1
|
Binzunga MM, Kokou K, Mouritala S, Najimu A, Ibnou D, Angelique K, Mignouna J, Nyende AB. An alternative Semi-Autotropic Hydroponics (SAH) substrate for cassava rapid propagation: A first study case. PLoS One 2024; 19:e0311437. [PMID: 39724150 DOI: 10.1371/journal.pone.0311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/18/2024] [Indexed: 12/28/2024] Open
Abstract
The expansion of Semi-Autotrophic Hydroponics technology to address the issue of multiplying and disseminating virus-free planting materials for vegetatively propagated crops is challenged by the utilization of imported substrate, namely, KlasmannTS3. In this study, we evaluated the growth parameters and cutting production of cassava genotypes during three subsequent plantlet production cycles using three single substrates, namely, KlasmannTS3 (K), vermiculite (V), and local peat (P), and three blended substrates. The blended substrates were a combination of 25% K and 75% P (K25P75), a combination of V and P at respective rates of 25% and 75% (V25P75), and respective rates of 10% and 90% (V10P90). All cuttings obtained in one plantlet production cycle were transplanted into the next. The multiplication rate of cutting from cycle 1 to 2 (R1) and cycle 2 to 3 (R2) was calculated as the ratios of the number of cuttings per the number of plantlets in each cycle. K and K25P75 led to similar R1 and R2, except with the genotype IBA961089A, where K25P75 led to a higher R1. Local peat and V solely showed similar cutting multiplication rates, and were lower than V25P75 and V10P90. Substrates with a higher cutting production also led to a higher plantlet height, leaf, and internode number. V and its combinations with local peat led to the densest plantlet root system. The performance of the substrates contrasted among the genotypes, but IBA961089A mostly outperformed the two other genotypes. We concluded that up to 75% of K and, to a lesser extent 75% of V, can be substituted by P without compromising cutting production. V and P should be combined instead of being used separately.
Collapse
Affiliation(s)
- Mamy Makumbu Binzunga
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Democratic Republic of the Congo
- Institut National pour l'Etude et la Recherche Agronomiques, Kinshasa, Democratic Republic of the Congo
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Kintche Kokou
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Democratic Republic of the Congo
| | - Sikirou Mouritala
- International Institute of Tropical Agriculture, Kinshasa, Democratic Republic of the Congo
| | - Adetoro Najimu
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Democratic Republic of the Congo
| | - Dieng Ibnou
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Kajibwami Angelique
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Democratic Republic of the Congo
| | - Jacob Mignouna
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Democratic Republic of the Congo
| | | |
Collapse
|
2
|
Sichalwe KL, Kayondo I, Edema R, Dramadri IO, AAdjei E, Kulembeka H, Kimani W, Mgonja D, Rubahaiyo P, Kanju E. Genetic diversity and population structure of Uganda cassava germplasm. J Appl Genet 2024; 65:683-691. [PMID: 39012576 DOI: 10.1007/s13353-024-00892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Cassava (Manihot esculenta Crantz) holds significant economic importance globally. Evaluating a diverse range of germplasm based on molecular characteristics not only enhances its preservation but also supports its utilization in breeding programs. In this study, we assessed genetic diversity and population structure among 155 cassava genotypes from Uganda using 5247 single nucleotide polymorphism (SNP) markers. Genotyping by sequencing (GBS) was employed for SNP discovery and to evaluate genetic diversity and population structure using the ADMIXTURE software. The cassava accessions comprised two populations: 49 accessions from Ugandan lines and 106 accessions resulting from crosses between South American and Ugandan lines. The average call rate of 96% was utilized to assess marker polymorphism. Polymorphic information content values of the markers ranged from 0.1 to 0.5 with an average of 0.4 which was moderately high. The principal component analysis (PCA) showed that the first two components captured ~ 24.2% of the genetic variation. The average genetic diversity was 0.3. The analysis of molecular variance (AMOVA) indicated that 66.02% and 33.98% of the total genetic variation occurred within accessions and between sub-populations, respectively. Five sub-populations were identified based on ADMIXTURE structure analysis (K = 5). Neighbor-joining tree and hierarchical clustering tree revealed the presence of three different groups which were primarily based on the source of the genotypes. The results suggested that there was considerable genetic variation among the cassava genotypes which is useful in cassava improvement and conservation efforts.
Collapse
Affiliation(s)
- Karoline Leonard Sichalwe
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.
- Tanzania Agricultural Research Institute, Kibaha, Tanzania.
| | - Ismail Kayondo
- International Institute of Tropical Agriculture, Plot 25 Mikocheni Industrial Area, Mwenge Coca-Cola Road, Mikocheni Dar Es Salaam, Tanzania
| | - Richard Edema
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Isaac O Dramadri
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Emmanuel AAdjei
- CSIR- Savannah Agriculture Research Institute, Tamale, Ghana
| | | | - Wilson Kimani
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Doreen Mgonja
- Tanzania Agricultural Research Institute, Kibaha, Tanzania
| | - Patrick Rubahaiyo
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Edward Kanju
- International Institute of Tropical Agriculture, Plot 25 Mikocheni Industrial Area, Mwenge Coca-Cola Road, Mikocheni Dar Es Salaam, Tanzania
| |
Collapse
|
3
|
Martin Říhová J, Gupta S, Nováková E, Hypša V. Fur microbiome as a putative source of symbiotic bacteria in sucking lice. Sci Rep 2024; 14:22326. [PMID: 39333204 PMCID: PMC11436785 DOI: 10.1038/s41598-024-73026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Symbiosis between insects and bacteria has been established countless times. While it is well known that the symbionts originated from a variety of different bacterial taxa, it is usually difficult to determine their environmental source and a route of their acquisition by the host. In this study, we address this question using a model of Neisseriaceae symbionts in rodent lice. These bacteria established their symbiosis independently with different louse taxa (Polyplax, Hoplopleura, Neohaematopinus), most likely from the same environmental source. We first applied amplicon analysis to screen for candidate source bacterium in the louse environment. Since lice are permanent ectoparasites, often specific to the particular host, we screened various microbiomes associated with three rodent species (Microtus arvalis, Clethrionomys glareolus, and Apodemus flavicollis). The analyzed samples included fur, skin, spleen, and other ectoparasites sampled from these rodents. The fur microbiome data revealed a Neisseriaceae bacterium, closely related to the known louse symbionts. The draft genomes of the environmental Neisseriaceae, assembled from all three rodent hosts, converged to a remarkably small size of approximately 1.4 Mbp, being even smaller than the genomes of the related symbionts. Our results suggest that the rodent fur microbiome can serve as a source for independent establishment of bacterial symbiosis in associated louse species. We further propose a hypothetical scenario of the genome evolution during the transition of a free-living bacterium to the member of the rodent fur-associated microbiome and subsequently to the facultative and obligate louse symbionts.
Collapse
Affiliation(s)
- Jana Martin Říhová
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Shruti Gupta
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Wosula EN, Shirima RR, Amour M, Woyengo VW, Otunga BM, Legg JP. Occurrence and Distribution of Major Cassava Pests and Diseases in Cultivated Cassava Varieties in Western Kenya. Viruses 2024; 16:1469. [PMID: 39339946 PMCID: PMC11437512 DOI: 10.3390/v16091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Cassava is an important food crop in western Kenya, yet its production is challenged by pests and diseases that require routine monitoring to guide development and deployment of control strategies. Field surveys were conducted in 2022 and 2023 to determine the prevalence, incidence and severity of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), whitefly numbers and incidence of cassava green mite (CGM) in six counties of western Kenya. Details of the encountered cassava varieties were carefully recorded to determine the adoption of improved varieties. A total of 29 varieties were recorded, out of which 13 were improved, although the improved varieties were predominant in 60% of fields and the most widely grown variety was MM96/4271. The CMD incidence was higher in 2022 (26.4%) compared to 2023 (10.1%), although the proportion of CMD attributable to whitefly infection was greater (50.6%) in 2023 than in 2022 (18.0%). The CBSD incidence in 2022 was 6.4%, while in 2023 it was 4.1%. The CMD incidence was significantly lower (5.9%) for the improved varieties than it was for the local varieties (35.9%), although the CBSD incidence did not differ significantly between the improved (2.3%) and local varieties (9.7%). Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) were both detected. Most infections were single CBSV infections (82.9%), followed by single UCBSV (34.3%) and coinfection with both viruses (16.7%). Whiteflies were more abundant in 2023, in which 28% of the fields had super-abundant populations of >100/plant, compared to 5% in 2022. KASP SNP genotyping designated 92.8% of the specimens as SSA-ECA for 2022, while it was 94.4% for 2023. The cassava green mite incidence was 65.4% in 2022 compared to 79.9% in 2023. This study demonstrates that cassava viruses, whiteflies and cassava green mites continue to be important constraints to cassava production in western Kenya, although the widespread cultivation of improved varieties is reducing the impact of cassava viruses. The more widespread application of high-quality seed delivery mechanisms could further enhance the management of these pests/diseases, coupled with wider application of IPM measures for whiteflies and mites.
Collapse
Affiliation(s)
- Everlyne N Wosula
- International Institute of Tropical Agriculture (IITA-Tanzania), Dar es Salaam P.O. BOX 34441, Tanzania
| | - Rudolph R Shirima
- International Institute of Tropical Agriculture (IITA-Tanzania), Dar es Salaam P.O. BOX 34441, Tanzania
| | - Massoud Amour
- International Institute of Tropical Agriculture (IITA-Tanzania), Dar es Salaam P.O. BOX 34441, Tanzania
| | - Vincent W Woyengo
- Kenya Agricultural Livestock Research Organization (KALRO), Kakamega P.O. Box 57811, Kenya
| | - Bonface M Otunga
- Kenya Agricultural Livestock Research Organization (KALRO), Kakamega P.O. Box 57811, Kenya
| | - James P Legg
- International Institute of Tropical Agriculture (IITA-Tanzania), Dar es Salaam P.O. BOX 34441, Tanzania
| |
Collapse
|
5
|
Kepngop LRK, Wosula EN, Amour M, Ghomsi PGT, Wakam LN, Kansci G, Legg JP. Genetic Diversity of Whiteflies Colonizing Crops and Their Associated Endosymbionts in Three Agroecological Zones of Cameroon. INSECTS 2024; 15:657. [PMID: 39336625 PMCID: PMC11432237 DOI: 10.3390/insects15090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Bemisia tabaci (Gennadius) is as a major pest of vegetable crops in Cameroon. These sap-sucking insects are the main vector of many viruses infecting plants, and several cryptic species have developed resistance against insecticides. Nevertheless, there is very little information about whitefly species on vegetable crops and the endosymbionts that infect them in Cameroon. Here, we investigated the genetic diversity of whiteflies and their frequency of infection by endosymbionts in Cameroon. Ninety-two whitefly samples were collected and characterized using mitochondrial cytochrome oxidase I (mtCOI) markers and Kompetitive Allele Specific PCR (KASP). The analysis of mtCOI sequences of whiteflies indicated the presence of six cryptic species (mitotypes) of Bemisia tabaci, and two distinct clades of Bemisia afer and Trialeurodes vaporariorum. Bemisia tabaci mitotypes identified included: MED on tomato, pepper, okra, and melon; and SSA1-SG1, SSA1-SG2, SSA1-SG5, SSA3, and SSA4 on cassava. The MED mitotype predominated in all regions on the solanaceous crops, suggesting that MED is probably the main phytovirus vector in Cameroonian vegetable cropping systems. The more diverse cassava-colonizing B. tabaci were split into three haplogroups (SNP-based grouping) including SSA-WA, SSA4, and SSA-ECA using KASP genotyping. This is the first time that SSA-ECA has been reported in Cameroon. This haplogroup is predominant in regions currently affected by the severe cassava mosaic virus disease (CMD) and cassava brown streak virus disease (CBSD) pandemics. Three endosymbionts including Arsenophonus, Rickettsia, and Wolbachia were present in female whiteflies tested in this study with varying frequency. Arsenophonus, which has been shown to influence the adaptability of whiteflies, was more frequent in the MED mitotype (75%). Cardinium and Hamiltonella were absent in all whitefly samples. These findings add to the knowledge on the diversity of whiteflies and their associated endosymbionts, which, when combined, influence virus epidemics and responses to whitefly control measures, especially insecticides.
