1
|
Du WX, Goodman CA, Gregorevic P. Deubiquitinases in skeletal muscle-the underappreciated side of the ubiquitination coin. Am J Physiol Cell Physiol 2024; 327:C1651-C1665. [PMID: 39344415 DOI: 10.1152/ajpcell.00553.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitination is a posttranslational modification that plays important roles in regulating protein stability, function, localization, and protein-protein interactions. Proteins are ubiquitinated via a process involving specific E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Simultaneously, protein ubiquitination is opposed by deubiquitinating enzymes (DUBs). DUB-mediated deubiquitination can change protein function or fate and recycle ubiquitin to maintain the free ubiquitin pool. Approximately 100 DUBs have been identified in the mammalian genome, and characterized into seven classes [ubiquitin-specific protease (USP), ovarian tumor proteases (OTU), ubiquitin C-terminal hydrolase (UCH), Machado-Josephin disease (MJD), JAB1/MPN/Mov34 metalloprotease (JAMM), Ub-containing novel DUB family (MINDY), and zinc finger containing ubiquitin peptidase (ZUP) classes]. Of these 100 DUBs, there has only been relatively limited investigation of 20 specifically in skeletal muscle cells, in vitro or in vivo, using overexpression, knockdown, and knockout models. To date, evidence indicates roles for individual DUBs in regulating aspects of myogenesis, protein turnover, muscle mass, and muscle metabolism. However, the exact mechanism by which these DUBs act (i.e., the specific targets of these DUBs and the type of ubiquitin chains they target) is still largely unknown, underscoring how little we know about DUBs in skeletal muscle. This review endeavors to comprehensively summarize the current state of knowledge of the function of DUBs in skeletal muscle and highlight the opportunities for gaining a greater understanding through further research into this important area of skeletal muscle and ubiquitin biology.
Collapse
Affiliation(s)
- Wayne X Du
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
2
|
Gubat J, Sjöstrand L, Selvaraju K, Telli K, D'Arcy P. Loss of the proteasomal deubiquitinase USP14 induces growth defects and a senescence phenotype in colorectal cancer cells. Sci Rep 2024; 14:13037. [PMID: 38844605 PMCID: PMC11156967 DOI: 10.1038/s41598-024-63791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The proteasome-associated deubiquitinase USP14 is a potential drug target. Using an inducible USP14 knockout system in colon cancer cells, we found that USP14 depletion impedes cellular proliferation, induces cell cycle arrest, and leads to a senescence-like phenotype. Transcriptomic analysis revealed altered gene expression related to cell division and cellular differentiation. USP14 knockout cells also exhibited changes in morphology, actin distribution, and expression of actin cytoskeletal components. Increased ubiquitin turnover was observed, offset by upregulation of polyubiquitin genes UBB and UBC. Pharmacological inhibition of USP14 with IU1 increased ubiquitin turnover but did not affect cellular growth or morphology. BioGRID data identified USP14 interactors linked to actin cytoskeleton remodeling, DNA damage repair, mRNA splicing, and translation. In conclusion, USP14 loss in colon cancer cells induces a transient quiescent cancer phenotype not replicated by pharmacologic inhibition of its deubiquitinating activity.
