1
|
Wu X, Xia M, Su P, Zhang Y, Tu L, Zhao H, Gao W, Huang L, Hu Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int J Biol Macromol 2024; 282:136652. [PMID: 39427786 DOI: 10.1016/j.ijbiomac.2024.136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The MYB transcription factor (TF) family is one of the largest families in plants and performs highly diverse regulatory functions, particularly in relation to pathogen/pest resistance, nutrient/noxious substance absorption, drought/salt resistance, trichome growth, stamen development, leaf senescence, and flavonoid/terpenoid biosynthesis. Owing to their vital role in various biological regulatory processes, the mechanisms of MYB TFs have been extensively studied. Notably, MYB TFs not only directly regulate targets, such as phytohormones, reactive oxygen species signaling and secondary cell wall formation, but also serve as crucial points of crosstalk between these signaling networks. Here, we have comprehensively described the structures, classifications, and biological functions of MYB TFs, with a specific focus on their roles and mechanisms in the response to biotic and abiotic stresses, plant morphogenesis, and secondary metabolite biosynthesis. Different from other reported reviews, this review provides comprehensive knowledge on plant MYB TFs and will provide valuable insights in understanding regulatory networks and associated functions of plant MYB TFs to apply in resistance breeding and crop improvement.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Meng Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lichan Tu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, PR China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
2
|
Fick A, Swart V, Bombarely A, van den Berg N. Comparative transcriptional analysis of Persea americana MYB, WRKY and AP2/ERF transcription factors following Phytophthora cinnamomi infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13453. [PMID: 38590150 PMCID: PMC11002358 DOI: 10.1111/mpp.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Plant cells undergo extensive transcriptional reprogramming following pathogen infection, with these reprogramming patterns becoming more complex when pathogens, such as hemibiotrophs, exhibit different lifestyles. These transcriptional changes are often orchestrated by MYB, WRKY and AP2/ERF transcription factors (TFs), which modulate both growth and defence-related gene expression. Transcriptional analysis of defence-related genes in avocado (Persea americana) infected with Phytophthora cinnamomi indicated differential immune response activation when comparing a partially resistant and susceptible rootstock. This study identified 226 MYB, 82 WRKY, and 174 AP2/ERF TF-encoding genes in avocado, using a genome-wide approach. Phylogenetic analysis revealed substantial sequence conservation within TF groups underscoring their functional significance. RNA-sequencing analysis in a partially resistant and susceptible avocado rootstock infected with P. cinnamomi was indicative of an immune response switch occurring in either rootstock after 24 and 6 h post-inoculation, respectively. Different clusters of co-expressed TF genes were observed at these times, suggesting the activation of necrotroph-related immune responses at varying intervals between the two rootstocks. This study aids our understanding of avocado immune response activation following P. cinnamomi infection, and the role of the TFs therein, elucidating the transcriptional reprogramming disparities between partially resistant and susceptible rootstocks.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas‐Universitat Politècnica de València (IBMCP‐CSIC‐UPV)ValenciaSpain
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
3
|
Schwarz D, Lourido S. The multifaceted roles of Myb domain-containing proteins in apicomplexan parasites. Curr Opin Microbiol 2023; 76:102395. [PMID: 37866202 PMCID: PMC10872578 DOI: 10.1016/j.mib.2023.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Apicomplexan parasites are a large and diverse clade of protists responsible for significant diseases of humans and animals. Central to the ability of these parasites to colonize their host and evade immune responses is an expanded repertoire of gene-expression programs that requires the coordinated action of complex transcriptional networks. DNA-binding proteins and chromatin regulators are essential orchestrators of apicomplexan gene expression that often act in concert. Although apicomplexan genomes encode various families of putative DNA-binding proteins, most remain functionally and mechanistically unexplored. This review highlights the versatile role of myeloblastosis (Myb) domain-containing proteins in apicomplexan parasites as transcription factors and chromatin regulators. We explore the diversity of Myb domain structure and use phylogenetic analysis to identify common features across the phylum. This provides a framework to discuss functional heterogeneity and regulation of Myb domain-containing proteins particularly emphasizing their role in parasite differentiation.
Collapse
Affiliation(s)
- Dominic Schwarz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Wu G, Cao A, Wen Y, Bao W, She F, Wu W, Zheng S, Yang N. Characteristics and Functions of MYB (v-Myb avivan myoblastsis virus oncogene homolog)-Related Genes in Arabidopsis thaliana. Genes (Basel) 2023; 14:2026. [PMID: 38002969 PMCID: PMC10671209 DOI: 10.3390/genes14112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The MYB (v-Myb avivan myoblastsis virus oncogene homolog) transcription factor family is one of the largest families of plant transcription factors which plays a vital role in many aspects of plant growth and development. MYB-related is a subclass of the MYB family. Fifty-nine Arabidopsis thaliana MYB-related (AtMYB-related) genes have been identified. In order to understand the functions of these genes, in this review, the promoters of AtMYB-related genes were analyzed by means of bioinformatics, and the progress of research into the functions of these genes has been described. The main functions of these AtMYB-related genes are light response and circadian rhythm regulation, root hair and trichome development, telomere DNA binding, and hormone response. From an analysis of cis-acting elements, it was found that the promoters of these genes contained light-responsive elements and plant hormone response elements. Most genes contained elements related to drought, low temperature, and defense and stress responses. These analyses suggest that AtMYB-related genes may be involved in A. thaliana growth and development, and environmental adaptation through plant hormone pathways. However, the functions of many genes do not occur independently but instead interact with each other through different pathways. In the future, the study of the role of the gene in different pathways will be conducive to a comprehensive understanding of the function of the gene. Therefore, gene cloning and protein functional analyses can be subsequently used to understand the regulatory mechanisms of AtMYB-related genes in the interaction of multiple signal pathways. This review provides theoretical guidance for the follow-up study of plant MYB-related genes.
Collapse
Affiliation(s)
- Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (A.C.); (Y.W.); (W.B.); (F.S.); (W.W.); (S.Z.); (N.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang YS, Xu Y, Xing WT, Wu B, Huang DM, Ma FN, Zhan RL, Sun PG, Xu YY, Song S. Identification of the passion fruit ( Passiflora edulis Sims) MYB family in fruit development and abiotic stress, and functional analysis of PeMYB87 in abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1124351. [PMID: 37215287 PMCID: PMC10196401 DOI: 10.3389/fpls.2023.1124351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Environmental stresses are ubiquitous in agricultural cultivation, and they affect the healthy growth and development of edible tissues in passion fruit. The study of resistance mechanisms is important in understanding the adaptation and resistance of plants to environmental stresses. In this work, two differently resistant passion fruit varieties were selected, using the expression characteristics of the transcription factor MYB, to explore the resistance mechanism of the MYB gene under various environmental stresses. A total of 174 MYB family members were identified using high-quality passion fruit genomes: 98 2R-MYB, 5 3R-MYB, and 71 1R-MYB (MYB-relate). Their family information was systematically analyzed, including subcellular localization, physicochemical properties, phylogeny at the genomic level, promoter function, encoded proteins, and reciprocal regulation. In this study, bioinformatics and transcriptome sequencing were used to identify members of the PeMYB genes in passion fruit whole-genome data, and biological techniques, such as qPCR, gene clone, and transient transformation of yeast, were used to determine the function of the passion fruit MYB genes in abiotic stress tolerance. Transcriptomic data were obtained for differential expression characteristics of two resistant and susceptible varieties, three expression patterns during pulp development, and four induced expression patterns under abiotic stress conditions. We further focused on the resistance mechanism of PeMYB87 in environmental stress, and we selected 10 representative PeMYB genes for quantitative expression verification. Most of the genes were differentially induced by four abiotic stresses, among which PeMYB87 responded significantly to high-temperature-induced expression and overexpression of the PeMYB87 gene in the yeast system. The transgenic PeMYB87 in yeast showed different degrees of stress resistance under exposure to cold, high temperatures, drought, and salt stresses. These findings lay the foundation for further analysis of the biological functions of PeMYBs involved in stress resistance in passion fruit.
