1
|
Gylemo B, Bensberg M, Hennings V, Lundqvist C, Camponeschi A, Goldmann D, Zhang H, Selimović-Pašić A, Lentini A, Ekwall O, Nestor CE. A landscape of X-inactivation during human T cell development. Nat Commun 2024; 15:10527. [PMID: 39632794 PMCID: PMC11618795 DOI: 10.1038/s41467-024-54110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Females exhibit a more robust immune response to both self-antigens and non-self-antigens than males, resulting in a higher prevalence of autoimmune diseases but more effective responses against infection. Increased expression of X-linked immune genes in female T cells is thought to underlie this enhanced response. Here we isolate thymocytes from pediatric thymi of healthy males (46, XY), females (46, XX), a female with completely skewed X-chromosome inactivation (46, XX, cXCI) and a female with Turner syndrome (45, X0). Using whole exome sequencing, RNA sequencing and DNA methylation data, we present a sex-aware expression profile of T cell development and generate a high-resolution map of escape from X-chromosome inactivation (XCI). Unexpectedly, XCI is transcriptionally and epigenetically stable throughout T cell development, and is independent of expression of XIST, the lncRNA responsible for XCI initiation during early embryonic development. In thymocytes, several genes known to escape XCI are expressed from only one X-chromosome. Additionally, we further reveal that a second X-chromosome is dispensable for T cell development. Our study thus provides a high-resolution map of XCI during human development and suggests a re-evaluation of XCI in sex differences in T cell function.
Collapse
Affiliation(s)
- Björn Gylemo
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Maike Bensberg
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Viktoria Hennings
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dóra Goldmann
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Huan Zhang
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Aida Selimović-Pašić
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Antonio Lentini
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Colm E Nestor
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Zhang R, Yang M, Schreiber J, O'Day DR, Turner JMA, Shendure J, Disteche CM, Deng X, Noble WS. Cross-species imputation and comparison of single-cell transcriptomic profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.19.563173. [PMID: 37905060 PMCID: PMC10614954 DOI: 10.1101/2023.10.19.563173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cross-species comparison and prediction of gene expression profiles are important to understand regulatory changes during evolution and to transfer knowledge learned from model organisms to humans. Single-cell RNA-seq (scRNA-seq) profiles enable us to capture gene expression profiles with respect to variations among individual cells; however, cross-species comparison of scRNA-seq profiles is challenging because of data sparsity, batch effects, and the lack of one-to-one cell matching across species. Moreover, single-cell profiles are challenging to obtain in certain biological contexts, limiting the scope of hypothesis generation. Here we developed Icebear, a neural network framework that decomposes single-cell measurements into factors representing cell identity, species, and batch factors. Icebear enables accurate prediction of single-cell gene expression profiles across species, thereby providing high-resolution cell type and disease profiles in under-characterized contexts. Icebear also facilitates direct cross-species comparison of single-cell expression profiles for conserved genes that are located on the X chromosome in eutherian mammals but on autosomes in chicken. This comparison, for the first time, revealed evolutionary and diverse adaptations of X-chromosome upregulation in mammals.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Genome Sciences, University of Washington
- eScience Institute, University of Washington
| | - Mu Yang
- Department of Biomedical Informatics and Medical Education, University of Washington
| | | | - Diana R O'Day
- Brotman Baty Institute for Precision Medicine, University of Washington
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington
- Brotman Baty Institute for Precision Medicine, University of Washington
- Howard Hughes Medical Institute
- Allen Center for Cell Lineage Tracing
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington
- Department of Medicine, University of Washington
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington
- Paul G. Allen School of Computer Science and Engineering, University of Washington
| |
Collapse
|
3
|
Lister NC, Milton AM, Patel HR, Waters SA, Hanrahan BJ, McIntyre KL, Livernois AM, Horspool WB, Wee LK, Ringel AR, Mundlos S, Robson MI, Shearwin-Whyatt L, Grützner F, Graves JAM, Ruiz-Herrera A, Waters PD. Incomplete transcriptional dosage compensation of chicken and platypus sex chromosomes is balanced by post-transcriptional compensation. Proc Natl Acad Sci U S A 2024; 121:e2322360121. [PMID: 39074288 PMCID: PMC11317591 DOI: 10.1073/pnas.2322360121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Heteromorphic sex chromosomes (XY or ZW) present problems of gene dosage imbalance between sexes and with autosomes. A need for dosage compensation has long been thought to be critical in vertebrates. However, this was questioned by findings of unequal mRNA abundance measurements in monotreme mammals and birds. Here, we demonstrate unbalanced mRNA levels of X genes in platypus males and females and a correlation with differential loading of histone modifications. We also observed unbalanced transcripts of Z genes in chicken. Surprisingly, however, we found that protein abundance ratios were 1:1 between the sexes in both species, indicating a post-transcriptional layer of dosage compensation. We conclude that sex chromosome output is maintained in chicken and platypus (and perhaps many other non therian vertebrates) via a combination of transcriptional and post-transcriptional control, consistent with a critical importance of sex chromosome dosage compensation.
