1
|
Gastelbondo M, Nicholls U, Chen S, Chambers A, Wu X. First Gynogenesis of Vanilla planifolia for Haploid Production and Ploidy Verification Protocol. PLANTS (BASEL, SWITZERLAND) 2024; 13:1733. [PMID: 38999575 PMCID: PMC11243312 DOI: 10.3390/plants13131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Vanilla orchids are members of the Vanilloideae orchid subfamily, and they hold significant economic value as a spice crop in tropical regions. Despite the presence of 180 known species within this subfamily, commercial production focuses on only three species (Vanilla planifolia, V. odorata, and V. pompona) and one hybrid (V. × tahitensis), prized for their aromatic qualities and bioactive compounds. Limited modern breeding initiatives have been undertaken with vanilla orchids, although recent advancements in genomic research are shedding light on this crop's potential. The protracted breeding cycle of vanilla, coupled with increasing demand for germplasm, underscores the importance of research and breeding efforts in vanilla. This paper outlines a protocol for haploid production in V. planifolia using unfertilized ovaries in tissue culture conditions. Additionally, we present a methodology to confirm the haploid nature of putative haploid lines through stomatal size comparison, chromosome counting, and flow cytometry analysis, proving the successful development of haploid vanilla plants. These findings contribute to the advancement of breeding programs and genetic improvement strategies for the vanilla industry.
Collapse
Affiliation(s)
- Manuel Gastelbondo
- Plant Breeding Graduate Program, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (M.G.); (S.C.)
| | - Ursula Nicholls
- Horticulture Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (U.N.); (A.C.)
| | - Sisi Chen
- Plant Breeding Graduate Program, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (M.G.); (S.C.)
| | - Alan Chambers
- Horticulture Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (U.N.); (A.C.)
| | - Xingbo Wu
- Plant Breeding Graduate Program, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (M.G.); (S.C.)
- Environmental Horticulture Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA
| |
Collapse
|
2
|
Favre F, Jourda C, Grisoni M, Chiroleu F, Dijoux JB, Jade K, Rivallan R, Besse P, Charron C. First Vanilla planifolia High-Density Genetic Linkage Map Provides Quantitative Trait Loci for Resistance to Fusarium oxysporum. PLANT DISEASE 2023; 107:2997-3006. [PMID: 36856646 DOI: 10.1094/pdis-10-22-2386-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusarium oxysporum f. sp. radicis-vanillae (Forv), the causal agent of root and stem rot disease, is the main pathogen affecting vanilla production. Sources of resistance have been reported in Vanilla planifolia G. Jackson ex Andrews, the main cultivated vanilla species. In this study, we developed the first high-density genetic map in this species with 1,804 genotyping-by-sequencing (GBS)-generated single nucleotide polymorphism (SNP) markers using 125 selfed progenies of the CR0040 traditional vanilla cultivar. Sixteen linkage groups (LG) were successfully constructed, with a mean of 113 SNPs and an average length of 207 cM per LG. The map had a high density with an average of 5.45 SNP every 10 cM and an average distance of 1.85 cM between adjacent markers. The first three LG were aligned against the first assembled chromosome of CR0040, and the other 13 LG were correctly associated with the other 13 assembled chromosomes. The population was challenged with the highly pathogenic Forv strain Fo072 using the root-dip inoculation method. Five traits were mapped, and 20 QTLs were associated with resistance to Fo072. Among the genes retrieved in the CR0040 physical regions associated with QTLs, genes potentially involved in biotic resistance mechanisms, coding for kinases, E3 ubiquitin ligases, pentatricopeptide repeat-containing proteins, and one leucine-rich repeat receptor underlying the qFo72_08.1 QTL have been highlighted. This study should provide useful resources for marker-assisted selection in V. planifolia.