Collapse
Affiliation(s)
- Yan-shu Zhang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Yi Xu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Wen-ting Xing
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Bin Wu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Dong-mei Huang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Fu-ning Ma
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Ru-lin Zhan
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Pei-guang Sun
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Yong-yan Xu
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Shun Song
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| |
Collapse
|
6
|
Phylogenetic Analysis of R2R3-MYB Family Genes in Tetrastigma hemsleyanum Diels et Gilg and Roles of ThMYB4 and ThMYB7 in Flavonoid Biosynthesis. Biomolecules 2023; 13:biom13030531. [PMID: 36979467 PMCID: PMC10046264 DOI: 10.3390/biom13030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) is an extensively used Chinese folk herb with multiple bioactivities. Among these bioactivities, flavonoids are recognized as the representative active ingredients. We previously found an elevated accumulation of flavonoids in T. hemsleyanum under water stress; however, the mechanism remains unclear. R2R3-MYB transcription factors play vital roles in the plant response to environmental stress and the regulation of secondary metabolites. Herein, a systematic transcriptome identification of R2R3-MYB family genes under water stress in T. hemsleyanum was performed to explore their potential function in the biosynthesis of flavonoids. A total of 26 R2R3-MYB genes were identified, most of which were clustered into functional branches of abiotic stress. ThMYB4 and ThMYB7 were then screened out to be associated with the biosynthesis of flavonoids through a protein-protein interaction prediction. An expression correlation analysis based on RNA-seq further confirmed that ThMYB4 and ThMYB7 were positively related to the flavonoid biosynthetic pathway genes of T. hemsleyanum. In ThMYB4- and ThMYB7-overexpression hairy roots, it was found that the expression of ThCHS and ThCHI was significantly increased, suggesting that ThMYB4 and ThMYB7 may act as regulators in flavonoid biosynthesis. This will shed new light on the promotion of flavonoid production and the medicinal value of T. hemsleyanum by manipulating transcription factors.
Collapse
|
7
|
Chen W, Wan H, Liu F, Du H, Zhang C, Fan W, Zhu A. Rapid evolution of T2/S-RNase genes in Fragaria linked to multiple transitions from self-incompatibility to self-compatibility. PLANT DIVERSITY 2023; 45:219-228. [PMID: 37069931 PMCID: PMC10105083 DOI: 10.1016/j.pld.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/23/2022] [Indexed: 06/18/2023]
Abstract
The T2/RNase gene family is widespread in eukaryotes, and particular members of this family play critical roles in the gametophytic self-incompatibility (GSI) system in plants. Wild diploid strawberry (Fragaria) species have diversified their sexual systems via self-incompatible and self-compatible traits, yet how these traits evolved in Fragaria remains elusive. By integrating the published and de novo assembled genomes and the newly generated RNA-seq data, members of the RNase T2 gene family were systematically identified in six Fragaria species, including three self-incompatible species (Fragaria nipponica, Fragaria nubicola, and Fragaria viridis) and three self-compatible species (Fragaria nilgerrensis, Fragaria vesca, and Fragaria iinumae). In total, 115 RNase T2 genes were identified in the six Fragaria genomes and can be classified into three classes (I-III) according to phylogenetic analysis. The identified RNase T2 genes could be divided into 22 homologous gene sets according to amino acid sequence similarity and phylogenetic and syntenic relationships. We found that extensive gene loss and pseudogenization coupled with small-scale duplications mainly accounted for variations in the RNase T2 gene numbers in Fragaria. Multiple copies of homologous genes were mainly generated from tandem and segmental duplication events. Furthermore, we newly identified five S-RNase genes in three self-incompatible Fragaria genomes, including two in F. nipponica, two in F. viridis, and one in F. nubicola, which fit for typical features of a pistil determinant, including highly pistil-specific expression, highly polymorphic proteins and alkaline isoelectric point (pI), while no S-RNase genes were found in all three self-compatible Fragaria species. Surprisingly, these T2/S-RNase genes contain at least one large intron (>10 kb). This study revealed that the rapid evolution of T2/S-RNase genes within the Fragaria genus could be associated with its sexual mode, and repeated evolution of the self-compatible traits in Fragaria was convergent via losses of S-RNase.
Collapse
Affiliation(s)
- Wu Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
8
|
Chanwala J, Khadanga B, Jha DK, Sandeep IS, Dey N. MYB Transcription Factor Family in Pearl Millet: Genome-Wide Identification, Evolutionary Progression and Expression Analysis under Abiotic Stress and Phytohormone Treatments. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020355. [PMID: 36679070 PMCID: PMC9865524 DOI: 10.3390/plants12020355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/03/2023]
Abstract
Transcription factors (TFs) are the regulatory proteins that act as molecular switches in controlling stress-responsive gene expression. Among them, the MYB transcription factor family is one of the largest TF family in plants, playing a significant role in plant growth, development, phytohormone signaling and stress-responsive processes. Pearl millet (Pennisetum glaucum L.) is one of the most important C4 crop plants of the arid and semi-arid regions of Africa and Southeast Asia for sustaining food and fodder production. To explore the evolutionary mechanism and functional diversity of the MYB family in pearl millet, we conducted a comprehensive genome-wide survey and identified 279 MYB TFs (PgMYB) in pearl millet, distributed unevenly across seven chromosomes of pearl millet. A phylogenetic analysis of the identified PgMYBs classified them into 18 subgroups, and members of the same group showed a similar gene structure and conserved motif/s pattern. Further, duplication events were identified in pearl millet that indicated towards evolutionary progression and expansion of the MYB family. Transcriptome data and relative expression analysis by qRT-PCR identified differentially expressed candidate PgMYBs (PgMYB2, PgMYB9, PgMYB88 and PgMYB151) under dehydration, salinity, heat stress and phytohormone (ABA, SA and MeJA) treatment. Taken together, this study provides valuable information for a prospective functional characterization of the MYB family members of pearl millet and their application in the genetic improvement of crop plants.