Collapse
Affiliation(s)
- Nicholas C. Lister
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Ashley M. Milton
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Hardip R. Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT2600, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT2600, Australia
| | - Shafagh A. Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW2052, Australia
| | - Benjamin J. Hanrahan
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Kim L. McIntyre
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | | | - William B. Horspool
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Lee Kian Wee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Alessa R. Ringel
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin10117, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin10117, Germany
- Charité-Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin13353, Germany
| | - Michael I. Robson
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin10117, Germany
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EdinburghEH8 9YL, United Kingdom
| | | | - Frank Grützner
- School of Biological Sciences, University of Adelaide, Adelaide, SA5000, Australia
| | - Jennifer A. Marshall Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC3068, Australia
- Institute of Applied Ecology, University of Canberra, Canberra, ACT2601, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia I Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| |
Collapse
|
4
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
5
|
McIntyre KL, Waters SA, Zhong L, Hart-Smith G, Raftery M, Chew ZA, Patel HR, Graves JAM, Waters PD. Identification of the RSX interactome in a marsupial shows functional coherence with the Xist interactome during X inactivation. Genome Biol 2024; 25:134. [PMID: 38783307 PMCID: PMC11112854 DOI: 10.1186/s13059-024-03280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The marsupial specific RSX lncRNA is the functional analogue of the eutherian specific XIST, which coordinates X chromosome inactivation. We characterized the RSX interactome in a marsupial representative (the opossum Monodelphis domestica), identifying 135 proteins, of which 54 had orthologues in the XIST interactome. Both interactomes were enriched for biological pathways related to RNA processing, regulation of translation, and epigenetic transcriptional silencing. This represents a remarkable example showcasing the functional coherence of independently evolved lncRNAs in distantly related mammalian lineages.
Collapse
Affiliation(s)
- Kim L McIntyre
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gene Hart-Smith
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Mark Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zahra A Chew
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, 2601, Australia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, 2601, Australia
| | | | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Ahmed R, Saba AA, Paul A, Nur J, Alam MS, Chakraborty S, Howlader MZH, Islam LN, Nabi AHMN. Intronic Variants of the Angiotensin-Converting Enzyme 2 Gene Modulate Plasma ACE2 Levels and Possibly Confer Protection against Severe COVID-19. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5705076. [PMID: 37929242 PMCID: PMC10622595 DOI: 10.1155/2023/5705076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
Membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor acts as the entry point for the novel coronavirus, SARS-CoV-2. Polymorphisms in the ACE2 gene may alter viral binding, regulate the expression of ACE2, and thus, affect disease severity. In this study, 68 COVID-19 patients with varying degrees of severity and 40 healthy controls were enrolled. The genetic landscape of the ACE2 gene was explored by whole exome sequencing of 29 individuals, and specific regions of ACE2 were analyzed for the rest of the participants via PCR, followed by barcode-tagged sequencing. The mean soluble ACE2 level in the plasma of healthy controls and patients did not vary significantly but was higher in the patient group (3.77 ± 1.55 ng/mL vs. 3.94 ± 1.42 ng/mL). Analysis of exon 1, exon 2, and exon 8 of the ACE2 gene revealed that these regions are highly conserved in our population. Investigation of exon 11 and its flanking intronic region revealed that deletions in a stretch of 18T nucleotides in the noncoding region significantly decrease ACE2 levels in plasma, as individuals harboring wild-type variants had higher plasma ACE2 levels compared to those harboring T1del, T2del, and T3del variants. However, the intronic variants were not found to be significantly associated with disease severity.
