1
|
Jiang LJ, Zhao J, Wang JG, Landrein S, Shi JP, Huang CJ, Luo M, Zhou XM, Niu HB, He ZR. Deciphering the evolution and biogeography of Ant-ferns Lecanopteris s.s. Mol Phylogenet Evol 2024:108199. [PMID: 39278383 DOI: 10.1016/j.ympev.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris, attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.
Collapse
Affiliation(s)
- Li-Ju Jiang
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Sven Landrein
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong Special Administrative Region of China
| | - Ji-Pu Shi
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Miao Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Hong-Bin Niu
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China.
| |
Collapse
|
2
|
Zhang X, Ekwealor JTB, Mishler BD, Silva AT, Yu L, Jones AK, Nelson ADL, Oliver MJ. Syntrichia ruralis: emerging model moss genome reveals a conserved and previously unknown regulator of desiccation in flowering plants. THE NEW PHYTOLOGIST 2024; 243:981-996. [PMID: 38415863 DOI: 10.1111/nph.19620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Water scarcity, resulting from climate change, poses a significant threat to ecosystems. Syntrichia ruralis, a dryland desiccation-tolerant moss, provides valuable insights into survival of water-limited conditions. We sequenced the genome of S. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relative S. caninervis. We took a genetic approach to characterize the role of an S. ruralis transcription factor, identified in transcriptomic analyses, in Arabidopsis thaliana. The genome was assembled into 12 chromosomes encompassing 21 169 protein-coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation-associated gene families, and highlighted genome-level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)-responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of the S. ruralis ortholog of ABA-insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized in Arabidopsis, acts as a negative regulator of an ABA-dependent stress response in Arabidopsis. The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.
Collapse
Affiliation(s)
- Xiaodan Zhang
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Jenna T B Ekwealor
- Department of Biology, Utah State University, Logan, UT, 84322, USA
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Brent D Mishler
- University and Jepson Herbaria, Berkeley, CA, 94720-2465, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720-2465, USA
| | | | - Li'ang Yu
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea K Jones
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew D L Nelson
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Melvin J Oliver
- Division of Plant Sciences and Technology and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Chen H, Fang Y, Zwaenepoel A, Huang S, Van de Peer Y, Li Z. Revisiting ancient polyploidy in leptosporangiate ferns. THE NEW PHYTOLOGIST 2023; 237:1405-1417. [PMID: 36349406 PMCID: PMC7614084 DOI: 10.1111/nph.18607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
Ferns, and particularly homosporous ferns, have long been assumed to have experienced recurrent whole-genome duplication (WGD) events because of their substantially large genome sizes, surprisingly high chromosome numbers, and high degrees of polyploidy among many extant members. As the number of sequenced fern genomes is limited, recent studies have employed transcriptome data to find evidence for WGDs in ferns. However, they have reached conflicting results concerning the occurrence of ancient polyploidy, for instance, in the lineage of leptosporangiate ferns. Because identifying WGDs in a phylogenetic context is the foremost step in studying the contribution of ancient polyploidy to evolution, we here revisited earlier identified WGDs in leptosporangiate ferns, mainly the core leptosporangiate ferns, by building KS -age distributions and applying substitution rate corrections and by conducting statistical gene tree-species tree reconciliation analyses. Our integrative analyses not only identified four ancient WGDs in the sampled core leptosporangiate ferns but also identified false positives and false negatives for WGDs that recent studies have reported earlier. In conclusion, we underscore the significance of substitution rate corrections and uncertainties in gene tree-species tree reconciliations in calling WGD events and advance an exemplar workflow to overcome such often-overlooked issues.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Yuhan Fang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sanwen Huang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
4
|
Ke BF, Wang GJ, Labiak PH, Rouhan G, Chen CW, Shepherd LD, Ohlsen DJ, Renner MAM, Karol KG, Li FW, Kuo LY. Systematics and Plastome Evolution in Schizaeaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:885501. [PMID: 35909781 PMCID: PMC9328107 DOI: 10.3389/fpls.2022.885501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
While the family Schizaeaceae (Schizaeales) represents only about 0.4% of the extant fern species diversity, it differs from other ferns greatly in gross morphologies, niche preferences, and life histories. One of the most notable features in this family is its mycoheterotrophic life style in the gametophytic stage, which appears to be associated with extensive losses of plastid genes. However, the limited number of sequenced plastomes, and the lack of a well-resolved phylogenetic framework of Schizaeaceae, makes it difficult to gain any further insight. Here, with a comprehensive sampling of ~77% of the species diversity of this family, we first inferred a plastid phylogeny of Schizaeaceae using three DNA regions. To resolve the deep relationships within this family, we then reconstructed a plastome-based phylogeny focusing on a selection of representatives that covered all the major clades. From this phylogenomic backbone, we traced the evolutionary histories of plastid genes and examined whether gene losses were associated with the evolution of gametophytic mycoheterotrophy. Our results reveal that extant Schizaeaceae is comprised of four major clades-Microschizaea, Actinostachys, Schizaea, and Schizaea pusilla. The loss of all plastid NADH-like dehydrogenase (ndh) genes was confirmed to have occurred in the ancestor of extant Schizaeaceae, which coincides with the evolution of mycoheterotrophy in this family. For chlorophyll biosynthesis genes (chl), the losses were interpreted as convergent in Schizaeaceae, and found not only in Actinostachys, a clade producing achlorophyllous gametophytes, but also in S. pusilla with chlorophyllous gametophytes. In addition, we discovered a previously undescribed but phylogenetically distinct species hidden in the Schizaea dichotoma complex and provided a taxonomic treatment and morphological diagnostics for this new species-Schizaea medusa. Finally, our phylogenetic results suggest that the current PPG I circumscription of Schizaea is non-monophyletic, and we therefore proposed a three-genus classification moving a subset of Schizaea species sensu PPG I to a third genus-Microschizaea.
Collapse
Affiliation(s)
- Bing-Feng Ke
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Paulo H. Labiak
- Depto. de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Germinal Rouhan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, EPHE, UA, CNRS, Sorbonne Université, Paris, France
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Cheng-Wei Chen
- Department of Life Science, Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Lara D. Shepherd
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | | | | | - Kenneth G. Karol
- The Lewis B. and Dorothy Cullman Program for Molecular Systematics, New York Botanical Garden, Bronx, NY, United States
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Biology Section, Cornell University, Ithaca, NY, United States
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Du XY, Kuo LY, Zuo ZY, Li DZ, Lu JM. Structural Variation of Plastomes Provides Key Insight Into the Deep Phylogeny of Ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:862772. [PMID: 35645990 PMCID: PMC9134734 DOI: 10.3389/fpls.2022.862772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 06/02/2023]
Abstract
Structural variation of plastid genomes (plastomes), particularly large inversions and gene losses, can provide key evidence for the deep phylogeny of plants. In this study, we investigated the structural variation of fern plastomes in a phylogenetic context. A total of 127 plastomes representing all 50 recognized families and 11 orders of ferns were sampled, making it the most comprehensive plastomic analysis of fern lineages to date. The samples included 42 novel plastomes of 15 families with a focus on Hymenophyllales and Gleicheniales. We reconstructed a well-supported phylogeny of all extant fern families, detected significant structural synapomorphies, including 9 large inversions, 7 invert repeat region (IR) boundary shifts, 10 protein-coding gene losses, 7 tRNA gene losses or anticodon changes, and 19 codon indels (insertions or deletions) across the deep phylogeny of ferns, particularly on the backbone nodes. The newly identified inversion V5, together with the newly inferred expansion of the IR boundary R5, can be identified as a synapomorphy of a clade composed of Dipteridaceae, Matoniaceae, Schizaeales, and the core leptosporangiates, while a unique inversion V4, together with an expansion of the IR boundary R4, was verified as a synapomorphy of Gleicheniaceae. This structural evidence is in support of our phylogenetic inference, thus providing key insight into the paraphyly of Gleicheniales. The inversions of V5 and V7 together filled the crucial gap regarding how the "reversed" gene orientation in the IR region characterized by most extant ferns (Schizaeales and the core leptosporangiates) evolved from the inferred ancestral type as retained in Equisetales and Osmundales. The tRNA genes trnR-ACG and trnM-CAU were assumed to be relicts of the early-divergent fern lineages but intact in most Polypodiales, particularly in eupolypods; and the loss of the tRNA genes trnR-CCG, trnV-UAC, and trnR-UCU in fern plastomes was much more prevalent than previously thought. We also identified several codon indels in protein-coding genes within the core leptosporangiates, which may be identified as synapomorphies of specific families or higher ranks. This study provides an empirical case of integrating structural and sequence information of plastomes to resolve deep phylogeny of plants.