Collapse
Affiliation(s)
- Jeky Chanwala
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Badrinath Khadanga
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Deepak Kumar Jha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Inavolu Sriram Sandeep
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
| |
Collapse
|
9
|
Zhang X, Zhu X, Zhang Y, Wu Z, Fan S, Zhang L. Comparative Transcriptome Analysis Identifies Key Defense Genes and Mechanisms in Mulberry (Morus alba) Leaves against Silkworms (Bombyx mori). Int J Mol Sci 2022; 23:ijms232113519. [PMID: 36362309 PMCID: PMC9656888 DOI: 10.3390/ijms232113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
As a consequence of long-term coevolution and natural selection, the leaves of mulberry (Morus alba) trees have become the best food source for silkworms (Bombyx mori). Nevertheless, the molecular and genomic basis of defense response remains largely unexplored. In the present study, we assessed changes in the transcriptome changes of mulberry in response to silkworm larval feeding at 0, 3, and 6 h. A total of 4709 (up = 2971, down = 1738) and 3009 (up = 1868, down = 1141) unigenes were identified after 3 and 6 h of silkworm infestation, respectively. MapMan enrichment analysis results show structural traits such as leaf surface wax, cell wall thickness and lignification form the first physical barrier to feeding by the silkworms. Cluster analysis revealed six unique temporal patterns of transcriptome changes. We predicted that mulberry promoted rapid changes in signaling and other regulatory processes to deal with mechanical damage, photosynthesis impairment, and other injury caused by herbivores within 3–6 h. LRR-RK coding genes (THE1, FER) was predicted participated in perception of cell wall perturbation in mulberry responding to silkworm feeding. Ca2+ signal sensors (CMLs), ROS (OST1, SOS3), RBOHD/F, CDPKs, and ABA were part of the regulatory network after silkworm feeding. Jasmonic acid (JA) signal transduction was predicted to act in silkworm feeding response, 10 JA signaling genes (such as OPR3, JAR1, and JAZ1) and 21 JA synthesis genes (such as LOX2, AOS, and ACX1) were upregulated after silkworm feeding for 3 h. Besides, genes of “alpha-Linolenic acid metabolism” and “phenylpropanoid biosynthesis” were activated in 3 h to reprogram secondary metabolism. Collectively, these findings provided valuable insights into silkworm herbivory-induced regulatory and metabolic processes in mulberry, which might help improve the coevolution of silkworm and mulberry.
Collapse
Affiliation(s)
| | | | | | | | - Shoujin Fan
- Correspondence: (S.F.); (L.Z.); Tel.: +86-531-86180718 (L.Z.)
| | - Luoyan Zhang
- Correspondence: (S.F.); (L.Z.); Tel.: +86-531-86180718 (L.Z.)
| |
Collapse
|
10
|
Chen Z, Wu Z, Dong W, Liu S, Tian L, Li J, Du H. MYB Transcription Factors Becoming Mainstream in Plant Roots. Int J Mol Sci 2022; 23:ijms23169262. [PMID: 36012533 PMCID: PMC9409031 DOI: 10.3390/ijms23169262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
The function of the root system is crucial for plant survival, such as anchoring plants, absorbing nutrients and water from the soil, and adapting to stress. MYB transcription factors constitute one of the largest transcription factor families in plant genomes with structural and functional diversifications. Members of this superfamily in plant development and cell differentiation, specialized metabolism, and biotic and abiotic stress processes are widely recognized, but their roles in plant roots are still not well characterized. Recent advances in functional studies remind us that MYB genes may have potentially key roles in roots. In this review, the current knowledge about the functions of MYB genes in roots was summarized, including promoting cell differentiation, regulating cell division through cell cycle, response to biotic and abiotic stresses (e.g., drought, salt stress, nutrient stress, light, gravity, and fungi), and mediate phytohormone signals. MYB genes from the same subfamily tend to regulate similar biological processes in roots in redundant but precise ways. Given their increasing known functions and wide expression profiles in roots, MYB genes are proposed as key components of the gene regulatory networks associated with distinct biological processes in roots. Further functional studies of MYB genes will provide an important basis for root regulatory mechanisms, enabling a more inclusive green revolution and sustainable agriculture to face the constant changes in climate and environmental conditions.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Zexuan Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Wenyu Dong
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shiying Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Lulu Tian
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Correspondence: ; Tel.: +86-182-2348-0008
| |
Collapse
|
11
|
Lal M, Bhardwaj E, Chahar N, Yadav S, Das S. Comprehensive analysis of 1R- and 2R-MYBs reveals novel genic and protein features, complex organisation, selective expansion and insights into evolutionary tendencies. Funct Integr Genomics 2022; 22:371-405. [PMID: 35260976 DOI: 10.1007/s10142-022-00836-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Myeloblastosis (MYB) family, the largest plant transcription factor family, has been subcategorised based on the number and type of repeats in the MYB domain. In spite of several reports, evolution of MYB genes and repeats remains enigmatic. Brassicaceae members are endowed with complex genomes, including dysploidy because of its unique history with multiple rounds of polyploidisation, genomic fractionations and rearrangements. The present study is an attempt to gain insights into the complexities of MYB family diversity, understand impacts of genome evolution on gene families and develop an evolutionary framework to understand the origin of various subcategories of MYB gene family. We identified and analysed 1129 MYBs that included 1R-, 2R-, 3R- and atypical-MYBs across sixteen species representing protists, fungi, animals and plants and exclude MYB identified from Brassicaceae except Arabidopsis thaliana; in addition, a total of 1137 2R-MYB genes from six Brassicaceae species were also analysed. Comparative analysis revealed predominance of 1R-MYBs in protists, fungi, animals and lower plants. Phylogenetic reconstruction and analysis of selection pressure suggested ancestral nature of R1-type repeat containing 1R-MYBs that might have undergone intragenic duplication to form multi-repeat MYBs. Distinct differences in gene structure between 1R-MYB and 2R-MYBs were observed regarding intron number, the ratio of gene length to coding DNA sequence (CDS) length and the length of exons encoding the MYB domain. Conserved as well as novel and lineage-specific intron phases were identified. Analyses of physicochemical properties revealed drastic differences indicating functional diversification in MYBs. Phylogenetic reconstruction of 1R- and 2R-MYB genes revealed a shared structure-function relationship in clades which was supported when transcriptome data was analysed in silico. Comparative genomics to study distribution pattern and mapping of 2R-MYBs revealed congruency and greater degree of synteny and collinearity among closely related species. Micro-synteny analysis of genomic segments revealed high conservation of genes that are immediately flanking the surrounding tandemly organised 2R-MYBs along with instances of local duplication, reorganisations and genome fractionation. In summary, polyploidy, dysploidy, reshuffling and genome fractionation were found to cause loss or gain of 2R-MYB genes. The findings need to be supported with functional validation to understand gene structure-function relationship along the evolutionary lineage and adaptive strategies based on comparative functional genomics in plants.
Collapse
Affiliation(s)
- Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Nishu Chahar
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Shobha Yadav
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
12
|
Mery DE, Compadre AJ, Ordóñez PE, Selvik EJ, Morocho V, Contreras J, Malagón O, Jones DE, Breen PJ, Balick MJ, Gaudio FG, Guzman ML, Compadre CM. Analysis of Plant-Plant Interactions Reveals the Presence of Potent Antileukemic Compounds. Molecules 2022; 27:2928. [PMID: 35566279 PMCID: PMC9105371 DOI: 10.3390/molecules27092928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
A method to identify anticancer compounds in plants was proposed based on the hypothesis that these compounds are primarily present in plants to provide them with an ecological advantage over neighboring plants and other competitors. According to this view, identifying plants that contain compounds that inhibit or interfere with the development of other plant species may facilitate the discovery of novel anticancer agents. The method was developed and tested using Magnolia grandiflora, Gynoxys verrucosa, Picradeniopsis oppositifolia, and Hedyosmum racemosum, which are plant species known to possess compounds with cytotoxic activities. Plant extracts were screened for growth inhibitory activity, and then a thin-layer chromatography bioautography assay was conducted. This located the major antileukemic compounds 1, 2, 4, and 5 in the extracts. Once the active compounds were located, they were extracted and purified, and their structures were determined. The growth inhibitory activity of the purified compounds showed a significant correlation with their antileukemic activity. The proposed approach is rapid, inexpensive, and can easily be implemented in areas of the world with high biodiversity but with less access to advanced facilities and biological assays.