Collapse
Affiliation(s)
- Rubaiat Ahmed
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Paul
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jasmin Nur
- Department of Immunology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Md Sohrab Alam
- Department of Immunology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Sajib Chakraborty
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Zakir Hossain Howlader
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Laila N. Islam
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Rücklé C, Körtel N, Basilicata MF, Busch A, Zhou Y, Hoch-Kraft P, Tretow K, Kielisch F, Bertin M, Pradhan M, Musheev M, Schweiger S, Niehrs C, Rausch O, Zarnack K, Keller Valsecchi CI, König J. RNA stability controlled by m 6A methylation contributes to X-to-autosome dosage compensation in mammals. Nat Struct Mol Biol 2023; 30:1207-1215. [PMID: 37202476 PMCID: PMC10442230 DOI: 10.1038/s41594-023-00997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
In mammals, X-chromosomal genes are expressed from a single copy since males (XY) possess a single X chromosome, while females (XX) undergo X inactivation. To compensate for this reduction in dosage compared with two active copies of autosomes, it has been proposed that genes from the active X chromosome exhibit dosage compensation. However, the existence and mechanisms of X-to-autosome dosage compensation are still under debate. Here we show that X-chromosomal transcripts have fewer m6A modifications and are more stable than their autosomal counterparts. Acute depletion of m6A selectively stabilizes autosomal transcripts, resulting in perturbed dosage compensation in mouse embryonic stem cells. We propose that higher stability of X-chromosomal transcripts is directed by lower levels of m6A, indicating that mammalian dosage compensation is partly regulated by epitranscriptomic RNA modifications.
Collapse
Affiliation(s)
| | - Nadine Körtel
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - M Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | | | - Marco Bertin
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Susann Schweiger
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
8
|
Xing Z, Zhang Y, Tian Z, Wang M, Xiao W, Zhu C, Zhao S, Zhu Y, Hu L, Kong X. Escaping but not the inactive X-linked protein complex coding genes may achieve X-chromosome dosage compensation and underlie X chromosome inactivation-related diseases. Heliyon 2023; 9:e17721. [PMID: 37449161 PMCID: PMC10336589 DOI: 10.1016/j.heliyon.2023.e17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
X chromosome dosage compensation (XDC) refers to the process by which X-linked genes acquire expression equivalence between two sexes. Ohno proposed that XDC is achieved by two-fold upregulations of X-linked genes in both sexes and by silencing one X chromosome (X chromosome inactivation, XCI) in females. However, genes subject to two-fold upregulations as well as the underlying mechanism remain unclear. It's reported that gene dosage changes may only affect X-linked dosage-sensitive genes, such as protein complex coding genes (PCGs). Our results showed that in human PCGs are more likely to escape XCI and escaping PCGs (EsP) show two-fold higher expression than inactivated PCGs (InP) or other X-linked genes at RNA and protein levels in both sexes, which suggest that EsP may achieve upregulations and XDC. The higher expressions of EsP possibly result from the upregulations of the single active X chromosome (Xa), rather than escaping expressions from the inactive X chromosome (Xi). EsP genes have relatively high expression levels in humans and lower dN/dS ratios, suggesting that they are likely under stronger selection pressure over evolutionary time. Our study also suggests that SP1 transcription factor is significantly enriched in EsP and may be involved in the up-regulations of EsP on the active X. Finally, human EsP genes in this study are enriched in the toll-like receptor pathway, NF-kB pathway, apoptotic pathway, and abnormal mental, developmental and reproductive phenotypes. These findings suggest misregulations of EsP may be involved in autoimmune, reproductive, and neurological diseases, providing insight for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhihao Xing
- Clinical Laboratory, Institute of Pediatrics, Shenzhen Children’s' Hospital, Shenzhen, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhongyuan Tian
- Zhoukou Traditional Chinese Medicine Hospital, Zhoukou, Henan, China
| | - Meng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Weiwei Xiao
- Clinical Laboratory, Institute of Pediatrics, Shenzhen Children’s' Hospital, Shenzhen, China
| | - Chunqing Zhu
- Clinical Laboratory, Institute of Pediatrics, Shenzhen Children’s' Hospital, Shenzhen, China
| | - Songhui Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yufei Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Landian Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| |
Collapse
|
9
|
Faucillion ML, Johansson AM, Larsson J. Modulation of RNA stability regulates gene expression in two opposite ways: through buffering of RNA levels upon global perturbations and by supporting adapted differential expression. Nucleic Acids Res 2022; 50:4372-4388. [PMID: 35390159 PMCID: PMC9071389 DOI: 10.1093/nar/gkac208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
The steady state levels of RNAs, often referred to as expression levels, result from a well-balanced combination of RNA transcription and decay. Alterations in RNA levels will therefore result from tight regulation of transcription rates, decay rates or both. Here, we explore the role of RNA stability in achieving balanced gene expression and present genome-wide RNA stabilities in Drosophila melanogaster male and female cells as well as male cells depleted of proteins essential for dosage compensation. We identify two distinct RNA-stability mediated responses involved in regulation of gene expression. The first of these responds to acute and global changes in transcription and thus counteracts potentially harmful gene mis-expression by shifting the RNA stability in the direction opposite to the transcriptional change. The second response enhances inter-individual differential gene expression by adjusting the RNA stability in the same direction as a transcriptional change. Both mechanisms are global, act on housekeeping as well as non-housekeeping genes and were observed in both flies and mammals. Additionally, we show that, in contrast to mammals, modulation of RNA stability does not detectably contribute to dosage compensation of the sex-chromosomes in D. melanogaster.
