1
|
Hathaway NJ, Kim IE, WernsmanYoung N, Hui ST, Crudale R, Liang EY, Nixon CP, Giesbrecht D, Juliano JJ, Parr JB, Bailey JA. Interchromosomal segmental duplication drives translocation and loss of P. falciparum histidine-rich protein 3. eLife 2024; 13:RP93534. [PMID: 39373634 PMCID: PMC11458181 DOI: 10.7554/elife.93534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13-11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.
Collapse
Affiliation(s)
- Nicholas J Hathaway
- Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Isaac E Kim
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Neeva WernsmanYoung
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown UniversityProvidenceUnited States
| | - Sin Ting Hui
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Rebecca Crudale
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Emily Y Liang
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Christian P Nixon
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - David Giesbrecht
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North CarolinaChapel HillUnited States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North CarolinaChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North CarolinaChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| |
Collapse
|
2
|
Ferreira LT, Cassiano GC, Alvarez LCS, Okombo J, Calit J, Fontinha D, Gil-Iturbe E, Coyle R, Andrade CH, Sunnerhagen P, Bargieri DY, Prudêncio M, Quick M, Cravo PV, Lee MCS, Fidock DA, Costa FTM. A novel 4-aminoquinoline chemotype with multistage antimalarial activity and lack of cross-resistance with PfCRT and PfMDR1 mutants. PLoS Pathog 2024; 20:e1012627. [PMID: 39471233 PMCID: PMC11521309 DOI: 10.1371/journal.ppat.1012627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the mainstay of effective treatment of Plasmodium falciparum malaria. However, the long-term utility of ACTs is imperiled by widespread partial artemisinin resistance in Southeast Asia and its recent emergence in parts of East Africa. This underscores the need to identify chemotypes with new modes of action (MoAs) to circumvent resistance to ACTs. In this study, we characterized the asexual blood stage antiplasmodial activity and resistance mechanisms of LDT-623, a 4-aminoquinoline (4-AQ). We also detected LDT-623 activity against multiple stages (liver schizonts, stage IV-V gametocytes, and ookinetes) of Plasmodium's life cycle, a feature unlike other 4-AQs such as chloroquine (CQ) and piperaquine (PPQ). Using heme fractionation profiling and drug uptake studies in PfCRT-containing proteoliposomes, we observed inhibition of hemozoin formation and PfCRT-mediated transport, which constitute characteristic features of 4-AQs' MoA. We also found minimal cross-resistance to LDT-623 in a panel of mutant pfcrt or pfmdr1 lines, but not the PfCRT F145I mutant that is highly resistant to PPQ resistance yet is very unfit. No P. falciparum parasites were recovered in an in vitro resistance selection study, suggesting a high barrier for resistance to emerge. Finally, a competitive growth assay comprising >50 barcoded parasite lines with mutated resistance mediators or major drug targets found no evidence of cross-resistance. Our findings support further exploration of this promising 4-AQ.
Collapse
Affiliation(s)
- Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets, School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Center for Excellence in Artificial Intelligence, Institute of Informatics, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, Area Neuroscience – Molecular Therapeutics, New York, New York, United States of America
| | - Pedro V. Cravo
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Rosenthal PJ, Asua V, Bailey JA, Conrad MD, Ishengoma DS, Kamya MR, Rasmussen C, Tadesse FG, Uwimana A, Fidock DA. The emergence of artemisinin partial resistance in Africa: how do we respond? THE LANCET. INFECTIOUS DISEASES 2024; 24:e591-e600. [PMID: 38552654 DOI: 10.1016/s1473-3099(24)00141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/21/2024]
Abstract
Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.
Collapse
Affiliation(s)
- Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA.
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda; University of Tübingen, Tübingen, Germany
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA; Departments of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Melissa D Conrad
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania; Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania; School of Public Health, Harvard University, Boston, MA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda; Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Fitsum G Tadesse
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia; London School of Hygiene and Tropical Medicine, London, UK
| | - Aline Uwimana
- Rwanda Biomedical Center, Kigali, Rwanda; Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Aranda-Díaz A, Vickers EN, Murie K, Palmer B, Hathaway N, Gerlovina I, Boene S, Garcia-Ulloa M, Cisteró P, Katairo T, Semakuba FD, Nsengimaana B, Gwarinda H, García-Fernández C, Da Silva C, Datta D, Kiyaga S, Wiringilimaana I, Fekele SM, Parr JB, Conrad M, Raman J, Tukwasibwe S, Ssewanyana I, Rovira-Vallbona E, Tato CM, Briggs J, Mayor A, Greenhouse B. Sensitive and modular amplicon sequencing of Plasmodium falciparum diversity and resistance for research and public health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609145. [PMID: 39229023 PMCID: PMC11370457 DOI: 10.1101/2024.08.22.609145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Targeted amplicon sequencing is a powerful and efficient tool to interrogate the P. falciparum genome and generate actionable data from infections to complement traditional malaria epidemiology. For maximum impact, genomic tools should be multi-purpose, robust, sensitive and reproducible. We developed, characterized, and implemented MAD4HatTeR, an amplicon sequencing panel based on Multiplex Amplicons for Drug, Diagnostic, Diversity, and Differentiation Haplotypes using Targeted Resequencing, along with a bioinformatic pipeline for data analysis. MAD4HatTeR targets 165 highly diverse loci, focusing on multiallelic microhaplotypes; key markers for drug and diagnostic resistance, including duplications and deletions; and csp and potential vaccine targets. In addition, it can detect non-falciparum Plasmodium species. We used laboratory control and field sample data to demonstrate the high sensitivity and robustness of the panel. The successful implementation of this method in five laboratories, including three in malaria-endemic African countries, showcases its feasibility in generating reproducible data across laboratories. Finally, we introduce an analytical approach to detect gene duplications and deletions from amplicon sequencing data. MAD4HatTeR is thus a powerful research tool and a robust resource for malaria public health surveillance and control.
Collapse
Affiliation(s)
- Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Eric Neubauer Vickers
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Kathryn Murie
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Brian Palmer
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Nicholas Hathaway
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Inna Gerlovina
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Simone Boene
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Hazel Gwarinda
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research (ARMMOR), Centre of Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | | | | | - Shahiid Kiyaga
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Sindew Mekasha Fekele
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia
| | - Jonathan B Parr
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Melissa Conrad
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Jaishree Raman
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research (ARMMOR), Centre of Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Wits Research Institute for Malaria, University of Witwatersrand, Johannesburg, South Africa
- University of Pretoria Institute for Sustainable Malaria Control (UPISMC), University of Pretoria, Pretoria, South Africa
| | | | | | | | | | - Jessica Briggs
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Kane J, Li X, Kumar S, Button-Simons KA, Vendrely Brenneman KM, Dahlhoff H, Sievert MAC, Checkley LA, Shoue DA, Singh PP, Abatiyow BA, Haile MT, Nair S, Reyes A, Tripura R, Peto TJ, Lek D, Mukherjee A, Kappe SHI, Dhorda M, Nkhoma SC, Cheeseman IH, Vaughan AM, Anderson TJC, Ferdig MT. A Plasmodium falciparum genetic cross reveals the contributions of pfcrt and plasmepsin II/III to piperaquine drug resistance. mBio 2024; 15:e0080524. [PMID: 38912775 PMCID: PMC11253641 DOI: 10.1128/mbio.00805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Piperaquine (PPQ) is widely used in combination with dihydroartemisinin as a first-line treatment against malaria. Multiple genetic drivers of PPQ resistance have been reported, including mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and increased copies of plasmepsin II/III (pm2/3). We generated a cross between a Cambodia-derived multidrug-resistant KEL1/PLA1 lineage isolate (KH004) and a drug-susceptible Malawian parasite (Mal31). Mal31 harbors a wild-type (3D7-like) pfcrt allele and a single copy of pm2/3, while KH004 has a chloroquine-resistant (Dd2-like) pfcrt allele with an additional G367C substitution and multiple copies of pm2/3. We recovered 104 unique recombinant parasites and examined a targeted set of progeny representing all possible combinations of variants at pfcrt and pm2/3. We performed a detailed analysis of competitive fitness and a range of PPQ susceptibility phenotypes with these progenies, including PPQ survival assay, area under the dose response curve, and a limited point IC50. We find that inheritance of the KH004 pfcrt allele is required for reduced PPQ sensitivity, whereas copy number variation in pm2/3 further decreases susceptibility but does not confer resistance in the absence of additional mutations in pfcrt. A deep investigation of genotype-phenotype relationships demonstrates that progeny clones from experimental crosses can be used to understand the relative contributions of pfcrt, pm2/3, and parasite genetic background to a range of PPQ-related traits. Additionally, we find that the resistance phenotype associated with parasites inheriting the G367C substitution in pfcrt is consistent with previously validated PPQ resistance mutations in this transporter.IMPORTANCEResistance to piperaquine, used in combination with dihydroartemisinin, has emerged in Cambodia and threatens to spread to other malaria-endemic regions. Understanding the causal mutations of drug resistance and their impact on parasite fitness is critical for surveillance and intervention and can also reveal new avenues to limiting the evolution and spread of drug resistance. An experimental genetic cross is a powerful tool for pinpointing the genetic determinants of key drug resistance and fitness phenotypes and has the distinct advantage of quantifying the effects of naturally evolved genetic variation. Our study was strengthened since the full range of copies of KH004 pm2/3 was inherited among the progeny clones, allowing us to directly test the role of the pm2/3 copy number on resistance-related phenotypes in the context of a unique pfcrt allele. Our multigene model suggests an important role for both loci in the evolution of this multidrug-resistant parasite lineage.
Collapse
Affiliation(s)
- John Kane
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Katrina A. Button-Simons
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn M. Vendrely Brenneman
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Haley Dahlhoff
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mackenzie A. C. Sievert
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lisa A. Checkley
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Douglas A. Shoue
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Puspendra P. Singh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Shalini Nair
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom
| | - Thomas J. Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Angana Mukherjee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom
| | - Standwell C. Nkhoma
- BEI Resources, American Type Culture Collection (ATCC), Manassas, Virginia, USA
| | - Ian H. Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Timothy J. C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Michael T. Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
6
|
Dai Y, Liang Y, Liu C, Liu T, Chen L, Li Y. Can artemisinin and its derivatives treat malaria in a host-directed manner? Biochem Pharmacol 2024; 225:116260. [PMID: 38705539 DOI: 10.1016/j.bcp.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Malaria is caused by an apicomplexan protozoan parasite, Plasmodium, and is transmitted through vectors. It remains a substantial health burden, especially in developing countries, leading to significant socioeconomic losses. Although the World Health Organization (WHO) has approved various antimalarial medications in the past two decades, the increasing resistance to these medications has worsened the situation. The development of drug resistance stems from genetic diversity among Plasmodium strains, impeding eradication efforts. Consequently, exploring innovative technologies and strategies for developing effective medications based on the host is crucial. Artemisinin and its derivatives (artemisinins) have been recommended by the WHO for treating malaria owing to their known effectiveness in killing the parasite. However, their potential to target the host for malaria treatment has not been investigated. This article concisely reviews the application of host-directed therapeutics, potential drug candidates targeting the host for treating malaria, and usage of artemisinins in numerous diseases. It underscores the importance of host-directed interventions for individuals susceptible to malaria, suggests the potential utility of artemisinins in host-directed malaria treatments, and posits that the modulation of host proteins with artemisinins may offer a means of intervening in host-parasite interactions. Further studies focusing on the host-targeting perspective of artemisinins can provide new insights into the mechanisms of artemisinin resistance and offer a unique opportunity for new antimalarial drug discovery.
