1
|
Sun PW, Chang JT, Luo MX, Chao CT, Du FK, Liao PC. In situ diversification and adaptive introgression in Taiwanese Scutellaria. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:238-254. [PMID: 39844615 DOI: 10.1111/plb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Island habitats provide unique opportunities to study speciation. Recent work indicates that both ex situ origination and in situ speciation contribute to island species diversity. However, clear evidence of local adaptation of endemic plant species on islands requires in-depth studies, which are scarce. This study underscores the importance of local adaptation in maintaining species boundaries by examining how adaptive introgression, hybridization, and local adaptation contribute to genetic variation in island species. Multilocus genome scanning of 51 nuclear genes was used to investigate the evolutionary relationships of the Scutellaria species complex on Taiwan Island and assess the role of in situ diversification in generating high endemism and genetic diversity. Interspecies introgressions were detected by phylogenetic networks and ABBA-BABA-based analysis, suggesting ongoing or recent speciation processes. Coalescent-based simulation identified hybrid speciation in Scutellaria taiwanensis and Scutellaria hsiehii, with evidence of hybridization between more than two parental species. Genotype-environment association studies revealed that the influence of climate, particularly precipitation- and temperature-related factors, contributed to adaptive genetic divergence between species. Additionally, adaptive introgression related to environmental pressures that may have facilitated the colonization of new island habitats were identified. This research illustrates how hybridization, introgression, and adaptation shaped the evolutionary histories and divergence of this island-endemic plant species complex and sheds light on the multifaceted mechanisms of speciation on semi-isolated islands.
Collapse
Affiliation(s)
- P-W Sun
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, USA
| | - J-T Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - M-X Luo
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - C-T Chao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - F K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - P-C Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
2
|
Jonkheer EM, de Ridder D, van der Lee TAJ, de Haan JR, Berke L, Smit S. Exploring intra- and intergenomic variation in haplotype-resolved pangenomes. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:874-886. [PMID: 39756800 PMCID: PMC11869183 DOI: 10.1111/pbi.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025]
Abstract
With advances in long-read sequencing and assembly techniques, haplotype-resolved (phased) genome assemblies are becoming more common, also in the field of plant genomics. Computational tools to effectively explore these phased genomes, particularly for polyploid genomes, are currently limited. Here we describe a new strategy adopting a pangenome approach. To analyse both intra- and intergenomic variation in phased genome assemblies, we have made the software package PanTools ploidy-aware by updating the pangenome graph representation and adding several novel functionalities to assess synteny and gene retention, profile repeats and calculate synonymous and nonsynonymous mutation rates. Using PanTools, we constructed and analysed a pangenome comprising of one diploid and four tetraploid potato cultivars, and a pangenome of five diploid apple species. Both pangenomes show high intra- and intergenomic allelic diversity in terms of gene absence/presence, SNPs, indels and larger structural variants. Our findings show that the new functionalities and visualizations are useful to discover introgressions and detect likely misassemblies in phased genomes. PanTools is available at https://git.wur.nl/bioinformatics/pantools.
Collapse
Affiliation(s)
- Eef M. Jonkheer
- Bioinformatics GroupWageningen University & ResearchWageningenThe Netherlands
- Biointeractions and Plant Health, Wageningen Plant ResearchWageningenThe Netherlands
| | - Dick de Ridder
- Bioinformatics GroupWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Lidija Berke
- Genetwister Technologies B.VWageningenThe Netherlands
| | - Sandra Smit
- Bioinformatics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
3
|
Zhao J, Liang ZL, Fang SL, Li RJ, Huang CJ, Zhang LB, Robison T, Zhu ZM, Cai WJ, Yu H, He ZR, Zhou XM. Phylogenomics of Paragymnopteris (Cheilanthoideae, Pteridaceae): Insights from plastome, mitochondrial, and nuclear datasets. Mol Phylogenet Evol 2025; 204:108253. [PMID: 39617091 DOI: 10.1016/j.ympev.2024.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Previous studies have shown that at least six genera of the Cheilanthoideae, a subfamily of the fern family Pteridaceae, may not be monophyletic. In these non-monophyletic genera, the Old-World genus Paragymnopteris including approximately five species have long been controversial. In this study, with an extensive taxon sampling of Paragymnopteris, we assembled 19 complete plastomes of all recognized Paragymnopteris species, plastomes of Pellaea (3 species) and Argyrochosma (1 species), as well as transcriptomes from Paragymnopteris (6 species) and Argyrochosma (1 species). We conducted a comprehensive and systematic phylogenomic analysis focusing on the contentious relationships among the genus of Paragymnopteris through 9 plastid makers, the plastomes, mitochondria, nuclear ribosomal cistron genomes, and single-copy nuclear genes. Moreover, we further combined distribution, ploidy, and morphological features to investigate the evolution of Paragymnopteris. The backbone of Paragymnopteris was resolved consistently in the nuclear and plastid phylogenies. Our major results include: (1) Paragymnopteris is not monophyletic including two fully supported clades; (2) confirming that Paragymnopteris delavayi var. intermedia is a close relative of P. delavayi instead of P. marantae var. marantae; (3) the chromosome base number may not be a stable trait which has previously been used as an important character to divide Paragymnopteris into two groups; and (4) gene flow or introgression might be the main reason for the gene trees conflict of Paragymnopteris, but both gene flow and ILS might simultaneously and/or cumulatively act on the conflict of core pellaeids. The robust phylogeny of Paragymnopteris presented here will help us for the future studies of the arid to semi-arid ferns of Cheilanthoideae at the evolutionary, physiological, developmental, and omics-based levels.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Zhen-Long Liang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Rong-Juan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Bing Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
| | - Tanner Robison
- Department of Biology, Utah State University, Logan, UT, USA
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Wen-Jing Cai
- Yunnan Institute of Forest Inventory and Planning, Kunming, Yunnan 650500, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
4
|
Lagou LJ, Kadereit G, Morales-Briones DF. Phylogenomic analysis of target enrichment and transcriptome data uncovers rapid radiation and extensive hybridization in the slipper orchid genus Cypripedium. ANNALS OF BOTANY 2024; 134:1229-1250. [PMID: 39269134 DOI: 10.1093/aob/mcae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/24/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND AIMS Cypripedium is the most widespread and morphologically diverse genus of slipper orchids. Despite several published phylogenies, the topology and monophyly of its infrageneric taxa remained uncertain. Here, we aimed to reconstruct a robust section-level phylogeny of Cypripedium and explore its evolutionary history using target capture data for the first time. METHODS We used the orchid-specific bait set Orchidaceae963 in combination with transcriptomic data to reconstruct the phylogeny of Cypripedium based on 913 nuclear loci, covering all 13 sections. Subsequently, we investigated discordance among nuclear and chloroplast trees, estimated divergence times and ancestral ranges, searched for anomaly zones, polytomies and diversification rate shifts, and identified potential gene (genome) duplication and hybridization events. KEY RESULTS All sections were recovered as monophyletic, contrary to the two subsections within sect. Cypripedium. The two subclades within this section did not correspond to its subsections but matched the geographical distribution of their species. Additionally, we discovered high levels of discordance in the short backbone branches of the genus and within sect. Cypripedium, which can be attributed to hybridization events detected based on phylogenetic network analyses, and incomplete lineage sorting caused by rapid radiation. Our biogeographical analysis suggested a Neotropical origin of the genus during the Oligocene (~30 Ma), with a lineage of potentially hybrid origin spreading to the Old World in the Early Miocene (~22 Ma). The rapid radiation at the backbone probably occurred in Southeast Asia around the Middle Miocene Climatic Transition (~15-13 Ma), followed by several independent dispersals back to the New World. Moreover, the glacial cycles of the Pliocene-Quaternary may have contributed to further speciation and reticulate evolution within Cypripedium. CONCLUSIONS Our study provides novel insights into the evolutionary history of Cypripedium based on high-throughput molecular data, shedding light on the dynamics of its distribution and diversity patterns from its origin to the present.
Collapse
Affiliation(s)
- Loudmila Jelinscaia Lagou
- Princess Therese von Bayern chair of Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Menzinger Str. 67, Munich 80638, Germany
| | - Gudrun Kadereit
- Princess Therese von Bayern chair of Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Menzinger Str. 67, Munich 80638, Germany
- Botanical Garden Munich and Botanical State Collection Munich, Bavarian Natural History Collections, Menzinger Str. 65-67, Munich 80638, Germany
| | - Diego F Morales-Briones
- Princess Therese von Bayern chair of Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Menzinger Str. 67, Munich 80638, Germany
| |
Collapse
|
5
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Huwanixi A, Peng Z, Li S, Zhou Y, Zhao S, Wan C. Comparative proteomic analysis of seed germination between allotetraploid cotton Gossypium hirsutum and Gossypium barbadense. J Proteomics 2024; 297:105130. [PMID: 38401592 DOI: 10.1016/j.jprot.2024.105130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Seed germination, a key initial event in the plant life cycle, directly affects cotton yield and quality. Gossypium barbadense and Gossypium hirsutum gradually evolved through polyploidization, resulting in different characteristics, and this interspecific variation lacks genetic and molecular explanation. This work aimed to compare the proteomes between G. barbadense and G. hirsutum during seed germination. Here, we identified 2740 proteins for G. barbadense and 3758 for G. hirsutum. In the initial state, proteins in two cotton involved similar bioprocess, such as sugar metabolism, DNA repairing, and ABA signaling pathway. However, in the post-germination stage, G. hirsutum expressed more protein related to redox homeostasis, peroxidase activity, and pathogen interactions. Analyzing the different expression patterns of 915 single-copy orthogroups between the two kinds of cotton indicated that most of the differentially expressed proteins in G. barbadense were related to carbon metabolism. In contrast, most proteins in G. hirsutum were associated with stress response. Besides that, by proteogenomic analysis, we found 349 putative non-canonical peptides, which may be involved in plant development. These results will help to understand the different characteristics of these two kinds of cotton, such as fiber quality, yield, and adaptability. SIGNIFICANCE STATEMENT: Cotton is the predominant natural fiber crop worldwide; Gossypium barbadense and Gossypium hirsutum have evolved through polyploidization to produce differing traits. However, given their specific features, the divergence of mechanisms underlying seed germination between G. hirsutum and G. barbadense has not been discussed. Here, we explore what protein contributes to interspecific differences between G. barbadense and G. hirsutum during the seed germination period. This study helps to elucidate the evolution and domestication history of cotton polyploids and may allow breeders to understand their domestication history better and improve fiber quality and adaptability.