Collapse
Affiliation(s)
| | | | - Jan Larsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
10
|
Fan X, Moustakas I, Torrens-Juaneda V, Lei Q, Hamer G, Louwe LA, Pilgram GSK, Szuhai K, Matorras R, Eguizabal C, van der Westerlaken L, Mei H, Chuva de Sousa Lopes SM. Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline. PLoS Genet 2021; 17:e1009773. [PMID: 34499650 PMCID: PMC8428764 DOI: 10.1371/journal.pgen.1009773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Leoni A. Louwe
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonneke S. K. Pilgram
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roberto Matorras
- IVIRMA, IVI Bilbao, Bilbao, Spain; Human Reproduction Unit, Cruces University Hospital, Bilbao, Spain; Department of Obstetrics and Gynecology, Basque Country University, Spain; Biocruces Bizkaia Health Research Institute, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, Barakaldo, Spain
| | | | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
11
|
Muyle A, Bachtrog D, Marais GAB, Turner JMA. Epigenetics drive the evolution of sex chromosomes in animals and plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200124. [PMID: 33866802 DOI: 10.1098/rstb.2020.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Aline Muyle
- University of California Irvine, Irvine, CA 92697, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
12
|
Abstract
Gene expression programs define shared and species-specific phenotypes, but their evolution remains largely uncharacterized beyond the transcriptome layer1. Here we report an analysis of the co-evolution of translatomes and transcriptomes using ribosome-profling and matched RNA-sequencing data for three organs (brain, liver and testis) in fve mammals (human, macaque, mouse, opossum and platypus) and a bird (chicken). Our within-species analyses reveal that translational regulation is widespread in the diferent organs, in particular across the spermatogenic cell types of the testis. The between-species divergence in gene expression is around 20% lower at the translatome layer than at the transcriptome layer owing to extensive buffering between the expression layers, which especially preserved old, essential and housekeeping genes. Translational upregulation specifcally counterbalanced global dosage reductions during the evolution of sex chromosomes and the efects of meiotic sex-chromosome inactivation during spermatogenesis. Despite the overall prevalence of bufering, some genes evolved faster at the translatome layer—potentially indicating adaptive changes in expression; testis tissue shows the highest fraction of such genes. Further analyses incorporating mass spectrometry proteomics data establish that the co-evolution of transcriptomes and translatomes is refected at the proteome layer. Together, our work uncovers co-evolutionary patterns and associated selective forces across the expression layers, and provides a resource for understanding their interplay in mammalian organs.
Collapse
|
13
|
Larsson AJM, Coucoravas C, Sandberg R, Reinius B. X-chromosome upregulation is driven by increased burst frequency. Nat Struct Mol Biol 2019; 26:963-969. [PMID: 31582851 DOI: 10.1038/s41594-019-0306-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
Ohno's hypothesis postulates that upregulation of X-linked genes rectifies their dosage imbalance relative to autosomal genes, which are present in two active copies per cell. Here we have dissected X-chromosome upregulation into the kinetics of transcription, inferred from allele-specific single-cell RNA sequencing data from somatic and embryonic mouse cells. We confirmed increased X-chromosome expression levels in female and male cells and found that the X chromosome achieved upregulation by elevated burst frequencies. By monitoring transcriptional kinetics in differentiating female mouse embryonic stem cells, we found that increased burst frequency was established on the active X chromosome when X inactivation took place on the other allele. Thus, our study provides mechanistic insights into X-chromosome upregulation.