Collapse
Affiliation(s)
- Félicien Favre
- University of Reunion Island, UMR PVBMT, F-97410 St. Pierre, Reunion Island, France
| | - Cyril Jourda
- CIRAD, UMR PVBMT, F-97410 St Pierre, Reunion Island, France
| | | | | | | | - Katia Jade
- CIRAD, UMR PVBMT, F-97410 St Pierre, Reunion Island, France
| | - Ronan Rivallan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pascale Besse
- University of Reunion Island, UMR PVBMT, F-97410 St. Pierre, Reunion Island, France
| | - Carine Charron
- CIRAD, UMR PVBMT, F-97410 St Pierre, Reunion Island, France
| |
Collapse
|
3
|
Koprivý L, Fráková V, Kolarčik V, Mártonfiová L, Dudáš M, Mártonfi P. Genome size and endoreplication in two pairs of cytogenetically contrasting species of Pulmonaria (Boraginaceae) in Central Europe. AOB PLANTS 2022; 14:plac036. [PMID: 36128515 PMCID: PMC9476981 DOI: 10.1093/aobpla/plac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/16/2022] [Indexed: 06/13/2023]
Abstract
Genome size is species-specific feature and commonly constant in an organism. In various plants, DNA content in cell nucleus is commonly increased in process of endoreplication, cellular-specific multiplication of DNA content without mitosis. This leads to the endopolyploidy, the presence of multiplied chromosome sets in a subset of cells. The relationship of endopolyploidy to species-specific genome size is rarely analysed and is not fully understood. While negative correlation between genome size and endopolyploidy level is supposed, this is species- and lineage-specific. In the present study, we shed light on this topic, exploring both genome size and endoreplication-induced DNA content variation in two pairs of morphologically similar species of Pulmonaria, P. obscura-P. officinalis and P. mollis-P. murinii. We aim (i) to characterize genome size and chromosome numbers in these species using cytogenetic, root-tip squashing and flow cytometry (FCM) techniques; (ii) to investigate the degree of endopolyploidy in various plant organs, including the root, stem, leaf, calyx and corolla using FCM; and (iii) to comprehensively characterize and compare the level of endopolyploidy and DNA content in various organs of all four species in relation to species systematic relationships and genome size variation. We have confirmed the diploid-dysploid nature of chromosome complements, and divergent genome sizes for Pulmonaria species: P. murinii with 2n = 2x = 14, 2.31 pg/2C, P. obscura 2n = 2x = 14, 2.69 pg/2C, P. officinalis 2n = 2x = 16, 2.96 pg/2C and P. mollis 2n = 2x = 18, 3.18 pg/2C. Endopolyploidy varies between species and organs, and we have documented 4C-8C in all four organs and up to 32C (64C) endopolyploid nuclei in stems at least in some species. Two species with lower genome sizes tend to have higher endopolyploidy levels than their closest relatives. Endoreplication-generated tissue-specific mean DNA content is increased and more balanced among species in all four organs compared to genome size. Our results argue for the narrow relationship between genome size and endopolyploidy in the present plant group within the genus Pulmonaria, and endopolyploidization seems to play a compensatory developmental role in organs of related morphologically similar species.
Collapse
Affiliation(s)
- Lukáš Koprivý
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovak Republic
| | - Viera Fráková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
| | - Vladislav Kolarčik
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
| | - Lenka Mártonfiová
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovak Republic
| | - Matej Dudáš
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
| | - Pavol Mártonfi
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovak Republic
| |
Collapse
|
4
|
Piet Q, Droc G, Marande W, Sarah G, Bocs S, Klopp C, Bourge M, Siljak-Yakovlev S, Bouchez O, Lopez-Roques C, Lepers-Andrzejewski S, Bourgois L, Zucca J, Dron M, Besse P, Grisoni M, Jourda C, Charron C. A chromosome-level, haplotype-phased Vanilla planifolia genome highlights the challenge of partial endoreplication for accurate whole-genome assembly. PLANT COMMUNICATIONS 2022; 3:100330. [PMID: 35617961 PMCID: PMC9482989 DOI: 10.1016/j.xplc.2022.100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 06/02/2023]
Abstract
Vanilla planifolia, the species cultivated to produce one of the world's most popular flavors, is highly prone to partial genome endoreplication, which leads to highly unbalanced DNA content in cells. We report here the first molecular evidence of partial endoreplication at the chromosome scale by the assembly and annotation of an accurate haplotype-phased genome of V. planifolia. Cytogenetic data demonstrated that the diploid genome size is 4.09 Gb, with 16 chromosome pairs, although aneuploid cells are frequently observed. Using PacBio HiFi and optical mapping, we assembled and phased a diploid genome of 3.4 Gb with a scaffold N50 of 1.2 Mb and 59 128 predicted protein-coding genes. The atypical k-mer frequencies and the uneven sequencing depth observed agreed with our expectation of unbalanced genome representation. Sixty-seven percent of the genes were scattered over only 30% of the genome, putatively linking gene-rich regions and the endoreplication phenomenon. By contrast, low-coverage regions (non-endoreplicated) were rich in repeated elements but also contained 33% of the annotated genes. Furthermore, this assembly showed distinct haplotype-specific sequencing depth variation patterns, suggesting complex molecular regulation of endoreplication along the chromosomes. This high-quality, anchored assembly represents 83% of the estimated V. planifolia genome. It provides a significant step toward the elucidation of this complex genome. To support post-genomics efforts, we developed the Vanilla Genome Hub, a user-friendly integrated web portal that enables centralized access to high-throughput genomic and other omics data and interoperable use of bioinformatics tools.