Collapse
Affiliation(s)
- Johannes Gubat
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Linda Sjöstrand
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Karthik Selvaraju
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Kübra Telli
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Pádraig D'Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
3
|
Zhang H, Chen H, Zhang J, Wang K, Huang B, Wang Z. The role of MrUbp4, a deubiquitinase, in conidial yield, thermotolerance, and virulence in Metarhizium robertsii. J Invertebr Pathol 2024; 204:108111. [PMID: 38631560 DOI: 10.1016/j.jip.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Ubiquitin-specific proteases (UBPs), the largest subfamily of deubiquitinating enzymes, regulate ubiquitin homeostasis and play diverse roles in eukaryotes. Ubp4 is essential for the growth, development, and pathogenicity of various fungal pathogens. However, its functions in the growth, stress responses, and virulence of entomopathogenic fungi remain unclear. In this study, we elucidated the role of the homolog of Ubp4, MrUbp4, in the entomopathogenic fungus Metarhizium robertsii. Deletion of MrUbp4 led to a notable increase in ubiquitination levels, demonstrating the involvement of MrUbp4 in protein deubiquitination. Furthermore, the ΔMrUbp4 mutant displayed a significant reduction in conidial yield, underscoring the pivotal role of MrUbp4 in conidiation. Additionally, the mutant exhibited heightened resistance to conidial heat treatment, emphasizing the role of MrUbp4 in thermotolerance. Notably, insect bioassays unveiled a substantial impairment in the virulence of the ΔMrUbp4 mutant. This was accompanied by a notable decrease in cuticle penetration ability and appressorium formation upon further analysis. In summary, our findings highlight the essential role of MrUbp4 in regulating the conidial yield, thermotolerance, and contributions to the virulence of M. robertsii.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Hanyuan Chen
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Jianfeng Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Kui Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| | - Zhangxun Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
5
|
Sousa e Silva R, Sousa AD, Vieira J, Vieira CP. The Josephin domain (JD) containing proteins are predicted to bind to the same interactors: Implications for spinocerebellar ataxia type 3 (SCA3) studies using Drosophila melanogaster mutants. Front Mol Neurosci 2023; 16:1140719. [PMID: 37008788 PMCID: PMC10050893 DOI: 10.3389/fnmol.2023.1140719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/ MJD), is the most frequent polyglutamine (polyQ) neurodegenerative disorder. It is caused by a pathogenic expansion of the polyQ tract, located at the C-terminal region of the protein encoded by the ATXN3 gene. This gene codes for a deubiquitinating enzyme (DUB) that belongs to a gene family, that in humans is composed by three more genes (ATXN3L, JOSD1, and JOSD2), that define two gene lineages (the ATXN3 and the Josephins). These proteins have in common the N-terminal catalytic domain (Josephin domain, JD), that in Josephins is the only domain present. In ATXN3 knock-out mouse and nematode models, the SCA3 neurodegeneration phenotype is not, however, reproduced, suggesting that in the genome of these species there are other genes that are able to compensate for the lack of ATXN3. Moreover, in mutant Drosophila melanogaster, where the only JD protein is coded by a Josephin-like gene, expression of the expanded human ATXN3 gene reproduces multiple aspects of the SCA3 phenotype, in contrast with the results of the expression of the wild type human form. In order to explain these findings, phylogenetic, as well as, protein–protein docking inferences are here performed. Here we show multiple losses of JD containing genes across the animal kingdom, suggesting partial functional redundancy of these genes. Accordingly, we predict that the JD is essential for binding with ataxin-3 and proteins of the Josephin lineages, and that D. melanogaster mutants are a good model of SCA3 despite the absence of a gene from the ATXN3 lineage. The molecular recognition regions of the ataxin-3 binding and those predicted for the Josephins are, however, different. We also report different binding regions between the two ataxin-3 forms (wild-type (wt) and expanded (exp)). The interactors that show an increase in the interaction strength with exp ataxin-3, are enriched in extrinsic components of mitochondrial outer membrane and endoplasmatic reticulum membrane. On the other hand, the group of interactors that show a decrease in the interaction strength with exp ataxin-3 is significantly enriched in extrinsic component of cytoplasm.
Collapse
|
6
|