Collapse
Affiliation(s)
- Anton J M Larsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christos Coucoravas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Gu L, Walters JR. Evolution of Sex Chromosome Dosage Compensation in Animals: A Beautiful Theory, Undermined by Facts and Bedeviled by Details. Genome Biol Evol 2018; 9:2461-2476. [PMID: 28961969 PMCID: PMC5737844 DOI: 10.1093/gbe/evx154] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily, result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review, we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Ecology & Evolution, University of Kansas
| | | |
Collapse
|
15
|
Sangrithi MN, Turner JMA. Mammalian X Chromosome Dosage Compensation: Perspectives From the Germ Line. Bioessays 2018; 40:e1800024. [PMID: 29756331 DOI: 10.1002/bies.201800024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/15/2018] [Indexed: 01/04/2023]
Abstract
Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy.
Collapse
Affiliation(s)
- Mahesh N Sangrithi
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore.,Duke-NUS Graduate Medical School, Singapore, 119077, Singapore
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
16
|
Characterization of germ cell differentiation in the male mouse through single-cell RNA sequencing. Sci Rep 2018; 8:6521. [PMID: 29695820 PMCID: PMC5916943 DOI: 10.1038/s41598-018-24725-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 11/21/2022] Open
Abstract
Spermatogenesis in the mouse has been extensively studied for decades. Previous methods, such as histological staining or bulk transcriptome analysis, either lacked resolution at the single-cell level or were focused on a very narrowly defined set of factors. Here, we present the first comprehensive, unbiased single-cell transcriptomic view of mouse spermatogenesis. Our single-cell RNA-seq (scRNA-seq) data on over 2,500 cells from the mouse testis improves upon stage marker detection and validation, capturing the continuity of differentiation rather than artificially chosen stages. scRNA-seq also enables the analysis of rare cell populations masked in bulk sequencing data and reveals new insights into the regulation of sex chromosomes during spermatogenesis. Our data provide the basis for further studies in the field, for the first time providing a high-resolution reference of transcriptional processes during mouse spermatogenesis.
Collapse
|
17
|
Samata M, Akhtar A. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs. Annu Rev Biochem 2018; 87:323-350. [PMID: 29668306 DOI: 10.1146/annurev-biochem-062917-011816] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.
Collapse
Affiliation(s)
- Maria Samata
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany; .,Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany;
| |
Collapse
|
18
|
Song MA, Brasky TM, Weng DY, McElroy JP, Marian C, Higgins MJ, Ambrosone C, Spear SL, Llanos AA, Kallakury BVS, Freudenheim JL, Shields PG. Landscape of genome-wide age-related DNA methylation in breast tissue. Oncotarget 2017; 8:114648-114662. [PMID: 29383109 PMCID: PMC5777721 DOI: 10.18632/oncotarget.22754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Despite known age-related DNA methylation (aDNAm) changes in breast tumors, little is known about aDNAm in normal breast tissues. Breast tissues from a cross-sectional study of 121 cancer-free women, were assayed for genome-wide DNA methylation. mRNA expression was assayed by microarray technology. Analysis of covariance was used to identify aDNAm’s. Altered methylation was correlated with expression of the corresponding gene and with DNA methyltransferase protein DNMT3A, assayed by immunohistochemistry. Publically-available TCGA-BRCA data were used for replication. 1,214 aDNAm’s were identified; 97% with increased methylation, and all on autosomes. Sites with increased methylation were predominantly in CpG lslands and non-enhancers. aDNAm’s with decreased methylation were generally located in intergenic regions, non-CpG Islands, and enhancers. Of the aDNAm’s identified, 650 are known to be involved in cancer, including ESR1 and beta-estradiol responsive genes. Expression of DNMT3A was positively associated with age. Two aDNAm’s showed borderline significant associations with DNMT3A expression; KRR1 (OR 6.57, 95% CI: 2.51–17.23) and DHRS12 (OR 6.08, 95% CI: 2.33–15.86). A subset of aDNAm’s co-localized within vulnerable regions for somatic mutations in cancers including breast cancer. Expression of C19orf48 was inversely and significantly correlated with its methylation level. In the TCGA dataset, 84% and 64% of the previously identified aDNAm’s were correlated with age in both normal-adjacent and tumor breast tissues, with differential associations by histological subtype. Given the similarity of findings in the breast tissues of healthy women and breast tumors, aDNAm’s may be one pathway for increased breast cancer risk with age.