Collapse
Affiliation(s)
- Lanvin R. K. Kepngop
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Massoud Amour
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Pierre G. T. Ghomsi
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Louise N. Wakam
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Germain Kansci
- Laboratory of Food Science and Nutrition, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - James P. Legg
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| |
Collapse
|
6
|
Wei J, Liu X, Li C, Yang Y, Song C, Chen Y, Ciren Q, Jiang C, Li Q. Identification and Characterization of Hibiscus mutabilis Varieties Resistant to Bemisia tabaci and Their Resistance Mechanisms. INSECTS 2024; 15:454. [PMID: 38921168 PMCID: PMC11203673 DOI: 10.3390/insects15060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Hibiscus mutabilis, the city flower of Chengdu, is culturally significant and has nutritional and medicinal benefits. However, frequent infestations of Bemisia tabaci have caused economic losses. This study aimed to identify insect-resistant H. mutabilis varieties. Over two years, varieties like Jinqiusong, Zuiyun, and Zuifurong showed moderate to high resistance based on reproductive indices. Assessments of antixenosis and developmental impacts revealed that adult B. tabaci exhibited low selectivity toward these resistant varieties, indicating a strong repellent effect. Gas chromatography-mass spectrometry analysis identified volatile organic compounds, such as alcohols, alkanes, and terpenes. Notably, 2-ethylhexanol and 6-methylheptanol exhibited repellent properties. Using nontargeted metabolomics, this study compared the metabolite profiles of the insect-resistant variety Jinqiusong (JQS), moderately resistant Bairihuacai (BRHC), and highly susceptible Chongbanbai (CBB) post B. tabaci infestation. Fifteen key metabolites were linked to resistance, emphasizing the phenylpropanoid biosynthesis pathway as crucial in defense. These findings offer a theoretical foundation for breeding insect-resistant H. mutabilis varieties and developing eco-friendly strategies against B. tabaci infestations.
Collapse
Affiliation(s)
- Juan Wei
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Xiaoli Liu
- Chengdu Botanical Garden (Chengdu Park Urban Plant Science Research Institute), Chengdu 610083, China; (X.L.)
| | - Chan Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Yuanzhao Yang
- Chengdu Botanical Garden (Chengdu Park Urban Plant Science Research Institute), Chengdu 610083, China; (X.L.)
| | - Cancan Song
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Yihao Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Qiongda Ciren
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Qing Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| |
Collapse
|
7
|
Wang HL, Lei T, Wang XW, Cameron S, Navas-Castillo J, Liu YQ, Maruthi MN, Omongo CA, Delatte H, Lee KY, Krause-Sakate R, Ng J, Seal S, Fiallo-Olivé E, Bushley K, Colvin J, Liu SS. A comprehensive framework for the delimitation of species within the Bemisia tabaci cryptic complex, a global pest-species group. INSECT SCIENCE 2024. [PMID: 38562016 DOI: 10.1111/1744-7917.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Identifying cryptic species poses a substantial challenge to both biologists and naturalists due to morphological similarities. Bemisia tabaci is a cryptic species complex containing more than 44 putative species; several of which are currently among the world's most destructive crop pests. Interpreting and delimiting the evolution of this species complex has proved problematic. To develop a comprehensive framework for species delimitation and identification, we evaluated the performance of distinct data sources both individually and in combination among numerous samples of the B. tabaci species complex acquired worldwide. Distinct datasets include full mitogenomes, single-copy nuclear genes, restriction site-associated DNA sequencing, geographic range, host speciation, and reproductive compatibility datasets. Phylogenetically, our well-supported topologies generated from three dense molecular markers highlighted the evolutionary divergence of species of the B. tabaci complex and suggested that the nuclear markers serve as a more accurate representation of B. tabaci species diversity. Reproductive compatibility datasets facilitated the identification of at least 17 different cryptic species within our samples. Native geographic range information provides a complementary assessment of species recognition, while the host range datasets provide low rate of delimiting resolution. We further summarized different data performances in species classification when compared with reproductive compatibility, indicating that combination of mtCOI divergence, nuclear markers, geographic range provide a complementary assessment of species recognition. Finally, we represent a model for understanding and untangling the cryptic species complexes based on the evidence from this study and previously published articles.
Collapse
Affiliation(s)
- Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Teng Lei
- College of Life Sciences, Taizhou University, Taizhou, Zhejiang Province, China
| | - Xiao-Wei Wang
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Stephen Cameron
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Malaga, Spain
| | - Yin-Quan Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Kent, UK
| | | | - Hélène Delatte
- CIRAD, UMR PVBMT CIRAD, Pôle de Protection des Plantes, Saint-Pierre, France
| | - Kyeong-Yeoll Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | | | - James Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Malaga, Spain
| | - Kathryn Bushley
- USDA Agricultural Research Service, 17123, Emerging Pests and Pathogens Research Unit, Ithaca, NY, USA
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Shu-Sheng Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Caspary R, Wosula EN, Issa KA, Amour M, Legg JP. Cutting Dipping Application of Flupyradifurone against Cassava Whiteflies Bemisia tabaci and Impact on Its Parasitism in Cassava. INSECTS 2023; 14:796. [PMID: 37887808 PMCID: PMC10607024 DOI: 10.3390/insects14100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
The cassava whitefly Bemisia tabaci causes damage in cassava through the feeding and vectoring of plant viruses that cause cassava mosaic and cassava brown streak diseases. This study sought to explore the efficacy of cutting dipping in flupyradifurone for whitefly control and the impact of the mode of application on whitefly parasitism under farmer field conditions. The insecticide treatment significantly reduced adult whiteflies by 41%, nymphs by 64%, and cassava mosaic disease (CMD) incidence by 16% and increased root yield by 49%. The whitefly parasitism rate by Encarsia spp. parasitoids was 27.3 and 21.1%, while Eretmocerus spp. had 26.7 and 18.0% in control and flupyradifurone, respectively, and these differences were not significant. Electropenetrography recordings of whitefly feeding behaviour on flupyradifurone-treated plants showed significantly reduced probing activity and a delay in reaching the phloem as compared to the control. The findings from this study demonstrated that cassava cutting dipping in flupyradifurone significantly reduces whitefly numbers and cassava mosaic disease incidence, thus contributing to a significant root yield increase in cassava. Flupyradifurone applied through cutting dips does not significantly impact parasitism rates in cassava fields. Routine monitoring of parasitoids and predators in insecticide-treated versus control fields should be emphasized to determine the impact of pesticides on these beneficial non-target organisms.
Collapse
Affiliation(s)
- Ruben Caspary
- Faculty of Natural Sciences, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Steinknöck 11, 91054 Erlangen, Germany;
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania; (K.A.I.); (M.A.); (J.P.L.)
| | - Khamis A. Issa
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania; (K.A.I.); (M.A.); (J.P.L.)
| | - Massoud Amour
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania; (K.A.I.); (M.A.); (J.P.L.)
| | - James P. Legg
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania; (K.A.I.); (M.A.); (J.P.L.)
| |
Collapse
|
9
|
Campbell LI, Nwezeobi J, van Brunschot SL, Kaweesi T, Seal SE, Swamy RAR, Namuddu A, Maslen GL, Mugerwa H, Armean IM, Haggerty L, Martin FJ, Malka O, Santos-Garcia D, Juravel K, Morin S, Stephens ME, Muhindira PV, Kersey PJ, Maruthi MN, Omongo CA, Navas-Castillo J, Fiallo-Olivé E, Mohammed IU, Wang HL, Onyeka J, Alicai T, Colvin J. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genomics 2023; 24:408. [PMID: 37468834 DOI: 10.1186/s12864-023-09474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.
Collapse
Affiliation(s)
- Lahcen I Campbell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, UK.
| | - Sharon L van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- CSIRO Health and Biosecurity, Dutton Park, QLD, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tadeo Kaweesi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rwebitaba Zonal Agricultural Research and Development Institute, Fort Portal, Uganda
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Rekha A R Swamy
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Annet Namuddu
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- National Crops Resources Research Institute, Kampala, Uganda
| | - Gareth L Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Imperial College London, South Kensington, London, UK
| | - Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- CNRS, Laboratory of Biometry and Evolutionary Biology UMR 5558, University of Lyon, Villeurbanne, France
- Center for Biology and Management of Populations, INRAe UMR1062, Montferrier-sur-Lez, France
| | - Ksenia Juravel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Paul Visendi Muhindira
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Royal Botanic Gardens, Kew, London, UK
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | | | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | | | - Hua-Ling Wang
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Joseph Onyeka
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
10
|
Brown JK, Paredes-Montero JR, Stocks IC. The Bemisia tabaci cryptic (sibling) species group - imperative for a taxonomic reassessment. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101032. [PMID: 37030511 DOI: 10.1016/j.cois.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
The taxonomy of the Bemisia tabaci cryptic species group remains a challenge due to the lack of morphological differentiation and porous species boundaries among its members. Additionally, it is unclear whether B. tabaci consists of several species in evolutionary stasis with limited morphological change or is the result of a recent adaptive radiation characterized by great ecological diversity but little morphological divergence. Here, a historical overview of the development of the nomenclature used to classify B. tabaci is provided covering changes after synonymizing several species in 1957 until recent insights gained from whole-genome sequencing data. The article discusses the limitations of using a 3.5% mtCOI threshold and argues that a 1% nuclear divergence cutoff better reflects ecological and biogeographic species boundaries. Finally, a plan of action is outlined for naming B. tabaci species using a Latin binomial system in accordance with the International Comission on Zoological Nomenclature (ICZN) regulations.