Zheng J, Chen C, Guo C, Caba C, Tong Y, Wang H. The Pleiotropic Ubiquitin-Specific Peptidase 16 and Its Many Substrates. Cells 2023; 12:886. [PMID: 36980227 PMCID: PMC10047310 DOI: 10.3390/cells12060886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Ubiquitin-specific peptidase 16 (USP16) is a deubiquitinase that plays a role in the regulation of gene expression, cell cycle progression, and various other functions. It was originally identified as the major deubiquitinase for histone H2A and has since been found to deubiquitinate a range of other substrates, including proteins from both the cytoplasm and nucleus. USP16 is phosphorylated when cells enter mitosis and dephosphorylated during the metaphase/anaphase transition. While much of USP16 is localized in the cytoplasm, separating the enzyme from its substrates is considered an important regulatory mechanism. Some of the functions that USP16 has been linked to include DNA damage repair, immune disease, tumorigenesis, protein synthesis, coronary artery health, and male infertility. The strong connection to immune response and the fact that multiple oncogene products are substrates of USP16 suggests that USP16 may be a potential therapeutic target for the treatment of certain human diseases.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Chunxu Chen
- Department of Bioengineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
7
|
Krishna Priya R, Premraj A, Sivakumar K, Sajeevan T. Identification of two ISG15 homologues involved in host immune response against RGNNV in Asian seabass (Lates calcarifer). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100054. [DOI: 10.1016/j.fsirep.2022.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
|
8
|
Doherty LM, Mills CE, Boswell SA, Liu X, Hoyt CT, Gyori B, Buhrlage SJ, Sorger PK. Integrating multi-omics data reveals function and therapeutic potential of deubiquitinating enzymes. eLife 2022; 11:e72879. [PMID: 35737447 PMCID: PMC9225015 DOI: 10.7554/elife.72879] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
Deubiquitinating enzymes (DUBs), ~100 of which are found in human cells, are proteases that remove ubiquitin conjugates from proteins, thereby regulating protein turnover. They are involved in a wide range of cellular activities and are emerging therapeutic targets for cancer and other diseases. Drugs targeting USP1 and USP30 are in clinical development for cancer and kidney disease respectively. However, the majority of substrates and pathways regulated by DUBs remain unknown, impeding efforts to prioritize specific enzymes for research and drug development. To assemble a knowledgebase of DUB activities, co-dependent genes, and substrates, we combined targeted experiments using CRISPR libraries and inhibitors with systematic mining of functional genomic databases. Analysis of the Dependency Map, Connectivity Map, Cancer Cell Line Encyclopedia, and multiple protein-protein interaction databases yielded specific hypotheses about DUB function, a subset of which were confirmed in follow-on experiments. The data in this paper are browsable online in a newly developed DUB Portal and promise to improve understanding of DUBs as a family as well as the activities of incompletely characterized DUBs (e.g. USPL1 and USP32) and those already targeted with investigational cancer therapeutics (e.g. USP14, UCHL5, and USP7).
Collapse
Affiliation(s)
- Laura M Doherty
- Harvard Medical School (HMS) Library of Integrated Network-based Cellular Signatures (LINCS) CenterCambridgeUnited States
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Xiaoxi Liu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Charles Tapley Hoyt
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Benjamin Gyori
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
9
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
10
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Prieto-Garcia C, Tomašković I, Shah VJ, Dikic I, Diefenbacher M. USP28: Oncogene or Tumor Suppressor? A Unifying Paradigm for Squamous Cell Carcinoma. Cells 2021; 10:2652. [PMID: 34685632 PMCID: PMC8534253 DOI: 10.3390/cells10102652] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.
Collapse
Affiliation(s)
- Cristian Prieto-Garcia
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ines Tomašković
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Varun Jayeshkumar Shah
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ivan Dikic
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Markus Diefenbacher
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Mildred Scheel Early Career Center, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Raza F, Hussain M. Birth and death of CYLD paralogues in vertebrates. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Hariri H, St-Arnaud R. Expression and Role of Ubiquitin-Specific Peptidases in Osteoblasts. Int J Mol Sci 2021; 22:ijms22147746. [PMID: 34299363 PMCID: PMC8304380 DOI: 10.3390/ijms22147746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
The ubiquitin-proteasome system regulates biological processes in normal and diseased states. Recent investigations have focused on ubiquitin-dependent modifications and their impacts on cellular function, commitment, and differentiation. Ubiquitination is reversed by deubiquitinases, including ubiquitin-specific peptidases (USPs), whose roles have been widely investigated. In this review, we explore recent findings highlighting the regulatory functions of USPs in osteoblasts and providing insight into the molecular mechanisms governing their actions during bone formation. We also give a brief overview of our work on USP53, a target of PTH in osteoblasts and a regulator of mesenchymal cell lineage fate decisions. Emerging evidence addresses questions pertaining to the complex layers of regulation exerted by USPs on osteoblast signaling. We provide a short overview of our and others' understanding of how USPs modulate osteoblastogenesis. However, further studies using knockout mouse models are needed to fully understand the mechanisms underpinning USPs actions.