Collapse
Affiliation(s)
- Quentin Piet
- CIRAD, UMR PVBMT, 97410 Saint-Pierre, La Réunion, France
| | - Gaetan Droc
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France; UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, 34398 Montpellier, France.
| | | | - Gautier Sarah
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, 34398 Montpellier, France; AGAP, Univ. Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Stéphanie Bocs
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France; UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, 34398 Montpellier, France
| | - Christophe Klopp
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Mickael Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sonja Siljak-Yakovlev
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution (ESE), 91190 Gif-sur-Yvette, France
| | | | | | | | | | - Joseph Zucca
- Département Biotechnologie, V. Mane Fils, 06620 Le Bar Sur Loup, France
| | - Michel Dron
- Université Paris-Saclay, CNRS, INRAE, Univ. Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Pascale Besse
- Université de la Réunion, UMR PVBMT, Saint-Pierre, La Réunion, France
| | | | - Cyril Jourda
- CIRAD, UMR PVBMT, 97410 Saint-Pierre, La Réunion, France.
| | - Carine Charron
- CIRAD, UMR PVBMT, 97410 Saint-Pierre, La Réunion, France
| |
Collapse
|
5
|
Iglesias-Andreu LG, Almejo Vázquez LI, Escobedo Gracia Medrano RM. COMPORTAMIENTO MEIÓTICO EN VAINILLA (V. planifolia Jacks., ORCHIDACEAE). ACTA BIOLÓGICA COLOMBIANA 2022. [DOI: 10.15446/abc.v27n3.90086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El comportamiento meiótico es de gran importancia para el desarrollo de programas de mejoramiento genético, especialmente en especies como la vainilla (Vanilla planifolia Jacks.), que se ven severamente afectadas por diversos factores bióticos y abióticos derivados de su estrecha base genética. Por ello, el presente trabajo se planteó con el objetivo de evaluar el comportamiento meiótico del morfotipo comercial "Mansa" del municipio de Papantla de Olarte, Veracruz, México. Para ello, se colectaron botones florales de diferentes tamaños y se fijaron en Carnoy, utilizando la técnica de la calabaza, seguido de una tinción con acetocarmín al 2% (p/v) para observar claramente todas las etapas del proceso meiótico. Se observó un comportamiento meiótico normal y un número de cromosomas haploides (n = 8). Estos resultados pueden ser útiles para el desarrollo de programas de mejora de este cultivo.
Collapse
|
6
|
Sliwinska E, Loureiro J, Leitch IJ, Šmarda P, Bainard J, Bureš P, Chumová Z, Horová L, Koutecký P, Lučanová M, Trávníček P, Galbraith DW. Application-based guidelines for best practices in plant flow cytometry. Cytometry A 2021; 101:749-781. [PMID: 34585818 DOI: 10.1002/cyto.a.24499] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.
Collapse
Affiliation(s)
- Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ilia J Leitch
- Kew Science Directorate, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jillian Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Koutecký
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Trávníček
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - David W Galbraith
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,Henan University, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Kaifeng, China
| |
Collapse
|
7
|
Čertner M, Lučanová M, Sliwinska E, Kolář F, Loureiro J. Plant material selection, collection, preservation, and storage for nuclear DNA content estimation. Cytometry A 2021; 101:737-748. [PMID: 34254737 DOI: 10.1002/cyto.a.24482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/23/2023]
Abstract
In theory, any plant tissue providing intact nuclei in sufficient quantity is suitable for nuclear DNA content estimation using flow cytometry (FCM). While this certainly opens a wide variety of possible applications of FCM, especially when compared to classical karyological techniques restricted to tissues with active cell division, tissue selection and quality may directly affect the precision (and sometimes even reliability) of FCM measurements. It is usually convenient to first consider the goals of the study to either aim for the highest possible accuracy of estimates (e.g., for inferring genome size, detecting homoploid intraspecific genome size variation, aneuploidy, among others), or to decide that histograms of reasonable resolution provide sufficient information (e.g., ploidy level screening within a single model species). Here, a set of best practices guidelines for selecting the optimal plant tissue for FCM analysis, sampling of material, and material preservation and storage are provided. In addition, factors potentially compromising the quality of FCM estimates of nuclear DNA content and data interpretation are discussed.