Collapse
Affiliation(s)
- David E. Mery
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
- SeqRX, LLC., Little Rock, AR 72205, USA
| | - Amanda J. Compadre
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| | - Paola E. Ordóñez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador;
| | - Edward J. Selvik
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| | - Vladimir Morocho
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 110107, Ecuador; (V.M.); (O.M.)
| | - Jorge Contreras
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Omar Malagón
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 110107, Ecuador; (V.M.); (O.M.)
| | - Darin E. Jones
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| | - Philip J. Breen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| | - Michael J. Balick
- Institute for Economic Botany, New York Botanical Garden, New York, NY 10458, USA;
| | - Flavio G. Gaudio
- Department of Emergency Medicine, New York Presbyterian-Weill Cornell Medicine, New York, NY 10065, USA;
| | - Monica L. Guzman
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| |
Collapse
|
13
|
Caballo C, Berbel A, Ortega R, Gil J, Millán T, Rubio J, Madueño F. The SINGLE FLOWER (SFL) gene encodes a MYB transcription factor that regulates the number of flowers produced by the inflorescence of chickpea. THE NEW PHYTOLOGIST 2022; 234:827-836. [PMID: 35122280 PMCID: PMC9314632 DOI: 10.1111/nph.18019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/12/2022] [Indexed: 05/07/2023]
Abstract
Legumes usually have compound inflorescences, where flowers/pods develop from secondary inflorescences (I2), formed laterally at the primary inflorescence (I1). Number of flowers per I2, characteristic of each legume species, has important ecological and evolutionary relevance as it determines diversity in inflorescence architecture; moreover, it is also agronomically important for its potential impact on yield. Nevertheless, the genetic network controlling the number of flowers per I2 is virtually unknown. Chickpea (Cicer arietinum) typically produces one flower per I2 but single flower (sfl) mutants produce two (double-pod phenotype). We isolated the SFL gene by mapping the sfl-d mutation and identifying and characterising a second mutant allele. We analysed the effect of sfl on chickpea inflorescence ontogeny with scanning electron microscopy and studied the expression of SFL and meristem identity genes by RNA in situ hybridisation. We show that SFL corresponds to CaRAX1/2a, which codes a MYB transcription factor specifically expressed in the I2 meristem. Our findings reveal SFL as a central factor controlling chickpea inflorescence architecture, acting in the I2 meristem to regulate the length of the period for which it remains active, and therefore determining the number of floral meristems that it can produce.
Collapse
Affiliation(s)
- Cristina Caballo
- Área de Mejora y BiotecnologíaIFAPAAlameda del Obispo14080CórdobaSpain
| | - Ana Berbel
- Instituto de Biología Molecular y Celular de PlantasCSIC‐UPVCampus de Vera46022ValenciaSpain
| | - Raúl Ortega
- School of Natural SciencesUniversity of TasmaniaHobart7001TasmaniaAustralia
| | - Juan Gil
- Department of Genetics ETSIAMUniversity of Córdoba14071CórdobaSpain
| | - Teresa Millán
- Department of Genetics ETSIAMUniversity of Córdoba14071CórdobaSpain
| | - Josefa Rubio
- Área de Mejora y BiotecnologíaIFAPAAlameda del Obispo14080CórdobaSpain
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de PlantasCSIC‐UPVCampus de Vera46022ValenciaSpain
| |
Collapse
|
14
|
Xu B, Chen B, Qi X, Liu S, Zhao Y, Tang C, Meng X. Genome-wide Identification and Expression Analysis of RcMYB Genes in Rhodiola crenulata. Front Genet 2022; 13:831611. [PMID: 35432456 PMCID: PMC9008588 DOI: 10.3389/fgene.2022.831611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Modern research has proved that the main medicinal component of Rhodiola crenulata, which has a wide range of medicinal value, is its secondary metabolite salidroside. The MYB transcription factor family is widely involved in biosynthesis of second metabolism and other roles in the stress response in plants, so a genome-wide identification and analysis for this family in R. crenulata is worth conducting. In this research, genome-wide analysis identified 139 MYB genes based on conserved domains in the R. crenulata genome, and 137 genes were used to construct a phylogenetic tree and modified with expression files to reveal evolutionary characteristics. Physical and chemical characteristics, gene structure, and conserved motif analysis were also used to further analyze RcMYBs. Additionally, cis-acting elements related to transcription, hormone, and MYB binding were found in the promoter region of the selected RcMYBs. Four RcMYBs were cloned, sequenced, and their gene expression pattern was analyzed for further analysis of their functions. The research results lay the foundation for further research on the function of RcMYB and R. crenulata.
Collapse
Affiliation(s)
- Binjie Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- China Resources Sanjiu (Ya’an) Pharmaceutical Co., Ltd., Ya’an, China
- *Correspondence: Binjie Xu, ; Xianli Meng,
| | - Bang Chen
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Qi
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunli Liu
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yibing Zhao
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Binjie Xu, ; Xianli Meng,
| |
Collapse
|
15
|
Pucker B. Automatic identification and annotation of MYB gene family members in plants. BMC Genomics 2022; 23:220. [PMID: 35305581 PMCID: PMC8933966 DOI: 10.1186/s12864-022-08452-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MYBs are among the largest transcription factor families in plants. Consequently, members of this family are involved in a plethora of processes including development and specialized metabolism. The MYB families of many plant species were investigated in the last two decades since the first investigation looked at Arabidopsis thaliana. This body of knowledge and characterized sequences provide the basis for the identification, classification, and functional annotation of candidate sequences in new genome and transcriptome assemblies. RESULTS A pipeline for the automatic identification and functional annotation of MYBs in a given sequence data set was implemented in Python. MYB candidates are identified, screened for the presence of a MYB domain and other motifs, and finally placed in a phylogenetic context with well characterized sequences. In addition to technical benchmarking based on existing annotation, the transcriptome assembly of Croton tiglium and the annotated genome sequence of Castanea crenata were screened for MYBs. Results of both analyses are presented in this study to illustrate the potential of this application. The analysis of one species takes only a few minutes depending on the number of predicted sequences and the size of the MYB gene family. This pipeline, the required bait sequences, and reference sequences for a classification are freely available on github: https://github.com/bpucker/MYB_annotator . CONCLUSIONS This automatic annotation of the MYB gene family in novel assemblies makes genome-wide investigations consistent and paves the way for comparative studies in the future. Candidate genes for in-depth analyses are presented based on their orthology to previously characterized sequences which allows the functional annotation of the newly identified MYBs with high confidence. The identification of orthologs can also be harnessed to detect duplication and deletion events.
Collapse
Affiliation(s)
- Boas Pucker
- Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Braunschweig, TU, Germany.
| |
Collapse
|
16
|
Zeng Q, Liu H, Chu X, Niu Y, Wang C, Markov GV, Teng L. Independent Evolution of the MYB Family in Brown Algae. Front Genet 2022; 12:811993. [PMID: 35186015 PMCID: PMC8854648 DOI: 10.3389/fgene.2021.811993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloblastosis (MYB) proteins represent one of the largest families of eukaryotic transcription factors and regulate important processes in growth and development. Studies on MYBs have mainly focused on animals and plants; however, comprehensive analysis across other supergroups such as SAR (stramenopiles, alveolates, and rhizarians) is lacking. This study characterized the structure, evolution, and expression of MYBs in four brown algae, which comprise the biggest multicellular lineage of SAR. Subfamily 1R-MYB comprised heterogeneous proteins, with fewer conserved motifs found outside the MYB domain. Unlike the SHAQKY subgroup of plant 1R-MYB, THAQKY comprised the largest subgroup of brown algal 1R-MYBs. Unlike the expansion of 2R-MYBs in plants, brown algae harbored more 3R-MYBs than 2R-MYBs. At least ten 2R-MYBs, fifteen 3R-MYBs, and one 6R-MYB orthologs existed in the common ancestor of brown algae. Phylogenetic analysis showed that brown algal MYBs had ancient origins and a diverged evolution. They showed strong affinity with stramenopile species, while not with red algae, green algae, or animals, suggesting that brown algal MYBs did not come from the secondary endosymbiosis of red and green plastids. Sequence comparison among all repeats of the three types of MYB subfamilies revealed that the repeat of 1R-MYBs showed higher sequence identity with the R3 of 2R-MYBs and 3R-MYBs, which supports the idea that 1R-MYB was derived from loss of the first and second repeats of the ancestor MYB. Compared with other species of SAR, brown algal MYB proteins exhibited a higher proportion of intrinsic disordered regions, which might contribute to multicellular evolution. Expression analysis showed that many MYB genes are responsive to different stress conditions and developmental stages. The evolution and expression analyses provided a comprehensive analysis of the phylogeny and functions of MYBs in brown algae.