Collapse
Affiliation(s)
- Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
6
|
Huang X, Wang W, Gong T, Wickell D, Kuo LY, Zhang X, Wen J, Kim H, Lu F, Zhao H, Chen S, Li H, Wu W, Yu C, Chen S, Fan W, Chen S, Bao X, Li L, Zhang D, Jiang L, Khadka D, Yan X, Liao Z, Zhou G, Guo Y, Ralph J, Sederoff RR, Wei H, Zhu P, Li FW, Ming R, Li Q. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. NATURE PLANTS 2022; 8:500-512. [PMID: 35534720 PMCID: PMC9122828 DOI: 10.1038/s41477-022-01146-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
To date, little is known about the evolution of fern genomes, with only two small genomes published from the heterosporous Salviniales. Here we assembled the genome of Alsophila spinulosa, known as the flying spider-monkey tree fern, onto 69 pseudochromosomes. The remarkable preservation of synteny, despite resulting from an ancient whole-genome duplication over 100 million years ago, is unprecedented in plants and probably speaks to the uniqueness of tree ferns. Our detailed investigations into stem anatomy and lignin biosynthesis shed new light on the evolution of stem formation in tree ferns. We identified a phenolic compound, alsophilin, that is abundant in xylem, and we provided the molecular basis for its biosynthesis. Finally, analysis of demographic history revealed two genetic bottlenecks, resulting in rapid demographic declines of A. spinulosa. The A. spinulosa genome fills a crucial gap in the plant genomic landscape and helps elucidate many unique aspects of tree fern biology.
Collapse
Affiliation(s)
- Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenling Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - David Wickell
- Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Li-Yaung Kuo
- Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Hoon Kim
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Fachuang Lu
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Changjiang Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Longyu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dipak Khadka
- GoldenGate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, China
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Fay-Wei Li
- Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
7
|
Du XY, Lu JM, Zhang LB, Wen J, Kuo LY, Mynssen CM, Schneider H, Li DZ. Simultaneous diversification of Polypodiales and angiosperms in the Mesozoic. Cladistics 2021; 37:518-539. [PMID: 34570931 DOI: 10.1111/cla.12457] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Comprising about 82% of the extant fern species diversity, Polypodiales are generally believed to have diversified in the Late Cretaceous. We estimated the divergence times of Polypodiales using both penalized likelihood and Bayesian methods, based on a dataset consisting of 208 plastomes representing all 28 families and 14 fossil constraints reflecting current interpretations of fossil record. Our plastome phylogeny recovered the same six major lineages as a recent nuclear phylogeny, but the position of Dennstaedtiineae was different. The present phylogeny showed high resolution of relationships among the families of Polypodiales, especially among those forming the Aspleniineae. The divergence time estimates supported the most recent common ancestor of Polypodiales and its closest relative dating back to the Triassic, establishment of the major lineages in the Jurassic, and a likely accelerated radiation during the late Jurassic and the Early Cretaceous. The estimated divergence patterns of Polypodiales and angiosperms converge to a scenario in which their main lineages were established simultaneously shortly before the onset of the Cretaceous Terrestrial Revolution, and further suggest a pre-Cretaceous hidden history for both lineages. The pattern of simultaneous diversifications shown here elucidate an important gap in our understanding of the Terrestrial Revolution that shaped today's ecosystems.
Collapse
Affiliation(s)
- Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Kunming, Yunnan, 650201, China
| | - Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| | - Li-Bing Zhang
- Missouri Botanical Garden, 4344 Shaw Blvd, St Louis, MO, 63110, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Claudine M Mynssen
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, Rio de Janeiro, RJ, 22460-030, Brazil
| | - Harald Schneider
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666000, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Kunming, Yunnan, 650201, China
| |
Collapse
|
8
|
Pšenička J, Bek J, Frýda J, Žárský V, Uhlířová M, Štorch P. Dynamics of Silurian Plants as Response to Climate Changes. Life (Basel) 2021; 11:906. [PMID: 34575055 PMCID: PMC8470493 DOI: 10.3390/life11090906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
The most ancient macroscopic plants fossils are Early Silurian cooksonioid sporophytes from the volcanic islands of the peri-Gondwanan palaeoregion (the Barrandian area, Prague Basin, Czech Republic). However, available palynological, phylogenetic and geological evidence indicates that the history of plant terrestrialization is much longer and it is recently accepted that land floras, producing different types of spores, already were established in the Ordovician Period. Here we attempt to correlate Silurian floral development with environmental dynamics based on our data from the Prague Basin, but also to compile known data on a global scale. Spore-assemblage analysis clearly indicates a significant and almost exponential expansion of trilete-spore producing plants starting during the Wenlock Epoch, while cryptospore-producers, which dominated until the Telychian Age, were evolutionarily stagnate. Interestingly cryptospore vs. trilete-spore producers seem to react differentially to Silurian glaciations-trilete-spore producing plants react more sensitively to glacial cooling, showing a reduction in species numbers. Both our own and compiled data indicate highly terrestrialized, advanced Silurian land-plant assemblage/flora types with obviously great ability to resist different dry-land stress conditions. As previously suggested some authors, they seem to evolve on different palaeo continents into quite disjunct specific plant assemblages, certainly reflecting the different geological, geographical and climatic conditions to which they were subject.
Collapse
Affiliation(s)
- Josef Pšenička
- Centre of Palaeobiodiversity, West Bohemian Museum in Pilsen, Kopeckého sady 2, 301 00 Plzeň, Czech Republic;
| | - Jiří Bek
- Laboratory of Palaeobiology and Palaeoecology, Geological Institute of the Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Prague 6, Czech Republic; (J.B.); (V.Ž.); (P.Š.)
| | - Jiří Frýda
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic;
- Czech Geological Survey, Klárov 3/131, 118 21 Prague 1, Czech Republic
| | - Viktor Žárský
- Laboratory of Palaeobiology and Palaeoecology, Geological Institute of the Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Prague 6, Czech Republic; (J.B.); (V.Ž.); (P.Š.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
- Institute of Experimental Botany of the Czech Academy of Sciences, v. v. i., Rozvojová 263, 165 00 Prague 6, Czech Republic
| | - Monika Uhlířová
- Centre of Palaeobiodiversity, West Bohemian Museum in Pilsen, Kopeckého sady 2, 301 00 Plzeň, Czech Republic;
- Institute of Geology and Palaeontology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Petr Štorch
- Laboratory of Palaeobiology and Palaeoecology, Geological Institute of the Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Prague 6, Czech Republic; (J.B.); (V.Ž.); (P.Š.)
| |
Collapse
|
9
|
Mossion V, Dauphin B, Grant J, Kessler M, Zemp N, Croll D. Transcriptome-wide SNPs for Botrychium lunaria ferns enable fine-grained analysis of ploidy and population structure. Mol Ecol Resour 2021; 22:254-271. [PMID: 34310066 PMCID: PMC9291227 DOI: 10.1111/1755-0998.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
Ferns are the second most diverse group of land plants after angiosperms. Extant species occupy a wide range of habitats and contribute significantly to ecosystem functioning. Despite the importance of ferns, most taxa are poorly covered by genomic resources and within‐species studies based on high‐resolution markers are entirely lacking. The genus Botrychium belongs to the family Ophioglossaceae, which includes species with very large genomes and chromosome numbers (e.g., Ophioglossum reticulatum 2n = 1520). The genus has a cosmopolitan distribution with 35 species, half of which are polyploids. Here, we establish a transcriptome for Botrychium lunaria (L.) Sw., a diploid species with an extremely large genome of about ~19.0–23.7 Gb. We assembled 25,677 high‐quality transcripts with an average length of 1,333 bp based on deep RNA‐sequencing of a single individual. We sequenced 11 additional transcriptomes of individuals from two populations in Switzerland, including the population of the reference individual. Based on read mapping to reference transcript sequences, we identified 374,463 single nucleotide polymorphisms (SNPs) segregating among individuals for an average density of 14 SNPs per kilobase. We found that all 12 transcriptomes were most likely from diploid individuals. The transcriptome‐wide markers provided unprecedented resolution of the population genetic structure, revealing substantial variation in heterozygosity among individuals. We also constructed a phylogenomic tree of 92 taxa representing all fern orders to ascertain the placement of the genus Botrychium. High‐quality transcriptomic resources and SNP sets constitute powerful population genomic resources to investigate the ecology, and evolution of fern populations.