Collapse
Affiliation(s)
- Yue Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengcheng Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tuo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Tran THT, Hien BTT, Dung NTL, Huong NT, Binh TT, Van Long N, Ton ND. Evaluation of Dihydroartemisinin-Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1013. [PMID: 38929629 PMCID: PMC11205605 DOI: 10.3390/medicina60061013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was conducted to assess the efficacy of the Dihydroartemisinin (DHA)-Piperaquine (PPQ) regimen in treating uncomplicated falciparum malaria and to conduct molecular surveillance of antimalarial drug resistance in Binh Phuoc and Dak Nong provinces. Materials and Methods: The study included 63 uncomplicated malaria falciparum patients from therapeutic efficacy studies (TES) treated following the WHO treatment guidelines (2009). Molecular marker analysis was performed on all 63 patients. Methods encompassed Sanger sequencing for pfK13 mutations and quantitative real-time PCR for the pfpm2 gene. Results: This study found a marked decrease in the efficacy of the DHA-PPQ regimen, with an increased rate of treatment failures at two study sites. Genetic analysis revealed a significant presence of pfK13 mutations and pfpm2 amplifications, indicating emerging resistance to artemisinin and its partner drug. Conclusions: The effectiveness of the standard DHA-PPQ regimen has sharply declined, with rising treatment failure rates. This decline necessitates a review and possible revision of national malaria treatment guidelines. Importantly, molecular monitoring and clinical efficacy assessments together provide a robust framework for understanding and addressing detection drug resistance in malaria.
Collapse
Affiliation(s)
- Thu Huyen Thi Tran
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Bui Thi Thu Hien
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Lan Dung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Huong
- National Burn Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tran Thanh Binh
- 103 Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam;
| | - Nguyen Van Long
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Dang Ton
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
8
|
Wamae K, Ndwiga L, Kharabora O, Kimenyi K, Osoti V, de Laurent Z, Wambua J, Musyoki J, Ngetsa C, Kalume P, Mwambingu G, Hamaluba M, van der Pluijm R, Dondorp AM, Bailey J, Juliano J, Bejon P, Ochola-Oyier L. Targeted amplicon deep sequencing of ama1 and mdr1 to track within-host P. falciparum diversity throughout treatment in a clinical drug trial. Wellcome Open Res 2024; 7:95. [PMID: 37456906 PMCID: PMC10349275 DOI: 10.12688/wellcomeopenres.17736.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 07/20/2023] Open
Abstract
Introduction Antimalarial therapeutic efficacy studies are routinely conducted in malaria-endemic countries to assess the effectiveness of antimalarial treatment strategies. Targeted amplicon sequencing (AmpSeq) uniquely identifies and quantifies genetically distinct parasites within an infection. In this study, AmpSeq of Plasmodium falciparum apical membrane antigen 1 ( ama1), and multidrug resistance gene 1 ( mdr1), were used to characterise the complexity of infection (COI) and drug-resistance genotypes, respectively. Methods P. falciparum-positive samples were obtained from a triple artemisinin combination therapy clinical trial conducted in 30 children under 13 years of age between 2018 and 2019 in Kilifi, Kenya. Nine of the 30 participants presented with recurrent parasitemia from day 26 (624h) onwards. The ama1 and mdr1 genes were amplified and sequenced, while msp1, msp2 and glurp data were obtained from the original clinical study. Results The COI was comparable between ama1 and msp1, msp2 and glurp; overall, ama1 detected more microhaplotypes. Based on ama1, a stable number of microhaplotypes were detected throughout treatment until day 3. Additionally, a recrudescent infection was identified with an ama1 microhaplotype initially observed at 30h and later in an unscheduled follow-up visit. Using the relative frequencies of ama1 microhaplotypes and parasitemia, we identified a fast (<1h) and slow (>5h) clearing microhaplotype. As expected, only two mdr1 microhaplotypes (NF and NY) were identified based on the combination of amino acid polymorphisms at codons 86 and 184. Conclusions This study highlights AmpSeq as a tool for highly-resolution tracking of parasite microhaplotypes throughout treatment and can detect variation in microhaplotype clearance estimates. AmpSeq can also identify slow-clearing microhaplotypes, a potential early sign of selection during treatment. Consequently, AmpSeq has the capability of improving the discriminatory power to distinguish recrudescences from reinfections accurately.
Collapse
Affiliation(s)
- Kevin Wamae
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Leonard Ndwiga
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Oksana Kharabora
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Kelvin Kimenyi
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Victor Osoti
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Juliana Wambua
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jennifer Musyoki
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Caroline Ngetsa
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Peter Kalume
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Mainga Hamaluba
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rob van der Pluijm
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M. Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jeffrey Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Jonathan Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Philip Bejon
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
9
|
Liu H, Xu JW, Deng DW, Wang HY, Nie RH, Yin YJ, Li M. Dihydroartemisinin-piperaquine efficacy in Plasmodium falciparum treatment and prevalence of drug-resistant molecular markers along China-Myanmar border in 2014-2023. J Glob Antimicrob Resist 2023; 35:271-278. [PMID: 37816434 DOI: 10.1016/j.jgar.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES The study aims to monitor dihydroartemisinin-piperaquine (DHA-PPQ) efficacy in Plasmodium falciparum and detect molecular markers associated with its resistance. METHODS The World Health Organization's standard protocol for therapeutic efficacy studies (TES) was performed from 2014 to 2018; integrated drug efficacy surveillance (iDES) was performed from from 2019 to July 2023. Molecular markers were detected by polymerase chain reaction. The association between gene mutations and delayed parasite clearance was analysed by multivariate logistic regression analysis. RESULTS A total of 226 P. falciparum patients were enrolled in the TES from 2014 to 2018, and 26 patients with P. falciparum from Africa were recruited in the iDES from 2019 to July 2023. The PCR-adjusted clinical and parasitological cure rate was 93.7% (95% CI: 92.6-99.5%) in the TES and 96.2% (95% CI: 80.4-99.9%) in the iDEs. Twelve mutants and an overall 55.0% prevalence of pfK13 mutations were detected. Of them, G533S, C447R, C447S, N458Y, C469Y, and A676D were first detected out along the China-Myanmar border. Referred to the wild strain, adjusted odds ratios of treatment failure for G533S, N458Y, and P574L by 42 days were 7.54 (95% CI: 1.605-45.86), 13.68 (95% CI: 1.95-130.72), and 89.00 (95% CI: 1.98-2482.1), respectively. CONCLUSION The efficacy of DHA-PPQ from 2014 to 2018 declined in comparison with 2003 to 2013, but it is still effective for treatment of P. falciparum malaria. Results of the iDES indicate a risk of artemisinin resistance in Africa. G533S, N458Y, and P574L are associated with delayed parasite clearance and treatment failure.
Collapse
Affiliation(s)
- Hui Liu
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Puer, China
| | - Jian-Wei Xu
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Puer, China
| | - Dao-Wei Deng
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Puer, China
| | - Heng-Ye Wang
- People's Hospital of Puer Municipality, Puer, China
| | - Ren-Hua Nie
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Puer, China
| | - Yi-Jie Yin
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Puer, China
| | - Mei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
10
|
Girgis ST, Adika E, Nenyewodey FE, Senoo Jnr DK, Ngoi JM, Bandoh K, Lorenz O, van de Steeg G, Harrott AJR, Nsoh S, Judge K, Pearson RD, Almagro-Garcia J, Saiid S, Atampah S, Amoako EK, Morang'a CM, Asoala V, Adjei ES, Burden W, Roberts-Sengier W, Drury E, Pierce ML, Gonçalves S, Awandare GA, Kwiatkowski DP, Amenga-Etego LN, Hamilton WL. Drug resistance and vaccine target surveillance of Plasmodium falciparum using nanopore sequencing in Ghana. Nat Microbiol 2023; 8:2365-2377. [PMID: 37996707 PMCID: PMC10686832 DOI: 10.1038/s41564-023-01516-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/06/2023] [Indexed: 11/25/2023]
Abstract
Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited. We designed and implemented an end-to-end workflow to detect Plasmodium falciparum antimalarial resistance markers and diversity in the vaccine target circumsporozoite protein (csp) using nanopore sequencing in Ghana. We analysed 196 clinical samples and showed that our method is rapid, robust, accurate and straightforward to implement. Importantly, our method could be applied to dried blood spot samples, which are readily collected in endemic settings. We report that P. falciparum parasites in Ghana are mostly susceptible to chloroquine, with persistent sulfadoxine-pyrimethamine resistance and no evidence of artemisinin resistance. Multiple single nucleotide polymorphisms were identified in csp, but their significance is uncertain. Our study demonstrates the feasibility of nanopore sequencing for malaria genomic surveillance in endemic countries.
Collapse
Affiliation(s)
- Sophia T Girgis
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Edem Adika
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Felix E Nenyewodey
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Dodzi K Senoo Jnr
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Joyce M Ngoi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kukua Bandoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Oliver Lorenz
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Guus van de Steeg
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Sebastian Nsoh
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Kim Judge
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Richard D Pearson
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Samirah Saiid
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Solomon Atampah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Enock K Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Victor Asoala
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Elrmion S Adjei
- Ledzokuku Krowor Municipal Assembly (LEKMA) Hospital, Accra, Ghana
| | - William Burden
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Eleanor Drury
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Megan L Pierce
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sónia Gonçalves
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | | | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - William L Hamilton
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
11
|
Li M, Liu H, Tang L, Yang H, Bustos MDG, Tu H, Ringwald P. Genetic characteristics of P. falciparum parasites collected from 2012 to 2016 and anti-malaria resistance along the China-Myanmar border. PLoS One 2023; 18:e0293590. [PMID: 37948402 PMCID: PMC10637670 DOI: 10.1371/journal.pone.0293590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/16/2023] [Indexed: 11/11/2023] Open
Abstract
BACKGROUNDS The therapeutic efficacy studies of DHA-PIP for uncomplicated Plasmodium falciparum patients were implemented from 2012 to 2016 along China (Yunnan province)-Myanmar border, which verified the high efficacy of DHA-PIP. With the samples collected in these studies, the genetic characteristics of P. falciparum parasites based on in vivo parasite clearance time (PCT) was investigated to explore if these parasites had developed resistance to DHA and PIP at molecular level. METHODS The genetic characteristics were investigated based on K13 genotypes, copy numbers of genes pfpm2 and pfmdr1, and nine microsatellite loci (Short Tandem Repeats, STR) flanking the K13 gene on chromosome 13. The PCT 50s were compared based on different K13 genotypes, sites, periods and copy numbers. RESULTS In the NW (North-West Yunnan province bordering with Myanmar) region, F446I was the main K13 genotype. No significant differences for PCT 50s presented among three K13 genotypes. In SW (South-West Yunnan province bordering with Myanmar) region, only wild K13 genotype was detected in all parasite isolates whose PCT 50s was significantly longer than those in NW region. For the copy numbers of genes, parasite isolates containing multiple copies of pfmdr1 gene were found in both regions, but only single copy of pfpm2 gene was detected. Though the prevalence of parasite isolates with multiple copies of pfmdr1 gene in SW region was higher than that in NW region, no difference in PCT 50s were presented between isolates with single and multiple copies of pfmdr1 gene. The median He values of F446I group and Others (Non-F446I K13 mutation) group were 0.08 and 0.41 respectively. The mean He values of ML group (Menglian County in SW) and W (wild K13 genotype in NW) group were 0 and 0.69 respectively. The mean Fst values between ML and W groups were significantly higher than the other two K13 groups. CONCLUSIONS P. falciparum isolates in NW and SW regions had very different genetic characteristics. The F446I was hypothesized to have independently appeared and spread in NW region from 2012 and 2016. The high susceptibility of PIP had ensured the efficacy of DHA-PIP in vivo. Multiple copy numbers of pfmdr1 gene might be a potential cause of prolonged clearance time of ACTs drugs along China-Myanmar border. TRIAL REGISTRATION Trial registration: ISRCTN, ISRCTN 11775446. Registered 17 April 2020-Retrospectively registered, the registered name was Investigating resistance to DHA-PIP for the treatment of Plasmodium falciparum malaria and chloroquine for the treatment of Plasmodium vivax malaria in Yunnan, China. http://www.isrctn.com/ISRCTN11775446.