Collapse
Affiliation(s)
- Aishuake Huwanixi
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Zhao Peng
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Shenglan Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yutian Zhou
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Sixian Zhao
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China.
| |
Collapse
|
7
|
Xie P, Guo Y, Teng Y, Zhou W, Yu Y. GeneMiner: A tool for extracting phylogenetic markers from next-generation sequencing data. Mol Ecol Resour 2024; 24:e13924. [PMID: 38197287 DOI: 10.1111/1755-0998.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
The advancement of next-generation sequencing (NGS) technologies has been revolutionary for the field of evolutionary biology. This technology has led to an abundance of available genomes and transcriptomes for researchers to mine. Specifically, researchers can mine for various types of molecular markers that are vital for phylogenetic, evolutionary and ecological studies. Numerous tools have been developed to extract these molecular markers from NGS data. However, due to an insufficient number of well-annotated reference genomes for non-model organisms, it remains challenging to obtain these markers accurately and efficiently. Here, we present GeneMiner, an improved and expanded version of our previous tool, Easy353. GeneMiner combines the reference-guided de Bruijn graph assembly with seed self-discovery and greedy extension. Additionally, it includes a verification step using a parameter-bootstrap method to reduce the pitfalls associated with using a relatively distant reference. Our results, using both experimental and simulation data, showed GeneMiner can accurately acquire phylogenetic molecular markers for plants using transcriptomic, genomic and other NGS data. GeneMiner is designed to be user-friendly, fast and memory-efficient. Further, it is compatible with Linux, Windows and macOS. All source codes are publicly available on GitHub (https://github.com/sculab/GeneMiner) and Gitee (https://gitee.com/sculab/GeneMiner) for easy accessibility and transparency.
Collapse
Affiliation(s)
- Pulin Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongling Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenbin Zhou
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Xiang Y, Zhang T, Zhao Y, Dong H, Chen H, Hu Y, Huang CH, Xiang J, Ma H. Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:228-251. [PMID: 38351714 DOI: 10.1111/jipb.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.
Collapse
Affiliation(s)
- Yezi Xiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, 27708, NC, USA
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hongjin Dong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hongyi Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Yi Hu
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hong Ma
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| |
Collapse
|
10
|
Shabbir M, Mithani A. Roast: a tool for reference-free optimization of supertranscriptome assemblies. BMC Bioinformatics 2024; 25:2. [PMID: 38166712 PMCID: PMC10763045 DOI: 10.1186/s12859-023-05614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Transcriptomic studies involving organisms for which reference genomes are not available typically start by generating de novo transcriptome or supertranscriptome assembly from the raw RNA-seq reads. Assembling a supertranscriptome is, however, a challenging task due to significantly varying abundance of mRNA transcripts, alternative splicing, and sequencing errors. As a result, popular de novo supertranscriptome assembly tools generate assemblies containing contigs that are partially-assembled, fragmented, false chimeras or have local mis-assemblies leading to decreased assembly accuracy. Commonly available tools for assembly improvement rely primarily on running BLAST using closely related species making their accuracy and reliability conditioned on the availability of the data for closely related organisms. RESULTS We present ROAST, a tool for optimization of supertranscriptome assemblies that uses paired-end RNA-seq data from Illumina sequencing platform to iteratively identify and fix assembly errors solely using the error signatures generated by RNA-seq alignment tools including soft-clips, unexpected expression coverage, and reads with mates unmapped or mapped on a different contig to identify and fix various supertranscriptome assembly errors without performing BLAST searches against other organisms. Evaluation results using simulated as well as real datasets show that ROAST significantly improves assembly quality by identifying and fixing various assembly errors. CONCLUSION ROAST provides a reference-free approach to optimizing supertranscriptome assemblies highlighting its utility in refining de novo supertranscriptome assemblies of non-model organisms.
Collapse
Affiliation(s)
- Madiha Shabbir
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Aziz Mithani
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan.
| |
Collapse
|
11
|
Wilson AE, Liberles DA. Expectations of duplicate gene retention under the gene duplicability hypothesis. BMC Ecol Evol 2023; 23:76. [PMID: 38097959 PMCID: PMC10720195 DOI: 10.1186/s12862-023-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Gene duplication is an important process in evolution. What causes some genes to be retained after duplication and others to be lost is a process not well understood. The most prevalent theory is the gene duplicability hypothesis, that something about the function and number of interacting partners (number of subunits of protein complex, etc.), determines whether copies have more opportunity to be retained for long evolutionary periods. Some genes are also more susceptible to dosage balance effects following WGD events, making them more likely to be retained for longer periods of time. One would expect these processes that affect the retention of duplicate copies to affect the conditional probability ratio after consecutive whole genome duplication events. The probability that a gene will be retained after a second whole genome duplication event (WGD2), given that it was retained after the first whole genome duplication event (WGD1) versus the probability a gene will be retained after WGD2, given it was lost after WGD1 defines the probability ratio that is calculated. RESULTS Since duplicate gene retention is a time heterogeneous process, the time between the events (t1) and the time since the most recent event (t2) are relevant factors in calculating the expectation for observation in any genome. Here, we use a survival analysis framework to predict the probability ratio for genomes with different values of t1 and t2 under the gene duplicability hypothesis, that some genes are more susceptible to selectable functional shifts, some more susceptible to dosage compensation, and others only drifting. We also predict the probability ratio with different values of t1 and t2 under the mutational opportunity hypothesis, that probability of retention for certain genes changes in subsequent events depending upon how they were previously retained. These models are nested such that the mutational opportunity model encompasses the gene duplicability model with shifting duplicability over time. Here we present a formalization of the gene duplicability and mutational opportunity hypotheses to characterize evolutionary dynamics and explanatory power in a recently developed statistical framework. CONCLUSIONS This work presents expectations of the gene duplicability and mutational opportunity hypotheses over time under different sets of assumptions. This expectation will enable formal testing of processes leading to duplicate gene retention.
Collapse
Affiliation(s)
- Amanda E Wilson
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
12
|
Liu H, Zhang Y, Chen J. Whole-genome sequencing and functional annotation of pathogenic Paraconiothyrium brasiliense causing human cellulitis. Hum Genomics 2023; 17:65. [PMID: 37461066 DOI: 10.1186/s40246-023-00512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND A pathogenic filamentous fungus causing eyelid cellulitis was isolated from the secretion from a patient's left eyelid, and a phylogenetic analysis based on the rDNA internal transcribed spacer region (ITS) and single-copy gene families identified the isolated strain as Paraconiothyrium brasiliense. The genus Paraconiothyrium contains the major plant pathogenic fungi, and in our study, P. brasiliense was identified for the first time as causing human infection. To comprehensively analyze the pathogenicity, and proteomics of the isolated strain from a genetic perspective, whole-genome sequencing was performed with the Illumina NovaSeq and Oxford Nanopore Technologies platforms, and a bioinformatics analysis was performed with BLAST against genome sequences in various publicly available databases. RESULTS The genome of P. brasiliense GGX 413 is 39.49 Mb in length, with a 51.2% GC content, and encodes 13,057 protein-coding genes and 181 noncoding RNAs. Functional annotation showed that 592 genes encode virulence factors that are involved in human disease, including 61 lethal virulence factors and 30 hypervirulence factors. Fifty-four of these 592 virulence genes are related to carbohydrate-active enzymes, including 46 genes encoding secretory CAZymes, and 119 associated with peptidases, including 70 genes encoding secretory peptidases, and 27 are involved in secondary metabolite synthesis, including four that are associated with terpenoid metabolism. CONCLUSIONS This study establishes the genomic resources of P. brasiliense and provides a theoretical basis for future studies of the pathogenic mechanism of its infection of humans, the treatment of the diseases caused, and related research.
Collapse
Affiliation(s)
- Haibing Liu
- Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yue Zhang
- Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianguo Chen
- Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
13
|
Zhao J, Zhou X, Fang S, Zhu Z, Li Y, Yu H, He Z. Transcriptome-Based Study on the Phylogeny and Hybridization of Marattialean Ferns (Marattiaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:2237. [PMID: 37375862 DOI: 10.3390/plants12122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Marattiaceae is a phylogenetically isolated family of tropical eusporangiate ferns including six genera with more than one-hundred species. In Marattiaceae, monophyly of genera has been well-supported phylogenetically. However, the phylogenetic relationships among them were elusive and controversial. Here, a dataset of 26 transcriptomes (including 11 newly generated) were used to assess single-copy nuclear genes and to obtain the organelle gene sequences. Through phylotranscriptomic analysis, the phylogeny and hybridization events of Marattiaceae were explored and a robust phylogenomic framework for the evolution of Marattiaceae was provided. Using both concatenation- and coalescent-based phylogenies, the gene-tree discordance, incomplete lineage sorting (ILS) simulations, and network inference were examined. Except the low support with mitochondrial genes of Marattiaceae, nuclear genes and chloroplast genes strongly supported a sister relationship between Marattiaceae and leptosporangiate ferns. At the genus level, all phylogenetic analysis based on nuclear genes datasets recovered five genera in Marattiaceae as monophyletic with strong support. Danaea and Ptisana were the first two diverged clades in turn. Christensenia was a sister clade to the clade Marattia + Angiopteris s.l. In Angiopteris s.l., three clades (Angiopteris s.s., the Archangiopteris group, and An. sparsisora) were well identified with maximum support. The Archangiopteris group was derived from Angiopteris s.s. at ca. 18 Ma. The putative hybrid species An. sparsisora between Angiopteris s.s. and the Archangiopteris group was verified by the species network analyses and the maternal plastid genes. This study will improve our understanding for using the phylotranscriptomic method to explore phylogeny and investigate hybridization events for difficult taxa in ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| | - Xinmao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shaoli Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhangming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuxin Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
14
|
Walden N, Schranz ME. Synteny Identifies Reliable Orthologs for Phylogenomics and Comparative Genomics of the Brassicaceae. Genome Biol Evol 2023; 15:7059155. [PMID: 36848527 PMCID: PMC10016055 DOI: 10.1093/gbe/evad034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Large genomic data sets are becoming the new normal in phylogenetic research, but the identification of true orthologous genes and the exclusion of problematic paralogs is still challenging when applying commonly used sequencing methods such as target enrichment. Here, we compared conventional ortholog detection using OrthoFinder with ortholog detection through genomic synteny in a data set of 11 representative diploid Brassicaceae whole-genome sequences spanning the entire phylogenetic space. Then, we evaluated the resulting gene sets regarding gene number, functional annotation, and gene and species tree resolution. Finally, we used the syntenic gene sets for comparative genomics and ancestral genome analysis. The use of synteny resulted in considerably more orthologs and also allowed us to reliably identify paralogs. Surprisingly, we did not detect notable differences between species trees reconstructed from syntenic orthologs when compared with other gene sets, including the Angiosperms353 set and a Brassicaceae-specific target enrichment gene set. However, the synteny data set comprised a multitude of gene functions, strongly suggesting that this method of marker selection for phylogenomics is suitable for studies that value downstream gene function analysis, gene interaction, and network studies. Finally, we present the first ancestral genome reconstruction for the Core Brassicaceae which predating the Brassicaceae lineage diversification ∼25 million years ago.