Collapse
Affiliation(s)
- Vinciane Mossion
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland
| | - Benjamin Dauphin
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland.,Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Jason Grant
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zürich, Zurich, Switzerland
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
10
|
Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers. Int J Mol Sci 2021; 22:ijms22020641. [PMID: 33440692 PMCID: PMC7827865 DOI: 10.3390/ijms22020641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginellaceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Selaginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly. Comparative analyses of 19 lycophytes, including two Huperzia and one Isoetes species, revealed unique phylogenetic relationships between Selaginella species and related lycophytes, reflected by structural rearrangements involving two rounds of large inversions that resulted in dynamic changes between IR and DR blocks in the plastome sequence. Furthermore, we present other uncommon characteristics, including a small genome size, drastic reductions in gene and intron numbers, a high GC content, and extensive RNA editing. Although the 16 Selaginella species examined may not fully represent the genus, our findings suggest that Selaginella plastomes have undergone unique evolutionary events yielding genomic features unparalleled in other lycophytes, ferns, or seed plants.
Collapse
|
11
|
Teske D, Peters A, Möllers A, Fischer M. Genomic Profiling: The Strengths and Limitations of Chloroplast Genome-Based Plant Variety Authentication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14323-14333. [PMID: 32917087 DOI: 10.1021/acs.jafc.0c03001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Genomic profiling is a suitable tool for variety authentication and has applications in both operational quality and regulatory raw material control. It can be used to differentiate species or varieties and to identify admixtures as well as field contaminants. To establish a molecular profile, reliable and very accurate sequence data are required. As a result of the influence of the pollinator plant, nuclear genome-based authentication is in most cases not suitable for a direct application on the fruit. Sequences must be used that come exclusively from the localized mother plant. Parts of the fruit of maternal origin, e.g., components derived from the blossom, are suitable as a basis for this. Alternatively, DNA from cell organelles that are maternally inherited, such as mitochondria or chloroplasts, can be used. The latter will be discussed in this review in closer detail. Although individual gene segments on the chloroplast genome are already used for species differentiation in barcoding studies on plants, little is known about the usefulness of the entire chloroplast genome for intraspecies differentiation in general and for differentiation between modern varieties in particular. Results from the literature as well as from our own work suggest that chloroplast genome sequences are indeed very well-suited for the differentiation of old varieties. On the other hand, they are less or not suitable for the genetic differentiation of modern cultivars, because they are often too closely related.
Collapse
Affiliation(s)
- Doreen Teske
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Alina Peters
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Alexander Möllers
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
12
|
Kang JS, Zhang HR, Wang YR, Liang SQ, Mao ZY, Zhang XC, Xiang QP. Distinctive evolutionary pattern of organelle genomes linked to the nuclear genome in Selaginellaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1657-1672. [PMID: 33073395 DOI: 10.1111/tpj.15028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Plastids and mitochondria are endosymbiotic organelles that store genetic information. The genomes of these organelles generally exhibit contrasting patterns regarding genome architecture and genetic content. However, they have similar genetic features in Selaginellaceae, and little is known about what causes parallel evolution. Here, we document the multipartite plastid genomes (plastomes) and the highly divergent mitochondrial genomes (mitogenomes) from spikemoss obtained by combining short- and long-reads. The 188-kb multipartite plastome has three ribosomal operon copies in the master genomic conformation, creating the alternative subgenomic conformation composed of 110- and 78-kb subgenomes. The long-read data indicated that the two different genomic conformations were present in almost equal proportions in the plastomes of Selaginella nipponica. The mitogenome of S. nipponica was assembled into 27 contigs with a total size of 110 kb. All contigs contained directly arranged repeats at both ends, which introduced multiple conformations. Our results showed that plastomes and mitogenomes share high tRNA losses, GC-biased nucleotides, elevated substitution rates and complicated organization. The exploration of nuclear-encoded organelle DNA replication, recombination and repair proteins indicated that, several single-targeted proteins, particularly plastid-targeted recombinase A1, have been lost in Selaginellaceae; conversely, the dual-targeted proteins remain intact. According to the reported function of recombinase A1, we propose that the plastomes of spikemoss often fail to pair homologous sequences during recombination, and the dual-targeted proteins play a key role in the convergent genetic features of plastomes and mitogenomes. Our results provide a distinctive evolutionary pattern of the organelle genomes in Selaginellaceae and evidence of their convergent evolution.
Collapse
Affiliation(s)
- Jong-Soo Kang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ya-Rong Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Si-Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Yuan Mao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
13
|
Zhang L, Fan XP, Petchsri S, Zhou L, Pollawatn R, Zhang X, Zhou XM, Thi Lu N, Knapp R, Chantanaorrapint S, Limpanasittichai P, Sun H, Gao XF, Zhang LB. Evolutionary relationships of the ancient fern lineage the adder's tongues (Ophioglossaceae) with description of Sahashia gen. nov. Cladistics 2020; 36:380-393. [PMID: 34618972 DOI: 10.1111/cla.12408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 02/04/2023] Open
Abstract
As an ancient lineage of ferns, Ophioglossaceae are evolutionarily among the most fascinating because they have the highest chromosome count of any known organism as well as the presence of sporophores, subterranean gametophytes, eusporangiate sporangia without annuli, and endophytic fungi. Previous studies have produced conflicting results, identifyingsome lineages with unresolved relationships, and have paid much attention to the subfamily Botrychioideae. But the other species-rich subfamily, Ophioglossoideae, has remained largely understudied and only up to 12 accessions of Ophioglossoideae have been sampled. In this study, DNA sequences of seven plastid markers of 149 accessions (75 in Ophioglossoideae) representing approximately 82 species (approximately 74% of estimated species diversity sensu J. Syst. Evol., 2016, 54, 563) in the family, and two Marattiaceae and two Psilotaceae, are used to infer a phylogeny. Our major results include: (1) Ophioglossaceae are resolved as monophyletic with strong support, and so are all four subfamilies and genera sensu PPG I except Botrypus and Ophioglossum; (2) a new genus Sahashia is segregated from Botrypus so that the monophyly of Botrypus can be retained; (3) the monophyly of Ophioglossum in its current circumscription is uncertain in spite of our large character sampling; (4) there is substantial cryptic speciation in Ophioderma detected by our molecular and morphological study; (5) the recognition of Holubiella is advocated based on its morphology and its sister relationship with Sceptridium; and (6) a novel sister relationship between Botrychium and the JHS clade (Japanobotrychium + (Holubiella + Sceptridium)) is discovered.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Xue-Ping Fan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan, 610041, China
| | - Sahanat Petchsri
- Department of Botany, Faculty of Liberal Arts and Science, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Lin Zhou
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Rossarin Pollawatn
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Xin Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ngan Thi Lu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Department of Biology, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18th Hoang Quoc Viet Road, Ha Noi, Vietnam
| | - Ralf Knapp
- Muséum national d'Histoire naturelle (MNHN, Paris, France), Steigestrasse 78, Eberbach, 69412, Germany
| | - Sahut Chantanaorrapint
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Ponpipat Limpanasittichai
- Department of Horticulture, Faculty of agriculture, Kasetsart University, 50 Ngam Wong Wan Rd., Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan, 610041, China
| | - Li-Bing Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan, 610041, China.,Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO, 63110, USA
| |
Collapse
|
14
|
The dynamic evolution of mobile open reading frames in plastomes of Hymenophyllum Sm. and new insight on Hymenophyllum coreanum Nakai. Sci Rep 2020; 10:11059. [PMID: 32632087 PMCID: PMC7338519 DOI: 10.1038/s41598-020-68000-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/12/2020] [Indexed: 11/08/2022] Open
Abstract
In this study, four plastomes of Hymenophyllum, distributed in the Korean peninsula, were newly sequenced and phylogenomic analysis was conducted to reveal (1) the evolutionary history of plastomes of early-diverging fern species at the species level, (2) the importance of mobile open reading frames in the genus, and (3) plastome sequence divergence providing support for H. coreanum to be recognized as an independent species distinct from H. polyanthos. In addition, 1C-values of H. polyanthos and H. coreanum were measured to compare the genome size of both species and to confirm the diversification between them. The rrn16-trnV intergenic regions in the genus varied in length caused by Mobile Open Reading Frames in Fern Organelles (MORFFO). We investigated enlarged noncoding regions containing MORFFO throughout the fern plastomes and found that they were strongly associated with tRNA genes or palindromic elements. Sequence identity between plastomes of H. polyanthos and H. coreanum is quite low at 93.35% in the whole sequence and 98.13% even if the variation in trnV-rrn16 intergenic spacer was ignored. In addition, different genome sizes were found for these species based on the 1C-value. Consequently, there is no reason to consider them as a conspecies.