Collapse
Affiliation(s)
- Mei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Beijing, China
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Hui Liu
- Yunnan Institute of Parasitic Diseases, Yunnan, 665000, China
| | - Linhua Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Beijing, China
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Henglin Yang
- Yunnan Institute of Parasitic Diseases, Yunnan, 665000, China
| | | | - Hong Tu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Beijing, China
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Pascal Ringwald
- Coordinator Director Office, Global Malaria Programme, Geneva, Swizerland
| |
Collapse
|
12
|
Kane J, Li X, Kumar S, Button-Simons KA, Brenneman KMV, Dahlhoff H, Sievert MA, Checkley LA, Shoue DA, Singh PP, Abatiyow BA, Haile MT, Nair S, Reyes A, Tripura R, Peto T, Lek D, Kappe SH, Dhorda M, Nkhoma SC, Cheeseman IH, Vaughan AM, Anderson TJC, Ferdig MT. A Plasmodium falciparum genetic cross reveals the contributions of pfcrt and plasmepsin II/III to piperaquine drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543862. [PMID: 37745488 PMCID: PMC10515748 DOI: 10.1101/2023.06.06.543862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Piperaquine (PPQ) is widely used in combination with dihydroartemisinin (DHA) as a first-line treatment against malaria parasites. Multiple genetic drivers of PPQ resistance have been reported, including mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and increased copies of plasmepsin II/III (pm2/3). We generated a cross between a Cambodia-derived multi-drug resistant KEL1/PLA1 lineage isolate (KH004) and a drug susceptible parasite isolated in Malawi (Mal31). Mal31 harbors a wild-type (3D7-like) pfcrt allele and a single copy of pm2/3, while KH004 has a chloroquine-resistant (Dd2-like) pfcrt allele with an additional G367C substitution and four copies of pm2/3. We recovered 104 unique recombinant progeny and examined a targeted set of progeny representing all possible combinations of variants at pfcrt and pm2/3 for detailed analysis of competitive fitness and a range of PPQ susceptibility phenotypes, including PPQ survival assay (PSA), area under the dose-response curve (AUC), and a limited point IC50 (LP-IC50). We find that inheritance of the KH004 pfcrt allele is required for PPQ resistance, whereas copy number variation in pm2/3 further enhances resistance but does not confer resistance in the absence of PPQ-R-associated mutations in pfcrt. Deeper investigation of genotype-phenotype relationships demonstrates that progeny clones from experimental crosses can be used to understand the relative contributions of pfcrt, pm2/3, and parasite genetic background, to a range of PPQ-related traits and confirm the critical role of the PfCRT G367C substitution in PPQ resistance.
Collapse
Affiliation(s)
- John Kane
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Katrina A. Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Haley Dahlhoff
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Mackenzie A.C. Sievert
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lisa A. Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Douglas A. Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Puspendra P. Singh
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Shalini Nair
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Tom Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Standwell C Nkhoma
- BEI Resources, American Type Culture Collection (ATCC), Manassas, VA, USA
| | - Ian H. Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Timothy J. C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
13
|
Conrad MD, Asua V, Garg S, Giesbrecht D, Niaré K, Smith S, Namuganga JF, Katairo T, Legac J, Crudale RM, Tumwebaze PK, Nsobya SL, Cooper RA, Kamya MR, Dorsey G, Bailey JA, Rosenthal PJ. Evolution of Partial Resistance to Artemisinins in Malaria Parasites in Uganda. N Engl J Med 2023; 389:722-732. [PMID: 37611122 PMCID: PMC10513755 DOI: 10.1056/nejmoa2211803] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
BACKGROUND Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 (pfk13) and analyzed relatedness using molecular methods. We assessed malaria metrics longitudinally in eight Ugandan districts from 2014 through 2021. RESULTS By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- Melissa D Conrad
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Victor Asua
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Shreeya Garg
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - David Giesbrecht
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Karamoko Niaré
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Sawyer Smith
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Jane F Namuganga
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Thomas Katairo
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Jennifer Legac
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Rebecca M Crudale
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Patrick K Tumwebaze
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Samuel L Nsobya
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Roland A Cooper
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Moses R Kamya
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Grant Dorsey
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Jeffrey A Bailey
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Philip J Rosenthal
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| |
Collapse
|
14
|
Wicht KJ, Small-Saunders JL, Hagenah LM, Mok S, Fidock DA. Mutant PfCRT Can Mediate Piperaquine Resistance in African Plasmodium falciparum With Reduced Fitness and Increased Susceptibility to Other Antimalarials. J Infect Dis 2022; 226:2021-2029. [PMID: 36082431 PMCID: PMC9704436 DOI: 10.1093/infdis/jiac365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Additional therapeutic strategies could benefit efforts to reverse the recent increase in malaria cases in sub-Saharan Africa, which mostly affects young children. A primary candidate is dihydroartemisinin + piperaquine (DHA + PPQ), which is effective for uncomplicated malaria treatment, seasonal malaria chemoprevention, and intermittent preventive treatment. In Southeast Asia, Plasmodium falciparum parasites acquired PPQ resistance, mediated primarily by mutations in the P falciparum chloroquine resistance transporter PfCRT. The recent emergence in Africa of DHA-resistant parasites creates an imperative to assess whether PPQ resistance could emerge in African parasites with distinct PfCRT isoforms. METHODS We edited 2 PfCRT mutations known to mediate high-grade PPQ resistance in Southeast Asia into GB4 parasites from Gabon. Gene-edited clones were profiled in antimalarial concentration-response and fitness assays. RESULTS The PfCRT F145I mutation mediated moderate PPQ resistance in GB4 parasites but with a substantial fitness cost. No resistance was observed with the PfCRT G353V mutant. Both edited clones became significantly more susceptible to amodiaquine, chloroquine, and quinine. CONCLUSIONS A single PfCRT mutation can mediate PPQ resistance in GB4 parasites, but with a growth defect that may preclude its spread without further genetic adaptations. Our findings support regional use of drug combinations that exert opposing selective pressures on PfCRT.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L Small-Saunders
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| |
Collapse
|
15
|
Okombo J, Mok S, Qahash T, Yeo T, Bath J, Orchard LM, Owens E, Koo I, Albert I, Llinás M, Fidock DA. Piperaquine-resistant PfCRT mutations differentially impact drug transport, hemoglobin catabolism and parasite physiology in Plasmodium falciparum asexual blood stages. PLoS Pathog 2022; 18:e1010926. [PMID: 36306287 PMCID: PMC9645663 DOI: 10.1371/journal.ppat.1010926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The emergence of Plasmodium falciparum parasite resistance to dihydroartemisinin + piperaquine (PPQ) in Southeast Asia threatens plans to increase the global use of this first-line antimalarial combination. High-level PPQ resistance appears to be mediated primarily by novel mutations in the P. falciparum chloroquine resistance transporter (PfCRT), which enhance parasite survival at high PPQ concentrations in vitro and increase the risk of dihydroartemisinin + PPQ treatment failure in patients. Using isogenic Dd2 parasites expressing contemporary pfcrt alleles with differential in vitro PPQ susceptibilities, we herein characterize the molecular and physiological adaptations that define PPQ resistance in vitro. Using drug uptake and cellular heme fractionation assays we report that the F145I, M343L, and G353V PfCRT mutations differentially impact PPQ and chloroquine efflux. These mutations also modulate proteolytic degradation of host hemoglobin and the chemical inactivation of reactive heme species. Peptidomic analyses reveal significantly higher accumulation of putative hemoglobin-derived peptides in the PPQ-resistant mutant PfCRT isoforms compared to parental PPQ-sensitive Dd2. Joint transcriptomic and metabolomic profiling of late trophozoites from PPQ-resistant or -sensitive isogenic lines reveals differential expression of genes involved in protein translation and cellular metabolism. PPQ-resistant parasites also show increased susceptibility to an inhibitor of the P. falciparum M17 aminopeptidase that operates on short globin-derived peptides. These results reveal unique physiological changes caused by the gain of PPQ resistance and highlight the potential therapeutic value of targeting peptide metabolism in P. falciparum.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Edward Owens
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
16
|
Lek D, Rachmat A, Harrison D, Chin G, Chaoratanakawee S, Saunders D, Menard D, Rogers WO. Efficacy of three anti-malarial regimens for uncomplicated Plasmodium falciparum malaria in Cambodia, 2009-2011: a randomized controlled trial and brief review. Malar J 2022; 21:259. [PMID: 36071520 PMCID: PMC9450427 DOI: 10.1186/s12936-022-04279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/28/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Anti-malarial resistance remains an important public health challenge in Cambodia. The effectiveness of three therapies for uncomplicated falciparum malaria was evaluated in Oddar Meanchey province in Northern Cambodia from 2009 to 2011. METHODS In this randomized, open-label, parallel group-controlled trial, 211 subjects at least 5 years old with uncomplicated falciparum malaria were treated with 3 days of directly observed therapy: 63 received artesunate-mefloquine (AS/MQ), 77 received dihydroartemisinin-piperaquine (DHA/PPQ), and 71 received atovaquone-proguanil (ATQ/PG). The subjects were followed for 42 days or until recurrent parasitaemia. Genotyping of msp1, msp2, and glurp among individual parasite isolates distinguished recrudescence from reinfection. Pfmdr1 copy number was measured by real-time PCR and half-maximal parasite inhibitory concentrations (IC50) were measured in vitro by 48-h isotopic hypoxanthine incorporation assay. RESULTS The per-protocol PCR-adjusted efficacy (95% confidence interval) at 42 days was 80.6% (70.8-90.5%) for AS/MQ, 97.2% (93.3-100%) for DHA/PPQ, and 92.9% (86.1-99.6%) for ATQ/PG. On day 3, 57.9% remained parasitaemic in the AS/MQ and DHA/PPQ arms. At baseline, 46.9% had microscopic Plasmodium falciparum gametocytaemia. Both recurrences in the DHA/PPQ arm lost Pfmdr1 copy number amplification at recrudescence. All four recurrences in the ATQ/PG arm were wild-type for cytochrome bc1. One subject withdrew from the ATQ/PG arm due to drug allergy. CONCLUSIONS This study was conducted at the epicentre of substantial multi-drug resistance that emerged soon thereafter. Occurring early in the national transition from AS/MQ to DHA/PPQ, both DHA/PPQ and ATQ/PG had acceptable efficacy against uncomplicated falciparum malaria. However, efficacy of AS/MQ was only 80% with apparent mefloquine resistance based on elevated Pfmdr1 copy number and IC50. By 2009, there was already significant evidence of artemisinin resistance not previously reported at the Northern Cambodia-Thai border. This study suggests the basis for early development of significant DHA/PPQ failures within 3 years of introduction. Artemisinin resistance likely occurred on the Northern border concurrently with that reported along the Western border in Pailin. Trial registration This legacy trial was conducted prior to International Committee of Medical Journal Editors' requirements for preregistration on ClinicalTrials.gov. The full protocol has been provided.