Collapse
Affiliation(s)
- Min-Ae Song
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA.,College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Joseph P McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA.,Center for Biostatistics and Department of Bioinformatics, The Ohio State University, Columbus, OH, USA
| | - Catalin Marian
- Biochemistry and Pharmacology Department, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Scott L Spear
- Department of Plastic Surgery, Georgetown University, Washington, DC, USA
| | - Adana A Llanos
- Department of Epidemiology, Rutgers School of Public Health and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
19
|
Marin R, Cortez D, Lamanna F, Pradeepa MM, Leushkin E, Julien P, Liechti A, Halbert J, Brüning T, Mössinger K, Trefzer T, Conrad C, Kerver HN, Wade J, Tschopp P, Kaessmann H. Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage. Genome Res 2017; 27:1974-1987. [PMID: 29133310 PMCID: PMC5741051 DOI: 10.1101/gr.223727.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
Sex chromosomes differentiated from different ancestral autosomes in various vertebrate lineages. Here, we trace the functional evolution of the XY Chromosomes of the green anole lizard (Anolis carolinensis), on the basis of extensive high-throughput genome, transcriptome and histone modification sequencing data and revisit dosage compensation evolution in representative mammals and birds with substantial new expression data. Our analyses show that Anolis sex chromosomes represent an ancient XY system that originated at least ≈160 million years ago in the ancestor of Iguania lizards, shortly after the separation from the snake lineage. The age of this system approximately coincides with the ages of the avian and two mammalian sex chromosomes systems. To compensate for the almost complete Y Chromosome degeneration, X-linked genes have become twofold up-regulated, restoring ancestral expression levels. The highly efficient dosage compensation mechanism of Anolis represents the only vertebrate case identified so far to fully support Ohno's original dosage compensation hypothesis. Further analyses reveal that X up-regulation occurs only in males and is mediated by a male-specific chromatin machinery that leads to global hyperacetylation of histone H4 at lysine 16 specifically on the X Chromosome. The green anole dosage compensation mechanism is highly reminiscent of that of the fruit fly, Drosophila melanogaster. Altogether, our work unveils the convergent emergence of a Drosophila-like dosage compensation mechanism in an ancient reptilian sex chromosome system and highlights that the evolutionary pressures imposed by sex chromosome dosage reductions in different amniotes were resolved in fundamentally different ways.
Collapse
Affiliation(s)
- Ray Marin
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Diego Cortez
- Center for Genomic Sciences, UNAM, CP62210 Cuernavaca, Mexico
| | - Francesco Lamanna
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Madapura M Pradeepa
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Evgeny Leushkin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Philippe Julien
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Angélica Liechti
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jean Halbert
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Thoomke Brüning
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Katharina Mössinger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Timo Trefzer
- Department of Theoretical Bioinformatics, German Cancer Research Center/BioQuant, D-69120 Heidelberg, Germany
| | - Christian Conrad
- Department of Theoretical Bioinformatics, German Cancer Research Center/BioQuant, D-69120 Heidelberg, Germany
| | - Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Juli Wade
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Psychology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Patrick Tschopp
- Institute of Zoology, University of Basel, 4051 Basel, Switzerland
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Faure AJ, Schmiedel JM, Lehner B. Systematic Analysis of the Determinants of Gene Expression Noise in Embryonic Stem Cells. Cell Syst 2017; 5:471-484.e4. [DOI: 10.1016/j.cels.2017.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/06/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023]
|
21
|
Sangrithi MN, Royo H, Mahadevaiah SK, Ojarikre O, Bhaw L, Sesay A, Peters AHFM, Stadler M, Turner JMA. Non-Canonical and Sexually Dimorphic X Dosage Compensation States in the Mouse and Human Germline. Dev Cell 2017; 40:289-301.e3. [PMID: 28132849 PMCID: PMC5300051 DOI: 10.1016/j.devcel.2016.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/01/2016] [Accepted: 12/27/2016] [Indexed: 12/02/2022]
Abstract