Collapse
|
15
|
Orr AJ, Padovan A, Kainer D, Külheim C, Bromham L, Bustos-Segura C, Foley W, Haff T, Hsieh JF, Morales-Suarez A, Cartwright RA, Lanfear R. A phylogenomic approach reveals a low somatic mutation rate in a long-lived plant. Proc Biol Sci 2020; 287:20192364. [PMID: 32156194 PMCID: PMC7126060 DOI: 10.1098/rspb.2019.2364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Somatic mutations can have important effects on the life history, ecology, and evolution of plants, but the rate at which they accumulate is poorly understood and difficult to measure directly. Here, we develop a method to measure somatic mutations in individual plants and use it to estimate the somatic mutation rate in a large, long-lived, phenotypically mosaic Eucalyptus melliodora tree. Despite being 100 times larger than Arabidopsis, this tree has a per-generation mutation rate only ten times greater, which suggests that this species may have evolved mechanisms to reduce the mutation rate per unit of growth. This adds to a growing body of evidence that illuminates the correlated evolutionary shifts in mutation rate and life history in plants.
Collapse
Affiliation(s)
- Adam J Orr
- The Biodesign Institute and the School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amanda Padovan
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.,CSIRO Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - David Kainer
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Carsten Külheim
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.,School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Lindell Bromham
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Carlos Bustos-Segura
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - William Foley
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Tonya Haff
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Ji-Fan Hsieh
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | | | - Reed A Cartwright
- The Biodesign Institute and the School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Robert Lanfear
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.,Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Xu L, Xing Y, Wang B, Liu C, Wang W, Kang T. Plastid genome and composition analysis of two medical ferns: Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb. Chin Med 2019; 14:9. [PMID: 30911328 PMCID: PMC6417082 DOI: 10.1186/s13020-019-0230-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb. are ferns that are popularly used for medicine, as recorded by the Chinese pharmacopoeia, and are distributed in different regions of China. However, O. japonica is not record in the Standards of Chinese Herbal Medicines in Hong Kong. Research on identification methods of D. crassirhizoma and O. japonica is necessary and the phylogenetic position of the two species should be identified. The plastid genome is structurally highly conserved, providing valuable sources of genetic markers for phylogenetic analyses and development of molecule makers for identification. Methods The plastid genome DNA was extracted from both fern species and then sequenced on the Illumina Hiseq 4000. Sequences were assembled into contigs by SOAPdenovo2.04, aligned to the reference genome using BLAST, and then manually corrected. Genome annotation was performed by the online DOGMA tool. General characteristics of the plastid genomes of the two species were analyzed and compared with closely related species. Additionally, phylogenetical trees were reconstructed by maximum likelihood methods. The content of dryocrassin of the two species were determined according to the Standards of Chinese Herbal Medicines in Hong Kong. Results The genome structures of D. crassirhizoma and O. japonica have different characteristics including the genome size, the size of each area, gene location, and types. Moreover, the (simple sequence repeats) SSRs of the plastid genomes were more similar to other species in the same genera. Compared with D. fragrans, D. crassirhizoma shows an inversion (approximately 1.6 kb), and O. japonica shows two inversions (1.9 kb and 216 bp). The nucleotide diversity (polymorphism information, Pi) analysis showed that the psbK gene and rpl14-rpl16 region have the highest Pi value in Dryopteris, and the ycf2-CDS3 and rpl14-rpl16 regions show the highest Pi vale in O. japonica. Phylogenetic analyses showed that the two species were grouped in two separate clades from each other, with both individually located with other members of their genus. The marker content of dryocrassin is not found in O. japonica. Conclusions The study is the first to identify plastid genome features of D. crassirhizoma and O. japonica. The results may provide a theoretical basis for the identification and the application of the two medically important fern species. Electronic supplementary material The online version of this article (10.1186/s13020-019-0230-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Xu
- 1School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,2School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yanping Xing
- 2School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Bing Wang
- 2School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chunsheng Liu
- 1School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenquan Wang
- 1School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,3Institute of Medicinal Plant Development, Beijing, China
| | - Tingguo Kang
- 2School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
17
|
Ruiz-Ruano FJ, Navarro-Domínguez B, Camacho JPM, Garrido-Ramos MA. Full plastome sequence of the fern Vandenboschia speciosa (Hymenophyllales): structural singularities and evolutionary insights. JOURNAL OF PLANT RESEARCH 2019; 132:3-17. [PMID: 30552526 DOI: 10.1007/s10265-018-1077-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 05/14/2023]
Abstract
We provide here the first full chloroplast genome sequence, i.e., the plastome, for a species belonging to the fern order Hymenophyllales. The phylogenetic position of this order within leptosporangiate ferns, together with the general scarcity of information about fern plastomes, places this research as a valuable study on the analysis of the diversity of plastomes throughout fern evolution. Gene content of V. speciosa plastome was similar to that in most ferns, although there were some characteristic gene losses and lineage-specific differences. In addition, an important number of genes required U to C RNA editing for proper protein translation and two genes showed start codons alternative to the canonical AUG (AUA). Concerning gene order, V. speciosa shared the specific 30-kb inversion of euphyllophytes plastomes and the 3.3-kb inversion of fern plastomes, keeping the ancestral gene order shared by eusporangiate and early leptosporangiate ferns. Conversely, V. speciosa has expanded IR regions comprising the rps7, rps12, ndhB and trnL genes in addition to rRNA and other tRNA genes, a condition shared with several eusporangiate ferns, lycophytes and hornworts, as well as most seed plants.
Collapse
Affiliation(s)
- F J Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - B Navarro-Domínguez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - J P M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
18
|
Complete chloroplast genome sequence of Dryopteris fragrans (L.) Schott and the repeat structures against the thermal environment. Sci Rep 2018; 8:16635. [PMID: 30413776 PMCID: PMC6226466 DOI: 10.1038/s41598-018-35061-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/15/2018] [Indexed: 01/07/2023] Open
Abstract
Dryopteris fragrans (L.) Schott is a fern growing on the surface of hot rocks and lava. It is exposed to sunlight directly and bears local hot environment. We sequenced the complete nucleotide sequence of its chloroplast (cp) genome. The cp genome was 151,978 bp in length, consisting of a large single-copy region (85,332 bp), a small single-copy region (31,947 bp) and a pair of inverted repeats (17,314 bp). The cp genome contained 112 genes and 345 RNA editing sites in protein-coding genes. Simple sequence repeats (SSRs) and long repeat structure pairs (30–55 bp) were identified. The number and percent of repeat structures are extremely high in ferns. Thermal denaturation experiments showed its cp genome to have numerous, dispersed and high GC percent repeat structures, which conferred the strongest thermal stability. This repeat-heavy genome may provide the molecular basis of how D. fragrans cp survives its hot environment.