Collapse
Affiliation(s)
- Dysoley Lek
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Agus Rachmat
- U.S. Naval Medical Research Unit 2, Phnom Penh, Cambodia
| | | | - Geoffrey Chin
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - David Saunders
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | |
Collapse
|
17
|
Moss S, Mańko E, Krishna S, Campino S, Clark TG, Last A. How has mass drug administration with dihydroartemisinin-piperaquine impacted molecular markers of drug resistance? A systematic review. Malar J 2022; 21:186. [PMID: 35690758 PMCID: PMC9188255 DOI: 10.1186/s12936-022-04181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
The World Health Organization (WHO) recommends surveillance of molecular markers of resistance to anti-malarial drugs. This is particularly important in the case of mass drug administration (MDA), which is endorsed by the WHO in some settings to combat malaria. Dihydroartemisinin-piperaquine (DHA-PPQ) is an artemisinin-based combination therapy which has been used in MDA. This review analyses the impact of MDA with DHA-PPQ on the evolution of molecular markers of drug resistance. The review is split into two parts. Section I reviews the current evidence for different molecular markers of resistance to DHA-PPQ. This includes an overview of the prevalence of these molecular markers in Plasmodium falciparum Whole Genome Sequence data from the MalariaGEN Pf3k project. Section II is a systematic literature review of the impact that MDA with DHA-PPQ has had on the evolution of molecular markers of resistance. This systematic review followed PRISMA guidelines. This review found that despite being a recognised surveillance tool by the WHO, the surveillance of molecular markers of resistance following MDA with DHA-PPQ was not commonly performed. Of the total 96 papers screened for eligibility in this review, only 20 analysed molecular markers of drug resistance. The molecular markers published were also not standardized. Overall, this warrants greater reporting of molecular marker prevalence following MDA implementation. This should include putative pfcrt mutations which have been found to convey resistance to DHA-PPQ in vitro.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Emilia Mańko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sanjeev Krishna
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
18
|
Boonyalai N, Kirativanich K, Thamnurak C, Praditpol C, Vesely BA, Wojnarski M, Griesenbeck JS, Waters NC. A single point mutation in the Plasmodium falciparum 3'-5' exonuclease does not alter piperaquine susceptibility. Malar J 2022; 21:130. [PMID: 35459163 PMCID: PMC9034581 DOI: 10.1186/s12936-022-04148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background The rise in Plasmodium falciparum resistance to dihydroartemisinin–piperaquine (DHA–PPQ) treatment has been documented in the Greater Mekong Subregion with associations with mutations in the P. falciparum chloroquine resistance transporter (pfcrt) and plasmepsin 2 (pfpm2) genes. However, it is unclear whether other genes also play a role with PPQ resistance, such as the E415G mutation in the exonuclease (pfexo) gene. The aim of this study was to investigate the role of this mutation in PPQ resistance by generating transgenic parasites expressing the pfexo-E415G mutant allele. Methods Transgenic parasite clones carrying the E415G mutation in PfEXO of the B5 isolate were derived by CRISPR-Cas9 gene editing and verified using PCR and gene sequencing. Polymorphisms of pfkelch-13, pfcrt, and pfexo were examined by PCR while the copy number variations of pfpm2 were examined by both relative quantitative real-time PCR and the duplication breakpoint assay. Drug sensitivity against a panel of antimalarials, the ring-stage survival assay (RSA), the PPQ survival assay (PSA), and bimodal dose-response curves were used to evaluate antimalarial susceptibility. Results The transgenic line, B5-rexo-E415G-B8, was successfully generated. The PPQ-IC90, %PPQ survival, and the bimodal dose-response clearly showed that E415G mutation in PfEXO of B5 isolate remained fully susceptible to PPQ. Furthermore, growth assays demonstrated that the engineered parasites grew slightly faster than the unmodified parental isolates whereas P. falciparum isolates harbouring pfkelch-13, pfcrt, and pfexo mutations with multiple copies of pfpm2 grew much more slowly. Conclusions Insertion of the E415G mutation in PfEXO did not lead to increased PPQ-IC90 and %PPQ survival, suggesting that this mutation alone may not be associated with PPQ resistance, but could still be an important marker if used in conjunction with other markers for monitoring PPQ-resistant parasites. The results also highlight the importance of monitoring and evaluating suspected genetic mutations with regard to parasite fitness and resistance. Supplementary information The online version contains supplementary material available at 10.1186/s12936-022-04148-z.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - John S Griesenbeck
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
19
|
Ye R, Zhang Y, Zhang D. Evaluations of candidate markers of dihydroartemisinin-piperaquine resistance in Plasmodium falciparum isolates from the China-Myanmar, Thailand-Myanmar, and Thailand-Cambodia borders. Parasit Vectors 2022; 15:130. [PMID: 35413937 PMCID: PMC9004172 DOI: 10.1186/s13071-022-05239-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background The fast-declining clinical efficacy of dihydroartemisinin-piperaquine (DHA-PPQ) in Cambodia is a warning of the underlying westward dissemination of piperaquine resistance in the Greater Mekong Subregion (GMS). Mutations in the Plasmodium falciparum Kelch 13-propeller (PfK13) and the P. falciparum chloroquine resistance transporter (PfCRT), as well as plasmepsin 2/3 gene amplification, have been discovered as molecular markers for predicting DHA-PPQ treatment failure. Determining whether these genetic variations of P. falciparum are linked to DHA-PPQ resistance is critical, especially along the China–Myanmar (CM) border, where PPQ has been utilized for decades. Methods A total of 173 P. falciparum samples of dried blood spots (DBS) were collected along the CM border between 2007 and 2010, the Thailand–Cambodia (TC) border between 2009 and 2013, and the Thailand–Myanmar (TM) border between 2012 and 2014. PCR and sequencing were used to identified PfCRT mutations, while qPCR was used to determine the copy number of plasmepsin 2/3. The prevalence of DHA-PPQ resistance in three locations was investigated using data paired with K13 mutations. Results Three fragments of the pfcrt gene were amplified for all 173 samples, and seven SNPs were identified (M74I, N75E/D, K76T, H97L, I218F, A220S, I356L). No new PfCRT mutations conferring resistance to PPQ (T93S, H97Y, F145I, M343L, and G353V) were discovered, except for one mutant I218F identified in the TM border (2.27%, 1/44). Additionally, mutant H97L was found in the TC, TM, and CM borders at 3.57% (1/28), 6.82% (3/44), and 1% (1/101), respectively. A substantial K13 C580Y variant prevalence was found in the TC and TM border, accounting for 64.29% (18/28) and 43.18% (19/44), respectively, while only 1% (1/101) was found in the CM border. The K13 F446I variant was only identified and found to reach a high level (28.71%, 29/101) in the CM border. Furthermore, 10.71% (3/28) of TC isolates and 2.27% (1/44) of TM isolates carried more than one copy of plasmepsin 2/3 and K13 C580Y variant, while no plasmepsin 2/3 amplification was identified in the CM isolates. Conclusions Compared with the P. falciparum samples collected from the TC and TM borders, fewer parasites carried plasmepsin 2/3 amplification and novel PfCRT variants, while more parasites carried predominant K13 mutations at position F446I, in the CM border. Clear evidence of DHA-PPQ resistance associated with candidate markers was not found in this border region suggesting a further evaluation of these markers and continuous surveillance is warranted. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05239-1.
Collapse
Affiliation(s)
- Run Ye
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Dongmei Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
20
|
Wamae K, Ndwiga L, Kharabora O, Kimenyi K, Osoti V, de Laurent Z, Wambua J, Musyoki J, Ngetsa C, Kalume P, Mwambingu G, Hamaluba M, van der Pluijm R, Dondorp A, Bailey J, Juliano J, Bejon P, Ochola-Oyier L. Targeted Amplicon deep sequencing of ama1 and mdr1 to track within-host P. falciparum diversity throughout treatment in a clinical drug trial. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17736.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimalarial therapeutic efficacy studies are routinely conducted in malaria-endemic countries to assess the effectiveness of antimalarial treatment strategies. Targeted amplicon deep sequencing (TADS) uniquely identifies and quantifies genetically distinct parasites within an infection. In this study, TADS Plasmodium falciparum apical membrane antigen 1 (ama1), and multidrug resistance gene 1 (mdr1), were used to characterize the complexity of infection (COI) and drug-resistance genotypes, respectively. P. falciparum positive samples were obtained from a triple artemisinin combination therapy clinical trial conducted in 30 children under 13 years of age between 2018 and 2019 in Kilifi, Kenya. Of the 30 participants, 9 presented with recurrent parasitemia from day 26 (624h) onwards. The ama1 and mdr1 genes were amplified and sequenced, while msp1, msp2 and glurp data were obtained from the original clinical study. The COI was comparable between ama1 and msp1, msp2 and glurp, however, overall ama1 detected more haplotypes. Based on ama1, a stable number of haplotypes were detected throughout treatment up until day 3. Additionally, a recrudescent infection was identified with an ama1 haplotype initially observed at 30h and later in an unscheduled follow-up visit. Using the relative frequencies of ama1 haplotypes and parasitaemia, we identified a fast (<1h) and slow (>5h) clearing haplotype. As expected, only two mdr1 haplotypes (NF and NY) were identified based on the combination of amino acid polymorphisms at codons 86 and 184. This study highlights TADS as a sensitive tool for tracking parasite haplotypes throughout treatment and can detect variation in haplotype clearance estimates. TADS can also identify slow clearing haplotypes, a potential early sign of selection during treatment. Consequently, TADS has the capability of improving the discriminatory power to accurately distinguish recrudescences from reinfections.
Collapse
|
21
|
Marfurt J, Wirjanata G, Prayoga P, Chalfein F, Leonardo L, Sebayang BF, Apriyanti D, Sihombing MAEM, Trianty L, Suwanarusk R, Brockman A, Piera KA, Luo I, Rumaseb A, MacHunter B, Auburn S, Anstey NM, Kenangalem E, Noviyanti R, Russell B, Poespoprodjo JR, Price RN. Longitudinal ex vivo and molecular trends of chloroquine and piperaquine activity against Plasmodium falciparum and P. vivax before and after introduction of artemisinin-based combination therapy in Papua, Indonesia. Int J Parasitol Drugs Drug Resist 2021; 17:46-56. [PMID: 34193398 PMCID: PMC8358472 DOI: 10.1016/j.ijpddr.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/13/2023]
Abstract
Drug resistant Plasmodium parasites are a major threat to malaria control and elimination. After reports of high levels of multidrug resistant P. falciparum and P. vivax in Indonesia, in 2005, the national first-line treatment policy for uncomplicated malaria was changed in March 2006, to dihydroartemisinin-piperaquine against all species. This study assessed the temporal trends in ex vivo drug susceptibility to chloroquine (CQ) and piperaquine (PIP) for both P. falciparum and P. vivax clinical isolates collected between 2004 and 2018, by using schizont maturation assays, and genotyped a subset of isolates for known and putative molecular markers of CQ and PIP resistance by using Sanger and next generation whole genome sequencing. The median CQ IC50 values varied significantly between years in both Plasmodium species, but there was no significant trend over time. In contrast, there was a significant trend for increasing PIP IC50s in both Plasmodium species from 2010 onwards. Whereas the South American CQ resistant 7G8 pfcrt SVMNT isoform has been fixed since 2005 in the study area, the pfmdr1 86Y allele frequencies decreased and became fixed at the wild-type allele in 2015. In P. vivax isolates, putative markers of CQ resistance (no pvcrt-o AAG (K10) insertion and pvmdr1 Y967F and F1076L) were fixed at the mutant alleles since 2005. None of the putative PIP resistance markers were detected in P. falciparum. The ex vivo drug susceptibility and molecular analysis of CQ and PIP efficacy for P. falciparum and P. vivax after 12 years of intense drug pressure with DHP suggests that whilst the degree of CQ resistance appears to have been sustained, there has been a slight decline in PIP susceptibility, although this does not appear to have reached clinically significant levels. The observed decreasing trend in ex vivo PIP susceptibility highlights the importance of ongoing surveillance.
Collapse
Affiliation(s)
- Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia.
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Pak Prayoga
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Ferryanto Chalfein
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Leo Leonardo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Boni F Sebayang
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Dwi Apriyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Maic A E M Sihombing
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Rossarin Suwanarusk
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Alan Brockman
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Irene Luo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Barbara MacHunter
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Enny Kenangalem
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; District Health Authority, Timika, Papua, Indonesia
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Bruce Russell
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Jeanne R Poespoprodjo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; Paediatric Research Office, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Evolution of multidrug resistance in Plasmodium falciparum: a longitudinal study of genetic resistance markers in the Greater Mekong Subregion. Antimicrob Agents Chemother 2021; 65:e0112121. [PMID: 34516247 PMCID: PMC8597770 DOI: 10.1128/aac.01121-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increasing resistance in Plasmodium falciparum to artemisinins and their artemisinin combination therapy (ACT) partner drugs jeopardizes effective antimalarial treatment. Resistance is worst in the Greater Mekong subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins (PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1 [PfMDR1]), and piperaquine (PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter [PfCRT] mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao People’s Democratic Republic (PDR), Cambodia, Thailand, and Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine resistance-associated PfCRT mutations in Cambodia and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after first-line treatment was changed from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. The frequency of PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722 [0.06%]) and was dispersed over time. The mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy.