Somatic X dosage compensation requires two mechanisms: X inactivation balances X gene output between males (XY) and females (XX), while X upregulation, hypothesized by Ohno and documented in vivo, balances X gene with autosomal gene output. Whether X dosage compensation occurs in germ cells is unclear. We show that mouse and human germ cells exhibit non-canonical X dosage states that differ from the soma and between the sexes. Prior to genome-wide reprogramming, X upregulation is present, consistent with Ohno's hypothesis. Subsequently, however, it is erased. In females, erasure follows loss of X inactivation, causing X dosage excess. Conversely, in males, erasure leads to permanent X dosage decompensation. Sex chromosomally abnormal models exhibit a “sex-reversed” X dosage state: XX males, like XX females, develop X dosage excess, while XO females, like XY males, develop X dosage decompensation. Thus, germline X dosage compensation states are determined by X chromosome number, not phenotypic sex. These unexpected differences in X dosage compensation states between germline and soma offer unique perspectives on sex chromosome infertility. X dosage compensation in germ cells is reset during GWR PGCs exhibit X upregulation before GWR, in keeping with Ohno's hypothesis X upregulation is lost during GWR Mouse and human germ cells exhibit X dosage states that are sexually dimorphic
Collapse
Affiliation(s)
- Mahesh N Sangrithi
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK; UCL EGA Institute for Women's Health UCL, Medical School Building, 74 Huntley Street, London WC1E 6AU, UK
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Shantha K Mahadevaiah
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Obah Ojarikre
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Leena Bhaw
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Abdul Sesay
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Michael Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - James M A Turner
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
22
|
Wheeler BS, Anderson E, Frøkjær-Jensen C, Bian Q, Jorgensen E, Meyer BJ. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution. eLife 2016; 5. [PMID: 27572259 PMCID: PMC5047749 DOI: 10.7554/elife.17365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/29/2016] [Indexed: 11/24/2022] Open
Abstract
Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI:http://dx.doi.org/10.7554/eLife.17365.001 DNA inside cells is packaged into structures called chromosomes, each of which contains numerous genes. Many organisms, including humans, have two copies of most chromosomes in their cells. If the process of cell division goes awry, cells can end up with too many or too few copies of their chromosomes, which can cause serious illnesses. Sex chromosomes pose a conundrum for cells. In humans, females have two copies of the X chromosome, whereas males only have one. This means that males have half the copy number (dose) of genes on the X chromosome. Human cells correct this imbalance by suppressing the activity, or expression, of most of the genes on one of the X chromosomes in females. “Dosage compensation” also occurs in the roundworm species Caenorhabditis elegans, because male worms have one X chromosome whilst hermaphrodites have two. The dosage compensation mechanism in roundworms differs from that in humans. It involves turning down the expression of both hermaphrodite X chromosomes by half. The process is enacted by a dosage compensation complex that binds to specific sites along both hermaphrodite X chromosomes. Dosage compensation mechanisms that reduce X chromosome expression in females cause sex chromosomes to have lower gene expression than non-sex chromosomes. Modern sex chromosomes evolved from a pair of non-sex chromosomes, and males lost one copy of all of the genes located on those ancestral chromosomes. This evolutionary history causes both sexes to have lower gene expression from X chromosomes than the other chromosomes, raising the question of whether a mechanism exists to balance out the difference in gene expression between sex chromosomes and non-sex chromosomes. Wheeler et al. now show that the expression of any foreign gene artificially added to the X chromosomes of C. elegans is equalized between males and hermaphrodites despite the difference in gene dose. The equalization works regardless of where on the X chromosome the new gene is added. The foreign gene does not need to be adjacent to a binding site for the dosage compensation complex. These results indicate that dosage compensation mechanisms regulate gene expression on a chromosome-wide scale. Wheeler et al. also show that genes added to X chromosomes are expressed at half the level as the same genes added to non-sex chromosomes. These results mean that no chromosome-wide mechanism balances gene expression levels between the X chromosome and the non-sex chromosomes. It remains unknown how C. elegans, and many other living organisms, evolved to tolerate a lower level of gene expression from the sex chromosomes. Instead of a chromosome-wide mechanism, it is likely that individual genes evolved different ways to alter their expression levels. Working out what these mechanisms are remains a challenge for further research. DOI:http://dx.doi.org/10.7554/eLife.17365.002
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Erika Anderson