Collapse
Affiliation(s)
| | - Hanyu Liu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Xiaonan Chu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Yonggang Niu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Caili Wang
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Gabriel V. Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Linhong Teng
- College of Life Sciences, Dezhou University, Dezhou, China
| |
Collapse
|
17
|
Fang Y, Jiang J, Hou X, Guo J, Li X, Zhao D, Xie X. Plant protein-coding gene families: Their origin and evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:995746. [PMID: 36160967 PMCID: PMC9490259 DOI: 10.3389/fpls.2022.995746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Ministry of Education, College of Life Sciences, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Degang Zhao,
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- Xin Xie,
| |
Collapse
|
18
|
Mikhaylova YV, Puzanskiy RK, Shishova MF. Evolution of 14-3-3 Proteins in Angiosperm Plants: Recurring Gene Duplication and Loss. PLANTS (BASEL, SWITZERLAND) 2021; 10:2724. [PMID: 34961196 PMCID: PMC8703263 DOI: 10.3390/plants10122724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
14-3-3 proteins are key regulatory factors in plants and are involved in a broad range of physiological processes. We addressed the evolutionary history of 14-3-3s from 46 angiosperm species, including basal angiosperm Amborella and major lineage of monocotyledons and eudicotyledons. Orthologs of Arabidopsis isoforms were detected. There were several rounds of duplication events in the evolutionary history of the 14-3-3 protein family in plants. At least four subfamilies (iota, epsilon, kappa, and psi) formed as a result of ancient duplication in a common ancestor of angiosperm plants. Recent duplication events followed by gene loss in plant lineage, among others Brassicaceae, Fabaceae, and Poaceae, further shaped the high diversity of 14-3-3 isoforms in plants. Coexpression data showed that 14-3-3 proteins formed different functional groups in different species. In some species, evolutionarily related groups of 14-3-3 proteins had coexpressed together under certain physiological conditions, whereas in other species, closely related isoforms expressed in the opposite manner. A possible explanation is that gene duplication and loss is accompanied by functional plasticity of 14-3-3 proteins.
Collapse
Affiliation(s)
- Yulia V. Mikhaylova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov str., 2, 197376 St. Petersburg, Russia
| | - Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov str., 2, 197376 St. Petersburg, Russia;
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 St. Petersburg, Russia
| | - Maria F. Shishova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
19
|
Sumiya N. Cis-acting elements involved in the G2/M-phase-specific transcription of the cyclin B gene in the unicellular alga Cyanidioschyzon merolae. JOURNAL OF PLANT RESEARCH 2021; 134:1301-1310. [PMID: 34338916 DOI: 10.1007/s10265-021-01334-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
M-specific activator (MSA) cis-acting elements have been determined to be involved in the regulation of G2/M-phase-specific transcription in spermatophytes. In this study, the involvement of MSA-core elements in G2/M-phase-specific transcription was examined in the unicellular red alga Cyanidioschyzon merolae. In the C. merolae genome, MSA-core elements do not accumulate specifically in the upstream of mitosis-specific transcriptional genes. Mutations of the four MSA-core elements of the cyclin B gene, which encodes a central factor of the G2-to-M-phase transition, have resulted in the abolishment of transcription or permission of transcription even in the G1 phase. These results suggest that all four MSA-core elements located in the upstream region of cyclin B are involved in G2/M-phase-specific transcription in C. merolae; however, the nature of the involvement of MSA-core elements in G2/M-phase-specific transcription differed among the four elements. Thus, MSA-core-element-mediated G2/M-phase-specific transcription in C. merolae seems to be regulated by a complex mechanism.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8521, Japan.
| |
Collapse
|
20
|
Takatsuka H, Nomoto Y, Araki S, Machida Y, Ito M. Identification of two tobacco genes encoding MYB3R proteins with repressor function and showing cell cycle-regulated transcript accumulation. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:269-275. [PMID: 34393606 PMCID: PMC8329274 DOI: 10.5511/plantbiotechnology.21.0224a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 05/09/2023]
Abstract
MYB3R family transcription factors play a central role in the regulation of G2/M-specific gene transcription in Arabidopsis thaliana. Among the members of this family, MYB3R3 and MYB3R5 are structurally closely related and are involved in the transcriptional repression of target genes in both proliferating and quiescent cells. This type of MYB3R repressor is widespread in plants; however, apart from the studies on MYB3Rs in Arabidopsis thaliana, little information about them is available. Here we isolated tobacco cDNA clones encoding two closely related MYB3R proteins designated as NtmybC1 and NtmybC2 and determined the nucleotide sequences of the entire coding regions. Phylogenetic analysis suggested that NtmybC1 and NtmybC2 can be grouped into a conserved subfamily of plant MYB3Rs that also contains MYB3R3 and MYB3R5. When transiently expressed in protoplasts prepared from tobacco BY-2 cells, NtmybC1 and NtmybC2 repressed the activity of target promoters and blocked promoter activation mediated by NtmybA2, a MYB3R activator from tobacco. Unlike MYB3R3 and MYB3R5, NtmybC1 and NtmybC2 showed cell cycle-regulated transcript accumulation. In synchronized cultures of BY-2 cells, mRNAs for both NtmybC1 and NtmybC2 were preferentially expressed during the G2 and M phases, coinciding with the expression of NtmybA2 and G2/M-specific target genes. These results not only broadly confirm our fundamental view that this type of MYB3R protein acts as transcriptional repressor of G2/M-specific genes but also suggest a possible divergence of MYB3R repressors in terms of the mechanisms of their action and regulation.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuji Nomoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Satoshi Araki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- E-mail: Tel & Fax: +81-76-264-6207
| |
Collapse
|
21
|
Shimotohno A, Aki SS, Takahashi N, Umeda M. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:273-296. [PMID: 33689401 DOI: 10.1146/annurev-arplant-080720-103739] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developmental and environmental signals converge on cell cycle machinery to achieve proper and flexible organogenesis under changing environments. Studies on the plant cell cycle began 30 years ago, and accumulated research has revealed many links between internal and external factors and the cell cycle. In this review, we focus on how phytohormones and environmental signals regulate the cell cycle to enable plants to cope with a fluctuating environment. After introducing key cell cycle regulators, we first discuss how phytohormones and their synergy are important for regulating cell cycle progression and how environmental factors positively and negatively affect cell division. We then focus on the well-studied example of stress-induced G2 arrest and view the current model from an evolutionary perspective. Finally, we discuss the mechanisms controlling the transition from the mitotic cycle to the endocycle, which greatly contributes to cell enlargement and resultant organ growth in plants.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
- Current affiliation: Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| |
Collapse
|
22
|
Song X, Yang Q, Bai Y, Gong K, Wu T, Yu T, Pei Q, Duan W, Huang Z, Wang Z, Liu Z, Kang X, Zhao W, Ma X. Comprehensive analysis of SSRs and database construction using all complete gene-coding sequences in major horticultural and representative plants. HORTICULTURE RESEARCH 2021; 8:122. [PMID: 34059664 PMCID: PMC8167114 DOI: 10.1038/s41438-021-00562-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/10/2021] [Accepted: 03/14/2021] [Indexed: 05/05/2023]
Abstract
Simple sequence repeats (SSRs) are one of the most important genetic markers and widely exist in most species. Here, we identified 249,822 SSRs from 3,951,919 genes in 112 plants. Then, we conducted a comprehensive analysis of these SSRs and constructed a plant SSR database (PSSRD). Interestingly, more SSRs were found in lower plants than in higher plants, showing that lower plants needed to adapt to early extreme environments. Four specific enriched functional terms in the lower plant Chlamydomonas reinhardtii were detected when it was compared with seven other higher plants. In addition, Guanylate_cyc existed in more genes of lower plants than of higher plants. In our PSSRD, we constructed an interactive plotting function in the chart interface, and users can easily view the detailed information of SSRs. All SSR information, including sequences, primers, and annotations, can be downloaded from our database. Moreover, we developed Web SSR Finder and Batch SSR Finder tools, which can be easily used for identifying SSRs. Our database was developed using PHP, HTML, JavaScript, and MySQL, which are freely available at http://www.pssrd.info/ . We conducted an analysis of the Myb gene families and flowering genes as two applications of the PSSRD. Further analysis indicated that whole-genome duplication and whole-genome triplication played a major role in the expansion of the Myb gene families. These SSR markers in our database will greatly facilitate comparative genomics and functional genomics studies in the future.