Collapse
|
23
|
Siddiqui FA, Liang X, Cui L. Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook. Int J Parasitol Drugs Drug Resist 2021; 16:102-118. [PMID: 34090067 PMCID: PMC8188179 DOI: 10.1016/j.ijpddr.2021.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
Emergence and spread of resistance in Plasmodium falciparum to the frontline treatment artemisinin-based combination therapies (ACTs) in the epicenter of multidrug resistance of Southeast Asia threaten global malaria control and elimination. Artemisinin (ART) resistance (or tolerance) is defined clinically as delayed parasite clearance after treatment with an ART drug. The resistance phenotype is restricted to the early ring stage and can be measured in vitro using a ring-stage survival assay. ART resistance is associated with mutations in the propeller domain of the Kelch family protein K13. As a pro-drug, ART is activated primarily by heme, which is mainly derived from hemoglobin digestion in the food vacuole. Activated ARTs can react promiscuously with a wide range of cellular targets, disrupting cellular protein homeostasis. Consistent with this mode of action for ARTs, the molecular mechanisms of K13-mediated ART resistance involve reduced hemoglobin uptake/digestion and increased cellular stress response. Mutations in other genes such as AP-2μ (adaptor protein-2 μ subunit), UBP-1 (ubiquitin-binding protein-1), and Falcipain 2a that interfere with hemoglobin uptake and digestion also increase resistance to ARTs. ART resistance has facilitated the development of resistance to the partner drugs, resulting in rapidly declining ACT efficacies. The molecular markers for resistance to the partner drugs are mostly associated with point mutations in the two food vacuole membrane transporters PfCRT and PfMDR1, and amplification of pfmdr1 and the two aspartic protease genes plasmepsin 2 and 3. It has been observed that mutations in these genes can have opposing effects on sensitivities to different partner drugs, which serve as the principle for designing triple ACTs and drug rotation. Although clinical ACT resistance is restricted to Southeast Asia, surveillance for drug resistance using in vivo clinical efficacy, in vitro assays, and molecular approaches is required to prevent or slow down the spread of resistant parasites.
Collapse
Affiliation(s)
- Faiza Amber Siddiqui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
24
|
Behrens HM, Schmidt S, Spielmann T. The newly discovered role of endocytosis in artemisinin resistance. Med Res Rev 2021; 41:2998-3022. [PMID: 34309894 DOI: 10.1002/med.21848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022]
Abstract
Artemisinin and its derivatives (ART) are the cornerstone of malaria treatment as part of artemisinin combination therapy (ACT). However, reduced susceptibility to artemisinin as well as its partner drugs threatens the usefulness of ACTs. Single point mutations in the parasite protein Kelch13 (K13) are necessary and sufficient for the reduced sensitivity of malaria parasites to ART but several alternative mechanisms for this resistance have been proposed. Recent work found that K13 is involved in the endocytosis of host cell cytosol and indicated that this is the process responsible for resistance in parasites with mutated K13. These studies also identified a series of further proteins that act together with K13 in the same pathway, including previously suspected resistance proteins such as UBP1 and AP-2μ. Here, we give a brief overview of artemisinin resistance, present the recent evidence of the role of endocytosis in ART resistance and discuss previous hypotheses in light of this new evidence. We also give an outlook on how the new insights might affect future research.
Collapse
Affiliation(s)
- Hannah Michaela Behrens
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Schmidt
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
25
|
Wicht KJ, Mok S, Fidock DA. Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. Annu Rev Microbiol 2021; 74:431-454. [PMID: 32905757 DOI: 10.1146/annurev-micro-020518-115546] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding and controlling the spread of antimalarial resistance, particularly to artemisinin and its partner drugs, is a top priority. Plasmodium falciparum parasites resistant to chloroquine, amodiaquine, or piperaquine harbor mutations in the P. falciparum chloroquine resistance transporter (PfCRT), a transporter resident on the digestive vacuole membrane that in its variant forms can transport these weak-base 4-aminoquinoline drugs out of this acidic organelle, thus preventing these drugs from binding heme and inhibiting its detoxification. The structure of PfCRT, solved by cryogenic electron microscopy, shows mutations surrounding an electronegative central drug-binding cavity where they presumably interact with drugs and natural substrates to control transport. P. falciparum susceptibility to heme-binding antimalarials is also modulated by overexpression or mutations in the digestive vacuole membrane-bound ABC transporter PfMDR1 (P. falciparum multidrug resistance 1 transporter). Artemisinin resistance is primarily mediated by mutations in P. falciparum Kelch13 protein (K13), a protein involved in multiple intracellular processes including endocytosis of hemoglobin, which is required for parasite growth and artemisinin activation. Combating drug-resistant malaria urgently requires the development of new antimalarial drugs with novel modes of action.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , , .,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
26
|
Boonyalai N, Thamnurak C, Sai-Ngam P, Ta-Aksorn W, Arsanok M, Uthaimongkol N, Sundrakes S, Chattrakarn S, Chaisatit C, Praditpol C, Fagnark W, Kirativanich K, Chaorattanakawee S, Vanachayangkul P, Lertsethtakarn P, Gosi P, Utainnam D, Rodkvamtook W, Kuntawunginn W, Vesely BA, Spring MD, Fukuda MM, Lanteri C, Walsh D, Saunders DL, Smith PL, Wojnarski M, Sirisopana N, Waters NC, Jongsakul K, Gaywee J. Plasmodium falciparum phenotypic and genotypic resistance profile during the emergence of Piperaquine resistance in Northeastern Thailand. Sci Rep 2021; 11:13419. [PMID: 34183715 PMCID: PMC8238947 DOI: 10.1038/s41598-021-92735-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Malaria remains a public health problem in Thailand, especially along its borders where highly mobile populations can contribute to persistent transmission. This study aimed to determine resistant genotypes and phenotypes of 112 Plasmodium falciparum isolates from patients along the Thai-Cambodia border during 2013-2015. The majority of parasites harbored a pfmdr1-Y184F mutation. A single pfmdr1 copy number had CVIET haplotype of amino acids 72-76 of pfcrt and no pfcytb mutations. All isolates had a single pfk13 point mutation (R539T, R539I, or C580Y), and increased % survival in the ring-stage survival assay (except for R539I). Multiple copies of pfpm2 and pfcrt-F145I were detected in 2014 (12.8%) and increased to 30.4% in 2015. Parasites containing either multiple pfpm2 copies with and without pfcrt-F145I or a single pfpm2 copy with pfcrt-F145I exhibited elevated IC90 values of piperaquine. Collectively, the emergence of these resistance patterns in Thailand near Cambodia border mirrored the reports of dihydroartemisinin-piperaquine treatment failures in the adjacent province of Cambodia, Oddar Meanchey, suggesting a migration of parasites across the border. As malaria elimination efforts ramp up in Southeast Asia, host nations militaries and other groups in border regions need to coordinate the proposed interventions.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Piyaporn Sai-Ngam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Winita Ta-Aksorn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Montri Arsanok
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nichapat Uthaimongkol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siratchana Sundrakes
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorayut Chattrakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chaiyaporn Chaisatit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Watcharintorn Fagnark
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Paphavee Lertsethtakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panita Gosi
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Darunee Utainnam
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wuttikon Rodkvamtook
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Michele D Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark M Fukuda
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Charlotte Lanteri
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Douglas Walsh
- Department of Dermatology, Syracuse VA medical center, Syracuse, USA
| | - David L Saunders
- U.S. Army Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Philip L Smith
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Narongrid Sirisopana
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Krisada Jongsakul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jariyanart Gaywee
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
27
|
In Vitro Susceptibility of Plasmodium falciparum Isolates from the China-Myanmar Border Area to Piperaquine and Association with Candidate Markers. Antimicrob Agents Chemother 2021; 65:AAC.02305-20. [PMID: 33685900 PMCID: PMC8092910 DOI: 10.1128/aac.02305-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum from the Greater Mekong subregion has evolved resistance to the artemisinin-based combination therapy dihydroartemisinin and the partner drug piperaquine. To monitor the potential westward spread or independent evolution of piperaquine resistance, we evaluated the in vitro susceptibility of 120 P. falciparum isolates collected at the China-Myanmar border during 2007-2016. The parasite isolates displayed a relatively wide range of piperaquine susceptibility estimates. While 56.7% of the parasites showed bimodal drug response curves, all but five generated area-under-the-curve (AUC) estimates consistent with a susceptible phenotype. Using the piperaquine survival assay (PSA), 5.6% parasites showed reduced susceptibility. Of note, parasites from 2014-2016 showed the highest AUC value and the highest proportion with a bimodal curve, suggesting falling effectiveness in these later years. Unsupervised K-mean analysis of the combined data assigned parasites into three clusters and identified significant correlations between IC50, IC90, and AUC values. No parasites carried the E415G mutation in a putative exo-nuclease, new mutations in PfCRT, or amplification of the plasmepsin 2/3 genes, suggesting mechanisms of reduced piperaquine susceptibility that differ from those described in other countries of the region. The association of increased AUC, IC50, and IC90 values with major PfK13 mutations (F446I and G533S) suggests that piperaquine resistance may evolve in these PfK13 genetic backgrounds. Additionally, the Pfmdr1 F1226Y mutation was associated with significantly higher PSA values. Further elucidation of piperaquine resistance mechanisms and continuous surveillance are warranted.
Collapse
|
28
|
Tessema SK, Hathaway NJ, Teyssier NB, Murphy M, Chen A, Aydemir O, Duarte EM, Simone W, Colborn J, Saute F, Crawford E, Aide P, Bailey JA, Greenhouse B. Sensitive, highly multiplexed sequencing of microhaplotypes from the Plasmodium falciparum heterozygome. J Infect Dis 2020; 225:1227-1237. [PMID: 32840625 PMCID: PMC8974853 DOI: 10.1093/infdis/jiaa527] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/24/2020] [Indexed: 01/28/2023] Open
Abstract
Background Targeted next-generation sequencing offers the potential for consistent, deep coverage of information-rich genomic regions to characterize polyclonal Plasmodium falciparum infections. However, methods to identify and sequence these genomic regions are currently limited. Methods A bioinformatic pipeline and multiplex methods were developed to identify and simultaneously sequence 100 targets and applied to dried blood spot (DBS) controls and field isolates from Mozambique. For comparison, whole-genome sequencing data were generated for the same controls. Results Using publicly available genomes, 4465 high-diversity genomic regions suited for targeted sequencing were identified, representing the P. falciparum heterozygome. For this study, 93 microhaplotypes with high diversity (median expected heterozygosity = 0.7) were selected along with 7 drug resistance loci. The sequencing method achieved very high coverage (median 99%), specificity (99.8%), and sensitivity (90% for haplotypes with 5% within sample frequency in dried blood spots with 100 parasites/µL). In silico analyses revealed that microhaplotypes provided much higher resolution to discriminate related from unrelated polyclonal infections than biallelic single-nucleotide polymorphism barcodes. Conclusions The bioinformatic and laboratory methods outlined here provide a flexible tool for efficient, low-cost, high-throughput interrogation of the P. falciparum genome, and can be tailored to simultaneously address multiple questions of interest in various epidemiological settings.