Collapse
|
19
|
Kim HT, Kim KJ. Evolution of six novel ORFs in the plastome of Mankyua chejuense and phylogeny of eusporangiate ferns. Sci Rep 2018; 8:16466. [PMID: 30405200 PMCID: PMC6220310 DOI: 10.1038/s41598-018-34825-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
In this paper, three plastomes of Mankyua chejuense, Helminthostachys zeylanica, and Botrychium ternatum in Ophioglossaceae were completely sequenced in order to investigate the plastome evolution and phylogeny of eusporangiate ferns. They were similar to each other in terms of length and the gene orders; however, six unknown open reading frames (ORFs) were found between rps4 and trnL-UAA genes in M. chejuense. Similar sequence regions of six ORFs of M. chejuense were found at the plastomes of Ophioglossum californicum and H. zeylanica, as well as the mitochondrial genome (mitogenome) of H. zeylanica, but not in B. ternatum. Interestingly, the translated amino acid sequences of three ORFs were more similar to the proteins of distantly related taxa such as algae and bacteria than they were to proteins in land plants. It is likely that the six ORFs region arose from endosymbiotic gene transfer (EGT) or horizontal gene transfer (HGT), but further study is needed to verify this. Phylogenetic analyses suggested that Mankyua was resolved as the earliest diverging lineage and that Ophioglossum was subsequently diverged in Ophioglossaceae. This result supports why the plastome of M. chejuense have contained the most ancestral six ORFs in the family.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea
- Institute of Agricultural Science and Technology, Chungbuk National University, Chengju, 41566, Korea
| | - Ki-Joong Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
20
|
Kuo LY, Qi X, Ma H, Li FW. Order-level fern plastome phylogenomics: new insights from Hymenophyllales. AMERICAN JOURNAL OF BOTANY 2018; 105:1545-1555. [PMID: 30168575 DOI: 10.1002/ajb2.1152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/18/2018] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY Filmy ferns (Hymenophyllales) are a highly specialized lineage, having mesophyll one-cell layer thick and inhabiting particularly shaded and humid environments. The phylogenetic placement of Hymenophyllales has been inconclusive, and while over 87 whole fern plastomes have been published, none was from Hymenophyllales. To better understand the evolutionary history of filmy ferns, we sequenced the first complete plastome for this order. METHODS We compiled a phylogenomic plastome data set encompassing all 11 fern orders, and reconstructed phylogenies using different data types (nucleotides, codons, and amino acids) and partition schemes (codon positions and loci). To infer the evolution of fern plastome organization, we coded plastome features, including inversions, inverted repeat boundary shifts, gene losses, and tRNA anticodon sequences as characters, and reconstructed the ancestral states for these characters. KEY RESULTS We discovered a suite of novel, Hymenophyllales-specific plastome structures that likely resulted from repeated expansions and contractions of the inverted repeat regions. Our phylogenetic analyses reveal that Hymenophyllales is highly supported as either sister to Gleicheniales or to Gleicheniales + the remaining non-Osmundales leptosporangiates, depending on the data type and partition scheme. CONCLUSIONS Although our analyses could not confidently resolve the phylogenetic position of Hymenophyalles, the results here highlight the danger of drawing conclusions from "all-in" phylogenomic data set without exploring potential inconsistencies in the data. Finally, our first order-level reconstruction of fern plastome structural evolution provides a useful framework for future plastome research.
Collapse
Affiliation(s)
- Li-Yaung Kuo
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Xinping Qi
- Ministry of Education Key Laboratory of Biodiversity, Sciences and Ecological Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- Ministry of Education Key Laboratory of Biodiversity, Sciences and Ecological Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Qi X, Kuo LY, Guo C, Li H, Li Z, Qi J, Wang L, Hu Y, Xiang J, Zhang C, Guo J, Huang CH, Ma H. A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. Mol Phylogenet Evol 2018; 127:961-977. [PMID: 29981932 DOI: 10.1016/j.ympev.2018.06.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Ferns account for 80% of nonflowering vascular plant species and are the sister lineage of seed plants. Recent molecular phylogenetics have greatly advanced understanding of fern tree of life, but relationships among some major lineages remain unclear. To better resolve the phylogenetic relationships of ferns, we generated transcriptomes from 125 ferns and two lycophytes, with three additional public datasets, to represent all 11 orders and 85% of families of ferns. Our nuclear phylogeny provides strong supports for the monophyly of all four subclasses and nearly all orders and families, and for relationships among these lineages. The only exception is Gleicheniales, which was highly supported as being paraphyletic with Dipteridaceae sister to a clade with Gleicheniaceae + Hymenophyllales. In addition, new and strongly supported phylogenetic relationships are found for suborders and families in Polypodiales. We provide the first dated fern phylogenomic tree using many nuclear genes from a large majority of families, with an estimate for separation of the ancestors of ferns and seed plants in early Devonian at ∼400 Mya and subsequent gradual divergences of fern orders from ∼380 to 200 Mya. Moreover, the newly obtained fern phylogeny provides a framework for gene family analyses, which indicate that the vast majority of transcription factor families found in seed plants were already present in the common ancestor of extant vascular plants. In addition, fern transcription factor genes show similar duplication patterns to those in seed plants, with some showing stable copy number and others displaying independent expansions in both ferns and seed plants. This study provides a robust phylogenetic and gene family evolution framework, as well as rich molecular resources for understanding the morphological and functional evolution in ferns.
Collapse
Affiliation(s)
- Xinping Qi
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | | | - Chunce Guo
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Hao Li
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Zhongyang Li
- College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Ji Qi
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Linbo Wang
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Yi Hu
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jianying Xiang
- College of Biodiversity Conservation and Utilization, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Caifei Zhang
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Chien-Hsun Huang
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Hong Ma
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China; Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Salamon MA, Gerrienne P, Steemans P, Gorzelak P, Filipiak P, Le Hérissé A, Paris F, Cascales-Miñana B, Brachaniec T, Misz-Kennan M, Niedźwiedzki R, Trela W. Putative Late Ordovician land plants. THE NEW PHYTOLOGIST 2018; 218:1305-1309. [PMID: 29542135 DOI: 10.1111/nph.15091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Mariusz A Salamon
- Department of Palaeontology and Stratigraphy, Faculty of Earth Sciences, University of Silesia in Katowice, Bezdzinska 60, 41200, Sosnowiec, Poland
| | - Philippe Gerrienne
- Palaeobiogeology, Palaeobotany, Palaeopalynology, University of Liege, Quartier Agora, Allée du 6 Août, Bât. B-18, Parking 40, B-4000, Liège 1, Belgium
| | - Philippe Steemans
- Palaeobiogeology, Palaeobotany, Palaeopalynology, University of Liege, Quartier Agora, Allée du 6 Août, Bât. B-18, Parking 40, B-4000, Liège 1, Belgium
| | - Przemysław Gorzelak
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Paweł Filipiak
- Department of Palaeontology and Stratigraphy, Faculty of Earth Sciences, University of Silesia in Katowice, Bezdzinska 60, 41200, Sosnowiec, Poland
| | - Alain Le Hérissé
- UMR 6538-CNRS, Géosciences Océan, Institut Universitaire d'études Marines, Place Nicolas Copernic, 29280, Plouzané, France
| | - Florentin Paris
- 4, Rue des Jonquilles, 35235, Thorigné-Fouillard, France
- Géosciences-Rennes, UMR 6118-CNRS, Université de Rennes 1, 35042, Rennes-cedex, France
| | | | - Tomasz Brachaniec
- Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia in Katowice, Bezdzinska 60, 41-200, Sosnowiec, Poland
| | - Magdalena Misz-Kennan
- Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia in Katowice, Bezdzinska 60, 41-200, Sosnowiec, Poland
| | - Robert Niedźwiedzki
- Institute of Geological Sciences, Wrocław University, Cybulskiego 30, 50-205, Wrocław, Poland
| | - Wiesław Trela
- Polish Geological Institute - National Research Institute, Zgoda 21, 25-953, Kielce, Poland
| |
Collapse
|
23
|
Wei R, Yan YH, Harris AJ, Kang JS, Shen H, Xiang QP, Zhang XC. Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity. Genome Biol Evol 2018; 9:1646-1657. [PMID: 28854625 PMCID: PMC5534337 DOI: 10.1093/gbe/evx107] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 01/21/2023] Open
Abstract
The eupolypods II ferns represent a classic case of evolutionary radiation and, simultaneously, exhibit high substitution rate heterogeneity. These factors have been proposed to contribute to the contentious resolutions among clades within this fern group in multilocus phylogenetic studies. We investigated the deep phylogenetic relationships of eupolypod II ferns by sampling all major families and using 40 plastid genomes, or plastomes, of which 33 were newly sequenced with next-generation sequencing technology. We performed model-based analyses to evaluate the diversity of molecular evolutionary rates for these ferns. Our plastome data, with more than 26,000 informative characters, yielded good resolution for deep relationships within eupolypods II and unambiguously clarified the position of Rhachidosoraceae and the monophyly of Athyriaceae. Results of rate heterogeneity analysis revealed approximately 33 significant rate shifts in eupolypod II ferns, with the most heterogeneous rates (both accelerations and decelerations) occurring in two phylogenetically difficult lineages, that is, the Rhachidosoraceae–Aspleniaceae and Athyriaceae clades. These observations support the hypothesis that rate heterogeneity has previously constrained the deep phylogenetic resolution in eupolypods II. According to the plastome data, we propose that 14 chloroplast markers are particularly phylogenetically informative for eupolypods II both at the familial and generic levels. Our study demonstrates the power of a character-rich plastome data set and high-throughput sequencing for resolving the recalcitrant lineages, which have undergone rapid evolutionary radiation and dramatic changes in substitution rates.