Collapse
Affiliation(s)
- Nora Walden
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands.,Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
15
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
16
|
Cheng L, Han Q, Chen F, Li M, Balbuena TS, Zhao Y. Phylogenomics as an effective approach to untangle cross-species hybridization event: A case study in the family Nymphaeaceae. Front Genet 2022; 13:1031705. [PMID: 36406110 PMCID: PMC9670182 DOI: 10.3389/fgene.2022.1031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hybridization is common and considered as an important evolutionary force to increase intraspecific genetic diversity. Detecting hybridization events is crucial for understanding the evolutionary history of species and further improving molecular breeding. The studies on identifying hybridization events through the phylogenomic approach are still limited. We proposed the conception and method of identifying allopolyploidy events by phylogenomics. The reconciliation and summary of nuclear multi-labeled gene family trees were adopted to untangle hybridization events from next-generation data in our novel phylogenomic approach. Given horticulturalists’ relatively clear cultivated crossbreeding history, the water lily family is a suitable case for examining recent allopolyploidy events. Here, we reconstructed and confirmed the well-resolved nuclear phylogeny for the Nymphaeales family in the context of geological time as a framework for identifying hybridization signals. We successfully identified two possible allopolyploidy events with the parental lineages for the hybrids in the family Nymphaeaceae based on summarization from multi-labeled gene family trees of Nymphaeales. The lineages where species Nymphaea colorata and Nymphaea caerulea are located may be the progenitors of horticultural cultivated species Nymphaea ‘midnight’ and Nymphaea ‘Woods blue goddess’. The proposed hybridization hypothesis is also supported by horticultural breeding records. Our methodology can be widely applied to identify hybridization events and theoretically facilitate the genome breeding design of hybrid plants.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Fei Chen
- College of Tropical Crops, Hainan University, Haikou, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, UNESP, São Paulo, Brazil
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Yiyong Zhao, ,
| |
Collapse
|
17
|
Steenwyk JL, Goltz DC, Buida TJ, Li Y, Shen XX, Rokas A. OrthoSNAP: A tree splitting and pruning algorithm for retrieving single-copy orthologs from gene family trees. PLoS Biol 2022; 20:e3001827. [PMID: 36228036 PMCID: PMC9595520 DOI: 10.1371/journal.pbio.3001827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 10/25/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 1 or more species-a phenomenon observed among several important families of genes such as transporters and transcription factors-are often ignored because identifying and retrieving SC-OGs nested within them is challenging. To address this issue and increase the number of markers used in molecular evolution studies, we developed OrthoSNAP, a software that uses a phylogenetic framework to simultaneously split gene families into SC-OGs and prune species-specific inparalogs. We term SC-OGs identified by OrthoSNAP as SNAP-OGs because they are identified using a splitting and pruning procedure analogous to snapping branches on a tree. From 415,129 orthologous groups of genes inferred across 7 eukaryotic phylogenomic datasets, we identified 9,821 SC-OGs; using OrthoSNAP on the remaining 405,308 orthologous groups of genes, we identified an additional 10,704 SNAP-OGs. Comparison of SNAP-OGs and SC-OGs revealed that their phylogenetic information content was similar, even in complex datasets that contain a whole-genome duplication, complex patterns of duplication and loss, transcriptome data where each gene typically has multiple transcripts, and contentious branches in the tree of life. OrthoSNAP is useful for increasing the number of markers used in molecular evolution data matrices, a critical step for robustly inferring and exploring the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JLS); (AR)
| | - Dayna C. Goltz
- Independent Researcher, Nashville, Tennessee, United States of America
| | - Thomas J. Buida
- Independent Researcher, Nashville, Tennessee, United States of America
| | - Yuanning Li
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- * E-mail: (JLS); (AR)
| |
Collapse
|
18
|
Su X, Liu T, Liu YP, Harris AJ, Chen JY. Adaptive radiation in Orinus, an endemic alpine grass of the Qinghai-Tibet Plateau, based on comparative transcriptomic analysis. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153786. [PMID: 35963042 DOI: 10.1016/j.jplph.2022.153786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The species of Orinus (Poaceae) are important alpine plants with a variety of phenotypic traits and potential usages in molecular breeding toward drought-tolerant forage crops. However, the genetic basis of evolutionary adaption and diversification in the genus is still unclear. In the present study, we obtained transcriptomes for the two most divergent species, O. thoroldii and O. kokonoricus, using the Illumina platform and de novo assembly. In total, we generated 23,029 and 24,086 unigenes with N50 values of 1188 and 1203 for O. thoroldii and O. kokonoricus respectively, and identified 19,005 pairs of putative orthologs between the two species of Orinus. For these orthologs, estimations of non-synonymous/synonymous substitution rate ratios indicated that 568 pairs may be under strongly positive selection (Ka/Ks > 1), and Gene Ontogeny (GO) enrichment analysis revealed that significantly enriched pathways were in DNA repair and resistance to abiotic stress. Meanwhile, the divergence times of species between O. thoroldii and O. kokonoricus occurred 3.2 million years ago (Mya), and the recent evolutionary branch is an allotetraploid species, Cleistogenes songorica. We also detected a Ks peak of ∼0.60 for Orinus. Additionally, we identified 188 pairs of differentially expressed genes (DEGs) between the two species of Orinus, which were significantly enrich in stress resistance and lateral root development. Thus, we considered that the species diversification and evolutionary adaption of this genus was initiated by environmental selection, followed by phenotypic differentiation, finally leading to niche separation in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Xu Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Land Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, The Ministry of Education, Qinghai Normal University, Xining, 810008, China
| | - Tao Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; School of Geographical Science, Qinghai Normal University, Xining, 810008, China
| | - Yu Ping Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China.
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Jin Yuan Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China
| |
Collapse
|
19
|
Tekle YI, Wang F, Wood FC, Anderson OR, Smirnov A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. Sci Rep 2022; 12:11173. [PMID: 35778543 PMCID: PMC9249873 DOI: 10.1038/s41598-022-15372-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The supergroup Amoebozoa unites a wide diversity of amoeboid organisms and encompasses enigmatic lineages that have been recalcitrant to modern phylogenetics. Deep divergences, taxonomic placement of some key taxa and character evolution in the group largely remain poorly elucidated or controversial. We surveyed available Amoebozoa genomes and transcriptomes to mine conserved putative single copy genes, which were used to enrich gene sampling and generate the largest supermatrix in the group to date; encompassing 824 genes, including gene sequences not previously analyzed. We recovered a well-resolved and supported tree of Amoebozoa, revealing novel deep level relationships and resolving placement of enigmatic lineages congruent with morphological data. In our analysis the deepest branching group is Tubulinea. A recent proposed major clade Tevosa, uniting Evosea and Tubulinea, is not supported. Based on the new phylogenetic tree, paleoecological and paleontological data as well as data on the biology of presently living amoebozoans, we hypothesize that the evolution of Amoebozoa probably was driven by adaptive responses to a changing environment, where successful survival and predation resulted from a capacity to disrupt and graze on microbial mats-a dominant ecosystem of the mid-Proterozoic period of the Earth history.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA.
| | - Fang Wang
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - Fiona C Wood
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - O Roger Anderson
- Department of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
20
|
Yang Y, Ferguson DK, Liu B, Mao KS, Gao LM, Zhang SZ, Wan T, Rushforth K, Zhang ZX. Recent advances on phylogenomics of gymnosperms and a new classification. PLANT DIVERSITY 2022; 44:340-350. [PMID: 35967253 PMCID: PMC9363647 DOI: 10.1016/j.pld.2022.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/30/2023]
Abstract
Living gymnosperms comprise four major groups: cycads, Ginkgo, conifers, and gnetophytes. Relationships among/within these lineages have not been fully resolved. Next generation sequencing has made available a large number of sequences, including both plastomes and single-copy nuclear genes, for reconstruction of solid phylogenetic trees. Recent advances in gymnosperm phylogenomic studies have updated our knowledge of gymnosperm systematics. Here, we review major advances of gymnosperm phylogeny over the past 10 years and propose an updated classification of extant gymnosperms. This new classification includes three classes (Cycadopsida, Ginkgoopsida, and Pinopsida), five subclasses (Cycadidae, Ginkgoidae, Cupressidae, Pinidae, and Gnetidae), eight orders (Cycadales, Ginkgoales, Araucariales, Cupressales, Pinales, Ephedrales, Gnetales, and Welwitschiales), 13 families, and 86 genera. We also described six new tribes including Acmopyleae Y. Yang, Austrocedreae Y. Yang, Chamaecyparideae Y. Yang, Microcachrydeae Y. Yang, Papuacedreae Y. Yang, and Prumnopityeae Y. Yang, and made 27 new combinations in the genus Sabina.
