Conclusions We report the first molecular genetic characterization of Hb genes in dogs. We found important distinctions between adult β-globin expression in carnivores compared to other members of Laurasiatheria. Our findings are also likely to raise new questions about the significance of human HBD. The comparative genomics of dog hemoglobin genes sets the stage for diverse research and translation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3513-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Zaldívar-López
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Present affiliation: SZL, Departamento. de Genetica, Facultad de Veterinaria, Universidad de Cordoba, Cordoba, Spain
| | - Jennie L Rowell
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,College of Nursing, The Ohio State University, Columbus, OH, USA.,Present affiliation: Center of Excellence in Critical and Complex Care, College of Nursing, The Ohio State University, Columbus, USA
| | - Elise M Fiala
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Isain Zapata
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - C Guillermo Couto
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Present affiliation: Couto Veterinary Consultants, Hilliard, OH, USA
| | - Carlos E Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA. .,College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Steinberg MH, Rodgers GP. HbA2: biology, clinical relevance and a possible target for ameliorating sickle cell disease. Br J Haematol 2015; 170:781-7. [DOI: 10.1111/bjh.13570] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Griffin P. Rodgers
- National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
13
|
Quaye IK. Extracellular hemoglobin: the case of a friend turned foe. Front Physiol 2015; 6:96. [PMID: 25941490 PMCID: PMC4403290 DOI: 10.3389/fphys.2015.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022] Open
Abstract
Hemoglobin (Hb) is a highly conserved molecule present in all life forms and functionally tied to the complexity of aerobic organisms on earth in utilizing oxygen from the atmosphere and delivering to cells and tissues. This primary function sustains the energy requirements of cells and maintains cellular homeostasis. Decades of intensive research has presented a paradigm shift that shows how the molecule also functions to facilitate smooth oxygen delivery through the cardiovascular system for cellular bioenergetic homeostasis and signaling for cell function and defense. These roles are particularly highlighted in the binding of Hb to gaseous molecules carbon dioxide (CO2), nitric oxide (NO) and carbon monoxide (CO), while also serving indirectly or directly as sources of these signaling molecules. The functional activities impacted by Hb outside of bioenergetics homeostasis, include fertilization, signaling functions, modulation of inflammatory responses for defense and cell viability. These activities are efficiently executed while Hb is sequestered safely within the confines of the red blood cell (rbc). Outside of rbc confines, Hb disaggregates and becomes a danger molecule to cell survival. In these perpectives, Hb function is broadly dichotomous, either a friend in its natural environment providing and facilitating the means for cell function or foe when dislocated from its habitat under stress or pathological condition disrupting cell function. The review presents insights into how this dichotomy in function manifests.
Collapse
Affiliation(s)
- Isaac K Quaye
- Department of Biochemistry, University of Namibia School of Medicine Windhoek, Namibia
| |
Collapse
|
14
|
Moleirinho A, Lopes AM, Seixas S, Morales-Hojas R, Prata MJ, Amorim A. Distinctive patterns of evolution of the δ-globin gene (HBD) in primates. PLoS One 2015; 10:e0123365. [PMID: 25853817 PMCID: PMC4390247 DOI: 10.1371/journal.pone.0123365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
In most vertebrates, hemoglobin (Hb) is a heterotetramer composed of two dissimilar globin chains, which change during development according to the patterns of expression of α- and β-globin family members. In placental mammals, the β-globin cluster includes three early-expressed genes, ε(HBE)-γ(HBG)-ψβ(HBBP1), and the late expressed genes, δ (HBD) and β (HBB). While HBB encodes the major adult β-globin chain, HBD is weakly expressed or totally silent. Paradoxically, in human populations HBD shows high levels of conservation typical of genes under strong evolutionary constraints, possibly due to a regulatory role in the fetal-to-adult switch unique of Anthropoid primates. In this study, we have performed a comprehensive phylogenetic and comparative analysis of the two adult β-like globin genes in a set of diverse mammalian taxa, focusing on the evolution and functional divergence of HBD in primates. Our analysis revealed that anthropoids are an exception to a general pattern of concerted evolution in placental mammals, showing a high level of sequence conservation at HBD, less frequent and shorter gene conversion events. Moreover, this lineage is unique in the retention of a functional GATA-1 motif, known to be involved in the control of the developmental expression of the β-like globin genes. We further show that not only the mode but also the rate of evolution of the δ-globin gene in higher primates are strictly associated with the fetal/adult β-cluster developmental switch. To gain further insight into the possible functional constraints that have been shaping the evolutionary history of HBD in primates, we calculated dN/dS (ω) ratios under alternative models of gene evolution. Although our results indicate that HBD might have experienced different selective pressures throughout primate evolution, as shown by different ω values between apes and Old World Monkeys + New World Monkeys (0.06 versus 0.43, respectively), these estimates corroborated a constrained evolution for HBD in Anthropoid lineages, which is unlikely to be related to protein function. Collectively, these findings suggest that sequence change at the δ-globin gene has been under strong selective constraints over 65 Myr of primate evolution, likely due to a regulatory role in ontogenic switches of gene expression.
Collapse
Affiliation(s)
- Ana Moleirinho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ramiro Morales-Hojas
- Genetics and Genomics Group, The Pirbright Institute, Compton Laboratory, Compton, Berkshire, United Kingdom
| | - Maria J. Prata
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Soares I, Moleirinho A, Oliveira GNP, Amorim A. DivStat: a user-friendly tool for single nucleotide polymorphism analysis of genomic diversity. PLoS One 2015; 10:e0119851. [PMID: 25756185 PMCID: PMC4355611 DOI: 10.1371/journal.pone.0119851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/18/2015] [Indexed: 01/21/2023] Open
Abstract
Recent developments have led to an enormous increase of publicly available large genomic data, including complete genomes. The 1000 Genomes Project was a major contributor, releasing the results of sequencing a large number of individual genomes, and allowing for a myriad of large scale studies on human genetic variation. However, the tools currently available are insufficient when the goal concerns some analyses of data sets encompassing more than hundreds of base pairs and when considering haplotype sequences of single nucleotide polymorphisms (SNPs). Here, we present a new and potent tool to deal with large data sets allowing the computation of a variety of summary statistics of population genetic data, increasing the speed of data analysis.
Collapse
Affiliation(s)
- Inês Soares
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- * E-mail:
| | - Ana Moleirinho
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Gonçalo N. P. Oliveira
- Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- IFIMUP and IN—Institute of Nanoscience and Nanotechnology, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - António Amorim
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
16
|
Gaudry MJ, Storz JF, Butts GT, Campbell KL, Hoffmann FG. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals. Genome Biol Evol 2014; 6:1219-34. [PMID: 24814285 PMCID: PMC4041002 DOI: 10.1093/gbe/evu097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/13/2022] Open
Abstract
The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion.
Collapse
Affiliation(s)
- Michael J Gaudry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln
| | - Gary Tyler Butts
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State UniversityInstitute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| |
Collapse
|