Collapse
Affiliation(s)
- Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, P.R. China
| | - Yue-Hong Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, P.R. China
| | - A J Harris
- Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, District of Columbia
| | - Jong-Soo Kang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hui Shen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, P.R. China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
24
|
Park DS, Worthington S, Xi Z. Taxon sampling effects on the quantification and comparison of community phylogenetic diversity. Mol Ecol 2018; 27:1296-1308. [PMID: 29423927 DOI: 10.1111/mec.14520] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 11/26/2022]
Abstract
Ecologists are increasingly making use of molecular phylogenies, especially in the fields of community ecology and conservation. However, these phylogenies are often used without full appreciation of their underlying assumptions and uncertainties. A frequent practice in ecological studies is inferring a phylogeny with molecular data from taxa only within the community of interest. These "inferred community phylogenies" are inherently biased in their taxon sampling. Despite the importance of comprehensive sampling in constructing phylogenies, the implications of using inferred community phylogenies in ecological studies have not been examined. Here, we evaluate how taxon sampling affects the quantification and comparison of community phylogenetic diversity using both simulated and empirical data sets. We demonstrate that inferred community trees greatly underestimate phylogenetic diversity and that the probability of incorrectly ranking community diversity can reach up to 25%, depending on the dating methods employed. We argue that to reach reliable conclusions, ecological studies must improve their taxon sampling and generate the best phylogeny possible.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Steven Worthington
- Institute for Quantitative Social Science, Harvard University, Cambridge, MA, USA
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Rabah SO, Lee C, Hajrah NH, Makki RM, Alharby HF, Alhebshi AM, Sabir JSM, Jansen RK, Ruhlman TA. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew. THE PLANT GENOME 2017; 10. [PMID: 29293812 DOI: 10.3835/plantgenome2017.03.0020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated.
Collapse
|
26
|
Wei R, Yan YH, Harris AJ, Kang JS, Shen H, Xiang QP, Zhang XC. Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity. Genome Biol Evol 2017. [PMID: 28854625 DOI: 10.1093/gbe/evx1075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The eupolypods II ferns represent a classic case of evolutionary radiation and, simultaneously, exhibit high substitution rate heterogeneity. These factors have been proposed to contribute to the contentious resolutions among clades within this fern group in multilocus phylogenetic studies. We investigated the deep phylogenetic relationships of eupolypod II ferns by sampling all major families and using 40 plastid genomes, or plastomes, of which 33 were newly sequenced with next-generation sequencing technology. We performed model-based analyses to evaluate the diversity of molecular evolutionary rates for these ferns. Our plastome data, with more than 26,000 informative characters, yielded good resolution for deep relationships within eupolypods II and unambiguously clarified the position of Rhachidosoraceae and the monophyly of Athyriaceae. Results of rate heterogeneity analysis revealed approximately 33 significant rate shifts in eupolypod II ferns, with the most heterogeneous rates (both accelerations and decelerations) occurring in two phylogenetically difficult lineages, that is, the Rhachidosoraceae-Aspleniaceae and Athyriaceae clades. These observations support the hypothesis that rate heterogeneity has previously constrained the deep phylogenetic resolution in eupolypods II. According to the plastome data, we propose that 14 chloroplast markers are particularly phylogenetically informative for eupolypods II both at the familial and generic levels. Our study demonstrates the power of a character-rich plastome data set and high-throughput sequencing for resolving the recalcitrant lineages, which have undergone rapid evolutionary radiation and dramatic changes in substitution rates.
Collapse
Affiliation(s)
- Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, P.R. China
| | - Yue-Hong Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, P.R. China
| | - A J Harris
- Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, District of Columbia
| | - Jong-Soo Kang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hui Shen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, P.R. China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
27
|
Sun M, Li J, Li D, Shi L. Complete chloroplast genome sequence of the medical fern Drynaria roosii and its phylogenetic analysis. MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:7-8. [PMID: 33473696 PMCID: PMC7800187 DOI: 10.1080/23802359.2016.1275835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, the complete chloroplast genome of the medical fern Drynaria roosii was completed and analyzed in order to understand the evolution of the genome of the fern lineages. In D. roosii, the circular double-stranded cpDNA sequence of 154,305 bp consists of two inverted repeat (IRA and IRB) regions of 23,416 bp each, a large single-copy (LSC) region of 86,040 bp and a small single-copy (SSC) region of 21,433 bp. The overall GC content is 40.92% and the GC contents of LSC, IRs, and SSC are 39.75%, 45.07%, and 36.60%, respectively. D. roosii with 108 annotated unique genes included 85 protein-coding genes, 19 tRNA genes, and 4 rRNA genes. Using the whole chloroplast genome sequences alignment of 18 species from ferns, the phylogenetic relationship was built. The phylogenetic position of D. roosii was closely clustered with Adiantum capillus-veneris, Cheilanthes lindheimeri, and Pteridium aquilium subsp. Aquilinum as sister species and then clustered with Alsophila spinulosa, Lygodium japonicum, Diplopterygium glaucum, and Osmundastrum cinnamomeum. D. roosii belongs to Polypodiales. The complete chloroplast genome of D. roosii provides utility information for ferns evolutionary and genomic studies.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jingrui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Phylogenetic Relationships of the Fern Cyrtomium falcatum (Dryopteridaceae) from Dokdo Island Based on Chloroplast Genome Sequencing. Genes (Basel) 2016; 7:genes7120115. [PMID: 28009803 PMCID: PMC5192491 DOI: 10.3390/genes7120115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022] Open
Abstract
Cyrtomium falcatum is a popular ornamental fern cultivated worldwide. Native to the Korean Peninsula, Japan, and Dokdo Island in the Sea of Japan, it is the only fern present on Dokdo Island. We isolated and characterized the chloroplast (cp) genome of C. falcatum, and compared it with those of closely related species. The genes trnV-GAC and trnV-GAU were found to be present within the cp genome of C. falcatum, whereas trnP-GGG and rpl21 were lacking. Moreover, cp genomes of Cyrtomium devexiscapulae and Adiantum capillus-veneris lack trnP-GGG and rpl21, suggesting these are not conserved among angiosperm cp genomes. The deletion of trnR-UCG, trnR-CCG, and trnSeC in the cp genomes of C. falcatum and other eupolypod ferns indicates these genes are restricted to tree ferns, non-core leptosporangiates, and basal ferns. The C. falcatum cp genome also encoded ndhF and rps7, with GUG start codons that were only conserved in polypod ferns, and it shares two significant inversions with other ferns, including a minor inversion of the trnD-GUC region and an approximate 3 kb inversion of the trnG-trnT region. Phylogenetic analyses showed that Equisetum was found to be a sister clade to Psilotales-Ophioglossales with a 100% bootstrap (BS) value. The sister relationship between Pteridaceae and eupolypods was also strongly supported by a 100% BS, but Bayesian molecular clock analyses suggested that C. falcatum diversified in the mid-Paleogene period (45.15 ± 4.93 million years ago) and might have moved from Eurasia to Dokdo Island.