Collapse
Affiliation(s)
- Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, 159 Longpan Road, Nanjing Forestry University, Nanjing 210037, China
| | | | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kang-Shan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, China
| | - Shou-Zhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, FairyLake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, FairyLake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | | | - Zhi-Xiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
21
|
Xiong H, Wang D, Shao C, Yang X, Yang J, Ma T, Davis CC, Liu L, Xi Z. Species Tree Estimation and the Impact of Gene Loss Following Whole-Genome Duplication. Syst Biol 2022; 71:1348-1361. [PMID: 35689633 PMCID: PMC9558847 DOI: 10.1093/sysbio/syac040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Whole-genome duplication (WGD) occurs broadly and repeatedly across the history of eukaryotes and is recognized as a prominent evolutionary force, especially in plants. Immediately following WGD, most genes are present in two copies as paralogs. Due to this redundancy, one copy of a paralog pair commonly undergoes pseudogenization and is eventually lost. When speciation occurs shortly after WGD; however, differential loss of paralogs may lead to spurious phylogenetic inference resulting from the inclusion of pseudoorthologs–paralogous genes mistakenly identified as orthologs because they are present in single copies within each sampled species. The influence and impact of including pseudoorthologs versus true orthologs as a result of gene extinction (or incomplete laboratory sampling) are only recently gaining empirical attention in the phylogenomics community. Moreover, few studies have yet to investigate this phenomenon in an explicit coalescent framework. Here, using mathematical models, numerous simulated data sets, and two newly assembled empirical data sets, we assess the effect of pseudoorthologs on species tree estimation under varying degrees of incomplete lineage sorting (ILS) and differential gene loss scenarios following WGD. When gene loss occurs along the terminal branches of the species tree, alignment-based (BPP) and gene-tree-based (ASTRAL, MP-EST, and STAR) coalescent methods are adversely affected as the degree of ILS increases. This can be greatly improved by sampling a sufficiently large number of genes. Under the same circumstances, however, concatenation methods consistently estimate incorrect species trees as the number of genes increases. Additionally, pseudoorthologs can greatly mislead species tree inference when gene loss occurs along the internal branches of the species tree. Here, both coalescent and concatenation methods yield inconsistent results. These results underscore the importance of understanding the influence of pseudoorthologs in the phylogenomics era. [Coalescent method; concatenation method; incomplete lineage sorting; pseudoorthologs; single-copy gene; whole-genome duplication.]
Collapse
Affiliation(s)
- Haifeng Xiong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Danying Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chen Shao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuchen Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jialin Yang
- Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| | - Liang Liu
- Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Valderrama‐Martín JM, Ortigosa F, Ávila C, Cánovas FM, Hirel B, Cantón FR, Cañas RA. A revised view on the evolution of glutamine synthetase isoenzymes in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:946-960. [PMID: 35199893 PMCID: PMC9310647 DOI: 10.1111/tpj.15712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
Glutamine synthetase (GS) is a key enzyme responsible for the incorporation of inorganic nitrogen in the form of ammonium into the amino acid glutamine. In plants, two groups of functional GS enzymes are found: eubacterial GSIIb (GLN2) and eukaryotic GSIIe (GLN1/GS). Only GLN1/GS genes are found in vascular plants, which suggests that they are involved in the final adaptation of plants to terrestrial life. The present phylogenetic study reclassifies the different GS genes of seed plants into three clusters: GS1a, GS1b and GS2. The presence of genes encoding GS2 has been expanded to Cycadopsida gymnosperms, which suggests the origin of this gene in a common ancestor of Cycadopsida, Ginkgoopsida and angiosperms. GS1a genes have been identified in all gymnosperms, basal angiosperms and some Magnoliidae species. Previous studies in conifers and the gene expression profiles obtained in ginkgo and magnolia in the present work could explain the absence of GS1a in more recent angiosperm species (e.g. monocots and eudicots) as a result of the redundant roles of GS1a and GS2 in photosynthetic cells. Altogether, the results provide a better understanding of the evolution of plant GS isoenzymes and their physiological roles, which is valuable for improving crop nitrogen use efficiency and productivity. This new view of GS evolution in plants, including a new cytosolic GS group (GS1a), has important functional implications in the context of plant metabolism adaptation to global changes.
Collapse
Affiliation(s)
- José Miguel Valderrama‐Martín
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Bertrand Hirel
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre de Versailles‐GrignonRD 1078026Versailles CedexFrance
| | - Francisco R. Cantón
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Rafael A. Cañas
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| |
Collapse
|
23
|
Lo R, Dougan KE, Chen Y, Shah S, Bhattacharya D, Chan CX. Alignment-Free Analysis of Whole-Genome Sequences From Symbiodiniaceae Reveals Different Phylogenetic Signals in Distinct Regions. FRONTIERS IN PLANT SCIENCE 2022; 13:815714. [PMID: 35557718 PMCID: PMC9087856 DOI: 10.3389/fpls.2022.815714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 05/24/2023]
Abstract
Dinoflagellates of the family Symbiodiniaceae are predominantly essential symbionts of corals and other marine organisms. Recent research reveals extensive genome sequence divergence among Symbiodiniaceae taxa and high phylogenetic diversity hidden behind subtly different cell morphologies. Using an alignment-free phylogenetic approach based on sub-sequences of fixed length k (i.e. k-mers), we assessed the phylogenetic signal among whole-genome sequences from 16 Symbiodiniaceae taxa (including the genera of Symbiodinium, Breviolum, Cladocopium, Durusdinium and Fugacium) and two strains of Polarella glacialis as outgroup. Based on phylogenetic trees inferred from k-mers in distinct genomic regions (i.e. repeat-masked genome sequences, protein-coding sequences, introns and repeats) and in protein sequences, the phylogenetic signal associated with protein-coding DNA and the encoded amino acids is largely consistent with the Symbiodiniaceae phylogeny based on established markers, such as large subunit rRNA. The other genome sequences (introns and repeats) exhibit distinct phylogenetic signals, supporting the expected differential evolutionary pressure acting on these regions. Our analysis of conserved core k-mers revealed the prevalence of conserved k-mers (>95% core 23-mers among all 18 genomes) in annotated repeats and non-genic regions of the genomes. We observed 180 distinct repeat types that are significantly enriched in genomes of the symbiotic versus free-living Symbiodinium taxa, suggesting an enhanced activity of transposable elements linked to the symbiotic lifestyle. We provide evidence that representation of alignment-free phylogenies as dynamic networks enhances the ability to generate new hypotheses about genome evolution in Symbiodiniaceae. These results demonstrate the potential of alignment-free phylogenetic methods as a scalable approach for inferring comprehensive, unbiased whole-genome phylogenies of dinoflagellates and more broadly of microbial eukaryotes.
Collapse
Affiliation(s)
- Rosalyn Lo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Katherine E. Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Liu Y, Wang S, Li L, Yang T, Dong S, Wei T, Wu S, Liu Y, Gong Y, Feng X, Ma J, Chang G, Huang J, Yang Y, Wang H, Liu M, Xu Y, Liang H, Yu J, Cai Y, Zhang Z, Fan Y, Mu W, Sahu SK, Liu S, Lang X, Yang L, Li N, Habib S, Yang Y, Lindstrom AJ, Liang P, Goffinet B, Zaman S, Wegrzyn JL, Li D, Liu J, Cui J, Sonnenschein EC, Wang X, Ruan J, Xue JY, Shao ZQ, Song C, Fan G, Li Z, Zhang L, Liu J, Liu ZJ, Jiao Y, Wang XQ, Wu H, Wang E, Lisby M, Yang H, Wang J, Liu X, Xu X, Li N, Soltis PS, Van de Peer Y, Soltis DE, Gong X, Liu H, Zhang S. The Cycas genome and the early evolution of seed plants. NATURE PLANTS 2022; 8:389-401. [PMID: 35437001 PMCID: PMC9023351 DOI: 10.1038/s41477-022-01129-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/10/2022] [Indexed: 05/05/2023]
Abstract
Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome of Cycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads and Ginkgo form a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. The Cycas genome contains four homologues of the fitD gene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome of C. panzhihuaensis contains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported in Ginkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads and Ginkgo. The C. panzhihuaensis genome provides an important new resource of broad utility for biologists.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shengdan Wu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Xiuyan Feng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianchao Ma
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Guanxiao Chang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Yong Yang
- College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Yu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaowu Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shuchun Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoan Lang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Nanning Botanical Garden, Nanning, China
| | - Leilei Yang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Na Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Sadaf Habib
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongqiong Yang
- Sichuan Cycas panzhihuaensis National Nature Reserve, Panzhihua, China
| | | | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Dexiang Li
- Nanning Botanical Garden, Nanning, China
| | - Jian Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Xiaobo Wang
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jue Ruan
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chi Song
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangyi Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB UGent Center for Plant Systems Biology, Gent, Belgium
| | - Liangsheng Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Jianquan Liu
- The College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Nan Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Yves Van de Peer
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB UGent Center for Plant Systems Biology, Gent, Belgium.
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
25
|
Development of Quantitative Real-Time PCR for Detecting Environmental DNA Derived from Marine Macrophytes and Its Application to a Field Survey in Hiroshima Bay, Japan. WATER 2022. [DOI: 10.3390/w14050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sequestration and storage of carbon dioxide by marine macrophytes is called blue carbon; this ecosystem function of coastal marine ecosystems constitutes an important countermeasure to global climate change. The contribution of marine macrophytes to blue carbon requires a detailed examination of the organic carbon stock released by these macrophytes. Here, we introduce a quantitative real-time polymerase chain reaction (qPCR)-based environmental DNA (eDNA) system for the species-specific detection of marine macrophytes. and report its application in a field survey in Hiroshima Bay, Japan. A method of qPCR-based quantification was developed for mangrove, seagrass, Phaeophyceae, Rhodophyta and Chlorophyta species, or species-complex, collected from the Japanese coast to investigate their dynamics after they wither and die in the marine environment. A trial of the designed qPCR system was conducted using sediment samples from Hiroshima Bay. Ulva spp. were abundant in coastal areas of the bay, yet their eDNA in the sediments was scarce. In contrast, Zostera marina and the Sargassum subgenus Bactrophycus spp. were found at various sites in the bay, and high amounts of their eDNA were detected in the sediments. These results suggest that the fate of macrophyte-derived organic carbon after death varies among species.
Collapse
|
26
|
Ping J, Hao J, Li J, Yang Y, Su Y, Wang T. Loss of the IR region in conifer plastomes: Changes in the selection pressure and substitution rate of protein-coding genes. Ecol Evol 2022; 12:e8499. [PMID: 35136556 PMCID: PMC8809450 DOI: 10.1002/ece3.8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein-coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non-conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non-conifers. It is more obvious that in non-conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6- to 3.1-fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2- to 3.6-fold of non-conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein-coding genes due to gene function, plant habitat, or newly acquired IRs.