Collapse
Affiliation(s)
- Hadla Hariri
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada;
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada;
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1A4, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
- Correspondence: ; Tel.: +514-282-7155; Fax: +514-842-5581
| |
Collapse
|
14
|
Olazabal-Herrero A, Bilbao-Arribas M, Carlevaris O, Sendino M, Varela-Martinez E, Jugo BM, Berra E, Rodriguez JA. The dystrophia myotonica WD repeat-containing protein DMWD and WDR20 differentially regulate USP12 deubiquitinase. FEBS J 2021; 288:5943-5963. [PMID: 33844468 DOI: 10.1111/febs.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Despite its potential clinical relevance, the product of the DMWD (dystrophia myotonica, WD repeat containing) gene is a largely uncharacterized protein. The DMWD amino acid sequence is similar to that of WDR20, a known regulator of the USP12 and USP46 deubiquitinases (DUBs). Here, we apply a combination of in silico and experimental methods to investigate several aspects of DMWD biology. Molecular evolution and phylogenetic analyses reveal that WDR20 and DMWD, similar to USP12 and USP46, arose by duplication of a common ancestor during the whole genome duplication event in the vertebrate ancestor lineage. The analysis of public human gene expression datasets suggests that DMWD expression is positively correlated with USP12 expression in normal tissues and negatively correlated with WDR20 expression in tumors. Strikingly, a survey of the annotated interactome for DMWD and WDR20 reveals a largely nonoverlapping set of interactors for these proteins. Experimentally, we first confirmed that DMWD binds both USP12 and USP46 through direct coimmunoprecipitation of epitope-tagged proteins. We found that DMWD and WDR20 share the same binding interface in USP12, suggesting that their interaction with the DUB may be mutually exclusive. Finally, we show that both DMWD and WDR20 promote USP12 enzymatic activity, but they differentially modulate the subcellular localization of the DUB. Altogether, our findings suggest a model whereby mutually exclusive binding of DMWD and WDR20 to USP12 may lead to formation of deubiquitinase complexes with distinct subcellular localization, potentially targeting different substrate repertoires.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Martin Bilbao-Arribas
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Onintza Carlevaris
- Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Endika Varela-Martinez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña M Jugo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Edurne Berra
- Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERONC, Madrid, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
15
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
16
|
Structural insights into the activity and regulation of human Josephin-2. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 3:100011. [PMID: 32647816 PMCID: PMC7337049 DOI: 10.1016/j.yjsbx.2019.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Josephins-1 and -2 are low molecular-weight members of the MJD family of deubiquitinating enzymes. Josephin-2 was shown to cleave K11 ubiquitin linkages, in addition to K48, K63, and mixed linkages. The crystal structure of human Josephin-2 was determined. The structure suggests a potential mechanism for enzyme regulation via mono-ubiquitination.
The MJD family of human deubiquitinating enzymes contains four members: Ataxin-3, the ataxin-3-like protein (AT3L), Josephin-1, and Josephin-2. All share a conserved catalytic unit known as the Josephin domain. Ataxin-3 and AT3L also contain extensive regulatory regions that modulate their functions, whereas Josephins-1 and -2 are substantially smaller, containing only the Josephin domain. To gain insight into how these minimal Josephins differ from their larger relatives, we determined the 2.3 Å X-ray crystal structure of human Josephin-2 and probed the enzyme’s substrate specificity. Several large disordered loops are seen in the structure, suggesting a highly dynamic enzyme. Josephin-2 lacks several allosteric sites found in ataxin-3, but its structure suggests potential regulation via ubiquitination of a loop adjoining the active site. The enzyme preferentially recognizes substrates containing K11, K48, and K63 linkages, pointing toward a possible role in maintenance of protein quality control.
Collapse
|
17
|
Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochem Soc Trans 2020; 47:1867-1879. [PMID: 31845722 PMCID: PMC6925526 DOI: 10.1042/bst20190527] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023]
Abstract
Protein modification by ubiquitin is one of the most versatile posttranslational regulations and counteracted by almost 100 deubiquitinating enzymes (DUBs). USP8 was originally identified as a growth regulated ubiquitin-specific protease and is like many other DUBs characterized by its multidomain architecture. Besides the catalytic domain, specific protein-protein interaction modules were characterized which contribute to USP8 substrate recruitment, regulation and targeting to distinct protein complexes. Studies in mice and humans impressively showed the physiological relevance and non-redundant function of USP8 within the context of the whole organism. USP8 knockout (KO) mice exhibit early embryonic lethality while induced deletion in adult animals rapidly causes lethal liver failure. Furthermore, T-cell specific ablation disturbs T-cell development and function resulting in fatal autoimmune inflammatory bowel disease. In human patients, somatic mutations in USP8 were identified as the underlying cause of adrenocorticotropic hormone (ACTH) releasing pituitary adenomas causing Cushing's disease (CD). Here we provide an overview of the versatile molecular, cellular and pathology associated function and regulation of USP8 which appears to depend on specific protein binding partners, substrates and the cellular context.