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Christian Frøkjær-Jensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States.,Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Qian Bian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Erik Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
23
|
Disteche CM. Dosage compensation of the sex chromosomes and autosomes. Semin Cell Dev Biol 2016; 56:9-18. [PMID: 27112542 DOI: 10.1016/j.semcdb.2016.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
Abstract
Males are XY and females are XX in most mammalian species. Other species such as birds have a different sex chromosome make-up: ZZ in males and ZW in females. In both types of organisms one of the sex chromosomes, Y or W, has degenerated due to lack of recombination with its respective homolog X or Z. Since autosomes are present in two copies in diploid organisms the heterogametic sex has become a natural "aneuploid" with haploinsufficiency for X- or Z-linked genes. Specific mechanisms have evolved to restore a balance between critical gene products throughout the genome and between males and females. Some of these mechanisms were co-opted from and/or added to compensatory processes that alleviate autosomal aneuploidy. Surprisingly, several modes of dosage compensation have evolved. In this review we will consider the evidence for dosage compensation and the molecular mechanisms implicated.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA; Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA.
| |
Collapse
|
24
|
Escape Artists of the X Chromosome. Trends Genet 2016; 32:348-359. [PMID: 27103486 DOI: 10.1016/j.tig.2016.03.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/24/2023]
Abstract
Inactivation of one X chromosome in mammalian females achieves dosage compensation between XX females and XY males; however, over 15% of human X-linked genes continue to be expressed from the inactive X chromosome. New genomic methodologies have improved our identification and characterization of these escape genes, revealing the importance of DNA sequence, chromatin structure, and chromosome ultrastructure in regulating expression from an otherwise inactive chromosome. Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI). Recent advances also demonstrate the importance of these genes in sexually dimorphic disease risk, particularly cancer.
Collapse
|
25
|
The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome. PLoS Biol 2015; 13:e1002315. [PMID: 26685068 PMCID: PMC4686125 DOI: 10.1371/journal.pbio.1002315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X’s gene content, gene expression, and evolution. Laurence Hurst, Lukasz Huminiecki, and the FANTOM5 consortium propose a new explanation for the peculiar expression properties of genes on the human X chromosome, based on the premise that very high expression levels cannot be achieved on a haploid-expressed chromosome. Genes located on the human X chromosome are not a random mix of genes: they tend to be expressed in relatively few tissues or are specific for a particular set of tissues, e.g., brain regions. Prior attempts to explain this skewed gene content have hypothesized that the X chromosome might be peculiar because it has to balance mutations that are advantageous to one sex but deleterious to the other, or because it has to shut down during the process of sperm manufacture in males. Here we suggest and test a third possible explanation: that genes on the X chromosome are limited in their transcription levels and thus tend to be genes that are lowly or specifically expressed. We consider the suggestion that since these genes can only be expressed from one chromosome, as males only have one X, the ability to express a gene at very high rates is limited owing to potential transcriptional traffic jams. As predicted, we find that human X-located genes have maximal expression rates far below that of genes residing on autosomes. When we look at genes that have moved onto or off the X chromosome during recent evolution, we find the maximal expression is higher when not on the X chromosome. We also find that X-located genes that are relatively highly expressed are not able to increase their expression level further. Our model explains both the enrichment for tissue specificity and the paucity of certain tissues with X-located genes. Genes underrepresented on the X are either expressed in many tissues—such genes tend to have high maximal expression—or are from tissues that require a lot of transcription (e.g., fast secreting tissues like the liver). Just as many of the findings cannot be explained by the two earlier models, neither can the traffic jam model explain all the peculiar features of the genes found on the X chromosome. Indeed, we find evidence of a reproduction-related bias in X-located genes, even after allowing for the traffic jam problem.
Collapse
|
26
|
Abstract
Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.
Collapse
|
27
|
Zhang Z, Presgraves DC. DrosophilaX-Linked Genes Have Lower Translation Rates than Autosomal Genes. Mol Biol Evol 2015; 33:413-28. [DOI: 10.1093/molbev/msv227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
|
28
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|