Collapse
Affiliation(s)
- Jingyao Ping
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jinye Li
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yiqing Yang
- College of Life Science and TechnologyCentral South University of Forestry and TechnologyChangshaChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
27
|
Ayala-Usma DA, Cárdenas M, Guyot R, Mares MCD, Bernal A, Muñoz AR, Restrepo S. A whole genome duplication drives the genome evolution of Phytophthora betacei, a closely related species to Phytophthora infestans. BMC Genomics 2021; 22:795. [PMID: 34740326 PMCID: PMC8571832 DOI: 10.1186/s12864-021-08079-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pathogens of the genus Phytophthora are the etiological agents of many devastating diseases in several high-value crops and forestry species such as potato, tomato, cocoa, and oak, among many others. Phytophthora betacei is a recently described species that causes late blight almost exclusively in tree tomatoes, and it is closely related to Phytophthora infestans that causes the disease in potato crops and other Solanaceae. This study reports the assembly and annotation of the genomes of P. betacei P8084, the first of its species, and P. infestans RC1-10, a Colombian strain from the EC-1 lineage, using long-read SMRT sequencing technology. RESULTS Our results show that P. betacei has the largest sequenced genome size of the Phytophthora genus so far with 270 Mb. A moderate transposable element invasion and a whole genome duplication likely explain its genome size expansion when compared to P. infestans, whereas P. infestans RC1-10 has expanded its genome under the activity of transposable elements. The high diversity and abundance (in terms of copy number) of classified and unclassified transposable elements in P. infestans RC1-10 relative to P. betacei bears testimony of the power of long-read technologies to discover novel repetitive elements in the genomes of organisms. Our data also provides support for the phylogenetic placement of P. betacei as a standalone species and as a sister group of P. infestans. Finally, we found no evidence to support the idea that the genome of P. betacei P8084 follows the same gene-dense/gense-sparse architecture proposed for P. infestans and other filamentous plant pathogens. CONCLUSIONS This study provides the first genome-wide picture of P. betacei and expands the genomic resources available for P. infestans. This is a contribution towards the understanding of the genome biology and evolutionary history of Phytophthora species belonging to the subclade 1c.
Collapse
Affiliation(s)
- David A Ayala-Usma
- Research Group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Martha Cárdenas
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Romain Guyot
- Institut de Recherche pour le Développement, CIRAD, Université de Montpellier, 34394, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Maryam Chaib De Mares
- Research Group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes (LIMMA), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Reyes Muñoz
- Research Group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, MO, 63108, St Louis, USA.
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia.
| |
Collapse
|
28
|
Ananda G, Norton S, Blomstedt C, Furtado A, Møller B, Gleadow R, Henry R. Phylogenetic relationships in the Sorghum genus based on sequencing of the chloroplast and nuclear genes. THE PLANT GENOME 2021; 14:e20123. [PMID: 34323394 DOI: 10.1002/tpg2.20123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is an important food crop with a diverse gene pool residing in its wild relatives. A total of 15 sorghum accessions from the unexploited wild gene pool of the Sorghum genus, representing the five subgenera, were sequenced, and the complete chloroplast genomes and 99 common single-copy concatenated nuclear genes were assembled. Annotation of the chloroplast genomes identified a total of 81 protein-coding genes, 38 tRNA, and four rRNA genes. The gene content and gene order among the species was identical. A total of 153 nonsynonymous amino acid changes in 40 genes were identified across the species. Phylogenetic analysis of both the whole chloroplast genome and nuclear genes revealed a similar topology with two distinct clades within the genus. The species within the subgenera Eusorghum, Chaetosorghum, and Heterosorghum clustered in one clade, whereas the species within the subgenera Parasorghum and Stiposorghum clustered in a second clade. However, the subgenera Parasorghum and Stiposorghum were not monophyletic, suggesting the need for further research to resolve the relationships within this group. The close relationship between the two monotypic subgenera Chaetosorghum and Heterosorghum suggests that species within these subgenera could be considered as one group. This analysis provides an improved understanding of the genetic relationships within the Sorghum genus and defines diversity in wild sorghum species that may be useful for crop improvement.
Collapse
Affiliation(s)
- Galaihalage Ananda
- Queensland Alliance for Agriculture and Food Innovation, The Univ. of Queensland, St Lucia, QLD, Australia
| | - Sally Norton
- Australian Grains Genebank, Agriculture Victoria, Horsham, VIC, Australia
| | - Cecilia Blomstedt
- School of Biological Sciences, Monash Univ., Clayton, VIC, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The Univ. of Queensland, St Lucia, QLD, Australia
| | - Birger Møller
- Plant Biochemistry Laboratory, Dep. of Plant and Environmental Sciences, Univ. of Copenhagen, Copenhagen, Denmark
| | - Roslyn Gleadow
- Queensland Alliance for Agriculture and Food Innovation, The Univ. of Queensland, St Lucia, QLD, Australia
- School of Biological Sciences, Monash Univ., Clayton, VIC, Australia
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, The Univ. of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
29
|
Cervantes S, Vuosku J, Pyhäjärvi T. Atlas of tissue-specific and tissue-preferential gene expression in ecologically and economically significant conifer Pinus sylvestris. PeerJ 2021; 9:e11781. [PMID: 34466281 PMCID: PMC8380025 DOI: 10.7717/peerj.11781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Despite their ecological and economical importance, conifers genomic resources are limited, mainly due to the large size and complexity of their genomes. Additionally, the available genomic resources lack complete structural and functional annotation. Transcriptomic resources have been commonly used to compensate for these deficiencies, though for most conifer species they are limited to a small number of tissues, or capture only a fraction of the genes present in the genome. Here we provide an atlas of gene expression patterns for conifer Pinus sylvestris across five tissues: embryo, megagametophyte, needle, phloem and vegetative bud. We used a wide range of tissues and focused our analyses on the expression profiles of genes at tissue level. We provide comprehensive information of the per-tissue normalized expression level, indication of tissue preferential upregulation and tissue-specificity of expression. We identified a total of 48,001 tissue preferentially upregulated and tissue specifically expressed genes, of which 28% have annotation in the Swiss-Prot database. Even though most of the putative genes identified do not have functional information in current biological databases, the tissue-specific patterns discovered provide valuable information about their potential functions for further studies, as for example in the areas of plant physiology, population genetics and genomics in general. As we provide information on tissue specificity at both diploid and haploid life stages, our data will also contribute to the understanding of evolutionary rates of different tissue types and ploidy levels.
Collapse
Affiliation(s)
- Sandra Cervantes
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jaana Vuosku
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Tanja Pyhäjärvi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Comparative transcriptomics provides a strategy for phylogenetic analysis and SSR marker development in Chaenomeles. Sci Rep 2021; 11:16441. [PMID: 34385515 PMCID: PMC8361139 DOI: 10.1038/s41598-021-95776-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The genus Chaenomeles has long been considered an important ornamental, herbal and cash crop and is widely cultivated in East Asia. Traditional studies of Chaenomeles mainly focus on evolutionary relationships at the phenotypic level. In this study, we conducted RNA-seq on 10 Chaenomeles germplasms supplemented with one outgroup species, Docynia delavayi (D. delavayi), on the Illumina HiSeq2500 platform. After de novo assemblies, we generated from 40,084 to 49,571 unigenes for each germplasm. After pairwise comparison of the orthologous sequences, 9,659 orthologues within the 11 germplasms were obtained, with 6,154 orthologous genes identified as single-copy genes. The phylogenetic tree was visualized to reveal evolutionary relationships for these 11 germplasms. GO and KEGG analyses were performed for these common single-copy genes to compare their functional similarities and differences. Selective pressure analysis based on 6,154 common single-copy genes revealed that 45 genes were under positive selection. Most of these genes are involved in building the plant disease defence system. A total of 292 genes containing simple sequence repeats (SSRs) were used to develop SSR markers and compare their functions in secondary metabolism pathways. Finally, 10 primers were chosen as SSR marker candidates for Chaenomeles germplasms by comprehensive standards. Our research provides a new methodology and reference for future related research in Chaenomeles and is also useful for improvement, breeding and selection projects in other related species.
Collapse
|
31
|
Lundberg DS, Pramoj Na Ayutthaya P, Strauß A, Shirsekar G, Lo WS, Lahaye T, Weigel D. Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition. eLife 2021; 10:e66186. [PMID: 34292157 PMCID: PMC8387020 DOI: 10.7554/elife.66186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The ratio of microbial population size relative to the amount of host tissue, or 'microbial load', is a fundamental metric of colonization and infection, but it cannot be directly deduced from microbial amplicon data such as 16S rRNA gene counts. Because existing methods to determine load, such as serial dilution plating, quantitative PCR, and whole metagenome sequencing add substantial cost and/or experimental burden, they are only rarely paired with amplicon sequencing. We introduce host-associated microbe PCR (hamPCR), a robust strategy to both quantify microbial load and describe interkingdom microbial community composition in a single amplicon library. We demonstrate its accuracy across multiple study systems, including nematodes and major crops, and further present a cost-saving technique to reduce host overrepresentation in the library prior to sequencing. Because hamPCR provides an accessible experimental solution to the well-known limitations and statistical challenges of compositional data, it has far-reaching potential in culture-independent microbiology.
Collapse
Affiliation(s)
- Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | | | - Annett Strauß
- Department of Evolutionary Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Wen-Sui Lo
- ZMBP-General Genetics, University of TübingenTübingenGermany
| | - Thomas Lahaye
- ZMBP-General Genetics, University of TübingenTübingenGermany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| |
Collapse
|
32
|
The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts. Nat Commun 2021; 12:4247. [PMID: 34253727 PMCID: PMC8275611 DOI: 10.1038/s41467-021-24528-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The gymnosperm Welwitschia mirabilis belongs to the ancient, enigmatic gnetophyte lineage. It is a unique desert plant with extreme longevity and two ever-elongating leaves. We present a chromosome-level assembly of its genome (6.8 Gb/1 C) together with methylome and transcriptome data to explore its astonishing biology. We also present a refined, high-quality assembly of Gnetum montanum to enhance our understanding of gnetophyte genome evolution. The Welwitschia genome has been shaped by a lineage-specific ancient, whole genome duplication (~86 million years ago) and more recently (1-2 million years) by bursts of retrotransposon activity. High levels of cytosine methylation (particularly at CHH motifs) are associated with retrotransposons, whilst long-term deamination has resulted in an exceptionally GC-poor genome. Changes in copy number and/or expression of gene families and transcription factors (e.g. R2R3MYB, SAUR) controlling cell growth, differentiation and metabolism underpin the plant's longevity and tolerance to temperature, nutrient and water stress.