Collapse
Affiliation(s)
- Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, United States.
| | - Jorge R Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, MI 48710, United States; Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Ian C Stocks
- Animal and Plant Inspection Service, Plant Protection and Quarantine, USDA, Rm. 320, Bldg. 003, Beltsville, MD 20705, United States.
| |
Collapse
|
11
|
Namuddu A, Seal S, van Brunschot S, Malka O, Kabaalu R, Morin S, Omongo C, Colvin J. Distribution of Bemisia tabaci in different agro-ecological regions in Uganda and the threat of vector-borne pandemics into new cassava growing areas. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1068109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies in sub-Saharan Africa have showed the spread of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics into different cassava growing regions by high Bemisia tabaci populations. Studies did indicate that there were stark differences in some whitefly species, yet they have not looked extensively across agroecologies. Members of B. tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been linked to the spread of CMD and CBSD viruses. During the period of a severe CMD pandemic in the 1990s, SSA2 was the most predominant until the resurgence of SSA1, particularly SSA1-subgroup1 (SSA1-SG1) from the early 2000s to date. Cassava being a drought resilient crop has become an important food security crop and has been introduced into new areas and regions. Considering the role B. tabaci in the spread of cassava virus pandemics into neighboring regions, we investigated the genetic diversity and distribution of B. tabaci in nine different agro-ecological regions of Uganda in 2017. Adult whiteflies were collected from cassava and 33 other host plants from cassava-growing areas, those with limited cassava and areas with no cassava, where it is being introduced as a food security crop. The partial sequences of the mitochondrial cytochrome oxidase 1 (mtCO1) gene (657 bp) were used to determine the phylogenetic relationships between the sampled B. tabaci. Cassava B. tabaci SSA1 (-SG1, -SG2, -Hoslundia (previously called SSA1-SG1/2), -SG3), SSA2 and SSA3; non-cassava B. tabaci SSA6, SSA10, SSA11, SSA12, SSA13, MED-ASL, MED-Q1, MEAM1, Indian Ocean; and other Bemisia species, Bemisia afer and Bemisia Uganda1 were identified in the study. SSA3, one of the key B. tabaci species that occurs on cassava in West Africa, was identified for the first time in Uganda. The SSA1-SG1 was widely distributed, predominated on cassava and was found on 17 other host-plants. The ability of SSA1-SG1 to exist in environments with limited or no cassava growing poses the risk of continued spread of virus pandemics. Therefore, measures must be put in place to prevent the introduction of diseased materials into new areas, since the vectors exist.
Collapse
|
12
|
Munguti FM, Nyaboga EN, Kilalo DC, Yegon HK, Macharia I, Mwango'mbe AW. Survey of cassava brown streak disease and association of factors influencing its epidemics in smallholder cassava cropping systems of coastal Kenya. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1015315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cassava productivity is threatened by viral diseases which have become the main phytosanitary problems in cassava farmers. Cassava brown streak disease (CBSD) is a devastating viral disease caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) which are transmitted by whitefly vectors and mainly disseminated through the use of infected stem cuttings as planting materials. The aim of the current study was to: (1) assess farmers' knowledge, perceptions on spread, causes and current management practices of CBSD; (2) determine the factors associated with farmers' satisfaction with cassava planting material; and (3) determine the distribution, incidence, and severity of CBSD and association of factors influencing the disease epidemics in smallholder cassava cropping systems in coastal Kenya. Information was collected using semi-structured questionnaire administered to 250 smallholder farmers through face-to-face interviews coupled with field visits to assess the incidence, severity and distribution of CBSD. Symptomatic and asymptomatic cassava leaf samples were collected for reverse transcription-polymerase chain reaction (RT-PCR) analysis of the causal viruses of CBSD. The results revealed that majority of the farmers (96.6%) could recognize CBSD symptoms on the roots, and only 11.5% could recognize the foliar symptoms of the disease. The cause of the disease was unknown to the farmers, with no effective management methods available to them. Majority of farmers (82.5%) recycled own cassava cuttings from previous season's crop as planting material followed by exchanging/borrowing from neighbors (67.5%). The field incidence of CBSD was highest in Kilifi (27.9%) followed by Kwale (24.7%) and Taita Taveta (10.8%), with severities ranging from 2 to 3 in the three Counties. RT-PCR analysis indicated that 91% of the symptomatic samples tested positive for either of the two viruses occurring either singly or as dual infection. Approximately 3.2% of the asymptomatic samples tested positive for only CBSV. Findings from this study demonstrates the need for awareness creation of farmers on the causes, spread and management practices to control CBSD and the importance of strengthening certified cassava seed systems to reduce the impact of the disease. The study provides base-line information imperative for development of management strategies of CBSD.
Collapse
|
13
|
Issa KA, Wosula EN, Stephano F, Legg JP. Evaluation of the Efficacy of Flupyradifurone against Bemisia tabaci on Cassava in Tanzania. INSECTS 2022; 13:920. [PMID: 36292868 PMCID: PMC9604256 DOI: 10.3390/insects13100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
A novel butenolide insecticide-flupyradifurone (Sivanto SL 200)-was evaluated for efficacy against cassava-colonizing Bemisia tabaci whitefly under laboratory, screenhouse and field conditions. LC50 values from leaf disc spray assays were comparable for both flupyradifurone (12.7 g a.i/100 L) and imidacloprid (12.6 g a.i/100 L). Both insecticides caused high levels of adult whitefly mortality in leaf disc and leaf dip assays when compared to untreated controls. In screenhouse-based trials, longer soaking (60 min) with flupyradifurone or imidacloprid was more effective than shorter soaking durations (15 or 30 min). In field spraying experiments, flupyradifurone significantly reduced whiteflies, and both insecticides demonstrated powerful knockdown effects on whitefly adult abundances over a period up to 24 h. Single cutting dip application of flupyradifurone reduced whitefly adult abundance by 2 to 6 times, and nymphs by 2 to 13 times. Lower whitefly abundances resulting from insecticide application reduced the incidence of CMD or CBSD. In addition, in field experiments, whiteflies were fewer during the long rainy season (Masika) and on cassava variety Mkuranga1. The findings from this study demonstrate that cutting dips with flupyradifurone could be incorporated as a management tactic against cassava whiteflies. This would ideally be combined in an IPM strategy with other cassava virus and virus vector management tactics including host-plant resistance, phytosanitation and the use of clean seed.
Collapse
Affiliation(s)
- Khamis A. Issa
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Flora Stephano
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam P.O. Box 35064, Tanzania
| | - James P. Legg
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| |
Collapse
|
14
|
Shirima RR, Wosula EN, Hamza AA, Mohammed NA, Mouigni H, Nouhou S, Mchinda NM, Ceasar G, Amour M, Njukwe E, Legg JP. Epidemiological Analysis of Cassava Mosaic and Brown Streak Diseases, and Bemisia tabaci in the Comoros Islands. Viruses 2022; 14:v14102165. [PMID: 36298720 PMCID: PMC9608219 DOI: 10.3390/v14102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 01/20/2023] Open
Abstract
A comprehensive assessment of cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) was carried out in Comoros where cassava yield (5.7 t/ha) is significantly below the African average (8.6 t/ha) largely due to virus diseases. Observations from 66 sites across the Comoros Islands of Mwali, Ngazidja, and Ndzwani revealed that 83.3% of cassava fields had foliar symptoms of CBSD compared with 95.5% for CMD. Molecular diagnostics confirmed the presence of both cassava brown streak ipomoviruses (CBSIs) and cassava mosaic begomoviruses (CMBs). Although real-time RT-PCR only detected the presence of one CBSI species (Cassava brown streak virus, CBSV) the second species (Ugandan cassava brown streak virus, UCBSV) was identified using next-generation high-throughput sequencing. Both PCR and HTS detected the presence of East African cassava mosaic virus (EACMV). African cassava mosaic virus was not detected in any of the samples. Four whitefly species were identified from a sample of 131 specimens: Bemisia tabaci, B. afer, Aleurodicus dispersus, and Paraleyrodes bondari. Cassava B. tabaci comprised two mitotypes: SSA1-SG2 (89%) and SSA1-SG3 (11%). KASP SNP genotyping categorized 82% of cassava B. tabaci as haplogroup SSA-ESA. This knowledge will provide an important base for developing and deploying effective management strategies for cassava viruses and their vectors.
Collapse
Affiliation(s)
- Rudolph Rufini Shirima
- International Institute of Tropical Agriculture (IITA-Tanzania), P.O. Box 34441, Dar es Salaam 14112, Tanzania
- Correspondence: ; Tel.: +25-52-2270-0092
| | - Everlyne Nafula Wosula
- International Institute of Tropical Agriculture (IITA-Tanzania), P.O. Box 34441, Dar es Salaam 14112, Tanzania
| | - Abdou Azali Hamza
- Institut National de Recherche pour L’Agriculture, La Pêche et L’Environnement (INRAPE), Moroni BP 1406, Comoros
| | - Nobataine Ali Mohammed
- Institut National de Recherche pour L’Agriculture, La Pêche et L’Environnement (INRAPE), Moroni BP 1406, Comoros
| | - Hadji Mouigni
- Institut National de Recherche pour L’Agriculture, La Pêche et L’Environnement (INRAPE), Moroni BP 1406, Comoros
| | - Salima Nouhou
- Institut National de Recherche pour L’Agriculture, La Pêche et L’Environnement (INRAPE), Moroni BP 1406, Comoros
| | - Naima Mmadi Mchinda
- Institut National de Recherche pour L’Agriculture, La Pêche et L’Environnement (INRAPE), Moroni BP 1406, Comoros
| | - Gloria Ceasar
- International Institute of Tropical Agriculture (IITA-Tanzania), P.O. Box 34441, Dar es Salaam 14112, Tanzania
| | - Massoud Amour
- International Institute of Tropical Agriculture (IITA-Tanzania), P.O. Box 34441, Dar es Salaam 14112, Tanzania
| | - Emmanuel Njukwe
- West and Central African Council for Agricultural Research and Development (CORAF), Dakar CP 18523, Senegal
| | - James Peter Legg
- International Institute of Tropical Agriculture (IITA-Tanzania), P.O. Box 34441, Dar es Salaam 14112, Tanzania
| |
Collapse
|
15
|
Casinga CM, Wosula EN, Sikirou M, Shirima RR, Munyerenkana CM, Nabahungu LN, Bashizi BK, Ugentho H, Monde G, Legg JP. Diversity and Distribution of Whiteflies Colonizing Cassava in Eastern Democratic Republic of Congo. INSECTS 2022; 13:849. [PMID: 36135550 PMCID: PMC9504715 DOI: 10.3390/insects13090849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The present study characterizes Bemisia tabaci and Bemisia afer from cassava in eastern Democratic Republic of Congo (DRC). The Mitochondrial COI sequencing revealed the occurrence of six cassava B. tabaci mitotypes, which were designated into four haplogroups (SSA-ECA, SSA-CA, SSA2, and SSA-ESA) using KASP SNP genotyping. SSA-ECA (72%) was the most prevalent and occurred in the northern part of the surveyed area, in the Ituri and Nord/Sud-Kivu provinces, whilst SSA-CA (21%) was present in the south, primarily in Haut-Katanga. SSA-ECA was predominant in the areas of north-eastern DRC most severely affected by cassava brown streak disease and was also reported in the new outbreak area in Pweto territory, Haut-Katanga, in the south. Bemisia afer comprised two major clusters with 85.5% of samples in cluster one, while the rest were in cluster two, which has no reference sequence in GenBank. This study provides important information on the genetic diversity of B. tabaci and B. afer in eastern DRC. This knowledge will be used as a basis for further studies to understand and to identify the role of whitefly haplogroups, their population densities and consequences for virus epidemics and spread as well as leading to improved vector and virus management strategies.