Collapse
Affiliation(s)
- Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China.
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Yun Bai
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Ke Gong
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Qiaoying Pei
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Weike Duan
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, 223003, Huai'an, China
| | - Zhinan Huang
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, 223003, Huai'an, China
| | - Zhiyuan Wang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Zhuo Liu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Xi Kang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Wei Zhao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
23
|
Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2021; 22:3103. [PMID: 33803587 PMCID: PMC8002911 DOI: 10.3390/ijms22063103] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.
Collapse
Affiliation(s)
- Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiaona Pei
- Harbin Research Institute of Forestry Machinery, State Administration of Forestry and Grassland, Harbin 150086, China;
- Research Center of Cold Temperate Forestry, CAF, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Ross Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| |
Collapse
|
24
|
Okumura T, Nomoto Y, Kobayashi K, Suzuki T, Takatsuka H, Ito M. MYB3R-mediated active repression of cell cycle and growth under salt stress in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2021; 134:261-277. [PMID: 33580347 DOI: 10.1007/s10265-020-01250-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Under environmental stress, plants are believed to actively repress their growth to save resource and alter its allocation to acquire tolerance against the stress. Although a lot of studies have uncovered precise mechanisms for responding to stress and acquiring tolerance, the mechanisms for regulating growth repression under stress are not as well understood. It is especially unclear which particular genes related to cell cycle control are involved in active growth repression. Here, we showed that decreased growth in plants exposed to moderate salt stress is mediated by MYB3R transcription factors that have been known to positively and negatively regulate the transcription of G2/M-specific genes. Our genome-wide gene expression analysis revealed occurrences of general downregulation of G2/M-specific genes in Arabidopsis under salt stress. Importantly, this downregulation is significantly and universally mitigated by the loss of MYB3R repressors by mutations. Accordingly, the growth performance of Arabidopsis plants under salt stress is significantly recovered in mutants lacking MYB3R repressors. This growth recovery involves improved cell proliferation that is possibly due to prolonging and accelerating cell proliferation, which were partly suggested by enlarged root meristem and increased number of cells positive for CYCB1;1-GUS. Our ploidy analysis further suggested that cell cycle progression at the G2 phase was delayed under salt stress, and this delay was recovered by loss of MYB3R repressors. Under salt stress, the changes in expression of MYB3R activators and repressors at both the mRNA and protein levels were not significant. This observation suggests novel mechanisms underlying MYB3R-mediated growth repression under salt stress that are different from the mechanisms operating under other stress conditions such as DNA damage and high temperature.
Collapse
Affiliation(s)
- Toru Okumura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Chikusa, 464-8601, Japan
| | - Yuji Nomoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kosuke Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Chikusa, 464-8601, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
25
|
Zhou Z, Tan H, Li Q, Li Q, Wang Y, Bu Q, Li Y, Wu Y, Chen W, Zhang L. TRICHOME AND ARTEMISININ REGULATOR 2 positively regulates trichome development and artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2020; 228:932-945. [PMID: 32589757 DOI: 10.1111/nph.16777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 05/21/2023]
Abstract
Glandular secretory trichomes (GSTs) are regarded as biofactories for synthesizing, storing, and secreting artemisinin. It is necessary to figure out the initiation and development regulatory mechanism of GSTs to cultivate high-yielding Artemisia annua. Here, we identified an MYB transcription factor, AaTAR2, from bioinformatics analysis of the A. annua genome database and Arabidopsis trichome development-related genes. AaTAR2 is mainly expressed in young leaves and located in the nucleus. Repression and overexpression of AaTAR2 resulted in a decrease and increase, respectively, in the GSTs numbers, leaf biomass, and the artemisinin content in transgenic plants. Furthermore, the morphological characteristics changed obviously in trichomes, suggesting AaTAR2 plays a key role in trichome formation. In addition, the expression of flavonoid biosynthesis genes and total flavonoid content increased dramatically in AaTAR2-overexpressing transgenic plants. Owing to flavonoids possibly counteracting emerging resistance to artemisinin in Plasmodium species, AaTAR2 is a potential target to improve the effect of artemisinin in clinical therapy. Taken together, AaTAR2 positively regulates trichome development and artemisinin and flavonoid biosynthesis. A better understanding of this 'multiple functions' transcription factor may enable enhanced artemisinin and flavonoids yield. AaTAR2 is a potential breeding target for cultivating high-quality A. annua.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Qi Li
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai,, 200003, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Qitao Bu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Yaoxin Li
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Yu Wu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai,, 200003, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
26
|
Feng G, Yoo M, Davenport R, Boatwright JL, Koh J, Chen S, Barbazuk WB. Jasmonate induced alternative splicing responses in Arabidopsis. PLANT DIRECT 2020; 4:e00245. [PMID: 32875268 PMCID: PMC7450174 DOI: 10.1002/pld3.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 05/14/2023]
Abstract
Jasmonate is an essential phytohormone regulating plant growth, development, and defense. Alternative splicing (AS) in jasmonate ZIM-domain (JAZ) repressors is well-characterized and plays an important role in jasmonate signaling regulation. However, it is unknown whether other genes in the jasmonate signaling pathway are regulated by AS. We explore the potential for AS regulation in three Arabidopsis genotypes (WT, jaz2, jaz7) in response to methyl jasmonate (MeJA) treatment with respect to: (a) differential AS, (b) differential miRNA targeted AS, and (c) AS isoforms with novel functions. AS events identified from transcriptomic data were validated with proteomic data. Protein interaction networks identified two genes, SKIP and ALY4 whose products have both DNA- and RNA-binding affinities, as potential key regulators mediating jasmonate signaling and AS regulation. We observed cases where AS alone, or AS and transcriptional regulation together, can influence gene expression in response to MeJA. Twenty-one genes contain predicted miRNA target sites subjected to AS, which implies that AS is coupled to miRNA regulation. We identified 30 cases where alternatively spliced isoforms may have novel functions. For example, AS of bHLH160 generates an isoform without a basic domain, which may convert it from an activator to a repressor. Our study identified potential key regulators in AS regulation of jasmonate signaling pathway. These findings highlight the importance of AS regulation in the jasmonate signaling pathway, both alone and in collaboration with other regulators. SIGNIFICANCE STATEMENT By exploring alternative splicing, we demonstrate its regulation in the jasmonate signaling pathway alone or in collaboration with other posttranscriptional regulations such as nonsense and microRNA-mediated decay. A signal transduction network model for alternative splicing in jasmonate signaling pathway was generated, contributing to our understanding for this important, prevalent, but relatively unexplored regulatory mechanism in plants.