Collapse
|
33
|
Zhao Y, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, Zhu R, Zhang T, Egan AN, Yi TS, Huang CH, Ma H. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. MOLECULAR PLANT 2021; 14:748-773. [PMID: 33631421 DOI: 10.1016/j.molp.2021.02.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Fabaceae are the third largest angiosperm family, with 765 genera and ∼19 500 species. They are important both economically and ecologically, and global Fabaceae crops are intensively studied in part for their nitrogen-fixing ability. However, resolution of the intrasubfamilial Fabaceae phylogeny and divergence times has remained elusive, precluding a reconstruction of the evolutionary history of symbiotic nitrogen fixation in Fabaceae. Here, we report a highly resolved phylogeny using >1500 nuclear genes from newly sequenced transcriptomes and genomes of 391 species, along with other datasets, for a total of 463 legumes spanning all 6 subfamilies and 333 of 765 genera. The subfamilies are maximally supported as monophyletic. The clade comprising subfamilies Cercidoideae and Detarioideae is sister to the remaining legumes, and Duparquetioideae and Dialioideae are successive sisters to the clade of Papilionoideae and Caesalpinioideae. Molecular clock estimation revealed an early radiation of subfamilies near the K/Pg boundary, marked by mass extinction, and subsequent divergence of most tribe-level clades within ∼15 million years. Phylogenomic analyses of thousands of gene families support 28 proposed putative whole-genome duplication/whole-genome triplication events across Fabaceae, including those at the ancestors of Fabaceae and five of the subfamilies, and further analyses supported the Fabaceae ancestral polyploidy. The evolution of rhizobial nitrogen-fixing nodulation in Fabaceae was probed by ancestral character reconstruction and phylogenetic analyses of related gene families and the results support the hypotheses of one or two switch(es) to rhizobial nodulation followed by multiple losses. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Fabaceae.
Collapse
Affiliation(s)
- Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China; Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Kai-Wen Jiang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, PR China; Ningbo Botanical Garden Herbarium, Ningbo 315201, PR China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Yi Hu
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Renbin Zhu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, PR China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Ashley N Egan
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
34
|
Zhang C, Zhang T, Luebert F, Xiang Y, Huang CH, Hu Y, Rees M, Frohlich MW, Qi J, Weigend M, Ma H. Asterid Phylogenomics/Phylotranscriptomics Uncover Morphological Evolutionary Histories and Support Phylogenetic Placement for Numerous Whole-Genome Duplications. Mol Biol Evol 2021; 37:3188-3210. [PMID: 32652014 DOI: 10.1093/molbev/msaa160] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Asterids are one of the most successful angiosperm lineages, exhibiting extensive morphological diversity and including a number of important crops. Despite their biological prominence and value to humans, the deep asterid phylogeny has not been fully resolved, and the evolutionary landscape underlying their radiation remains unknown. To resolve the asterid phylogeny, we sequenced 213 transcriptomes/genomes and combined them with other data sets, representing all accepted orders and nearly all families of asterids. We show fully supported monophyly of asterids, Berberidopsidales as sister to asterids, monophyly of all orders except Icacinales, Aquifoliales, and Bruniales, and monophyly of all families except Icacinaceae and Ehretiaceae. Novel taxon placements benefited from the expanded sampling with living collections from botanical gardens, resolving hitherto uncertain relationships. The remaining ambiguous placements here are likely due to limited sampling and could be addressed in the future with relevant additional taxa. Using our well-resolved phylogeny as reference, divergence time estimates support an Aptian (Early Cretaceous) origin of asterids and the origin of all orders before the Cretaceous-Paleogene boundary. Ancestral state reconstruction at the family level suggests that the asterid ancestor was a woody terrestrial plant with simple leaves, bisexual, and actinomorphic flowers with free petals and free anthers, a superior ovary with a style, and drupaceous fruits. Whole-genome duplication (WGD) analyses provide strong evidence for 33 WGDs in asterids and one in Berberidopsidales, including four suprafamilial and seven familial/subfamilial WGDs. Our results advance the understanding of asterid phylogeny and provide numerous novel evolutionary insights into their diversification and morphological evolution.
Collapse
Affiliation(s)
- Caifei Zhang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Taikui Zhang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Federico Luebert
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany.,Department of Silviculture and Nature Conservation, University of Chile, Santiago, Chile
| | - Yezi Xiang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chien-Hsun Huang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Biology, The Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Mathew Rees
- Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | | | - Ji Qi
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Maximilian Weigend
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - Hong Ma
- Department of Biology, The Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
35
|
Pascoal PV, Ribeiro DM, Cereijo CR, Santana H, Nascimento RC, Steindorf AS, Calsing LCG, Formighieri EF, Brasil BSAF. Biochemical and phylogenetic characterization of the wastewater tolerant Chlamydomonas biconvexa Embrapa|LBA40 strain cultivated in palm oil mill effluent. PLoS One 2021; 16:e0249089. [PMID: 33826653 PMCID: PMC8026047 DOI: 10.1371/journal.pone.0249089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/11/2021] [Indexed: 11/19/2022] Open
Abstract
The increasing demand for water, food and energy poses challenges for the world´s sustainability. Tropical palm oil is currently the major source of vegetable oil worldwide with a production that exceeds 55 million tons per year, while generating over 200 million tons of palm oil mill effluent (POME). It could potentially be used as a substrate for production of microalgal biomass though. In this study, the microalgal strain Chlamydomonas biconvexa Embrapa|LBA40, originally isolated from a sugarcane vinasse stabilization pond, was selected among 17 strains tested for growth in POME retrieved from anaerobic ponds of a palm oil industrial plant located within the Amazon rainforest region. During cultivation in POME, C. biconvexa Embrapa|LBA40 biomass productivity reached 190.60 mgDW • L-1 • d-1 using 15L airlift flat plate photobioreactors. Carbohydrates comprised the major fraction of algal biomass (31.96%), while the lipidic fraction reached up to 11.3% of dry mass. Reductions of 99% in ammonium and nitrite, as well as 98% reduction in phosphate present in POME were detected after 5 days of algal cultivation. This suggests that the aerobic pond stage, usually used in palm oil industrial plants to reduce POME inorganic load, could be substituted by high rate photobioreactors, significantly reducing the time and area requirements for wastewater treatment. In addition, the complete mitochondrial genome of C. biconvexa Embrapa|LBA40 strain was sequenced, revealing a compact mitogenome, with 15.98 kb in size, a total of 14 genes, of which 9 are protein coding genes. Phylogenetic analysis confirmed the strain taxonomic status within the Chlamydomonas genus, opening up opportunities for future genetic modification and molecular breeding programs in these species.
Collapse
Affiliation(s)
- Patrícia Verdugo Pascoal
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
- Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Dágon Manoel Ribeiro
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Universidade Zambeze, Sofala, Mozambique
| | | | - Hugo Santana
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
| | - Rodrigo Carvalho Nascimento
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
- Universidade Federal do Tocantins, Gurupi, Tocantins, Brazil
| | | | | | | | - Bruno S. A. F. Brasil
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
- Universidade Federal da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
36
|
Restrepo-Montoya D, McClean PE, Osorno JM. Orthology and synteny analysis of receptor-like kinases "RLK" and receptor-like proteins "RLP" in legumes. BMC Genomics 2021; 22:113. [PMID: 33568053 PMCID: PMC7874474 DOI: 10.1186/s12864-021-07384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Legume species are an important plant model because of their protein-rich physiology. The adaptability and productivity of legumes are limited by major biotic and abiotic stresses. Responses to these stresses directly involve plasma membrane receptor proteins known as receptor-like kinases and receptor-like proteins. Evaluating the homology relations among RLK and RLP for seven legume species, and exploring their presence among synteny blocks allow an increased understanding of evolutionary relations, physical position, and chromosomal distribution in related species and their shared roles in stress responses. RESULTS Typically, a high proportion of RLK and RLP legume proteins belong to orthologous clusters, which is confirmed in this study, where between 66 to 90% of the RLKs and RLPs per legume species were classified in orthologous clusters. One-third of the evaluated syntenic blocks had shared RLK/RLP genes among both legumes and non-legumes. Among the legumes, between 75 and 98% of the RLK/RLP were present in syntenic blocks. The distribution of chromosomal segments between Phaseolus vulgaris and Vigna unguiculata, two species that diverged ~ 8 mya, were highly similar. Among the RLK/RLP synteny clusters, seven experimentally validated resistance RLK/RLP genes were identified in syntenic blocks. The RLK resistant genes FLS2, BIR2, ERECTA, IOS1, and AtSERK1 from Arabidopsis and SLSERK1 from Solanum lycopersicum were present in different pairwise syntenic blocks among the legume species. Meanwhile, only the LYM1- RLP resistant gene from Arabidopsis shared a syntenic blocks with Glycine max. CONCLUSIONS The orthology analysis of the RLK and RLP suggests a dynamic evolution in the legume family, with between 66 to 85% of RLK and 83 to 88% of RLP belonging to orthologous clusters among the species evaluated. In fact, for the 10-species comparison, a lower number of singleton proteins were reported among RLP compared to RLK, suggesting that RLP positions are more physically conserved compared to RLK. The identification of RLK and RLP genes among the synteny blocks in legumes revealed multiple highly conserved syntenic blocks on multiple chromosomes. Additionally, the analysis suggests that P. vulgaris is an appropriate anchor species for comparative genomics among legumes.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108-6050, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108-6050, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
37
|
Genomics of Clinal Local Adaptation in Pinus sylvestris Under Continuous Environmental and Spatial Genetic Setting. G3-GENES GENOMES GENETICS 2020; 10:2683-2696. [PMID: 32546502 PMCID: PMC7407466 DOI: 10.1534/g3.120.401285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the consequences of local adaptation at the genomic diversity is a central goal in evolutionary genetics of natural populations. In species with large continuous geographical distributions the phenotypic signal of local adaptation is frequently clear, but the genetic basis often remains elusive. We examined the patterns of genetic diversity in Pinus sylvestris, a keystone species in many Eurasian ecosystems with a huge distribution range and decades of forestry research showing that it is locally adapted to the vast range of environmental conditions. Making P. sylvestris an even more attractive subject of local adaptation study, population structure has been shown to be weak previously and in this study. However, little is known about the molecular genetic basis of adaptation, as the massive size of gymnosperm genomes has prevented large scale genomic surveys. We generated a both geographically and genomically extensive dataset using a targeted sequencing approach. By applying divergence-based and landscape genomics methods we identified several loci contributing to local adaptation, but only few with large allele frequency changes across latitude. We also discovered a very large (ca. 300 Mbp) putative inversion potentially under selection, which to our knowledge is the first such discovery in conifers. Our results call for more detailed analysis of structural variation in relation to genomic basis of local adaptation, emphasize the lack of large effect loci contributing to local adaptation in the coding regions and thus point out the need for more attention toward multi-locus analysis of polygenic adaptation.