Collapse
|
29
|
R Marcelino V, Cremen MCM, Jackson CJ, Larkum AAW, Verbruggen H. Evolutionary Dynamics of Chloroplast Genomes in Low Light: A Case Study of the Endolithic Green Alga Ostreobium quekettii. Genome Biol Evol 2016; 8:2939-2951. [PMID: 27566760 PMCID: PMC5633697 DOI: 10.1093/gbe/evw206] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Some photosynthetic organisms live in extremely low light environments. Light limitation is associated with selective forces as well as reduced exposure to mutagens, and over evolutionary timescales it can leave a footprint on species’ genomes. Here, we present the chloroplast genomes of four green algae (Bryopsidales, Ulvophyceae), including the endolithic (limestone-boring) alga Ostreobium quekettii, which is a low light specialist. We use phylogenetic models and comparative genomic tools to investigate whether the chloroplast genome of Ostreobium corresponds to our expectations of how low light would affect genome evolution. Ostreobium has the smallest and most gene-dense chloroplast genome among Ulvophyceae reported to date, matching our expectation that light limitation would impose resource constraints reflected in the chloroplast genome architecture. Rates of molecular evolution are significantly slower along the phylogenetic branch leading to Ostreobium, in agreement with the expected effects of low light and energy levels on molecular evolution. We expected the ability of Ostreobium to perform photosynthesis in very low light to be associated with positive selection in genes related to the photosynthetic machinery, but instead, we observed that these genes may be under stronger purifying selection. Besides shedding light on the genome dynamics associated with a low light lifestyle, this study helps to resolve the role of environmental factors in shaping the diversity of genome architectures observed in nature.
Collapse
Affiliation(s)
| | | | | | - Anthony A W Larkum
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, NSW 2007, Australia
| | | |
Collapse
|
30
|
Braverman JM, Hamilton MB, Johnson BA. Patterns of Substitution Rate Variation at Many Nuclear Loci in Two Species Trios in the Brassicaceae Partitioned with ANOVA. J Mol Evol 2016; 83:97-109. [PMID: 27592229 DOI: 10.1007/s00239-016-9752-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
There are marked variations among loci and among lineages in rates of nucleotide substitution. The generation time hypothesis (GTH) is a neutral explanation for substitution rate heterogeneity that has genomewide application, predicting that species with shorter generation times accumulate DNA sequence substitutions faster than species with longer generation times do since faster genome replication provides more opportunities for mutations to occur and reach fixation by genetic drift. Relatively few studies have rigorously evaluated the GTH in plants, and there are numerous alternative hypotheses for plant substitution rate variation. One major challenge has been finding pairs of closely related plant species with contrasting generation times and appropriate outgroup taxa that all also have DNA sequence data for numerous loci. To test for causes of rate variation, we obtained sequence data for 256 genes for Arabidopsis thaliana, normally reproducing every year, and the biennial Arabidopsis lyrata with three closely related outgroup taxa (Brassica rapa, Capsella grandiflora, and Neslia paniculata) as well as the biennial Brassica oleracea and the annual B. rapa lineage with the outgroup N. paniculata. A sign test indicated that more loci than expected by chance have faster rates of substitution on the branch leading to the annual than to the perennial for one three-species trio but not another. Tajima's 1D and 2D tests, and a likelihood ratio test that incorporated saturation correction, rejected rate homogeneity for up to 26 genes (up to 14 genes when correcting for multiple tests), consistently showing faster rates for the annual lineage in the Arabidopsis species trio. ANOVA showed significant rate heterogeneity between the Arabidopsis and Brassica species trios (about 6 % of rate variation) and among loci (about 26-32 % of rate variation). The lineage-by-locus interaction which would be caused by locus- and lineage-specific natural selection explained about 13 % of substitution rate variation in one ANOVA model using substitution rates from genes partitioned into odd and even codons but was not a significant effect without partitioned genes. Annual/perennial lineage and species trio by annual/perennial lineage each explained about 1 % of substitution rate variation.
Collapse
Affiliation(s)
- John M Braverman
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA.
| | | | - Brent A Johnson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
31
|
Li FW, Kuo LY, Pryer KM, Rothfels CJ. Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content. Genome Biol Evol 2016; 8:2452-8. [PMID: 27401175 PMCID: PMC5010901 DOI: 10.1093/gbe/evw167] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plant chloroplast genomes (plastomes) are characterized by an inverted repeat (IR) region and two larger single copy (SC) regions. Patterns of molecular evolution in the IR and SC regions differ, most notably by a reduced rate of nucleotide substitution in the IR compared to the SC region. In addition, the organization and structure of plastomes is fluid, and rearrangements through time have repeatedly shuffled genes into and out of the IR, providing recurrent natural experiments on how chloroplast genome structure can impact rates and patterns of molecular evolution. Here we examine four loci (psbA, ycf2, rps7, and rps12 exon 2-3) that were translocated from the SC into the IR during fern evolution. We use a model-based method, within a phylogenetic context, to test for substitution rate shifts. All four loci show a significant, 2- to 3-fold deceleration in their substitution rate following translocation into the IR, a phenomenon not observed in any other, nontranslocated plastid genes. Also, we show that after translocation, the GC content of the third codon position and of the noncoding regions is significantly increased, implying that gene conversion within the IR is GC-biased. Taken together, our results suggest that the IR region not only reduces substitution rates, but also impacts nucleotide composition. This finding highlights a potential vulnerability of correlating substitution rate heterogeneity with organismal life history traits without knowledge of the underlying genome structure.
Collapse
Affiliation(s)
- Fay-Wei Li
- University Herbarium and Department of Integrative Biology, University of California, Berkeley Department of Biology, Duke University, Durham
| | - Li-Yaung Kuo
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei
| | | | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California, Berkeley
| |
Collapse
|
32
|
Knie N, Grewe F, Fischer S, Knoop V. Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns - a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles. BMC Evol Biol 2016; 16:134. [PMID: 27329857 PMCID: PMC4915041 DOI: 10.1186/s12862-016-0707-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA editing by C-to-U conversions is nearly omnipresent in land plant chloroplasts and mitochondria, where it mainly serves to reconstitute conserved codon identities in the organelle mRNAs. Reverse U-to-C RNA editing in contrast appears to be restricted to hornworts, some lycophytes, and ferns (monilophytes). A well-resolved monilophyte phylogeny has recently emerged and now allows to trace the side-by-side evolution of both types of pyrimidine exchange editing in the two endosymbiotic organelles. RESULTS Our study of RNA editing in four selected mitochondrial genes show a wide spectrum of divergent RNA editing frequencies including a dominance of U-to-C over the canonical C-to-U editing in some taxa like the order Schizaeales. We find that silent RNA editing leaving encoded amino acids unchanged is highly biased with more than ten-fold amounts of silent C-to-U over U-to-C edits. In full contrast to flowering plants, RNA editing frequencies are low in early-branching monilophyte lineages but increase in later emerging clades. Moreover, while editing rates in the two organelles are usually correlated, we observe uncoupled evolution of editing frequencies in fern mitochondria and chloroplasts. Most mitochondrial RNA editing sites are shared between the recently emerging fern orders whereas chloroplast editing sites are mostly clade-specific. Finally, we observe that chloroplast RNA editing appears to be completely absent in horsetails (Equisetales), the sister clade of all other monilophytes. CONCLUSIONS C-to-U and U-to-C RNA editing in fern chloroplasts and mitochondria follow disinct evolutionary pathways that are surprisingly different from what has previously been found in flowering plants. The results call for careful differentiation of the two types of RNA editing in the two endosymbiotic organelles in comparative evolutionary studies.