Collapse
|
18
|
Zachariah S, Gray DA. Deubiquitinating Enzymes in Model Systems and Therapy: Redundancy and Compensation Have Implications. Bioessays 2019; 41:e1900112. [DOI: 10.1002/bies.201900112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Sarah Zachariah
- Centre for Cancer TherapeuticsOttawa Hospital Research Institute 501 Smyth Box 926 Ottawa ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa 451 Smyth Rd Ottawa ON K1H 8M5 Canada
| | - Douglas A. Gray
- Centre for Cancer TherapeuticsOttawa Hospital Research Institute 501 Smyth Box 926 Ottawa ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa 451 Smyth Rd Ottawa ON K1H 8M5 Canada
| |
Collapse
|
19
|
Interplay between Phosphatases and the Anaphase-Promoting Complex/Cyclosome in Mitosis. Cells 2019; 8:cells8080814. [PMID: 31382469 PMCID: PMC6721574 DOI: 10.3390/cells8080814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.
Collapse
|
20
|
Olazabal-Herrero A, Sendino M, Arganda-Carreras I, Rodríguez JA. WDR20 regulates shuttling of the USP12 deubiquitinase complex between the plasma membrane, cytoplasm and nucleus. Eur J Cell Biol 2019; 98:12-26. [PMID: 30466959 DOI: 10.1016/j.ejcb.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/01/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022] Open
Abstract
The human deubiquitinases USP12 and USP46 are very closely related paralogs with critical functions as tumor suppressors. The catalytic activity of these enzymes is regulated by two cofactors: UAF1 and WDR20. USP12 and USP46 show nearly 90% amino acid sequence identity and share some cellular activities, but have also evolved non-overlapping functions. We hypothesized that, correlating with their functional divergence, the subcellular localization of USP12 and USP46 might be differentially regulated by their cofactors. We used confocal and live microscopy analyses of epitope-tagged proteins to determine the effect of UAF1 and WDR20 on the localization of USP12 and USP46. We found that WDR20 differently modulated the localization of the DUBs, promoting recruitment of USP12, but not USP46, to the plasma membrane. Using site-directed mutagenesis, we generated a large set of USP12 and WDR20 mutants to characterize in detail the mechanisms and sequence determinants that modulate the subcellular localization of the USP12/UAF1/WDR20 complex. Our data suggest that the USP12/UAF1/WDR20 complex dynamically shuttles between the plasma membrane, cytoplasm and nucleus. This shuttling involved active nuclear export mediated by the CRM1 pathway, and required a short N-terminal motif (1MEIL4) in USP12, as well as a novel nuclear export sequence (450MDGAIASGVSKFATLSLHD468) in WDR20. In conclusion, USP12 and USP46 have evolved divergently in terms of cofactor binding-regulated subcellular localization. WDR20 plays a crucial role in as a "targeting subunit" that modulates CRM1-dependent shuttling of the USP12/UAF1/WDR20 complex between the plasma membrane, cytoplasm and nucleus.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Ignacio Arganda-Carreras
- Computer Science and Artificial Intelligence Department, University of the Basque Country (UPV/EHU), San Sebastian 20018, Spain; Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain; Donostia International Physics Center (DIPC), P. Manuel Lardizabal 4, 20018 San Sebastian, Spain
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain.
| |
Collapse
|
21
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
22
|
Abstract
Ubiquitin ligases (E3s) are basic components of the eukaryotic ubiquitination system. In this work, the emergence and diversification of fungal HECT ubiquitin ligases is described. Phylogenetic and structural data indicate that six HECT subfamilies (RSP5, TOM1, UFD4, HUL4, HUL4A and HUL5) existed in the common ancestor of all fungi. These six subfamilies have evolved very conservatively, with only occasional losses and duplications in particular fungal lineages. However, an early, drastic reduction in the number of HECT genes occurred in microsporidians, in parallel to the reduction of their genomes. A significant correlation between the total number of genes and the number of HECT-encoding genes present in fungi has been observed. However, transitions from unicellularity to multicellularity or vice versa apparently had no effect on the evolution of this family. Likely orthologs or co-orthologs of all fungal HECT genes have been detected in animals. Four genes are deduced to be present in the common ancestor of fungi, animals and plants. Protein-protein interactions detected in both the yeast Saccharomyces cerevisiae and humans suggest that some ancient functions of HECT proteins have been conserved since the animals/fungi split.
Collapse
|