Collapse
|
38
|
Affiliation(s)
- Alicia Toon
- School of Biological Sciences; The University of Queensland; Brisbane Queensland 4072 Australia
| | - L. Irene Terry
- School of Biological Sciences; University of Utah; Salt Lake City Utah USA
| | | | - Gimme H. Walter
- School of Biological Sciences; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Lyn G. Cook
- School of Biological Sciences; The University of Queensland; Brisbane Queensland 4072 Australia
| |
Collapse
|
39
|
Vasilikopoulos A, Misof B, Meusemann K, Lieberz D, Flouri T, Beutel RG, Niehuis O, Wappler T, Rust J, Peters RS, Donath A, Podsiadlowski L, Mayer C, Bartel D, Böhm A, Liu S, Kapli P, Greve C, Jepson JE, Liu X, Zhou X, Aspöck H, Aspöck U. An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evol Biol 2020; 20:64. [PMID: 32493355 PMCID: PMC7268685 DOI: 10.1186/s12862-020-01631-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The latest advancements in DNA sequencing technologies have facilitated the resolution of the phylogeny of insects, yet parts of the tree of Holometabola remain unresolved. The phylogeny of Neuropterida has been extensively studied, but no strong consensus exists concerning the phylogenetic relationships within the order Neuroptera. Here, we assembled a novel transcriptomic dataset to address previously unresolved issues in the phylogeny of Neuropterida and to infer divergence times within the group. We tested the robustness of our phylogenetic estimates by comparing summary coalescent and concatenation-based phylogenetic approaches and by employing different quartet-based measures of phylogenomic incongruence, combined with data permutations. RESULTS Our results suggest that the order Raphidioptera is sister to Neuroptera + Megaloptera. Coniopterygidae is inferred as sister to all remaining neuropteran families suggesting that larval cryptonephry could be a ground plan feature of Neuroptera. A clade that includes Nevrorthidae, Osmylidae, and Sisyridae (i.e. Osmyloidea) is inferred as sister to all other Neuroptera except Coniopterygidae, and Dilaridae is placed as sister to all remaining neuropteran families. Ithonidae is inferred as the sister group of monophyletic Myrmeleontiformia. The phylogenetic affinities of Chrysopidae and Hemerobiidae were dependent on the data type analyzed, and quartet-based analyses showed only weak support for the placement of Hemerobiidae as sister to Ithonidae + Myrmeleontiformia. Our molecular dating analyses suggest that most families of Neuropterida started to diversify in the Jurassic and our ancestral character state reconstructions suggest a primarily terrestrial environment of the larvae of Neuropterida and Neuroptera. CONCLUSION Our extensive phylogenomic analyses consolidate several key aspects in the backbone phylogeny of Neuropterida, such as the basal placement of Coniopterygidae within Neuroptera and the monophyly of Osmyloidea. Furthermore, they provide new insights into the timing of diversification of Neuropterida. Despite the vast amount of analyzed molecular data, we found that certain nodes in the tree of Neuroptera are not robustly resolved. Therefore, we emphasize the importance of integrating the results of morphological analyses with those of sequence-based phylogenomics. We also suggest that comparative analyses of genomic meta-characters should be incorporated into future phylogenomic studies of Neuropterida.
Collapse
Affiliation(s)
- Alexandros Vasilikopoulos
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany.
| | - Bernhard Misof
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany.
| | - Karen Meusemann
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
- Australian National Insect Collection, National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia
| | - Doria Lieberz
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Torsten Wappler
- Natural History Department, Hessisches Landesmuseum Darmstadt, 64283, Darmstadt, Germany
| | - Jes Rust
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Ralph S Peters
- Centre for Taxonomy and Evolutionary Research, Arthropoda Department, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Alexander Donath
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Lars Podsiadlowski
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Christoph Mayer
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Daniela Bartel
- Department of Evolutionary Biology, University of Vienna, 1090, Vienna, Austria
| | - Alexander Böhm
- Department of Evolutionary Biology, University of Vienna, 1090, Vienna, Austria
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Paschalia Kapli
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt, Germany
| | - James E Jepson
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 N73K, Cork, Ireland
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Xin Zhou
- Department of Entomology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Horst Aspöck
- Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University of Vienna (MUW), 1090, Vienna, Austria
| | - Ulrike Aspöck
- Department of Evolutionary Biology, University of Vienna, 1090, Vienna, Austria
- Zoological Department II, Natural History Museum of Vienna, 1010, Vienna, Austria
| |
Collapse
|
40
|
Pyhäjärvi T, Kujala ST, Savolainen O. 275 years of forestry meets genomics in Pinus sylvestris. Evol Appl 2020; 13:11-30. [PMID: 31988655 PMCID: PMC6966708 DOI: 10.1111/eva.12809] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Pinus sylvestris has a long history of basic and applied research that is relevant for both forestry and evolutionary studies. Its patterns of adaptive variation and role in forest economic and ecological systems have been studied extensively for nearly 275 years, detailed demography for a 100 years and mating system more than 50 years. However, its reference genome sequence is not yet available and genomic studies have been lagging compared to, for example, Pinus taeda and Picea abies, two other economically important conifers. Despite the lack of reference genome, many modern genomic methods are applicable for a more detailed look at its biological characteristics. For example, RNA-seq has revealed a complex transcriptional landscape and targeted DNA sequencing displays an excess of rare variants and geographically homogenously distributed molecular genetic diversity. Current DNA and RNA resources can be used as a reference for gene expression studies, SNP discovery, and further targeted sequencing. In the future, specific consequences of the large genome size, such as functional effects of regulatory open chromatin regions and transposable elements, should be investigated more carefully. For forest breeding and long-term management purposes, genomic data can help in assessing the genetic basis of inbreeding depression and the application of genomic tools for genomic prediction and relatedness estimates. Given the challenges of breeding (long generation time, no easy vegetative propagation) and the economic importance, application of genomic tools has a potential to have a considerable impact. Here, we explore how genomic characteristics of P. sylvestris, such as rare alleles and the low extent of linkage disequilibrium, impact the applicability and power of the tools.
Collapse
Affiliation(s)
- Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| | | | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
41
|
Shen TT, Ran JH, Wang XQ. Phylogenomics disentangles the evolutionary history of spruces (Picea) in the Qinghai-Tibetan Plateau: Implications for the design of population genetic studies and species delimitation of conifers. Mol Phylogenet Evol 2019; 141:106612. [DOI: 10.1016/j.ympev.2019.106612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
|
42
|
Sudianto E, Chaw SM. Two Independent Plastid accD Transfers to the Nuclear Genome of Gnetum and Other Insights on Acetyl-CoA Carboxylase Evolution in Gymnosperms. Genome Biol Evol 2019; 11:1691-1705. [PMID: 30924880 PMCID: PMC6595918 DOI: 10.1093/gbe/evz059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
Acetyl-CoA carboxylase (ACCase) is the key regulator of fatty acid biosynthesis. In most plants, ACCase exists in two locations (cytosol and plastids) and in two forms (homomeric and heteromeric). Heteromeric ACCase comprises four subunits, three of them (ACCA-C) are nuclear encoded (nr) and the fourth (ACCD) is usually plastid encoded. Homomeric ACCase is encoded by a single nr-gene (ACC). We investigated the ACCase gene evolution in gymnosperms by examining the transcriptomes of newly sequenced Gnetum ula, combined with 75 transcriptomes and 110 plastomes of other gymnosperms. AccD-coding sequences are elongated through the insertion of repetitive DNA in four out of five cupressophyte families (except Sciadopityaceae) and were functionally transferred to the nucleus of gnetophytes and Sciadopitys. We discovered that, among the three genera of gnetophytes, only Gnetum has two copies of nr-accD. Furthermore, using protoplast transient expression assays, we experimentally verified that the nr-accD precursor proteins in Gnetum and Sciadopitys can be delivered to the plastids. Of the two nr-accD copies of Gnetum, one dually targets plastids and mitochondria, whereas the other potentially targets plastoglobuli. The distinct transit peptides, gene architectures, and flanking sequences between the two Gnetum accDs suggest that they have independent origins. Our findings are the first account of two distinctly targeted nr-accDs of any green plants and the most comprehensive analyses of ACCase evolution in gymnosperms to date.
Collapse
Affiliation(s)
- Edi Sudianto
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
43
|
Utilization of Tissue Ploidy Level Variation in de Novo Transcriptome Assembly of Pinus sylvestris. G3-GENES GENOMES GENETICS 2019; 9:3409-3421. [PMID: 31427456 PMCID: PMC6778806 DOI: 10.1534/g3.119.400357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Compared to angiosperms, gymnosperms lag behind in the availability of assembled and annotated genomes. Most genomic analyses in gymnosperms, especially conifer tree species, rely on the use of de novo assembled transcriptomes. However, the level of allelic redundancy and transcript fragmentation in these assembled transcriptomes, and their effect on downstream applications have not been fully investigated. Here, we assessed three assembly strategies for short-reads data, including the utility of haploid megagametophyte tissue during de novo assembly as single-allele guides, for six individuals and five different tissues in Pinus sylvestris. We then contrasted haploid and diploid tissue genotype calls obtained from the assembled transcriptomes to evaluate the extent of paralog mapping. The use of the haploid tissue during assembly increased its completeness without reducing the number of assembled transcripts. Our results suggest that current strategies that rely on available genomic resources as guidance to minimize allelic redundancy are less effective than the application of strategies that cluster redundant assembled transcripts. The strategy yielding the lowest levels of allelic redundancy among the assembled transcriptomes assessed here was the generation of SuperTranscripts with Lace followed by CD-HIT clustering. However, we still observed some levels of heterozygosity (multiple gene fragments per transcript reflecting allelic redundancy) in this assembled transcriptome on the haploid tissue, indicating that further filtering is required before using these assemblies for downstream applications. We discuss the influence of allelic redundancy when these reference transcriptomes are used to select regions for probe design of exome capture baits and for estimation of population genetic diversity.