Collapse
Affiliation(s)
- Clérisse M. Casinga
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Bukavu, Democratic Republic of the Congo
- Department of Environmental Sciences, Université du Cinquantenaire de Lwiro, Kabare, Bukavu, Democratic Republic of the Congo
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Mouritala Sikirou
- International Institute of Tropical Agriculture, Kinshasa, Democratic Republic of the Congo
| | - Rudolph R. Shirima
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Carine M. Munyerenkana
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Bukavu, Democratic Republic of the Congo
| | - Leon N. Nabahungu
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Bukavu, Democratic Republic of the Congo
| | - Benoit K. Bashizi
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Bukavu, Democratic Republic of the Congo
| | - Henry Ugentho
- Programme National Manioc, Institut National d’Etude et de Recherche Agronomiques de Mulungu, Bukavu-Mulungu, Democratic Republic of the Congo
| | - Godefroid Monde
- Department of Plant Virology, Institut Facultaire des Sciences Agronomiques, Kisangani-Yangambi, Kisangani, Democratic Republic of the Congo
| | - James P. Legg
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| |
Collapse
|
16
|
Zhou CS, Lv HH, Guo XH, Cao Q, Zhang RX, Ma DY. Transcriptional analysis of Bemisia tabaci MEAM1 cryptic species under the selection pressure of neonicotinoids imidacloprid, acetamiprid and thiamethoxam. BMC Genomics 2022; 23:15. [PMID: 34983398 PMCID: PMC8728913 DOI: 10.1186/s12864-021-08241-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neonicotinoids are widely applied in the control of the destructive agricultural pest Bemisia tabaci, and resistance against these chemicals has become a common, severe problem in the control of whiteflies. To investigate the molecular mechanism underlying resistance against nenonicotinoids in whiteflies, RNA-seq technology was applied, and the variation in the transcriptomic profiles of susceptible whiteflies and whiteflies selected by imidacloprid, acetamiprid and thiamethoxam treatment was characterized. RESULTS A total of 90.86 GB of clean sequence data were obtained from the 4 transcriptomes. Among the 16,069 assembled genes, 584, 110 and 147 genes were upregulated in the imidacloprid-selected strain (IMI), acetamiprid-selected strain (ACE), and thiamethoxam (THI)-selected strain, respectively, relative to the susceptible strain. Detoxification-related genes including P450s, cuticle protein genes, GSTs, UGTs and molecular chaperone HSP70s were overexpressed in the selected resistant strains, especially in the IMI strain. Five genes were downregulated in all three selected resistant strains, including 2 UDP-glucuronosyltransferase 2B18-like genes (LOC 109030370 and LOC 109032577). CONCLUSIONS Ten generations of selection with the three neonicotinoids induced different resistance levels and gene expression profiles, mainly involving cuticle protein and P450 genes, in the three selected resistant whitefly strains. The results provide a reference for research on resistance and cross-resistance against neonicotinoids in B. tabaci.
Collapse
Affiliation(s)
- Cheng Song Zhou
- Engineering Research Centre of Cotton, Ministry of Education /College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Huan Huan Lv
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Universities of the Xinjiang Uygur Autonomous Region, 311 Nongda East Road, Urumqi, 830052, China
| | - Xiao Hu Guo
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Universities of the Xinjiang Uygur Autonomous Region, 311 Nongda East Road, Urumqi, 830052, China
| | - Qian Cao
- Agricultural Product Inspection and Test Center, 99 Wuyi East Road, Changji, 831100, China
| | - Rui Xingyue Zhang
- Engineering Research Centre of Cotton, Ministry of Education /College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - De Ying Ma
- Engineering Research Centre of Cotton, Ministry of Education /College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
17
|
Tay WT, Court LN, Macfadyen S, Jacomb F, Vyskočilová S, Colvin J, De Barro PJ. A high-throughput amplicon sequencing approach for population-wide species diversity and composition survey. Mol Ecol Resour 2021; 22:1706-1724. [PMID: 34918473 DOI: 10.1111/1755-0998.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Management of agricultural pests requires an understanding of pest species diversity, their interactions with beneficial insects and spatial-temporal patterns of pest abundance. Invasive and agriculturally important insect pests can build up very high populations, especially in cropping landscapes. Traditionally, sampling effort for species identification involves small sample sizes and is labour intensive. Here, we describe a multi-primer high throughput sequencing (HTS) metabarcoding method and associated analytical workflow for a rapid, intensive, high-volume survey of pest species compositions. We demonstrate our method using the taxonomically challenging Bemisia pest cryptic species complex as examples. The whiteflies Bemisia including the 'tabaci' species are agriculturally important capable of vectoring diverse plant viruses that cause diseases and crop losses. Our multi-primer metabarcoding HTS amplicon approach simultaneously process high volumes of whitefly individuals, with efficiency to detect rare (i.e., 1%) test-species, while our improved whitefly primers for metabarcoding also detected beneficial hymenopteran parasitoid species from whitefly nymphs. Field-testing our redesigned Bemisia metabarcoding primer sets across the Tanzania, Uganda and Malawi cassava cultivation landscapes, we identified the sub-Saharan Africa 1 Bemisia putative species as the dominant pest species, with other cryptic Bemisia species being detected at various abundances. We also provide evidence that Bemisia species compositions can be affected by host crops and sampling techniques that target either nymphs or adults. Our multi-primer HTS metabarcoding method incorporated two over-lapping amplicons of 472bp and 518bp that spanned the entire 657bp 3' barcoding region for Bemisia, and is particularly suitable to molecular diagnostic surveys of this highly cryptic insect pest species complex that also typically exhibited high population densities in heavy crop infestation episodes. Our approach can be adopted to understand species biodiversity across landscapes, with broad implications for improving trans-boundary biosecurity preparedness, thus contributing to molecular ecological knowledge and the development of control strategies for high-density, cryptic, pest-species complexes.
Collapse
Affiliation(s)
- W T Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - L N Court
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - S Macfadyen
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - F Jacomb
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - S Vyskočilová
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia.,Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Maritime Kent, ME4 4TB, United Kingdom
| | - J Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Maritime Kent, ME4 4TB, United Kingdom
| | | |
Collapse
|
18
|
Mugerwa H, Wang H, Sseruwagi P, Seal S, Colvin J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. INSECT SCIENCE 2021; 28:1553-1566. [PMID: 33146464 PMCID: PMC9292209 DOI: 10.1111/1744-7917.12881] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 05/21/2023]
Abstract
In sub-Saharan Africa cassava growing areas, two members of the Bemisia tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been reported as the prevalent whiteflies associated with the spread of viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics. At the peak of CMD pandemic in the late 1990s, SSA2 was the prevalent whitefly, although its numbers have diminished over the last two decades with the resurgence of SSA1 whiteflies. Three SSA1 subgroups (SG1 to SG3) are the predominant whiteflies in East Africa and vary in distribution and biological properties. Mating compatibility between SSA1 subgroups and SSA2 whiteflies was reported as the possible driver for the resurgence of SSA1 whiteflies. In this study, a combination of both phylogenomic methods and reciprocal crossing experiments were applied to determine species status of SSA1 subgroups and SSA2 whitefly populations. Phylogenomic analyses conducted with 26 548 205 bp whole genome single nucleotide polymorphisms (SNPs) and the full mitogenomes clustered SSA1 subgroups together and separate from SSA2 species. Mating incompatibility between SSA1 subgroups and SSA2 further demonstrated their distinctiveness from each other. Phylogenomic analyses conducted with SNPs and mitogenomes also revealed different genetic relationships among SSA1 subgroups. The former clustered SSA1-SG1 and SSA1-SG2 together but separate from SSA1-SG3, while the latter clustered SSA1-SG2 and SSA1-SG3 together but separate from SSA1-SG1. Mating compatibility was observed between SSA1-SG1 and SSA1-SG2, while incompatibility occurred between SSA1-SG1 and SSA1-SG3, and SSA1-SG2 and SSA1-SG3. Mating results among SSA1 subgroups were coherent with phylogenomics results based on SNPs but not the full mitogenomes. Furthermore, this study revealed that the secondary endosymbiont-Wolbachia-did not mediate reproductive success in the crossing assays carried out. Overall, using genome wide SNPs together with reciprocal crossings assays, this study established accurate genetic relationships among cassava-colonizing populations, illustrating that SSA1 and SSA2 are distinct species while at least two species occur within SSA1 species.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
- Department of EntomologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Hua‐Ling Wang
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Peter Sseruwagi
- Biotechnology DepartmentMikocheni Agricultural Research InstituteDar es SalaamTanzania
| | - Susan Seal
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
| | - John Colvin
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
| |
Collapse
|
19
|
Mrisho LM, Maeda DG, Ortiz ZM, Ghanavi HR, Legg JP, Stensmyr MC. Influence of Olfaction in Host-Selection Behavior of the Cassava Whitefly Bemisia tabaci. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.775778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cassava is a vital food-security crop in Sub-Saharan Africa. Cassava crops are, however, severely affected by viral diseases transmitted by members of the whitefly species complex Bemisia tabaci. We have here investigated the role of olfaction in host selection behavior of the cassava whitefly B. tabaci SSA-ESA biotype. Surprisingly, we find that the whiteflies appear to make little use of olfaction to find their favored host. The cassava whitely shows a highly reduced olfactory system, both at the morphological and molecular level. Whitefly antennae possess only 15 sensilla with possible olfactory function, and from the genome we identified just a handful of candidate chemoreceptors, including nine tuning odorant receptors, which would afford the whitefly with one of the smallest olfactomes identified from any insect to date. Behavioral experiments with host and non-host plants, as well as with identified specific volatiles from these sources, suggest that the few input channels present are primarily tuned toward the identification of unwanted features, rather than favored ones, a strategy quite unlike most other insects. The demonstrated repellence effect of specific volatile chemicals produced by certain plants unflavored by whiteflies suggests that intercropping with these plants could be a viable strategy to reduce whitefly infestations in cassava fields.