Collapse
Affiliation(s)
- Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Chumová Z, Záveská E, Hloušková P, Ponert J, Schmidt PA, Čertner M, Mandáková T, Trávníček P. Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:511-524. [PMID: 33960537 DOI: 10.1111/tpj.15306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 05/21/2023]
Abstract
Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2-5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12-90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.
Collapse
Affiliation(s)
- Zuzana Chumová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Eliška Záveská
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria
| | | | - Jan Ponert
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Prague Botanical Garden, Trojská 800/196, Prague, CZ-17100, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, CZ-12844, Czech Republic
| | - Philipp-André Schmidt
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| | - Martin Čertner
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Terezie Mandáková
- CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Pavel Trávníček
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| |
Collapse
|
9
|
Trávníček P, Chumová Z, Záveská E, Hanzlíčková J, Kupková (Jankolová) L, Kučera J, Gbúrová Štubňová E, Rejlová L, Mandáková T, Ponert J. Integrative Study of Genotypic and Phenotypic Diversity in the Eurasian Orchid Genus Neotinea. FRONTIERS IN PLANT SCIENCE 2021; 12:734240. [PMID: 34745168 PMCID: PMC8570840 DOI: 10.3389/fpls.2021.734240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 05/04/2023]
Abstract
Knowledge of population variation across species' ranges is a prerequisite for correctly assessing the overall variability of any group of organisms and provides an invaluable basis for unraveling evolutionary history, optimizing taxonomy and devising effective conservation strategies. Here, we examine the genus Neotinea, which represents a relatively recently delimited monophyletic genus of orchids, for which a detailed study of its overall variability was lacking. We applied a suite of biosystematic methods, consisting of flow cytometry, multivariate and geometric morphometrics, and analysis of genomic SNP data, to identify phylogenetic lineages within the genus, to delineate phenotypic variation relevant to these lineages, and to identify potential cryptic taxa within lineages. We found clear differentiation into four major lineages corresponding to the groups usually recognized within the genus: Neotinea maculata as a distinct and separate taxon, the Neotinea lactea group comprising two Mediterranean taxa N. lactea and Neotinea conica, the Neotinea ustulata group comprising two phenologically distinct varieties, and the rather complex Neotinea tridentata group comprising two major lineages and various minor lineages of unclear taxonomic value. N. conica constitutes both a monophyletic group within N. lactea and a distinct phenotype within the genus and merits its proposed subspecies-level recognition. By contrast, the spring and summer flowering forms of N. ustulata (var. ustulata and var. aestivalis) were confirmed to be distinct only morphologically, not phylogenetically. The most complex pattern emerged in the N. tridentata group, which splits into two main clades, one containing lineages from the Balkans and eastern Mediterranean and the other consisting of plants from Central Europe and the central Mediterranean. These individual lineages differ in genome size and show moderate degrees of morphological divergence. The tetraploid Neotinea commutata is closely related to the N. tridentata group, but our evidence points to an auto- rather than an allopolyploid origin. Our broad methodological approach proved effective in recognizing cryptic lineages among the orchids, and we propose the joint analysis of flow cytometric data on genome size and endopolyploidy as a useful and beneficial marker for delineating orchid species with partial endoreplication.