Collapse
|
44
|
Dong S, Xiao Y, Kong H, Feng C, Harris A, Yan Y, Kang M. Nuclear loci developed from multiple transcriptomes yield high resolution in phylogeny of scaly tree ferns (Cyatheaceae) from China and Vietnam. Mol Phylogenet Evol 2019; 139:106567. [DOI: 10.1016/j.ympev.2019.106567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022]
|
45
|
Dong Y, Chen S, Cheng S, Zhou W, Ma Q, Chen Z, Fu CX, Liu X, Zhao YP, Soltis PS, Wong GKS, Soltis DE, Xiang QYJ. Natural selection and repeated patterns of molecular evolution following allopatric divergence. eLife 2019; 8:45199. [PMID: 31373555 PMCID: PMC6744222 DOI: 10.7554/elife.45199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/01/2019] [Indexed: 11/13/2022] Open
Abstract
Although geographic isolation is a leading driver of speciation, the tempo and pattern of divergence at the genomic level remain unclear. We examine genome-wide divergence of putatively single-copy orthologous genes (POGs) in 20 allopatric species/variety pairs from diverse angiosperm clades, with 16 pairs reflecting the classic eastern Asia-eastern North America floristic disjunction. In each pair, >90% of POGs are under purifying selection, and <10% are under positive selection. A set of POGs are under strong positive selection, 14 of which are shared by 10-15 pairs, and one shared by all pairs; 15 POGs are annotated to biological processes responding to various stimuli. The relative abundance of POGs under different selective forces exhibits a repeated pattern among pairs despite an ~10 million-year difference in divergence time. Species divergence times are positively correlated with abundance of POGs under moderate purifying selection, but negatively correlated with abundance of POGs under strong purifying selection.
Collapse
Affiliation(s)
- Yibo Dong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States.,Plant Biology Division, Noble Research Institute, Ardmore, United States
| | - Shichao Chen
- Florida Museum of Natural History, University of Florida, Gainesville, United States.,Department of Biology, University of Florida, Gainesville, United States.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Wenbin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Qing Ma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Xin Fu
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Beijing Genomics Institute, Shenzhen, China
| | - Yun-Peng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, United States
| | - Gane Ka-Shu Wong
- Beijing Genomics Institute, Shenzhen, China.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Medicine, University of Alberta, Edmonton, Canada
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, United States.,Department of Biology, University of Florida, Gainesville, United States
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| |
Collapse
|
46
|
Wang W, Wan T, Becher H, Kuderova A, Leitch IJ, Garcia S, Leitch AR, Kovařík A. Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. ANNALS OF BOTANY 2019; 123:767-781. [PMID: 30265284 PMCID: PMC6526317 DOI: 10.1093/aob/mcy172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/04/2018] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Gnetophytes, comprising the genera Ephedra, Gnetum and Welwitschia, are an understudied, enigmatic lineage of gymnosperms with a controversial phylogenetic relationship to other seed plants. Here we examined the organization of ribosomal DNA (rDNA) across representative species. METHODS We applied high-throughput sequencing approaches to isolate and reconstruct rDNA units and to determine their intragenomic homogeneity. In addition, fluorescent in situ hybridization and Southern blot hybridization techniques were used to reveal the chromosome and genomic organization of rDNA. KEY RESULTS The 5S and 35S rRNA genes were separate (S-type) in Gnetum montanum, Gnetum gnemon and Welwitschia mirabilis and linked (L-type) in Ephedra altissima. There was considerable variability in 5S rDNA abundance, ranging from as few as ~4000 (W. mirabilis) to >100 000 (G. montanum) copies. A similar large variation was also observed in 5S rDNA locus numbers (two to 16 sites per diploid cell). 5S rRNA pseudogenes were interspersed between functional genes forming a single unit in E. altissima and G. montanum. Their copy number was comparable or even higher than that of functional 5S rRNA genes. In E. altissima internal transcribed spacers of 35S rDNA were long and intrinsically repetitive while in G. montanum and W. mirabilis they were short without the subrepeats. CONCLUSIONS Gnetophytes are distinct from other gymnosperms and angiosperms as they display surprisingly large variability in rDNA organization and rDNA copy and locus numbers between genera, with no relationship between copy numbers and genome sizes apparent. Concerted evolution of 5S rDNA units seems to have led to the amplification of 5S pseudogenes in both G. montanum and E. altissima. Evolutionary patterns of rDNA show both gymnosperm and angiosperm features underlining the diversity of the group.
Collapse
Affiliation(s)
- Wencai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzen, PR China
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan, PR China
| | - Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Alena Kuderova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, Barcelona, Catalonia, Spain
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
47
|
Ran JH, Shen TT, Wang MM, Wang XQ. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc Biol Sci 2019; 285:rspb.2018.1012. [PMID: 29925623 DOI: 10.1098/rspb.2018.1012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 02/04/2023] Open
Abstract
After decades of molecular phylogenetic studies, the deep phylogeny of gymnosperms has not been resolved, and the phylogenetic placement of Gnetales remains one of the most controversial issues in seed plant evolution. To resolve the deep phylogeny of seed plants and to address the sources of phylogenetic conflict, we conducted a phylotranscriptomic study with a sampling of all 13 families of gymnosperms and main lineages of angiosperms. Multiple datasets containing up to 1 296 042 sites across 1308 loci were analysed, using concatenation and coalescence approaches. Our study generated a consistent and well-resolved phylogeny of seed plants, which places Gnetales as sister to Pinaceae and thus supports the Gnepine hypothesis. Cycads plus Ginkgo is sister to the remaining gymnosperms. We also found that Gnetales and angiosperms have similar molecular evolutionary rates, which are much higher than those of other gymnosperms. This implies that Gnetales and angiosperms might have experienced similar selective pressures in evolutionary histories. Convergent molecular evolution or homoplasy is partially responsible for the phylogenetic conflicts in seed plants. Our study provides a robustly reconstructed backbone phylogeny that is important for future molecular and morphological studies of seed plants, in particular gymnosperms, in the light of evolution.
Collapse
Affiliation(s)
- Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Ting-Ting Shen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Ming-Ming Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China .,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
48
|
Luo D, Li Y, Zhao Q, Zhao L, Ludwig A, Peng Z. Highly Resolved Phylogenetic Relationships within Order Acipenseriformes According to Novel Nuclear Markers. Genes (Basel) 2019; 10:E38. [PMID: 30634684 PMCID: PMC6356338 DOI: 10.3390/genes10010038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
Order Acipenseriformes contains 27 extant species distributed across the northern hemisphere, including so-called "living fossil" species of garfish and sturgeons. Previous studies have focused on their mitochondrial genetics and have rarely used nuclear genetic data, leaving questions as to their phylogenetic relationships. This study aimed to utilize a bioinformatics approach to screen for candidate single-copy nuclear genes, using transcriptomic data from sturgeon species and genomic data from the spotted gar, Lepisosteus oculatus. We utilized nested polymerase chain reaction (PCR) and degenerate primers to identify nuclear protein-coding (NPC) gene markers to determine phylogenetic relationships among the Acipenseriformes. We identified 193 nuclear single-copy genes, selected from 1850 candidate genes with at least one exon larger than 700 bp. Forty-three of these genes were used for primer design and development of 30 NPC markers, which were sequenced for at least 14 Acipenseriformes species. Twenty-seven NPC markers were found completely in 16 species. Gene trees according to Bayesian inference (BI) and maximum likelihood (ML) were calculated based on the 30 NPC markers (20,946 bp total). Both gene and species trees produced very similar topologies. A molecular clock model estimated the divergence time between sturgeon and paddlefish at 204.1 Mya, approximately 10% later than previous estimates based on cytochrome b data (184.4 Mya). The successful development and application of NPC markers provides a new perspective and insight for the phylogenetic relationships of Acipenseriformes. Furthermore, the newly developed nuclear markers may be useful in further studies on the conservation, evolution, and genomic biology of this group.
Collapse
Affiliation(s)
- Dehuai Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| | - Yanping Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Qingyuan Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| | - Lianpeng Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, 10315 Berlin, Germany.
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
49
|
Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol Phylogenet Evol 2018; 129:106-116. [DOI: 10.1016/j.ympev.2018.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
|
50
|
Hohmann N, Wolf EM, Rigault P, Zhou W, Kiefer M, Zhao Y, Fu CX, Koch MA. Ginkgo biloba's footprint of dynamic Pleistocene history dates back only 390,000 years ago. BMC Genomics 2018; 19:299. [PMID: 29703145 PMCID: PMC5921299 DOI: 10.1186/s12864-018-4673-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND At the end of the Pliocene and the beginning of Pleistocene glaciation and deglaciation cycles Ginkgo biloba went extinct all over the world, and only few populations remained in China in relict areas serving as sanctuary for Tertiary relict trees. Yet the status of these regions as refuge areas with naturally existing populations has been proven not earlier than one decade ago. Herein we elaborated the hypothesis that during the Pleistocene cooling periods G. biloba expanded its distribution range in China repeatedly. Whole plastid genomes were sequenced, assembled and annotated, and sequence data was analyzed in a phylogenetic framework of the entire gymnosperms to establish a robust spatio-temporal framework for gymnosperms and in particular for G. biloba Pleistocene evolutionary history. RESULTS Using a phylogenetic approach, we identified that Ginkgoatae stem group age is about 325 million years, whereas crown group radiation of extant Ginkgo started not earlier than 390,000 years ago. During repeated warming phases, Gingko populations were separated and isolated by contraction of distribution range and retreated into mountainous regions serving as refuge for warm-temperate deciduous forests. Diversification and phylogenetic splits correlate with the onset of cooling phases when Ginkgo expanded its distribution range and gene pools merged. CONCLUSIONS Analysis of whole plastid genome sequence data representing the entire spatio-temporal genetic variation of wild extant Ginkgo populations revealed the deepest temporal footprint dating back to approximately 390,000 years ago. Present-day directional West-East admixture of genetic diversity is shown to be the result of pronounced effects of the last cooling period. Our evolutionary framework will serve as a conceptual roadmap for forthcoming genomic sequence data, which can then provide deep insights into the demographic history of Ginkgo.
Collapse
Affiliation(s)
- Nora Hohmann
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.,Present address: Department of Environmental Sciences, Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Eva M Wolf
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany
| | - Philippe Rigault
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.,GYDLE Inc., 1135 Grande Allée Ouest, Suite 220, QC, Québec, G1S 1E7, Canada
| | - Wenbin Zhou
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Markus Kiefer
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany
| | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Cheng-Xin Fu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Marcus A Koch
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.
| |
Collapse
|