Collapse
Affiliation(s)
- Sofonias K Tessema
- EPPIcenter research program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Nicholas J Hathaway
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Noam B Teyssier
- EPPIcenter research program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Maxwell Murphy
- EPPIcenter research program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Anna Chen
- EPPIcenter research program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Elias M Duarte
- EPPIcenter research program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - James Colborn
- Clinton Health Access Initiative, Maputo, Mozambique
| | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Emily Crawford
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Bryan Greenhouse
- EPPIcenter research program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, California, United States
| |
Collapse
|
29
|
Boonyalai N, Vesely BA, Thamnurak C, Praditpol C, Fagnark W, Kirativanich K, Saingam P, Chaisatit C, Lertsethtakarn P, Gosi P, Kuntawunginn W, Vanachayangkul P, Spring MD, Fukuda MM, Lon C, Smith PL, Waters NC, Saunders DL, Wojnarski M. Piperaquine resistant Cambodian Plasmodium falciparum clinical isolates: in vitro genotypic and phenotypic characterization. Malar J 2020; 19:269. [PMID: 32711538 PMCID: PMC7382038 DOI: 10.1186/s12936-020-03339-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 (pfpm2), exonuclease (pfexo) and chloroquine resistance transporter (pfcrt) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy. METHODS To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined. RESULTS The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovaquone-proguanil combinations revealed synergistic antimalarial activity. CONCLUSIONS Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Watcharintorn Fagnark
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Piyaporn Saingam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chaiyaporn Chaisatit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Paphavee Lertsethtakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Panita Gosi
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Michele D Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Mark M Fukuda
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chanthap Lon
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Philip L Smith
- Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910, USA
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - David L Saunders
- U.S. Army Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| |
Collapse
|
30
|
Riegel B, Roepe PD. Altered Drug Transport by Plasmodium falciparum Chloroquine Resistance Transporter Isoforms Harboring Mutations Associated with Piperaquine Resistance. Biochemistry 2020; 59:2484-2493. [DOI: 10.1021/acs.biochem.0c00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bryce Riegel
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, D.C. 20057, United States
| | - Paul D. Roepe
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
31
|
Bekono BD, Ntie-Kang F, Onguéné PA, Lifongo LL, Sippl W, Fester K, Owono LCO. The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar J 2020; 19:183. [PMID: 32423415 PMCID: PMC7236213 DOI: 10.1186/s12936-020-03231-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background African Traditional Medicine (ATM) is used for the healthcare of about 80% of the rural populations of the continent of Africa. The practices of ATM make use of plant-products, which are known to contain plant-based secondary metabolites or natural products (NPs), likely to play key roles in drug discovery, particularly as lead compounds. For various reasons, including resistance of strains of Plasmodium to known anti-malarial drugs, local African populations often resort to plant-based treatments and/or a combination of this and standard anti-malarial regimens. Emphasis has been laid in this review to present the anti-malarial virtue of the most recently published phytochemicals or natural products, which have been tested by in vitro and in vivo assays. Methods The data was based on the current version of the African Compound Libraries, which are constantly being updated based on inputs from journal articles and student theses (M.Sc/Ph.D) from African University libraries. Emphasis was laid on data published after 2012. In order to carry out the original data collection, currently being included in the African Compounds Database, individual journal websites were queried using the country names in Africa as search terms. Over 40,000 articles “hits” were originally retrieved, then reduced to about 9000 articles. The retained articles/theses was further queried with the search terms “malaria”, “malarial”, “plasmodium”, “plasmodial” and a combination of them, resulting in over 500 articles. Those including compounds with anti-malarial activities for which the measured activities fell within the established cut off values numbered 55, which were all cited in the review as relevant references. Results and discussion Pure compounds derived from African medicinal plants with demonstrated anti-malarial/antiplasmodial properties with activities ranging from “very active” to “weakly active” have been discussed. The majority of the 187 natural products were terpenoids (30%), followed by flavonoids (22%), alkaloids (19%) and quinones (15%), with each of the other compound classes being less than 5% of the entire compound collection. It was also observed that most of the plant species from which the compounds were identified were of the families Rubiaceae, Meliaceae and Asphodelaceae. The review is intended to continue laying the groundwork for an African-based anti-malarial drug discovery project.
Collapse
Affiliation(s)
- Boris D Bekono
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon. .,Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes Str. 3, 06120, Halle (Saale), Germany. .,Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062 , Dresden, Germany.
| | - Pascal Amoa Onguéné
- Department of Chemistry, University Institute of Wood Technology Mbalmayo, University of Yaoundé I, BP 50, Mbalmayo, Cameroon
| | - Lydia L Lifongo
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes Str. 3, 06120, Halle (Saale), Germany
| | - Karin Fester
- Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Luc C O Owono
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon.
| |
Collapse
|
32
|
Birrell GW, Challis MP, De Paoli A, Anderson D, Devine SM, Heffernan GD, Jacobus DP, Edstein MD, Siddiqui G, Creek DJ. Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falciparum. Mol Cell Proteomics 2020; 19:308-325. [PMID: 31836637 PMCID: PMC7000111 DOI: 10.1074/mcp.ra119.001797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/17/2019] [Indexed: 01/22/2023] Open
Abstract
The increasing incidence of antimalarial drug resistance to the first-line artemisinin combination therapies underpins an urgent need for new antimalarial drugs, ideally with a novel mode of action. The recently developed 2-aminomethylphenol, JPC-3210, (MMV 892646) is an erythrocytic schizonticide with potent in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, low cytotoxicity, potent in vivo efficacy against murine malaria, and favorable preclinical pharmacokinetics including a lengthy plasma elimination half-life. To investigate the impact of JPC-3210 on biochemical pathways within P. falciparum-infected red blood cells, we have applied a "multi-omics" workflow based on high resolution orbitrap mass spectrometry combined with biochemical approaches. Metabolomics, peptidomics and hemoglobin fractionation analyses revealed a perturbation in hemoglobin metabolism following JPC-3210 exposure. The metabolomics data demonstrated a specific depletion of short hemoglobin-derived peptides, peptidomics analysis revealed a depletion of longer hemoglobin-derived peptides, and the hemoglobin fractionation assay demonstrated decreases in hemoglobin, heme and hemozoin levels. To further elucidate the mechanism responsible for inhibition of hemoglobin metabolism, we used in vitro β-hematin polymerization assays and showed JPC-3210 to be an intermediate inhibitor of β-hematin polymerization, about 10-fold less potent then the quinoline antimalarials, such as chloroquine and mefloquine. Further, quantitative proteomics analysis showed that JPC-3210 treatment results in a distinct proteomic signature compared with other known antimalarials. While JPC-3210 clustered closely with mefloquine in the metabolomics and proteomics analyses, a key differentiating signature for JPC-3210 was the significant enrichment of parasite proteins involved in regulation of translation. These studies revealed that the mode of action for JPC-3210 involves inhibition of the hemoglobin digestion pathway and elevation of regulators of protein translation. Importantly, JPC-3210 demonstrated rapid parasite killing kinetics compared with other quinolones, suggesting that JPC-3210 warrants further investigation as a potentially long acting partner drug for malaria treatment.
Collapse
Affiliation(s)
- Geoffrey W Birrell
- Australian Defense Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Matthew P Challis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Amanda De Paoli
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Shane M Devine
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | | | - Michael D Edstein
- Australian Defense Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Ghizal Siddiqui
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
33
|
Balasubramanian S, Rahman RS, Lon C, Parobek C, Ubalee R, Hathaway N, Kuntawunginn W, My M, Vy D, Saxe J, Lanteri C, Lin FC, Spring M, Meshnick SR, Juliano JJ, Saunders DL, Lin JT. Efficient Transmission of Mixed Plasmodium falciparum/vivax Infections From Humans to Mosquitoes. J Infect Dis 2020; 221:428-437. [PMID: 31549156 PMCID: PMC7184918 DOI: 10.1093/infdis/jiz388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Southeast Asia, people are often coinfected with different species of malaria (Plasmodium falciparum [Pf] and Plasmodium vivax [Pv]) as well as with multiple clones of the same species. Whether particular species or clones within mixed infections are more readily transmitted to mosquitoes remains unknown. METHODS Laboratory-reared Anopheles dirus were fed on blood from 119 Pf-infected Cambodian adults, with 5950 dissected to evaluate for transmitted infection. Among 12 persons who infected mosquitoes, polymerase chain reaction and amplicon deep sequencing were used to track species and clone-specific transmission to mosquitoes. RESULTS Seven of 12 persons that infected mosquitoes harbored mixed Pf/Pv infection. Among these 7 persons, all transmitted Pv with 2 transmitting both Pf and Pv, leading to Pf/Pv coinfection in 21% of infected mosquitoes. Up to 4 clones of each species were detected within persons. Shifts in clone frequency were detected during transmission. However, in general, all parasite clones in humans were transmitted to mosquitoes, with individual mosquitoes frequently carrying multiple transmitted clones. CONCLUSIONS Malaria diversity in human hosts was maintained in the parasite populations recovered from mosquitoes fed on their blood. However, in persons with mixed Pf/Pv malaria, Pv appears to be transmitted more readily, in association with more prevalent patent gametocytemia.
Collapse
Affiliation(s)
- Sujata Balasubramanian
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - Rifat S Rahman
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Christian Parobek
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicholas Hathaway
- Department of Bioinformatics and Integrated Biology, University of Massachusetts, Worcester
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mok My
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | - Dav Vy
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | - Jeremy Saxe
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Charlotte Lanteri
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Feng-Chang Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Michele Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Jonathan J Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - David L Saunders
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Army Medical Materiel Development Activity, Fort Detrick, Maryland
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| |
Collapse
|
34
|
Moser KA, Drábek EF, Dwivedi A, Stucke EM, Crabtree J, Dara A, Shah Z, Adams M, Li T, Rodrigues PT, Koren S, Phillippy AM, Munro JB, Ouattara A, Sparklin BC, Dunning Hotopp JC, Lyke KE, Sadzewicz L, Tallon LJ, Spring MD, Jongsakul K, Lon C, Saunders DL, Ferreira MU, Nyunt MM, Laufer MK, Travassos MA, Sauerwein RW, Takala-Harrison S, Fraser CM, Sim BKL, Hoffman SL, Plowe CV, Silva JC. Strains used in whole organism Plasmodium falciparum vaccine trials differ in genome structure, sequence, and immunogenic potential. Genome Med 2020; 12:6. [PMID: 31915075 PMCID: PMC6950926 DOI: 10.1186/s13073-019-0708-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) whole-organism sporozoite vaccines have been shown to provide significant protection against controlled human malaria infection (CHMI) in clinical trials. Initial CHMI studies showed significantly higher durable protection against homologous than heterologous strains, suggesting the presence of strain-specific vaccine-induced protection. However, interpretation of these results and understanding of their relevance to vaccine efficacy have been hampered by the lack of knowledge on genetic differences between vaccine and CHMI strains, and how these strains are related to parasites in malaria endemic regions. METHODS Whole genome sequencing using long-read (Pacific Biosciences) and short-read (Illumina) sequencing platforms was conducted to generate de novo genome assemblies for the vaccine strain, NF54, and for strains used in heterologous CHMI (7G8 from Brazil, NF166.C8 from Guinea, and NF135.C10 from Cambodia). The assemblies were used to characterize sequences in each strain relative to the reference 3D7 (a clone of NF54) genome. Strains were compared to each other and to a collection of clinical isolates (sequenced as part of this study or from public repositories) from South America, sub-Saharan Africa, and Southeast Asia. RESULTS While few variants were detected between 3D7 and NF54, we identified tens of thousands of variants between NF54 and the three heterologous strains. These variants include SNPs, indels, and small structural variants that fall in regulatory and immunologically important regions, including transcription factors (such as PfAP2-L and PfAP2-G) and pre-erythrocytic antigens that may be key for sporozoite vaccine-induced protection. Additionally, these variants directly contributed to diversity in immunologically important regions of the genomes as detected through in silico CD8+ T cell epitope predictions. Of all heterologous strains, NF135.C10 had the highest number of unique predicted epitope sequences when compared to NF54. Comparison to global clinical isolates revealed that these four strains are representative of their geographic origin despite long-term culture adaptation; of note, NF135.C10 is from an admixed population, and not part of recently formed subpopulations resistant to artemisinin-based therapies present in the Greater Mekong Sub-region. CONCLUSIONS These results will assist in the interpretation of vaccine efficacy of whole-organism vaccines against homologous and heterologous CHMI.