Collapse
Affiliation(s)
- Guanqiao Feng
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| | - Mi‐Jeong Yoo
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Ruth Davenport
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | | | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
| | - Sixue Chen
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - W. Brad Barbazuk
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
27
|
Su W, Ren Y, Wang D, Su Y, Feng J, Zhang C, Tang H, Xu L, Muhammad K, Que Y. The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genomics 2020; 21:521. [PMID: 32727370 PMCID: PMC7392720 DOI: 10.1186/s12864-020-06929-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alcohol dehydrogenases (ADHs) in plants are encoded by a multigene family. ADHs participate in growth, development, and adaptation in many plant species, but the evolution and function of the ADH gene family in sugarcane is still unclear. RESULTS In the present study, 151 ADH genes from 17 species including 32 ADH genes in Saccharum spontaneum and 6 ADH genes in modern sugarcane cultivar R570 were identified. Phylogenetic analysis demonstrated two groups of ADH genes and suggested that these genes underwent duplication during angiosperm evolution. Whole-genome duplication (WGD)/segmental and dispersed duplications played critical roles in the expansion of ADH family in S. spontaneum and R570, respectively. ScADH3 was cloned and preferentially expressed in response to cold stress. ScADH3 conferred improved cold tolerance in E. coli cells. Ectopic expression showed that ScADH3 can also enhance cold tolerance in transgenic tobacco. The accumulation of reactive oxygen species (ROS) in leaves of transgenic tobacco was significantly lower than in wild-type tobacco. The transcript levels of ROS-related genes in transgenic tobacco increased significantly. ScADH3 seems to affect cold tolerance by regulating the ROS-related genes to maintain the ROS homeostasis. CONCLUSIONS This study depicted the size and composition of the ADH gene family in 17 species, and investigated their evolution pattern. Comparative genomics analysis among the ADH gene families of S. bicolor, R570 and S. spontaneum revealed their close evolutionary relationship. Functional analysis suggested that ScADH3, which maintained the steady state of ROS by regulating ROS-related genes, was related to cold tolerance. These findings will facilitate research on evolutionary and functional aspects of the ADH genes in sugarcane, especially for the understanding of ScADH3 under cold stress.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jingfang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hanchen Tang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Khushi Muhammad
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
28
|
Singh V, Kumar N, Dwivedi AK, Sharma R, Sharma MK. Phylogenomic Analysis of R2R3 MYB Transcription Factors in Sorghum and their Role in Conditioning Biofuel Syndrome. Curr Genomics 2020; 21:138-154. [PMID: 32655308 PMCID: PMC7324873 DOI: 10.2174/1389202921666200326152119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022] Open
Abstract
Background Large scale cultivation of sorghum for food, feed, and biofuel requires concerted efforts for engineering multipurpose cultivars with optimised agronomic traits. Due to their vital role in regulating the biosynthesis of phenylpropanoid-derived compounds, biomass composition, biotic, and abiotic stress response, R2R3-MYB family transcription factors are ideal targets for improving environmental resilience and economic value of sorghum. Methods We used diverse computational biology tools to survey the sorghum genome to identify R2R3-MYB transcription factors followed by their structural and phylogenomic analysis. We used in-house generated as well as publicly available high throughput expression data to analyse the R2R3 expression patterns in various sorghum tissue types. Results We have identified a total of 134 R2R3-MYB genes from sorghum and developed a framework to predict gene functions. Collating information from the physical location, duplication, structural analysis, orthologous sequences, phylogeny, and expression patterns revealed the role of duplications in clade-wise expansion of the R2R3-MYB family as well as intra-clade functional diversification. Using publicly available and in-house generated RNA sequencing data, we provide MYB candidates for conditioning biofuel syndrome by engineering phenylpropanoid biosynthesis and sugar signalling pathways in sorghum. Conclusion The results presented here are pivotal to prioritize MYB genes for functional validation and optimize agronomic traits in sorghum.
Collapse
Affiliation(s)
- Vinay Singh
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Neeraj Kumar
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Anuj K Dwivedi
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Rita Sharma
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Manoj K Sharma
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| |
Collapse
|
29
|
Tan L, Ijaz U, Salih H, Cheng Z, Ni Win Htet N, Ge Y, Azeem F. Genome-Wide Identification and Comparative Analysis of MYB Transcription Factor Family in Musa acuminata and Musa balbisiana. PLANTS 2020; 9:plants9040413. [PMID: 32230872 PMCID: PMC7238746 DOI: 10.3390/plants9040413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022]
Abstract
MYB transcription factors (TFs) make up one of the most important TF families in plants. These proteins play crucial roles in processes related to development, metabolism, and stimulus-response; however, very few studies have been reported for the characterization of MYB TFs from banana. The current study identified 305 and 251 MYB genes from Musa acuminata and Musa balbisiana, respectively. Comprehensive details of MYBs are reported in terms of gene structure, protein domain, chromosomal localization, phylogeny, and expression patterns. Based on the exon-intron arrangement, these genes were classified into 12 gene models. Phylogenetic analysis of MYBs involving both species of banana, Oryza sativa, and Arabidopsis thaliana distributed these genes into 27 subfamilies. This highlighted not only the conservation, but also the gain/loss of MYBs in banana. Such genes are important candidates for future functional investigations. The MYB genes in both species exhibited a random distribution on chromosomes with variable densities. Estimation of gene duplication events revealed that segmental duplications represented the major factor behind MYB gene family expansion in banana. Expression profiles of MYB genes were also explored for their potential involvement in acetylene response or development. Collectively, the current comprehensive analysis of MYB genes in both species of banana will facilitate future functional studies.