Collapse
Affiliation(s)
- Pavel Trávníček
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- *Correspondence: Pavel Trávníček,
| | - Zuzana Chumová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Zuzana Chumová,
| | - Eliška Záveská
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Johana Hanzlíčková
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | | | - Jaromír Kučera
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliška Gbúrová Štubňová
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Slovak National Museum, Bratislava, Slovakia
| | - Ludmila Rejlová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Ponert
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Prague Botanical Garden, Prague, Czechia
- Jan Ponert,
| |
Collapse
|
10
|
Hasing T, Tang H, Brym M, Khazi F, Huang T, Chambers AH. A phased Vanilla planifolia genome enables genetic improvement of flavour and production. NATURE FOOD 2020; 1:811-819. [PMID: 37128067 DOI: 10.1038/s43016-020-00197-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/09/2020] [Indexed: 05/03/2023]
Abstract
The global supply of vanilla extract is primarily sourced from the cured beans of the tropical orchid species Vanilla planifolia. Vanilla plants were collected from Mesoamerica, clonally propagated and globally distributed as part of the early spice trade. Today, the global food and beverage industry depends on descendants of these original plants that have not generally benefited from genetic improvement. As a result, vanilla growers and processors struggle to meet global demand for vanilla extract and are challenged by inefficient and unsustainable production practices. Here, we report a chromosome-scale, phased V. planifolia genome, which reveals sequence variants for genes that may impact the vanillin pathway and therefore influence bean quality. Resequencing of related vanilla species, including the minor commercial species Vanilla × tahitensis, identified genes that could impact productivity and post-harvest losses through pod dehiscence, flower anatomy and disease resistance. The vanilla genome reported in this study may enable accelerated breeding of vanilla to improve high-value traits.
Collapse
Affiliation(s)
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Maria Brym
- Tropical Research and Education Center, Horticultural Sciences Department, University of Florida, Homestead, FL, USA
| | | | | | - Alan H Chambers
- Tropical Research and Education Center, Horticultural Sciences Department, University of Florida, Homestead, FL, USA.
| |
Collapse
|
11
|
Lang L, Schnittger A. Endoreplication - a means to an end in cell growth and stress response. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:85-92. [PMID: 32217456 DOI: 10.1016/j.pbi.2020.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Endoreplication, also called endoreduplication or endopolyploidization, is a cell cycle variant in which the genome is re-replicated in the absence of mitosis causing cellular polyploidization. Despite the common occurrence of endoreplication in plants and the tremendous extent in specific tissues and cell types such as the endosperm, the underlying molecular regulation and the physiological consequences have only now started to be understood. Endoreplication is often associated with cell differentiation and withdrawal from mitotic cycles. Recent studies have underlined the importance of endoreplication as a stress response and we summarize here this progress with particular focus on future perspectives offered by the recent advances in genomics and biotechnology.
Collapse
Affiliation(s)
- Lucas Lang
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Arp Schnittger
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany.
| |
Collapse
|
12
|
Trávníček P, Čertner M, Ponert J, Chumová Z, Jersáková J, Suda J. Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. THE NEW PHYTOLOGIST 2019; 224:1642-1656. [PMID: 31215648 DOI: 10.1111/nph.15996] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
In angiosperms, genome size and nucleobase composition (GC content) exhibit pronounced variation with possible adaptive consequences. The hyperdiverse orchid family possessing the unique phenomenon of partial endoreplication (PE) provides a great opportunity to search for interactions of both genomic traits with the evolutionary history of the family. Using flow cytometry, we report values of both genomic traits and the type of endoreplication for 149 orchid species and compare these with a suite of life-history traits and climatic niche data using phylogeny-based statistics. The evolution of genomic traits was further studied using the Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to access their adaptive potential. Pronounced variation in genome size (341-54 878 Mb), and especially in GC content (23.9-50.5%), was detected among orchids. Diversity in both genomic traits was closely related to the type of endoreplication, plant growth form and climatic conditions. GC content was also associated with the type of dormancy. In all tested scenarios, OU models always outperformed BM models. Unparalleled GC content variation was discovered in orchids, setting new limits for plants. Our study indicates that diversity in both genome size and GC content has adaptive consequences and is tightly linked with evolutionary transitions to PE.