Collapse
Affiliation(s)
- Kara A. Moser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Present address: Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, USA
| | - Elliott F. Drábek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Emily M. Stucke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Antoine Dara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Zalak Shah
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Tao Li
- Sanaria, Inc., Rockville, MD 20850 USA
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892 USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892 USA
| | - James B. Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Benjamin C. Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Luke J. Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Michele D. Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Krisada Jongsakul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - David L. Saunders
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Present address: Warfighter Expeditionary Medicine and Treatment, US Army Medical Material Development Activity, Frederick, USA
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Myaing M. Nyunt
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Present address: Duke Global Health Institute, Duke University, Durham, NC 27708 USA
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Mark A. Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | | | | | - Christopher V. Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Present address: Duke Global Health Institute, Duke University, Durham, NC 27708 USA
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
35
|
Lin JT, Patel JC, Levitz L, Wojnarski M, Chaorattanakawee S, Gosi P, Buathong N, Chann S, Huy R, Thay K, Sea D, Samon N, Takala-Harrison S, Fukuda M, Smith P, Spring M, Saunders D, Lon C. Gametocyte Carriage, Antimalarial Use, and Drug Resistance in Cambodia, 2008-2014. Am J Trop Med Hyg 2019; 99:1145-1149. [PMID: 30226145 DOI: 10.4269/ajtmh.18-0509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Gametocytes are the malaria parasite stages responsible for transmission from humans to mosquitoes. Gametocytemia often follows drug treatment, especially as therapies start to fail. We examined Plasmodium falciparum gametocyte carriage and drug resistance profiles among 824 persons with uncomplicated malaria in Cambodia to determine whether prevalent drug resistance and antimalarial use has led to a concentration of drug-resistant parasites among gametocyte carriers. Although report of prior antimalarial use increased from 2008 to 2014, the prevalence of study participants presenting with microscopic gametocyte carriage declined. Gametocytemia was more common in those reporting antimalarial use within the past year, and prior antimalarial use was correlated with higher IC50s to piperaquine and mefloquine, as well as to increased pfmdr1 copy number. However, there was no association between microscopic gametocyte carriage and parasite drug resistance. Thus, we found no evidence that the infectious reservoir, marked by those carrying gametocytes, is enriched with drug-resistant parasites.
Collapse
Affiliation(s)
- Jessica T Lin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jaymin C Patel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Lauren Levitz
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Mariusz Wojnarski
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Panita Gosi
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nillawan Buathong
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Soklyda Chann
- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Khengheng Thay
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Darapiseth Sea
- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Nou Samon
- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark Fukuda
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Philip Smith
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Michele Spring
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - David Saunders
- U.S. Army Medical Materiel Development Activity, Fort Detrick, Maryland
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| |
Collapse
|
36
|
Wojnarski M, Lon C, Vanachayangkul P, Gosi P, Sok S, Rachmat A, Harrison D, Berjohn CM, Spring M, Chaoratanakawee S, Ittiverakul M, Buathong N, Chann S, Wongarunkochakorn S, Waltmann A, Kuntawunginn W, Fukuda MM, Burkly H, Heang V, Heng TK, Kong N, Boonchan T, Chum B, Smith P, Vaughn A, Prom S, Lin J, Lek D, Saunders D. Atovaquone-Proguanil in Combination With Artesunate to Treat Multidrug-Resistant P. falciparum Malaria in Cambodia: An Open-Label Randomized Trial. Open Forum Infect Dis 2019; 6:ofz314. [PMID: 31660398 DOI: 10.1093/ofid/ofz314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Recent artemisinin-combination therapy failures in Cambodia prompted a search for alternatives. Atovaquone-proguanil (AP), a safe, effective treatment for multidrug-resistant Plasmodium falciparum (P.f.), previously demonstrated additive effects in combination with artesunate (AS). Methods Patients with P.f. or mixed-species infection (n = 205) in Anlong Veng (AV; n = 157) and Kratie (KT; n = 48), Cambodia, were randomized open-label 1:1 to a fixed-dose 3-day AP regimen +/-3 days of co-administered artesunate (ASAP). Single low-dose primaquine (PQ, 15 mg) was given on day 1 to prevent gametocyte-mediated transmission. Results Polymerase chain reaction-adjusted adequate clinical and parasitological response at 42 days was 90% for AP (95% confidence interval [CI], 82%-95%) and 92% for ASAP (95% CI, 83%-96%; P = .73). The median parasite clearance time was 72 hours for ASAP in AV vs 56 hours in KT (P < .001) and was no different than AP alone. At 1 week postprimaquine, 7% of the ASAP group carried microscopic gametocytes vs 29% for AP alone (P = .0001). Nearly all P.f. isolates had C580Y K13 propeller artemisinin resistance mutations (AV 99%; KT 88%). Only 1 of 14 treatment failures carried the cytochrome bc1 (Pfcytb) atovaquone resistance mutation, which was not present at baseline. P.f. isolates remained atovaquone sensitive in vitro but cycloguanil resistant, with a triple P.f. dihydrofolate reductase mutation. Conclusions Atovaquone-proguanil remained marginally effective in Cambodia (≥90%) with minimal Pfcytb mutations observed. Treatment failures in the presence of ex vivo atovaquone sensitivity and adequate plasma levels may be attributable to cycloguanil and/or artemisinin resistance. Artesunate co-administration provided little additional blood-stage efficacy but reduced post-treatment gametocyte carriage in combination with AP beyond single low-dose primaquine.
Collapse
Affiliation(s)
- Mariusz Wojnarski
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Panita Gosi
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Somethy Sok
- Department of Health, Ministry of National Defense, Phnom Penh, Cambodia
| | - Agus Rachmat
- Naval Medical Research Unit-2, Phnom Penh, Cambodia
| | | | | | - Michele Spring
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Henry M. Jackson Foundation, Bethesda, Maryland
| | - Suwanna Chaoratanakawee
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mali Ittiverakul
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nillawan Buathong
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Soklyda Chann
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | | - Mark M Fukuda
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Hana Burkly
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Vireak Heang
- Naval Medical Research Unit-2, Phnom Penh, Cambodia
| | - Thay Keang Heng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nareth Kong
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Threechada Boonchan
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bolin Chum
- Naval Medical Research Unit-2, Phnom Penh, Cambodia
| | - Philip Smith
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Satharath Prom
- Department of Health, Ministry of National Defense, Phnom Penh, Cambodia
| | - Jessica Lin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - David Saunders
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,US Army Medical Materiel Development Activity, Fort Detrick, Maryland
| |
Collapse
|
37
|
Foguim FT, Robert MG, Gueye MW, Gendrot M, Diawara S, Mosnier J, Amalvict R, Benoit N, Bercion R, Fall B, Madamet M, Pradines B. Low polymorphisms in pfact, pfugt and pfcarl genes in African Plasmodium falciparum isolates and absence of association with susceptibility to common anti-malarial drugs. Malar J 2019; 18:293. [PMID: 31455301 PMCID: PMC6712813 DOI: 10.1186/s12936-019-2919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Resistance to all available anti-malarial drugs has emerged and spread including artemisinin derivatives and their partner drugs. Several genes involved in artemisinin and partner drugs resistance, such as pfcrt, pfmdr1, pfK13 or pfpm2, have been identified. However, these genes do not properly explain anti-malarial drug resistance, and more particularly clinical failures observed in Africa. Mutations in genes encoding for Plasmodium falciparum proteins, such as P. falciparum Acetyl-CoA transporter (PfACT), P. falciparum UDP-galactose transporter (PfUGT) and P. falciparum cyclic amine resistance locus (PfCARL) have recently been associated to resistance to imidazolopiperazines and other unrelated drugs. Methods Mutations on pfugt, pfact and pfcarl were characterized on 86 isolates collected in Dakar, Senegal and 173 samples collected from patients hospitalized in France after a travel in African countries from 2015 and 2016 to assess their potential association with ex vivo susceptibility to chloroquine, quinine, lumefantrine, monodesethylamodiaquine, mefloquine, dihydroartemisinin, artesunate, doxycycline, pyronaridine and piperaquine. Results No mutations were found on the genes pfugt and pfact. None of the pfcarl described mutations were identified in these samples from Africa. The K784N mutation was found in one sample and the K734M mutation was identified on 7.9% of all samples for pfcarl. The only significant differences in ex vivo susceptibility according to the K734M mutation were observed for pyronaridine for African isolates from imported malaria and for doxycycline for Senegalese parasites. Conclusion No evidence was found of involvement of these genes in reduced susceptibility to standard anti-malarial drugs in African P. falciparum isolates.
Collapse
Affiliation(s)
- Francis Tsombeng Foguim
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marie Gladys Robert
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | | | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Silman Diawara
- Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Rémy Amalvict
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Nicolas Benoit
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Raymond Bercion
- Laboratoire d'analyses médicales, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bécaye Fall
- Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal. .,Centre national de référence du Paludisme, Marseille, France.
| | | |
Collapse
|
38
|
Development of artemisinin resistance in malaria therapy. Pharmacol Res 2019; 146:104275. [DOI: 10.1016/j.phrs.2019.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
|
39
|
Gendrot M, Wague Gueye M, Tsombeng Foguim F, Madamet M, Wade KA, Bou Kounta M, Fall M, Diawara S, Benoit N, Lo G, Bercion R, Amalvict R, Mosnier J, Fall B, Briolant S, Diatta B, Pradines B. Modulation of in vitro antimalarial responses by polymorphisms in Plasmodium falciparum ABC transporters (pfmdr1 and pfmdr5). Acta Trop 2019; 196:126-134. [PMID: 31108084 DOI: 10.1016/j.actatropica.2019.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
The emergence of resistance to artemisinin-based combination therapies (ACT) was described in Southeast Asia. In this context, the identification of molecular markers of ACT resistance partner drugs is urgently needed for monitoring the emergence and spread of resistance. Polymorphisms in transporter genes, especially of the ATP-binding cassette (ABC) superfamily, have been involved in anti-malarial drug resistance. In this study, the association between the mutations in the P. falciparum multidrug resistance 1 gene (pfmdr1, N86Y, Y184 F, S1034C, N1042D and D1246Y) or repetitive amino acid motifs in pfmdr5 and the ex vivo susceptibility to anti-malarial drugs was evaluated. Susceptibility to chloroquine, quinine, monodesethylamodiaquine, lumefantrine, piperaquine, pyronaridine, mefloquine and dihydroartemisinin was assessed in 67 Senegalese isolates. The shorter DNNN motif ranged from to 2 to 11 copy repeats, and the longer DHHNDHNNDNNN motif ranged from 0 to 2 in pfmdr5. The present study showed the association between repetitive amino acid motifs (DNNN-DHHNDDHNNDNNN) in pfmdr5 and in vitro susceptibility to 4-aminoquinoline-based antimalarial drugs. The parasites with 8 and more copy repeats of DNNN in pfmdr5 were significantly more susceptible to piperaquine. There was a significant association between parasites whose DHHNDHNNDNNN motif was absent and replaced by DHHNDNNN, DHHNDHNNDHNNDNNN or DHHNDHNNDHNNDHNNDNNN and increased susceptibility to chloroquine, monodesethylamodiaquine and pyronaridine. A significant association between both the wild-type allele N86 in pfmdr1 and the N86-184 F haplotype and reduced susceptibility to lumefantrine was confirmed. Further studies with a large number of samples are required to validate the association between these pfmdr5 alleles and the modulation of 4-aminoquinoline-based antimalarial drug susceptibility.