Collapse
Affiliation(s)
- Nils Knie
- Abteilung Molekulare Evolution, IZMB - Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Felix Grewe
- Present address: Department of Science and Education, Field Museum of Natural History, Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Simon Fischer
- Present address: Protrans medizinisch diagnostische Produkte GmbH, Ketschau 2, D-68766, Hockenheim, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, IZMB - Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| |
Collapse
|
33
|
Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns. Mol Phylogenet Evol 2015; 90:140-9. [DOI: 10.1016/j.ympev.2015.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 11/23/2022]
|
34
|
Rothfels CJ, Li FW, Sigel EM, Huiet L, Larsson A, Burge DO, Ruhsam M, Deyholos M, Soltis DE, Stewart CN, Shaw SW, Pokorny L, Chen T, dePamphilis C, DeGironimo L, Chen L, Wei X, Sun X, Korall P, Stevenson DW, Graham SW, Wong GKS, Pryer KM. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. AMERICAN JOURNAL OF BOTANY 2015. [PMID: 26199366 DOI: 10.3732/ajb.1500089] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Understanding fern (monilophyte) phylogeny and its evolutionary timescale is critical for broad investigations of the evolution of land plants, and for providing the point of comparison necessary for studying the evolution of the fern sister group, seed plants. Molecular phylogenetic investigations have revolutionized our understanding of fern phylogeny, however, to date, these studies have relied almost exclusively on plastid data.• METHODS Here we take a curated phylogenomics approach to infer the first broad fern phylogeny from multiple nuclear loci, by combining broad taxon sampling (73 ferns and 12 outgroup species) with focused character sampling (25 loci comprising 35877 bp), along with rigorous alignment, orthology inference and model selection.• KEY RESULTS Our phylogeny corroborates some earlier inferences and provides novel insights; in particular, we find strong support for Equisetales as sister to the rest of ferns, Marattiales as sister to leptosporangiate ferns, and Dennstaedtiaceae as sister to the eupolypods. Our divergence-time analyses reveal that divergences among the extant fern orders all occurred prior to ∼200 MYA. Finally, our species-tree inferences are congruent with analyses of concatenated data, but generally with lower support. Those cases where species-tree support values are higher than expected involve relationships that have been supported by smaller plastid datasets, suggesting that deep coalescence may be reducing support from the concatenated nuclear data.• CONCLUSIONS Our study demonstrates the utility of a curated phylogenomics approach to inferring fern phylogeny, and highlights the need to consider underlying data characteristics, along with data quantity, in phylogenetic studies.
Collapse
Affiliation(s)
- Carl J Rothfels
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6J 3S7, Canada
| | - Fay-Wei Li
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| | - Erin M Sigel
- Department of Botany (MRC 166), National Museum of Natural History, Smithsonian Institution, P.O. Box 37012 Washington, District of Columbia 20013-7012 USA
| | - Layne Huiet
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| | - Anders Larsson
- Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, SE-752 36 Uppsala, Sweden
| | - Dylan O Burge
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118 USA
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK
| | - Michael Deyholos
- Department of Biology, University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, British Columbia V1V 1V7, Canada
| | - Douglas E Soltis
- Florida Museum of Natural History, Department of Biology, and the Genetics Institute. University of Florida. Gainesville, Florida 32611 USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Lisa Pokorny
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico-Consejo Superior de Investigaciones Científicas, 28014 Madrid, Spain
| | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, The Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Claude dePamphilis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Lisa DeGironimo
- The New York Botanical Garden, 2900 Southern Blvd., Bronx, New York 10458 USA
| | - Li Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiaofeng Wei
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiao Sun
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Petra Korall
- Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, SE-752 36 Uppsala, Sweden
| | - Dennis W Stevenson
- The New York Botanical Garden, 2900 Southern Blvd., Bronx, New York 10458 USA
| | - Sean W Graham
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6J 3S7, Canada
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Kathleen M Pryer
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| |
Collapse
|
35
|
Schneider H, Liu H, Clark J, Hidalgo O, Pellicer J, Zhang S, Kelly LJ, Fay MF, Leitch IJ. Are the genomes of royal ferns really frozen in time? Evidence for coinciding genome stability and limited evolvability in the royal ferns. THE NEW PHYTOLOGIST 2015; 207:10-13. [PMID: 25655176 DOI: 10.1111/nph.13330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Harald Schneider
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Hongmei Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairylake Botanical Garden, Shenzhen & The Chinese Academy of Sciences, Shenzhen, 518004, P. R. China
| | - James Clark
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Oriane Hidalgo
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW8 3DS, UK
| | - Jaume Pellicer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW8 3DS, UK
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairylake Botanical Garden, Shenzhen & The Chinese Academy of Sciences, Shenzhen, 518004, P. R. China
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Michael F Fay
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW8 3DS, UK
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW8 3DS, UK
| |
Collapse
|
36
|
Vanneste K, Sterck L, Myburg AA, Van de Peer Y, Mizrachi E. Horsetails Are Ancient Polyploids: Evidence from Equisetum giganteum. THE PLANT CELL 2015; 27:1567-78. [PMID: 26002871 PMCID: PMC4498207 DOI: 10.1105/tpc.15.00157] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/03/2015] [Accepted: 04/28/2015] [Indexed: 05/18/2023]
Abstract
Horsetails represent an enigmatic clade within the land plants. Despite consisting only of one genus (Equisetum) that contains 15 species, they are thought to represent the oldest extant genus within the vascular plants dating back possibly as far as the Triassic. Horsetails have retained several ancient features and are also characterized by a particularly high chromosome count (n = 108). Whole-genome duplications (WGDs) have been uncovered in many angiosperm clades and have been associated with the success of angiosperms, both in terms of species richness and biomass dominance, but remain understudied in nonangiosperm clades. Here, we report unambiguous evidence of an ancient WGD in the fern lineage, based on sequencing and de novo assembly of an expressed gene catalog (transcriptome) from the giant horsetail (Equisetum giganteum). We demonstrate that horsetails underwent an independent paleopolyploidy during the Late Cretaceous prior to the diversification of the genus but did not experience any recent polyploidizations that could account for their high chromosome number. We also discuss the specific retention of genes following the WGD and how this may be linked to their long-term survival.
Collapse
Affiliation(s)
- Kevin Vanneste
- Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
| | - Alexander Andrew Myburg
- Department of Genetics, Forestry, and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry, and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
37
|
Zhan J, Thrall PH, Papaïx J, Xie L, Burdon JJ. Playing on a pathogen's weakness: using evolution to guide sustainable plant disease control strategies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:19-43. [PMID: 25938275 DOI: 10.1146/annurev-phyto-080614-120040] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wild plants and their associated pathogens are involved in ongoing interactions over millennia that have been modified by coevolutionary processes to limit the spatial extent and temporal duration of disease epidemics. These interactions are disrupted by modern agricultural practices and social activities, such as intensified monoculture using superior varieties and international trading of agricultural commodities. These activities, when supplemented with high resource inputs and the broad application of agrochemicals, create conditions uniquely conducive to widespread plant disease epidemics and rapid pathogen evolution. To be effective and durable, sustainable disease management requires a significant shift in emphasis to overtly include ecoevolutionary principles in the design of adaptive management programs aimed at minimizing the evolutionary potential of plant pathogens by reducing their genetic variation, stabilizing their evolutionary dynamics, and preventing dissemination of pathogen variants carrying new infectivity or resistance to agrochemicals.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Laboratory for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China;
| | | | | | | | | |
Collapse
|