Collapse
Affiliation(s)
- Pavel Trávníček
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| | - Martin Čertner
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12801, Czech Republic
| | - Jan Ponert
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Prague Botanical Garden, Trojská 800/196, Prague, CZ-17100, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, CZ-12844, Czech Republic
| | - Zuzana Chumová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12801, Czech Republic
| | - Jana Jersáková
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | | |
Collapse
|
13
|
Kolarčik V, Kocová V, Vašková D. Flow cytometric seed screen data are consistent with models of chromosome inheritance in asymmetrically compensating allopolyploids. Cytometry A 2018; 93:737-748. [PMID: 30071155 DOI: 10.1002/cyto.a.23511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/10/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Angiosperms have evolved a mechanism of double fertilization, which results in the production of a separate embryo (new individual) and endosperm (nutritive tissue). The flow cytometric seed screen (FCSS) was developed to infer plant reproduction modes based on endosperm-to-embryo DNA content ratio (Pind ). A ratio of 1.5 indicates sexual reproduction, whereas higher values of ≥2.0 are consistent with apomixis. Although FCSS has been successfully applied to the study of sexual and asexual plants, the limits of FCSS and particularly its potential for determination of reproduction modes in hemisexual plants have not been explored. Here, we evaluated the application of FCSS to the study of reproduction modes in two asymmetrically compensating allopolyploids (ACAs), Onosma arenaria and Rosa canina. These two species are characterized by the presence of asexually inherited univalent-forming and sexually inherited bivalent-forming chromosome sets. They both use asymmetric meiosis, which eliminates univalent-forming chromosome sets from the male gamete and retains them in the female gamete. Different chromosomal behavior in male and female meiosis in these plants is reflected in different theoretically derived Pind values, which deviate from a sexual 1.5 value. Here, we determined Pind FCSS-based values in seeds of ACAs, and compared the results to sexual species. As expected, we determined that the mean Pind is 1.51, 1.52, and 1.52 in the sexual plants, that is, Capsella bursa-pastoris, Crataegus monogyna, and O. pseudoarenaria, respectively. In the ACAs, different mean Pind values were determined for O. arenaria (1.61) and R. canina (1.82). These values are consistent with the theoretical Pind values determined based on models of chromosome inheritance. This study highlights the precision of flow cytometry in determining DNA content and it's utility in screening reproduction modes. Additionally, it advocates for more in-depth investigations into rapid screening of accessions where the Pind ratio has deviated from the 1.5 value typical of sexual species, which may indicate meiotic irregularities.
Collapse
Affiliation(s)
- V Kolarčik
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54, Košice, Slovak Republic
| | - V Kocová
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54, Košice, Slovak Republic
| | - D Vašková
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54, Košice, Slovak Republic
| |
Collapse
|
14
|
Bateman RM, Guy JJ, Rudall PJ, Leitch IJ, Pellicer J, Leitch AR. Evolutionary and functional potential of ploidy increase within individual plants: somatic ploidy mapping of the complex labellum of sexually deceptive bee orchids. ANNALS OF BOTANY 2018; 122:133-150. [PMID: 29672665 PMCID: PMC6025197 DOI: 10.1093/aob/mcy048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/15/2018] [Indexed: 05/07/2023]
Abstract
Background and Aims Recent tissue-level observations made indirectly via flow cytometry suggest that endoreplication (duplication of the nuclear genome within the nuclear envelope in the absence of subsequent cell division) is widespread within the plant kingdom. Here, we also directly observe ploidy variation among cells within individual petals, relating size of nucleus to cell micromorphology and (more speculatively) to function. Methods We compared the labella (specialized pollinator-attracting petals) of two European orchid genera: Dactylorhiza has a known predisposition to organismal polyploidy, whereas Ophrys exhibits exceptionally complex epidermal patterning that aids pseudocopulatory pollination. Confocal microscopy using multiple staining techniques allowed us to observe directly both the sizes and the internal structures of individual nuclei across each labellum, while flow cytometry was used to test for progressively partial endoreplication. Key Results In Dactylorhiza, endoreplication was comparatively infrequent, reached only low levels, and appeared randomly located across the labellum, whereas in Ophrys endoreplication was commonplace, being most frequent in large peripheral trichomes. Endoreplicated nuclei reflected both endomitosis and endocycling, the latter reaching the third round of genome doubling (16C) to generate polytene nuclei. All Ophrys individuals studied exhibited progressively partial endoreplication. Conclusions Comparison of the two genera failed to demonstrate the hypothesized pattern of frequent polyploid speciation in genera showing extensive endoreplication. Endoreplication in Ophrys appears more strongly positively correlated with cell size/complexity than with cell location or secretory role. Epigenetic control of gene overexpression by localized induction of endoreplication within individual plant organs may represent a significant component of a plant's developmental programme, contributing substantially to organ plasticity.
Collapse
Affiliation(s)
| | - Jessica J Guy
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- School of Biological Sciences, University of Reading, Reading, UK
| | - Paula J Rudall
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
| | - Jaume Pellicer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|