Collapse
Affiliation(s)
- Lin Tan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Usman Ijaz
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Haron Salih
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Nwe Ni Win Htet
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Yu Ge
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Farrukh Azeem
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
- Correspondence:
| |
Collapse
|
30
|
Zhao K, Cheng Z, Guo Q, Yao W, Liu H, Zhou B, Jiang T. Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of PsnMYB108 Confers Salt Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:571881. [PMID: 33178243 PMCID: PMC7596293 DOI: 10.3389/fpls.2020.571881] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/18/2020] [Indexed: 05/03/2023]
Abstract
The MYB, one of the largest transcription factor families in plants, is related to various biological processes. For an example, the R2R3-MYB family plays an important role in regulation of primary and secondary metabolism, plant growth and development, and responses to hormones and stresses. However, functional studies on the poplar R2R3-MYB genes are limited. In this study, we identified 207 poplar R2R3-MYB genes that are unevenly distributed on the 19 chromosomes of poplar, followed by characterization of their conserved domains. On the basis of phylogenetic analysis, these genes can be divided into 23 groups. Evidence from synteny analyses indicated that the poplar R2R3-MYB gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, we investigated salt responsive genes and explored their expression patterns. Furthermore, we cloned the PsnMYB108 gene from poplar, which is significantly up-regulated in roots and leaves in response to salt stress. To validate its function, we developed transgenic tobacco plants that over-express the PsnMYB108 gene. It appears that the transgenic lines are more tolerant to salt stress than the wild type does. Evidence from physiological analyses demonstrated that over-expression of PsnMYB108 may improve tobacco salt stress tolerance by increasing the reactive oxygen species scavenging ability and the accumulation of proline. These results laid the foundation for future analysis and functional studies of poplar R2R3-MYB family members, and revealed that PsnMYB108 plays an important role in improving plant salt stress tolerance.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qing Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Huajing Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Boru Zhou,
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Tingbo Jiang,
| |
Collapse
|
31
|
Whole-Genome and Transposed Duplication Contributes to the Expansion and Diversification of TLC Genes in Maize. Int J Mol Sci 2019; 20:ijms20215484. [PMID: 31689978 PMCID: PMC6862079 DOI: 10.3390/ijms20215484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/20/2019] [Accepted: 11/02/2019] [Indexed: 01/11/2023] Open
Abstract
TLC (TRAM/LAG/CRN8) proteins play important roles in ceramide metabolism and mycotoxin resistance. Herein a comparative genomics analysis of TLCs was performed in 31 plant and 3 species from other kingdoms, with an emphasis mainly on maize. TLCs were conserved across kingdoms and expanded in angiosperms, largely due to whole-genome/segmental duplication (WGD/SD) under purifying selection. Phylogeny reconstruction by maximum-likelihood method uncovered five TLC clades, subsequently named as TRAM/LAG, CLN8, PS-TLC, TM136 and TLCD clades. Each clade of TLCs shared specific transmembrane regions and motif composition. Divisions of conserved motifs to subunits may have occurred in TM136-type TLCs. Focusing on maize, five WGD and two DNA-mediated transposed duplication (TD) pairs were discovered, accounting for 61.11% ZmTLCs. Combined with further expression analysis, significant divergence was found in expression patterns between most maize WGD pairs, indicating subfunctionalization or/and neofunctionalization. Moreover, ZmTLC5, a deduced parental copy in a TD pair, was highly induced under FB1 and fungus pathogen injection and exhibited potential capacity to respond to environmental stimuli. Additionally, population genetics analysis showed that ZmTLC10 in the CLN8-clade may have experienced significant positive selection and differentiated between wild and inbred maize populations. Overall, our results help to decipher the evolutionary history of TLCs in maize and plants, facilitating further functional analysis of them.
Collapse
|
32
|
Chang P, Zhu L, Zhao M, Li C, Zhang Y, Li L. The first transcriptome sequencing and analysis of the endangered plant species Picea neoveitchii Mast. and potential EST-SSR markers development. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1632739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Pan Chang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| | - Ling Zhu
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Mengran Zhao
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| | - Chao Li
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Yi Zhang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Lingli Li
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| |
Collapse
|
33
|
Du YT, Zhao MJ, Wang CT, Gao Y, Wang YX, Liu YW, Chen M, Chen J, Zhou YB, Xu ZS, Ma YZ. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC PLANT BIOLOGY 2018; 18:320. [PMID: 30509166 PMCID: PMC6276260 DOI: 10.1186/s12870-018-1551-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/21/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Abiotic stress severely influences plant growth and development. MYB transcription factors (TFs), which compose one of the largest TF families, play an important role in abiotic stress responses. RESULT We identified 139 soybean MYB-related genes; these genes were divided into six groups based on their conserved domain and were distributed among 20 chromosomes (Chrs). Quantitative real-time PCR (qRT-PCR) indicated that GmMYB118 highly responsive to drought, salt and high temperature stress; thus, this gene was selected for further analysis. Subcellular localization revealed that the GmMYB118 protein located in the nucleus. Ectopic expression (EX) of GmMYB118 increased tolerance to drought and salt stress and regulated the expression of several stress-associated genes in transgenic Arabidopsis plants. Similarly, GmMYB118-overexpressing (OE) soybean plants generated via Agrobacterium rhizogenes (A. rhizogenes)-mediated transformation of the hairy roots showed improved drought and salt tolerance. Furthermore, compared with the control (CK) plants, the clustered, regularly interspaced, short palindromic repeat (CRISPR)-transformed plants exhibited reduced drought and salt tolerance. The contents of proline and chlorophyll in the OE plants were significantly greater than those in the CK plants, whose contents were greater than those in the CRISPR plants under drought and salt stress conditions. In contrast, the reactive oxygen species (ROS) and malondialdehyde (MDA) contents were significantly lower in the OE plants than in the CK plants, whose contents were lower than those in the CRISPR plants under stress conditions. CONCLUSIONS These results indicated that GmMYB118 could improve tolerance to drought and salt stress by promoting expression of stress-associated genes and regulating osmotic and oxidizing substances to maintain cell homeostasis.
Collapse
Affiliation(s)
- Yong-Tao Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Meng-Jie Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048 China
| | - Yuan Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, 050041 Hebei China
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051 Hebei China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yong-Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
34
|
Zhang B, Schrader A. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2017; 6:E65. [PMID: 29261137 PMCID: PMC5750641 DOI: 10.3390/plants6040065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/02/2017] [Accepted: 12/16/2017] [Indexed: 12/25/2022]
Abstract
The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway's core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thalianattg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted.
Collapse
Affiliation(s)
- Bipei Zhang
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| | - Andrea Schrader
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| |
Collapse
|
35
|
Zhang YM, Xue JY, Liu LW, Sun XQ, Zhou GC, Chen M, Shao ZQ, Hang YY. Divergence and Conservative Evolution of XTNX Genes in Land Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1844. [PMID: 29123540 PMCID: PMC5662649 DOI: 10.3389/fpls.2017.01844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/10/2017] [Indexed: 05/06/2023]
Abstract
The Toll-interleukin-1 receptor (TIR) and Nucleotide-binding site (NBS) domains are two major components of the TIR-NBS-leucine-rich repeat family plant disease resistance genes. Extensive functional and evolutionary studies have been performed on these genes; however, the characterization of a small group of genes that are composed of atypical TIR and NBS domains, namely XTNX genes, is limited. The present study investigated this specific gene family by conducting genome-wide analyses of 59 green plant genomes. A total of 143 XTNX genes were identified in 51 of the 52 land plant genomes, whereas no XTNX gene was detected in any green algae genomes, which indicated that XTNX genes originated upon emergence of land plants. Phylogenetic analysis revealed that the ancestral XTNX gene underwent two rounds of ancient duplications in land plants, which resulted in the formation of clades I/II and clades IIa/IIb successively. Although clades I and IIb have evolved conservatively in angiosperms, the motif composition difference and sequence divergence at the amino acid level suggest that functional divergence may have occurred since the separation of the two clades. In contrast, several features of the clade IIa genes, including the absence in the majority of dicots, the long branches in the tree, the frequent loss of ancestral motifs, and the loss of expression in all detected tissues of Zea mays, all suggest that the genes in this lineage might have undergone pseudogenization. This study highlights that XTNX genes are a gene family originated anciently in land plants and underwent specific conservative pattern in evolution.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jia-Yu Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Li-Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Guang-Can Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Zhu-Qing Shao, Yue-Yu Hang,
| | - Yue-Yu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Zhu-Qing Shao, Yue-Yu Hang,
| |
Collapse
|