Collapse
|
20
|
Distribution and Molecular Diversity of Whitefly Species Colonizing Cassava in Kenya. INSECTS 2021; 12:insects12100875. [PMID: 34680644 PMCID: PMC8541676 DOI: 10.3390/insects12100875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary The whitefly, Bemisia tabaci (Gennadium, Hemiptera) is a crop pest and plant-virus vector known to transmit more than 300 plant viruses. Among other plant viruses, the vector transmits viruses that cause the two major devastating viral diseases of cassava in sub-Saharan Africa namely cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). In order to achieve effective implementation of whitefly management programs including prevention of spread of the species, accurate species identification is vital. Morphological identification approaches toward whitefly species limits the capacity to accurately identify new species, especially the presence of cryptic species such as the numerous B. tabaci genetic groups. Using the mitochondrial DNA cytochrome oxidase 1 (mtCO1) sequences, four distinct whitefly species namely Bemisia tabaci, Bemisia afer, Aleurodicus dispersus and Paraleyrodes bondari were identified in samples collected from major cassava growing regions in Kenya. The study presents the first report of P. bondari (Bondar’s nesting whitefly) on cassava in Kenya. We found three B. tabaci genetic groups of SSA1, SSA2 and Indian Ocean (IO) putative species colonizing cassava in Kenya. The information is useful to inform better management strategies of the whitefly vectors to reduce the impact of cassava viral diseases, which continue to be a threat to food security in major cassava growing regions. Abstract The whitefly, Bemisia tabaci (Gennadium, Hemiptera) has been reported to transmit viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) in many parts of sub-Saharan Africa (SSA). Currently, there is limited information on the distribution, species and haplotype composition of the whitefly populations colonizing cassava in Kenya. A study was conducted in the major cassava growing regions of Kenya to address this gap. Analyses of mitochondrial DNA cytochrome oxidase 1 (mtCO1) sequences revealed the presence of four distinct whitefly species: Bemisia tabaci, Bemisia afer, Aleurodicus dispersus and Paraleyrodes bondari in Kenya. The B. tabaci haplotypes were further resolved into SSA1, SSA2 and Indian Ocean (IO) putative species. The SSA1 population had three haplogroups of SSA1-SG1, SSA-SG2 and SSA1-SG3. Application of KASP genotyping grouped the Bemisia tabaci into two haplogroups namely sub-Saharan Africa East and Southern Africa (SSA-ESA) and sub-Saharan Africa East and Central Africa (SSA-ECA). The study presents the first report of P. bondari (Bondar’s nesting whitefly) on cassava in Kenya. Bemisia tabaci was widely distributed in all the major cassava growing regions in Kenya. The increased detection of different whitefly species on cassava and genetically diverse B. tabaci mitotypes indicates a significant influence on the dynamics of cassava virus epidemics in the field. The study highlights the need for continuous monitoring of invasive whitefly species population on cassava for timely application of management practices to reduce the impact of cassava viral diseases and prevent potential yield losses.
Collapse
|
21
|
Cassava mosaic virus in Africa: Functional analysis of virus coat proteins based on evolutionary processes and protein structure. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Hunter WB, Wintermantel WM. Optimizing Efficient RNAi-Mediated Control of Hemipteran Pests (Psyllids, Leafhoppers, Whitefly): Modified Pyrimidines in dsRNA Triggers. PLANTS 2021; 10:plants10091782. [PMID: 34579315 PMCID: PMC8472347 DOI: 10.3390/plants10091782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The advantages from exogenously applied RNAi biopesticides have yet to be realized in through commercialization due to inconsistent activity of the dsRNA trigger, and the activity level of RNAi suppression. This has prompted research on improving delivery methods for applying exogenous dsRNA into plants and insects for the management of pests and pathogens. Another aspect to improve RNAi activity is the incorporation of modified 2′-F pyrimidine nucleotides into the dsRNA trigger. Modified dsRNA incorporating 32–55% of the 2′-F- nucleotides produced improved RNAi activity that increased insect mortality by 12–35% greater than non-modified dsRNA triggers of the same sequence. These results were repeatable across multiple Hemiptera: the Asian citrus psyllid (Diaphorina citri, Liviidae); whitefly (Bemisia tabaci, Aleyroididae); and the glassy-winged sharpshooter (Homalodisca vitripennis, Cicadellidae). Studies using siRNA with modified 2′-F- pyrimidines in mammalian cells show they improved resistance to degradation from nucleases, plus result in greater RNAi activity, due to increase concentrations and improved binding affinity to the mRNA target. Successful RNAi biopesticides of the future will be able to increase RNAi repeatability in the field, by incorporating modifications of the dsRNA, such as 2′-F- pyrimidines, that will improve delivery after applied to fruit trees or crop plants, with increased activity after ingestion by insects. Costs of RNA modification have decreased significantly over the past few years such that biopesticides can now compete on pricing with commercial chemical products.
Collapse
Affiliation(s)
- Wayne Brian Hunter
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Subtropical Insects Res., Fort Pierce, FL 34945, USA
- Correspondence:
| | - William M. Wintermantel
- U.S. Department of Agriculture, Agriculture Research Service, Crop Improvement and Protection Research, Salinas, CA 93905, USA;
| |
Collapse
|
23
|
Elfekih S, Tay WT, Polaszek A, Gordon KHJ, Kunz D, Macfadyen S, Walsh TK, Vyskočilová S, Colvin J, De Barro PJ. On species delimitation, hybridization and population structure of cassava whitefly in Africa. Sci Rep 2021; 11:7923. [PMID: 33846476 PMCID: PMC8041820 DOI: 10.1038/s41598-021-87107-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/17/2021] [Indexed: 01/03/2023] Open
Abstract
The Bemisia cassava whitefly complex includes species that cause severe crop damage through vectoring cassava viruses in eastern Africa. Currently, this whitefly complex is divided into species and subgroups (SG) based on very limited molecular markers that do not allow clear definition of species and population structure. Based on 14,358 genome-wide SNPs from 62 Bemisia cassava whitefly individuals belonging to sub-Saharan African species (SSA1, SSA2 and SSA4), and using a well-curated mtCOI gene database, we show clear incongruities in previous taxonomic approaches underpinned by effects from pseudogenes. We show that the SSA4 species is nested within SSA2, and that populations of the SSA1 species comprise well-defined south-eastern (Madagascar, Tanzania) and north-western (Nigeria, Democratic Republic of Congo, Burundi) putative sub-species. Signatures of allopatric incipient speciation, and the presence of a 'hybrid zone' separating the two putative sub-species were also detected. These findings provide insights into the evolution and molecular ecology of a highly cryptic hemipteran insect complex in African, and allow the systematic use of genomic data to be incorporated in the development of management strategies for this cassava pest.
Collapse
Affiliation(s)
- S Elfekih
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| | - W T Tay
- Black Mountain Laboratories, CSIRO, Canberra, ACT, Australia.
| | - A Polaszek
- Department of Life Sciences, Natural History Museum, London, UK
| | - K H J Gordon
- Black Mountain Laboratories, CSIRO, Canberra, ACT, Australia
| | - D Kunz
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - S Macfadyen
- Black Mountain Laboratories, CSIRO, Canberra, ACT, Australia
| | - T K Walsh
- Black Mountain Laboratories, CSIRO, Canberra, ACT, Australia
| | - S Vyskočilová
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - J Colvin
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - P J De Barro
- CSIRO, Ecosciences Precinct, Brisbane, Australia
| |
Collapse
|
24
|
Su K, Guo Y, Zhong W, Lin H, Liu Z, Li K, Li Y, Guo X. High-Density Genetic Linkage Map Construction and White Rot Resistance Quantitative Trait Loci Mapping for Genus Vitis Based on Restriction Site-Associated DNA Sequencing. PHYTOPATHOLOGY 2021; 111:659-670. [PMID: 33635092 DOI: 10.1094/phyto-12-19-0480-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grape white rot (Coniothyrium diplodiella) is a major fungal disease affecting grape yield and quality. Quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits of grapevine. This study was conducted to construct a high-density map and conduct QTL mapping for grapevine white rot resistance. A mapping population with 177 genotypes was developed from interspecific hybridization of a white rot-resistant cultivar (Vitis vinifera × V. labrusca 'Zhuosexiang') and white rot-susceptible cultivar (V. vinifera 'Victoria'). Single-nucleotide polymorphism (SNP) markers were developed by restriction site-associated DNA sequencing. The female, male, and integrated maps contained 2,501, 4,110, and 6,249 SNP markers with average genetic distances of adjacent markers of 1.25, 0.77, and 0.50 cM, respectively. QTL mapping was conducted based on white rot resistance identification of 177 individuals in July and August of 2017 and 2018. Notably, one stable QTL related to white rot resistance was detected and located on linkage group LG14. The phenotypic variance ranged from 12.93 to 13.43%. An SNP marker (chr14_3929380), which cosegregated with white rot resistance, was discovered and shows potential for use in marker-assisted selection to generate new grapevine cultivars with resistance to white rot.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| | - Weihao Zhong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, People's Republic of China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| |
Collapse
|
25
|
Mugerwa H, Sseruwagi P, Colvin J, Seal S. Is High Whitefly Abundance on Cassava in Sub-Saharan Africa Driven by Biological Traits of a Specific, Cryptic Bemisia tabaci Species? INSECTS 2021; 12:260. [PMID: 33804645 PMCID: PMC8003695 DOI: 10.3390/insects12030260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022]
Abstract
In East Africa, the prevalent Bemisia tabaci whiteflies on the food security crop cassava are classified as sub-Saharan Africa (SSA) species. Economically damaging cassava whitefly populations were associated with the SSA2 species in the 1990s, but more recently, it has been to SSA1 species. To investigate whether biological traits (number of first instar nymphs, emerged adults, proportion of females in progeny and development time) of the cassava whitefly species are significant drivers of the observed field abundance, our study determined the development of SSA1 sub-group (SG) 1 (5 populations), SG2 (5 populations), SG3 (1 population) and SSA2 (1 population) on cassava and eggplant under laboratory conditions. SSA1-(SG1-SG2) and SSA2 populations' development traits were similar. Regardless of the host plant, SSA1-SG2 populations had the highest number of first instar nymphs (60.6 ± 3.4) and emerged adults (50.9 ± 3.6), followed by SSA1-SG1 (55.5 ± 3.2 and 44.6 ± 3.3), SSA2 (45.8 ± 5.7 and 32.6 ± 5.1) and the lowest were SSA1-SG3 (34.2 ± 6.1 and 32.0 ± 7.1) populations. SSA1-SG3 population had the shortest egg-adult emergence development time (26.7 days), followed by SSA1-SG1 (29.1 days), SSA1-SG2 (29.6 days) and SSA2 (32.2 days). Regardless of the whitefly population, development time was significantly shorter on eggplant (25.1 ± 0.9 days) than cassava (34.6 ± 1.0 days). These results support that SSA1-(SG1-SG2) and SSA2 B. tabaci can become highly abundant on cassava, with their species classification alone not correlating with observed abundance and prevalence.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Peter Sseruwagi
- Biotechnology Department, Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania;
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| |
Collapse
|
26
|
Popa-Báez ÁD, Lee SF, Yeap HL, Westmore G, Crisp P, Li D, Catullo R, Cameron EC, Edwards OR, Taylor PW, Oakeshott JG. Tracing the origins of recent Queensland fruit fly incursions into South Australia, Tasmania and New Zealand. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Mugerwa H, Colvin J, Alicai T, Omongo CA, Kabaalu R, Visendi P, Sseruwagi P, Seal SE. Genetic diversity of whitefly ( Bemisia spp.) on crop and uncultivated plants in Uganda: implications for the control of this devastating pest species complex in Africa. JOURNAL OF PEST SCIENCE 2021; 94:1307-1330. [PMID: 34720787 PMCID: PMC8550740 DOI: 10.1007/s10340-021-01355-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 05/12/2023]
Abstract