Collapse
|
40
|
Leroy D, Macintyre F, Adoke Y, Ouoba S, Barry A, Mombo-Ngoma G, Ndong Ngomo JM, Varo R, Dossou Y, Tshefu AK, Duong TT, Phuc BQ, Laurijssens B, Klopper R, Khim N, Legrand E, Ménard D. African isolates show a high proportion of multiple copies of the Plasmodium falciparum plasmepsin-2 gene, a piperaquine resistance marker. Malar J 2019; 18:126. [PMID: 30967148 PMCID: PMC6457011 DOI: 10.1186/s12936-019-2756-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Today, the development of new and well-tolerated anti-malarial drugs is strongly justified by the emergence of Plasmodium falciparum resistance. In 2014-2015, a phase 2b clinical study was conducted to evaluate the efficacy of a single oral dose of Artefenomel (OZ439)-piperaquine (PPQ) in Asian and African patients presenting with uncomplicated falciparum malaria. METHODS Blood samples collected before treatment offered the opportunity to investigate the proportion of multidrug resistant parasite genotypes, including P. falciparum kelch13 mutations and copy number variation of both P. falciparum plasmepsin 2 (Pfpm2) and P. falciparum multidrug resistance 1 (Pfmdr1) genes. RESULTS Validated kelch13 resistance mutations including C580Y, I543T, P553L and V568G were only detected in parasites from Vietnamese patients. In Africa, isolates with multiple copies of the Pfmdr1 gene were shown to be more frequent than previously reported (21.1%, range from 12.4% in Burkina Faso to 27.4% in Uganda). More strikingly, high proportions of isolates with multiple copies of the Pfpm2 gene, associated with piperaquine (PPQ) resistance, were frequently observed in the African sites, especially in Burkina Faso and Uganda (> 30%). CONCLUSIONS These findings were considered to sharply contrast with the recent description of increased sensitivity to PPQ of Ugandan parasite isolates. This emphasizes the necessity to investigate in vitro susceptibility profiles to PPQ of African isolates with multiple copies of the Pfpm2 gene and estimate the risk of development of PPQ resistance in Africa. Trial registration Clinicaltrials.gov reference: NCT02083380. Study title: Phase II efficacy study of artefenomel and piperaquine in adults and children with P. falciparum malaria. https://clinicaltrials.gov/ct2/results?cond=&term=NCT02083380&cntry=&state=&city=&dist= . FSFV: 23-Jul-2014; LSLV: 09-Oct-2015.
Collapse
Affiliation(s)
- Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.
| | | | - Yeka Adoke
- Infectious Diseases Research Collaboration, Tororo Hospital, Tororo, Uganda
| | - Serge Ouoba
- Institut de Recherche en Sciences de la Santé - Unité de Recherche Clinique de Nanoro, Ouagadougou, Burkina Faso
| | - Aissata Barry
- Institut de Recherche en Sciences de la Santé - Unité de Recherche Clinique de Nanoro, Ouagadougou, Burkina Faso
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | | | - Rosauro Varo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Yannelle Dossou
- Centre de Recherche sur le Paludisme Associé à la Grossesse et l'Enfance, Faculté Des Sciences De La Santé, Cotonou, Benin
| | - Antoinette Kitoto Tshefu
- Centre de Recherche du Centre Hospitalier de Mont Amba, Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Tran Thanh Duong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Bui Quang Phuc
- Clinical Pharmaceutical Research Department, National Institute of Malariology, Parasitology and Entomology, 35 Trung Van Street, Nam Tu Liem District, Hanoi, Vietnam
| | | | | | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Eric Legrand
- Malaria Genetics and Resistance Group, INSERM U1201-CNRS ERL919, Institut Pasteur, Paris, France
| | - Didier Ménard
- Malaria Genetics and Resistance Group, INSERM U1201-CNRS ERL919, Institut Pasteur, Paris, France.
| |
Collapse
|
41
|
Wesolowski A, Taylor AR, Chang HH, Verity R, Tessema S, Bailey JA, Alex Perkins T, Neafsey DE, Greenhouse B, Buckee CO. Mapping malaria by combining parasite genomic and epidemiologic data. BMC Med 2018; 16:190. [PMID: 30333020 PMCID: PMC6193293 DOI: 10.1186/s12916-018-1181-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recent global progress in scaling up malaria control interventions has revived the goal of complete elimination in many countries. Decreasing transmission intensity generally leads to increasingly patchy spatial patterns of malaria transmission in elimination settings, with control programs having to accurately identify remaining foci in order to efficiently target interventions. FINDINGS The role of connectivity between different pockets of local transmission is of increasing importance as programs near elimination since humans are able to transfer parasites beyond the limits of mosquito dispersal, thus re-introducing parasites to previously malaria-free regions. Here, we discuss recent advances in the quantification of spatial epidemiology of malaria, particularly Plasmodium falciparum, in the context of transmission reduction interventions. Further, we highlight the challenges and promising directions for the development of integrated mapping, modeling, and genomic approaches that leverage disparate datasets to measure both connectivity and transmission. CONCLUSION A more comprehensive understanding of the spatial transmission of malaria can be gained using a combination of parasite genetics and epidemiological modeling and mapping. However, additional molecular and quantitative methods are necessary to answer these public health-related questions.
Collapse
Affiliation(s)
- Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Aimee R Taylor
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
| | - Hsiao-Han Chang
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Robert Verity
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - Sofonias Tessema
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA.,Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Caroline O Buckee
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA. .,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
42
|
Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun 2018; 9:3314. [PMID: 30115924 PMCID: PMC6095916 DOI: 10.1038/s41467-018-05652-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022] Open
Abstract
The widely used antimalarial combination therapy dihydroartemisinin + piperaquine (DHA + PPQ) has failed in Cambodia. Here, we perform a genomic analysis that reveals a rapid increase in the prevalence of novel mutations in the Plasmodium falciparum chloroquine resistance transporter PfCRT following DHA + PPQ implementation. These mutations occur in parasites harboring the K13 C580Y artemisinin resistance marker. By introducing PfCRT mutations into sensitive Dd2 parasites or removing them from resistant Cambodian isolates, we show that the H97Y, F145I, M343L, or G353V mutations each confer resistance to PPQ, albeit with fitness costs for all but M343L. These mutations sensitize Dd2 parasites to chloroquine, amodiaquine, and quinine. In Dd2 parasites, multicopy plasmepsin 2, a candidate molecular marker, is not necessary for PPQ resistance. Distended digestive vacuoles were observed in pfcrt-edited Dd2 parasites but not in Cambodian isolates. Our findings provide compelling evidence that emerging mutations in PfCRT can serve as a molecular marker and mediator of PPQ resistance. Increasing resistance of Plasmodium falciparum strains to piperaquine (PPQ) in Southeast Asia is of concern and resistance mechanisms are incompletely understood. Here, Ross et al. show that mutations in the P. falciparum chloroquine resistance transporter are rapidly increasing in prevalence in Cambodia and confer resistance to PPQ.
Collapse
|
43
|
Photo-Induced Electron Transfer Real-Time PCR for Detection of Plasmodium falciparum plasmepsin 2 Gene Copy Number. Antimicrob Agents Chemother 2018; 62:AAC.00317-18. [PMID: 29866871 DOI: 10.1128/aac.00317-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022] Open
Abstract
Piperaquine is an important partner drug used in artemisinin-based combination therapies (ACTs). An increase in the plasmepsin 2 and 3 gene copy numbers has been associated with decreased susceptibility of Plasmodium falciparum to piperaquine in Cambodia. Here, we developed a photo-induced electron transfer real-time PCR (PET-PCR) assay to quantify the copy number of the P. falciparumplasmepsin 2 gene (PfPM2) that can be used in countries where P. falciparum is endemic to enhance molecular surveillance.
Collapse
|
44
|
Bopp S, Magistrado P, Wong W, Schaffner SF, Mukherjee A, Lim P, Dhorda M, Amaratunga C, Woodrow CJ, Ashley EA, White NJ, Dondorp AM, Fairhurst RM, Ariey F, Menard D, Wirth DF, Volkman SK. Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat Commun 2018; 9:1769. [PMID: 29720620 PMCID: PMC5931971 DOI: 10.1038/s41467-018-04104-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/30/2018] [Indexed: 12/30/2022] Open
Abstract
Multidrug resistant Plasmodium falciparum in Southeast Asia endangers regional malaria elimination and threatens to spread to other malaria endemic areas. Understanding mechanisms of piperaquine (PPQ) resistance is crucial for tracking its emergence and spread, and to develop effective strategies for overcoming it. Here we analyze a mechanism of PPQ resistance in Cambodian parasites. Isolates exhibit a bimodal dose-response curve when exposed to PPQ, with the area under the curve quantifying their survival in vitro. Increased copy number for plasmepsin II and plasmepsin III appears to explain enhanced survival when exposed to PPQ in most, but not all cases. A panel of isogenic subclones reinforces the importance of plasmepsin II-III copy number to enhanced PPQ survival. We conjecture that factors producing increased parasite survival under PPQ exposure in vitro may drive clinical PPQ failures in the field.
Collapse
Affiliation(s)
- Selina Bopp
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Wesley Wong
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Stephen F Schaffner
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Angana Mukherjee
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Pharath Lim
- National Institutes of Health, Rockville, MD, 20892, USA
| | - Mehul Dhorda
- Worldwide Antimalarial Resistance Network, Bangkok, 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | | | - Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand
| | - Elizabeth A Ashley
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Frederic Ariey
- Institut Cochin, INSERM U:1016, Parasitology-Mycology Unit, Cochin Hospital Paris Descartes University, Paris, 75014, France
| | - Didier Menard
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, 75015, France
- CNRS, ERL 9195, Paris, 75794, France
- INSERM, Unit U1201, Paris, 75015, France
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Simmons College, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
De Lucia S, Tsamesidis I, Pau MC, Kesely KR, Pantaleo A, Turrini F. Induction of high tolerance to artemisinin by sub-lethal administration: A new in vitro model of P. falciparum. PLoS One 2018; 13:e0191084. [PMID: 29342187 PMCID: PMC5771598 DOI: 10.1371/journal.pone.0191084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Artemisinin resistance is a major threat to malaria control efforts. Resistance is characterized by an increase in the Plasmodium falciparum parasite clearance half-life following treatment with artemisinin-based combination therapies (ACTs) and an increase in the percentage of surviving parasites. The remarkably short blood half-life of artemisinin derivatives may contribute to drug-resistance, possibly through factors including sub-lethal plasma concentrations and inadequate exposure. Here we selected for a new strain of artemisinin resistant parasites, termed the artemisinin resistant strain 1 (ARS1), by treating P. falciparum Palo Alto (PA) cultures with sub-lethal concentrations of dihydroartemisinin (DHA). The resistance phenotype was maintained for over 1 year through monthly maintenance treatments with low doses of 2.5 nM DHA. There was a moderate increase in the DHA IC50 in ARS1 when compared with parental strain PA after 72 h of drug exposure (from 0.68 nM to 2 nM DHA). In addition, ARS1 survived treatment physiologically relevant DHA concentrations (700 nM) observed in patients. Furthermore, we confirmed a lack of cross-resistance against a panel of antimalarials commonly used as partner drugs in ACTs. Finally, ARS1 did not contain Pfk13 propeller domain mutations associated with ART resistance in the Greater Mekong Region. With a stable growth rate, ARS1 represents a valuable tool for the development of new antimalarial compounds and studies to further elucidate the mechanisms of ART resistance.
Collapse
Affiliation(s)
- Serena De Lucia
- Department of Oncology, University of Turin, Turin, Italy
- * E-mail:
| | - Ioannis Tsamesidis
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Maria Carmina Pau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Kristina R. Kesely
- Department of Biochemistry, Purdue University, West Lafayette, United States of America
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | |
Collapse
|