UNLABELLED Over the past three decades, highly increased whitefly (Bemisia tabaci) populations have been observed on the staple food crop cassava in eastern Africa and associated with ensuing viral disease pandemics and food insecurity. Increased whitefly numbers have also been observed in other key agricultural crops and weeds. Factors behind the population surges on different crops and their interrelationships are unclear, although in cassava they have been associated with specific populations within the Bemisia tabaci species complex known to infest cassava crops in Africa. This study carried out an in-depth survey to understand the distribution of B. tabaci populations infesting crops and uncultivated plant hosts in Uganda, a centre of origin for this pest complex. Whitefly samples were collected from 59 identified plant species and 25 unidentified weeds in a countrywide survey. Identities of 870 individual adult whiteflies were determined through mitochondrial cytochrome oxidase 1 sequences (651 bp) in the 3' barcode region used for B. tabaci systematics. Sixteen B. tabaci and five related whitefly putative species were identified based on > 4.0% nucleotide divergence, of which three are proposed as novel B. tabaci putative species and four as novel closely related whitefly species. The most prevalent whiteflies were classified as B. tabaci MED-ASL (30.5% of samples), sub-Saharan Africa 1 (SSA1, 22.7%) and Bemisia Uganda1 (12.1%). These species were also indicated to be the most polyphagous occurring on 33, 40 and 25 identified plant species, respectively. Multiple (≥ 3) whitefly species occurred on specific crops (bean, eggplant, pumpkin and tomato) and weeds (Sida acuta and Ocimum gratissimum). These plants may have increased potential to act as reservoirs for mixed infections of whitefly-vectored viruses. Management of whitefly pest populations in eastern Africa will require an integration of approaches that consider their degree of polyphagy and a climate that enables the continuous presence of crop and uncultivated plant hosts. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10340-021-01355-6.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223 USA
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| | - Titus Alicai
- Root Crops Programme, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Christopher A. Omongo
- Root Crops Programme, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Richard Kabaalu
- Root Crops Programme, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Paul Visendi
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, 4001 Australia
| | - Peter Sseruwagi
- Biotechnology Department, Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| | - Susan E. Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| |
Collapse
|
28
|
Fu Z, Meier AR, Epstein B, Bergland AO, Castillo Carrillo CI, Cooper WR, Cruzado RK, Horton DR, Jensen AS, Kelley JL, Rashed A, Reitz SR, Rondon SI, Thinakaran J, Wenninger EJ, Wohleb CH, Crowder DW, Snyder WE. Host plants and Wolbachia shape the population genetics of sympatric herbivore populations. Evol Appl 2020; 13:2740-2753. [PMID: 33294020 PMCID: PMC7691456 DOI: 10.1111/eva.13079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023] Open
Abstract
Changing climate and land-use practices have the potential to bring previously isolated populations of pest insects into new sympatry. This heightens the need to better understand how differing patterns of host-plant association, and unique endosymbionts, serve to promote genetic isolation or integration. We addressed these factors in populations of potato psyllid, Bactericera cockerelli (Šulc), a generalist herbivore that vectors a bacterial pathogen (Candidatus Liberibacter solanacearum, causal pathogen of zebra chip disease) of potato (Solanum tuberosum L.). Genome-wide SNP data revealed two major genetic clusters-psyllids collected from potato crops were genetically similar to psyllids found on a common weed, Lycium spp., but dissimilar from those found on another common non-crop host, Solanum dulcamara L. Most psyllids found on Lycium spp. and potato represented a single mitochondrial cytochrome oxidase I (COI) haplotype that has been suggested to not be native to the region, and whose arrival may have been concurrent with zebra chip disease first emerging. The putatively introduced COI haplotype usually co-occurred with endosymbiotic Wolbachia, while the putatively resident COI haplotype generally did not. Genetic intermediates between the two genetic populations of insects were rare, consistent with recent sympatry or reproductive isolation, although admixture patterns of apparent hybrids were consistent with introgression of genes from introduced into resident populations. Our results suggest that both host-plant associations and endosymbionts are shaping the population genetic structure of sympatric psyllid populations associated with different non-crop hosts. It is of future interest to explicitly examine vectorial capacity of the two populations and their potential hybrids, as population structure and hybridization might alter regional vector capacity and disease outbreaks.
Collapse
Affiliation(s)
- Zhen Fu
- Department of EntomologyWashington State UniversityPullmanWAUSA
- Present address:
Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | | | - Brendan Epstein
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMNUSA
| | | | - Carmen I. Castillo Carrillo
- Departamento de Protección VegetalEstación Experimental Santa CatalinaInstituto Nacional de Investigaciones Agropecuarias (INIAP)QuitoEcuador
| | | | - Regina K. Cruzado
- Department of Entomology, Plant Pathology, and NematologyUniversity of IdahoMoscowIDUSA
| | - David R. Horton
- Temperate Tree Fruit and Vegetable ResearchUSDA‐ARSWapatoWAUSA
| | | | - Joanna L. Kelley
- School of Biological SciencesWashington State UniversityPullmanWAUSA
| | - Arash Rashed
- Department of Entomology, Plant Pathology, and NematologyUniversity of IdahoMoscowIDUSA
| | - Stuart R. Reitz
- Malheur Experiment StationOregon State UniversityOntarioORUSA
| | - Silvia I. Rondon
- Department of Crop and Soil ScienceHermiston Agricultural Research and Extension CenterHermistonORUSA
| | | | - Erik J. Wenninger
- Department of Entomology, Plant Pathology, and NematologyKimberly Research and Extension CenterUniversity of IdahoKimberlyIDUSA
| | | | | | | |
Collapse
|
29
|
Crossley MS, Snyder WE. What Is the Spatial Extent of a Bemisia tabaci Population? INSECTS 2020; 11:E813. [PMID: 33218155 PMCID: PMC7698913 DOI: 10.3390/insects11110813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Effective pest management depends on basic knowledge about insect dispersal patterns and gene flow in agroecosystems. The globally invasive sweet potato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is considered a weak flier whose life history nonetheless predisposes it to frequent dispersal, but the scale over which populations exchange migrants, and should therefore be managed, is uncertain. In this review, we synthesize the emergent literature on B. tabaci population genetics to address the question: What spatial scales define B. tabaci populations? We find that within-species genetic differentiation among sites is often low, and evidence of population structuring by host plant or geography is rare. Heterozygote deficits prevail among populations, indicating that migrants from divergent populations are frequently sampled together. Overall, these results suggest that there is high ongoing gene flow over large spatial extents. However, genetic homogeneity typical of recently invading populations could obscure power to detect real isolation among populations. Genome-wide data collected systematically across space and time could distinguish signatures of invasion history from those of ongoing gene flow. Characterizing the spatial extent of B. tabaci populations could reveal whether insecticide rotations can be tailored to specific commodities or if coordination across linked commodities and regions is justified.
Collapse
|
30
|
Chiza Chikoti P, Tembo M, Peter Legg J, Rufini Shirima R, Mugerwa H, Sseruwagi P. Genetic Diversity of Mitochondrial DNA of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Associated with Cassava and the Occurrence of Cassava Mosaic Disease in Zambia. INSECTS 2020; 11:E761. [PMID: 33167394 PMCID: PMC7694332 DOI: 10.3390/insects11110761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Bemisia tabaci is an important vector of cassava brown streak viruses and cassava mosaic begomoviruses, the causal agents of cassava brown streak disease and cassava mosaic disease (CMD), respectively. A study was carried out to determine the genetic variability of B. tabaci associated with cassava and the occurrence of CMD in Zambia in 2013 and 2015. Phylogenetic analysis showed the presence of only the sub-Saharan Africa 1 (SSA1) genetic group in Zambia. The SSA1 population had three population subgroups (SGs): SSA1-SG1, SSA1-SG2 and SSA1-SG3. All three SSA1 population subgroups occurred in Western Province. However, only SSA1-SG3 occurred in Eastern Province, while only SSA1-SG1 occurred in North Western and Luapula Provinces. Adult B. tabaci were most abundant in Western Province in 2013 (11.1/plant) and 2015 (10.8/plant), and least abundant (0.2/plant) in Northern Province in both 2013 and 2015. CMD was prevalent in all seven provinces surveyed, with the highest incidence recorded in Lusaka Province in both 2013 (78%) and 2015 (83.6%), and the lowest in Northern Province in both 2013 (26.6%) and 2015 (29.3%). Although SSA1-SG1 occurred at greater abundances than the other subgroups, there was no direct association demonstrated between whitefly subgroup and incidence of CMD. Establishing which B. tabaci genetic groups and populations are associated with CMD and their distribution in the country is a key factor in guiding the development of CMD control strategies for cassava-dependent households.
Collapse
Affiliation(s)
- Patrick Chiza Chikoti
- Zambia Agriculture Research Institute, Mt. Makulu Research Station, Private Bag 7, Chilanga 10101, Zambia;
| | - Mathias Tembo
- Zambia Agriculture Research Institute, Mt. Makulu Research Station, Private Bag 7, Chilanga 10101, Zambia;
| | - James Peter Legg
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaam, Tanzania; (J.P.L.); (R.R.S.)
| | - Rudolph Rufini Shirima
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaam, Tanzania; (J.P.L.); (R.R.S.)
| | - Habibu Mugerwa
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania;
| |
Collapse
|
31
|
Andreason SA, Arif M, Brown JK, Ochoa-Corona F, Wayadande A. Exploring the Use of High-Resolution Melting Analysis and Helicase-Dependent Amplification for Discrimination of Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species and Trialeurodes vaporariorum. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2511-2520. [PMID: 32841358 DOI: 10.1093/jee/toaa180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera; Aleyrodidae), and greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), are highly problematic plant pests and virus vectors with worldwide distributions. Identification of whitefly species is typically accomplished by observation of distinct morphological characters; however, because of morphological inconsistency and indistinguishability, the discrimination of B. tabaci species variants is dependent on molecular techniques based on genetic differences. New assays were designed for the detection of B. tabaci A, B, and Q mitotype groups, and T. vaporariorum. Specific primer sets were designed for amplification of the mitochondrial cytochrome c oxidase I gene of the four targets to perform in end-point PCR, real-time PCR coupled to high-resolution melting analysis (HRM), and the isothermal helicase-dependent amplification (HDA). Primer specificities were validated using end-point PCR, then tested in HRM and HDA. Bemisia tabaci A, B, and Q mitotypes, and T. vaporariorum-targeted primer sets discriminately amplified specimens of different populations within their target whitefly group. These tests provide three novel discrimination assays for the high-consequence, exotic B. tabaci B and Q groups, along with the native B. tabaci A group and T. vaporariorum.
Collapse
Affiliation(s)
- Sharon A Andreason
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ
| | | | - Astri Wayadande
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK
| |
Collapse
|
32
|
Xing Y, Hernandez Nopsa JF, Andersen KF, Andrade-Piedra JL, Beed FD, Blomme G, Carvajal-Yepes M, Coyne DL, Cuellar WJ, Forbes GA, Kreuze JF, Kroschel J, Kumar PL, Legg JP, Parker M, Schulte-Geldermann E, Sharma K, Garrett KA. Global Cropland Connectivity: A Risk Factor for Invasion and Saturation by Emerging Pathogens and Pests. Bioscience 2020; 70:744-758. [PMID: 32973407 PMCID: PMC7498352 DOI: 10.1093/biosci/biaa067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The geographic pattern of cropland is an important risk factor for invasion and saturation by crop-specific pathogens and arthropods. Understanding cropland networks supports smart pest sampling and mitigation strategies. We evaluate global networks of cropland connectivity for key vegetatively propagated crops (banana and plantain, cassava, potato, sweet potato, and yam) important for food security in the tropics. For each crop, potential movement between geographic location pairs was evaluated using a gravity model, with associated uncertainty quantification. The highly linked hub and bridge locations in cropland connectivity risk maps are likely priorities for surveillance and management, and for tracing intraregion movement of pathogens and pests. Important locations are identified beyond those locations that simply have high crop density. Cropland connectivity risk maps provide a new risk component for integration with other factors-such as climatic suitability, genetic resistance, and global trade routes-to inform pest risk assessment and mitigation.
Collapse
Affiliation(s)
- Yanru Xing
- Plant Pathology Department, Institute for Sustainable Food Systems, and Emerging Pathogens Institute at University of Florida, Gainesville, USA
- Yanru Xing and John F. Hernandez Nopsa contributed equally to this work
| | - John F Hernandez Nopsa
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Mosquera-Bogota, Colombia
- Yanru Xing and John F. Hernandez Nopsa contributed equally to this work
| | - Kelsey F Andersen
- Plant Pathology Department, Institute for Sustainable Food Systems, and Emerging Pathogens Institute at University of Florida, Gainesville, USA
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Jorge L Andrade-Piedra
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Fenton D Beed
- Plant Production and Protection Division, Food and Agriculture Organization, United Nations (FAO), 00153 Roma, Italy
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Guy Blomme
- Bioversity International, c/o ILRI, Addis Ababa, Ethiopia
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Mónica Carvajal-Yepes
- International Center for Tropical Agriculture (CIAT), AA6713, Cali, Colombia
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Danny L Coyne
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Wilmer J Cuellar
- International Center for Tropical Agriculture (CIAT), AA6713, Cali, Colombia
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Gregory A Forbes
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Jan F Kreuze
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Jürgen Kroschel
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - P Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - James P Legg
- International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Monica Parker
- International Potato Center (CIP), Nairobi, Kenya
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Elmar Schulte-Geldermann
- International Potato Center (CIP), Nairobi, Kenya
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Kalpana Sharma
- International Potato Center (CIP), Nairobi, Kenya
- CGIAR Research Program on Roots, Tubers, and Bananas
| | - Karen A Garrett
- Plant Pathology Department, Institute for Sustainable Food Systems, and Emerging Pathogens Institute at University of Florida, Gainesville, USA
- CGIAR Research Program on Roots, Tubers, and Bananas
| |
Collapse
|
33
|
Su K, Xing H, Guo Y, Zhao F, Liu Z, Li K, Li Y, Guo X. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. BMC Genomics 2020; 21:419. [PMID: 32571215 PMCID: PMC7310074 DOI: 10.1186/s12864-020-06836-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022] Open
Abstract
Background Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent ‘Cabernet sauvignon’ and paternal parent ‘Zuoyouhong’. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map. Results We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected. Conclusions High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Huiyang Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| | - Fangyuan Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| |
Collapse
|
34
|
Paredes‐Montero JR, Ibarra MA, Arias‐Zambrano M, Peralta EL, Brown JK. Phylo‐biogeographical distribution of whitefly
Bemisia tabaci
(Insecta: Aleyrodidae) mitotypes in Ecuador. Ecosphere 2020. [DOI: 10.1002/ecs2.3154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jorge R. Paredes‐Montero
- School of Plant Sciences The University of Arizona 1140 East South Campus Drive Tucson Arizona85721USA
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral, ESPOL Campus Gustavo Galindo Km 30.5 Vía Perimetral GuayaquilEC090112Ecuador
| | - María A. Ibarra
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral, ESPOL Campus Gustavo Galindo Km 30.5 Vía Perimetral GuayaquilEC090112Ecuador
| | - Myriam Arias‐Zambrano
- Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Litoral Sur Km. 26 Vía Durán‐Tambo GuayaquilEC090112Ecuador
- Bioversity International, Parc Scientifique Agropolis II Montpellier34397France
| | - Esther L. Peralta
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral, ESPOL Campus Gustavo Galindo Km 30.5 Vía Perimetral GuayaquilEC090112Ecuador
| | - Judith K. Brown
- School of Plant Sciences The University of Arizona 1140 East South Campus Drive Tucson Arizona85721USA
| |
Collapse
|
35
|
Wosula EN, Chen W, Amour M, Fei Z, Legg JP. KASP Genotyping as a Molecular Tool for Diagnosis of Cassava-Colonizing Bemisia tabaci. INSECTS 2020; 11:insects11050305. [PMID: 32423055 PMCID: PMC7290743 DOI: 10.3390/insects11050305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Bemisia tabaci is a cryptic species complex that requires the use of molecular tools for identification. The most widely used approach for achieving this is the partial sequencing of the mitochondrial DNA cytochrome oxidase I gene (COI). A more reliable single nucleotide polymorphism (SNP)-based genotyping approach, using Nextera restriction-site-associated DNA (NextRAD) sequencing, has demonstrated the existence of six major haplogroups of B. tabaci on cassava in Africa. However, NextRAD sequencing is costly and time-consuming. We, therefore, developed a cheaper and more rapid diagnostic using the Kompetitive Allele-Specific PCR (KASP) approach. Seven sets of primers were designed to distinguish the six B. tabaci haplogroups based on the NextRAD data. Out of the 152 whitefly samples that were tested using these primer sets, 151 (99.3%) produced genotyping results consistent with NextRAD. The KASP assay was designed using NextRAD data on whiteflies from cassava in 18 countries across sub-Saharan Africa. This assay can, therefore, be routinely used to rapidly diagnose cassava B. tabaci by laboratories that are researching or monitoring this pest in Africa. This is the first study to develop an SNP-based assay to distinguish B. tabaci whiteflies on cassava in Africa, and the first application of the KASP technique for insect identification.
Collapse
Affiliation(s)
- Everlyne N. Wosula
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaa, Tanzania; (M.A.); (J.P.L.)
- Correspondence: ; Tel.: +255-22-2700-092
| | - Wenbo Chen
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA; (W.C.); (Z.F.)
| | - Massoud Amour
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaa, Tanzania; (M.A.); (J.P.L.)
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA; (W.C.); (Z.F.)
- USDA-ARS Robert W. Holley Center for Agriculture and Health, 533 Tower Rd, Ithaca, NY 14853, USA
| | - James P. Legg
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaa, Tanzania; (M.A.); (J.P.L.)
| |
Collapse
|
36
|
Nwezeobi J, Onyegbule O, Nkere C, Onyeka J, van Brunschot S, Seal S, Colvin J. Cassava whitefly species in eastern Nigeria and the threat of vector-borne pandemics from East and Central Africa. PLoS One 2020; 15:e0232616. [PMID: 32379806 PMCID: PMC7205266 DOI: 10.1371/journal.pone.0232616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/18/2020] [Indexed: 12/02/2022] Open
Abstract
Bemisia tabaci (sensu latu) is a group of >40 highly cryptic whitefly species that are of global agricultural importance, both as crop pests and plant-virus vectors. Two devastating cassava diseases in East and Central Africa are spread by abundant populations of one of these species termed Sub-Saharan Africa 1 (SSA1). There is a substantive risk that these whitefly-borne pandemics will continue to spread westwards and disrupt cassava production for millions of smallholder farmers in West Africa. We report here, therefore, the first comprehensive survey of cassava B. tabaci in eastern Nigeria, a West African region likely to be the first affected by the arrival of these whitefly-borne pandemics. We found one haplotype comprising 32 individuals with 100% identical mtCO1 sequence to the East African SSA1 populations (previously termed SSA1-SG1) and 19 mtCO1 haplotypes of Sub-Saharan Africa 3 (SSA3), the latter being the most prevalent and widely distributed B. tabaci species in eastern Nigeria. A more divergent SSA1 mtCO1 sequence (previously termed SSA1-SG5) was also identified in the region, as were mtCO1 sequences identifying the presence of the MED ASL B. tabaci species and Bemisia afer. Although B. tabaci SSA1 was found in eastern Nigeria, they were not present in the high abundances associated with the cassava mosaic (CMD) and cassava brown streak disease (CBSD) pandemics of East and Central Africa. Also, no severe CMD or any CBSD symptoms were found in the region.
Collapse
Affiliation(s)
- Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | | | | | - Joseph Onyeka
- National Root Crops Research Institute, Umudike, Abia, Nigeria
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| |
Collapse
|
37
|
Two Distinct Genotypes of Spissistilus festinus (Say, 1830) (Hemiptera, Membracidae) in the United States Revealed by Phylogenetic and Morphological Analyses. INSECTS 2020; 11:insects11020080. [PMID: 31979389 PMCID: PMC7073536 DOI: 10.3390/insects11020080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022]
Abstract
Spissistilus festinus (Say, 1830) (Hemiptera: Membracidae) is a frequent pest of leguminous crops in the Southern United States, and a vector of grapevine red blotch virus. There is currently no information on the genetic diversity of S. festinus. In this study, populations of S. festinus were collected in 2015-2017 from various crops and geographic locations in the United States, and fragments of the mitochondrial cytochrome C oxidase 1 (mt-COI) gene and the nuclear internal transcribed spacer 2 (ITS2) region were characterized by polymerase chain reaction and sequencing. Maximum-likelihood and Bayesian analyses of the mt-COI and ITS2 sequences yielded similar phylogenetic tree topologies, revealing two distinct genetic S. festinus lineages with all of the specimens from California comprising one phylogenetic clade, alongside a single GenBank entry from Arizona, and all specimens from the Southeastern United States comprising a statistically-supported distinct clade, regardless of host and year of collection. The mt-COI gene fragment showed up to 10.8% genetic distance between the two phylogenetic clades. These results suggest the existence of two genotypes within S. festinus in the United States. The only distinct morphological trait between the two genotypes was a less elevated pronotum in the representative specimens from California, compared to the representative specimens from the Southeastern United States. Since this phenotypic feature is inconspicuous, a diagnostic polymerase chain reaction targeting a variable region of the mt-COI fragment was developed to reliably distinguish between the specimens of the two genotypes of S. festinus and to facilitate their specific identification.
Collapse
|
38
|
Misaka BC, Wosula EN, Marchelo-d’Ragga PW, Hvoslef-Eide T, Legg JP. Genetic Diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Colonizing Sweet Potato and Cassava in South Sudan. INSECTS 2020; 11:insects11010058. [PMID: 31963536 PMCID: PMC7022610 DOI: 10.3390/insects11010058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Bemisia tabaci (Gennadius) is a polyphagous, highly destructive pest that is capable of vectoring viruses in most agricultural crops. Currently, information regarding the distribution and genetic diversity of B. tabaci in South Sudan is not available. The objectives of this study were to investigate the genetic variability of B. tabaci infesting sweet potato and cassava in South Sudan. Field surveys were conducted between August 2017 and July and August 2018 in 10 locations in Juba County, Central Equatoria State, South Sudan. The sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) were used to determine the phylogenetic relationships between sampled B. tabaci. Six distinct genetic groups of B. tabaci were identified, including three non-cassava haplotypes (Mediterranean (MED), Indian Ocean (IO), and Uganda) and three cassava haplotypes (Sub-Saharan Africa 1 sub-group 1 (SSA1-SG1), SSA1-SG3, and SSA2). MED predominated on sweet potato and SSA2 on cassava in all of the sampled locations. The Uganda haplotype was also widespread, occurring in five of the sampled locations. This study provides important information on the diversity of B. tabaci species in South Sudan. A comprehensive assessment of the genetic diversity, geographical distribution, population dynamics, and host range of B. tabaci species in South Sudan is vital for its effective management.
Collapse
Affiliation(s)
- Beatrice C. Misaka
- Department of Agricultural Science, School of Natural Resources and Environmental Sciences, University of Juba, P.O. Box 82, Juba, South Sudan; (B.C.M.); (P.W.M.-d.)
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, P.O. Box 34441, Dar es Salaam, Tanzania; (E.N.W.); (J.P.L.)
| | - Philip W. Marchelo-d’Ragga
- Department of Agricultural Science, School of Natural Resources and Environmental Sciences, University of Juba, P.O. Box 82, Juba, South Sudan; (B.C.M.); (P.W.M.-d.)
| | - Trine Hvoslef-Eide
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
- Correspondence: ; Tel.: +47-93433775
| | - James P. Legg
- International Institute of Tropical Agriculture, P.O. Box 34441, Dar es Salaam, Tanzania; (E.N.W.); (J.P.L.)
| |
Collapse
|
39
|
Qu W, Liang N, Wu Z, Zhao Y, Chu D. Minimum sample sizes for invasion genomics: Empirical investigation in an invasive whitefly. Ecol Evol 2020; 10:38-49. [PMID: 31988715 PMCID: PMC6972819 DOI: 10.1002/ece3.5677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Analysis of population genetics provides insights into the evolutionary processes, among which the sample size choice is per se a crucial issue in the analysis. Genome-wide high-throughput techniques based on RADseq have been increasingly used in studies on the population genomics of invasive species. However, there is little information available regarding optimal sample sizes for analyzing population genomics of invasive species. In this study, we first use type IIB endonucleases restriction site-associated DNA (2b-RAD) to mine thousands of single nucleotide polymorphisms (SNPs) for native and introduced populations in Q1 clade (SPB and 17JN) and Q2 clade (ISQ and UAS0601) of the whitefly, Bemisia tabaci (Gennadius) MED (also known as B. tabaci biotype Q). Then, we used resampling techniques to create simulated populations with a random subset of individuals and 3,000 SNPs to determine how many individuals should be sampled for accurate estimates of intra- and interpopulation genetic diversity. We calculated the intrapopulation genetic diversity parameters (unbiased expected heterozygosity, observed heterozygosity, and the number of effect alleles) and pairwise genetic differentiation F ST; finally, an ad hoc statistic, ΔK, was used to determine the optimal value. Our results showed that a sample size greater than four individuals (n ≥ 4) has little impact on estimates of genetic diversity within whitefly populations; moreover, precise estimate of F ST can be easily achieved at a very small simple size (n = 3 or 4). Our results will provide in-depth understanding of the optimization of sampling schemes in population genomics of invasive species.
Collapse
Affiliation(s)
- Wan‐Mei Qu
- Key Lab of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Ni Liang
- Key Lab of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Zi‐Ku Wu
- Science and Information CollegeQingdao Agricultural UniversityQingdaoChina
| | - You‐Gang Zhao
- Science and Information CollegeQingdao Agricultural UniversityQingdaoChina
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
40
|
Ally HM, Hamss HE, Simiand C, Maruthi MN, Colvin J, Omongo CA, Delatte H. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades? Sci Rep 2019; 9:14796. [PMID: 31615997 PMCID: PMC6794263 DOI: 10.1038/s41598-019-50259-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/19/2019] [Indexed: 12/04/2022] Open
Abstract
High populations of African cassava whitefly (Bemisia tabaci) have been associated with epidemics of two viral diseases in Eastern Africa. We investigated population dynamics and genetic patterns by comparing whiteflies collected on cassava in 1997, during the first whitefly upsurges in Uganda, with collections made in 2017 from the same locations. Nuclear markers and mtCOI barcoding sequences were used on 662 samples. The composition of the SSA1 population changed significantly over the 20-year period with the SSA1-SG2 percentage increasing from 0.9 to 48.6%. SSA1-SG1 and SSA1-SG2 clearly interbreed, confirming that they are a single biological species called SSA1. The whitefly species composition changed: in 1997, SSA1, SSA2 and B. afer were present; in 2017, no SSA2 was found. These data and those of other publications do not support the 'invader' hypothesis. Our evidence shows that no new species or new population were found in 20 years, instead, the distribution of already present genetic clusters composing SSA1 species have changed over time and that this may be in response to several factors including the introduction of new cassava varieties or climate changes. The practical implications are that cassava genotypes possessing both whitefly and disease resistances are needed urgently.
Collapse
Affiliation(s)
- Hadija M Ally
- Université de La Réunion, 97715, 15 Avenue René Cassin, Sainte-Clotilde, La Reunion, France
- CIRAD, UMR PVBMT, 7 Chemin de l'Irat, Ligne Paradis, 97410, Saint Pierre, La Reunion, France
- Tanzania Agricultural Research Institute-Ukiriguru, P.O. Box, 1433, Mwanza, Tanzania
| | - Hajar El Hamss
- Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Christophe Simiand
- CIRAD, UMR PVBMT, 7 Chemin de l'Irat, Ligne Paradis, 97410, Saint Pierre, La Reunion, France
| | - M N Maruthi
- Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - John Colvin
- Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Christopher A Omongo
- Root Crops Programme, National Crops Resource Research Institute (RCP-NaCRRI), P.O. Box, 7084, Kampala, Uganda
| | - Helene Delatte
- CIRAD, UMR PVBMT, 7 Chemin de l'Irat, Ligne Paradis, 97410, Saint Pierre, La Reunion, France.
| |
Collapse
|
41
|
Nuclear Orthologs Derived from Whole Genome Sequencing Indicate Cryptic Diversity in the Bemisia tabaci (Insecta: Aleyrodidae) Complex of Whiteflies. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Bemisia tabaci complex of whiteflies contains globally important pests thought to contain cryptic species corresponding to geographically structured phylogenetic clades. Although mostly morphologically indistinguishable, differences have been shown to exist among populations in behavior, plant virus vector capacity, ability to hybridize, and DNA sequence divergence. These differences allow for certain populations to become invasive and cause great economic damage in a monoculture setting. Although high mitochondrial DNA divergences have been reported between putative conspecifics of the B. tabaci species complex, there is limited data that exists across the whole genome for this group. Using data from 2184 orthologs obtained from whole genome sequencing (Illumina), a phylogenetic analysis using maximum likelihood and coalescent methodologies was completed on ten individuals of the B. tabaci complex. In addition, automatic barcode gap discovery methods were employed, and results suggest the existence of five species. Although the divergences of the mitochondrial cytochrome oxidase I gene are high among members of this complex, nuclear divergences are much lower in comparison. Single-copy orthologs from whole genome sequencing demonstrate divergent population structures among members of the B. tabaci complex and the sequences provide an important resource to aid in future genomic studies of the group.
Collapse
|
42
|
Chen W, Wosula EN, Hasegawa DK, Casinga C, Shirima RR, Fiaboe KKM, Hanna R, Fosto A, Goergen G, Tamò M, Mahuku G, Murithi HM, Tripathi L, Mware B, Kumar LP, Ntawuruhunga P, Moyo C, Yomeni M, Boahen S, Edet M, Awoyale W, Wintermantel WM, Ling KS, Legg JP, Fei Z. Genome of the African cassava whitefly Bemisia tabaci and distribution and genetic diversity of cassava-colonizing whiteflies in Africa. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:112-120. [PMID: 31102651 DOI: 10.1016/j.ibmb.2019.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 05/26/2023]
Abstract
The whitefy Bemisia tabaci, a species complex consisting of many morphologically indistinguishable species divided into distinct clades, is one of the most globally important agricultural pests and plant virus vectors. Cassava-colonizing B. tabaci transmits viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Half of all cassava plants in Africa are affected by these viral diseases, resulting in annual production losses of more than US$ 1 billion. Here we report the draft genome of the cassava whitefly B. tabaci Sub-Saharan Africa - East and Central Africa (SSA-ECA), the super-abundant population that has been associated with the rapid spread of viruses causing the pandemics of CMD and CBSD. The SSA-ECA genome assembled from Illumina short reads has a total size of 513.7 Mb and a scaffold N50 length of 497 kb, and contains 15,084 predicted protein-coding genes. Phylogenetic analysis suggests that SSA-ECA diverged from MEAM1 around 5.26 million years ago. A comprehensive genetic analysis of cassava-colonizing B. tabaci in Africa was also conducted, in which a total of 243 whitefly specimens were collected from 18 countries representing all major cassava-growing regions in the continent and genotyped using NextRAD sequencing. Population genomic analyses confirmed the existence of six major populations linked by gene flow and inferred the distribution patterns of these populations across the African continent. The genome of SSA-ECA and the genetic findings provide valuable resources and guidance to facilitate whitefly research and the development of strategies to control cassava viral diseases spread by whiteflies.
Collapse
Affiliation(s)
- Wenbo Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Everlyne N Wosula
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Daniel K Hasegawa
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Clerisse Casinga
- International Institute of Tropical Agriculture, Bukavu-Kalambo, Democratic Republic of the Congo
| | - Rudolph R Shirima
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Komi K M Fiaboe
- International Institute of Tropical Agriculture, Yaòunde, Cameroon
| | - Rachid Hanna
- International Institute of Tropical Agriculture, Yaòunde, Cameroon
| | - Apollin Fosto
- International Institute of Tropical Agriculture, Yaòunde, Cameroon
| | - Georg Goergen
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - Manuele Tamò
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Harun M Murithi
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Bernard Mware
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Lava P Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - Christopher Moyo
- International Institute of Tropical Agriculture, Lilongwe, Malawi
| | - Marie Yomeni
- International Institute of Tropical Agriculture, Freetown, Sierra Leone
| | - Stephen Boahen
- International Institute of Tropical Agriculture, Nampula, Mozambique
| | - Michael Edet
- International Institute of Tropical Agriculture, Monrovia, Liberia
| | - Wasiu Awoyale
- International Institute of Tropical Agriculture, Monrovia, Liberia
| | - William M Wintermantel
- U.S. Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research, Salinas, CA, 93905, USA
| | - Kai-Shu Ling
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
| | - James P Legg
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA; U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| |
Collapse
|
43
|
Tay WT, Gordon KHJ. Going global - genomic insights into insect invasions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:123-130. [PMID: 31109665 DOI: 10.1016/j.cois.2018.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The spread of invasive insect pests is becoming an increasing problem for agriculture globally. We discuss a number of invasive insects, already of major economic significance that have recently expanded their range to become truly global threats. These include the noctuid moths Helicoverpa and Spodoptera, whose caterpillars have long been among the worst pests in their native Old and New World habitats, respectively, and the whitefly Bemisia, a major vector of plant virus diseases. Importantly, genomic resources for these species have recently become available, allowing research to move beyond the restrictions imposed by earlier approaches limited to a single or few mitochondrial and nuclear markers, to employ genome-wide genotyping and resequencing protocols. These studies have shown hybridisation within the various species complexes, identified regions under selection in agricultural environments, and enable monitoring of genes important as biosecurity risks through introgression into established populations free of the genes. In all cases studied, global trade has emerged as the probable cause of insect spread, making it ever more important that biosecurity protocols and agencies work with researchers to make the most effective use of emerging genomic resources and tools.
Collapse
Affiliation(s)
- Wee Tek Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
| | | |
Collapse
|
44
|
Milenovic M, Wosula EN, Rapisarda C, Legg JP. Impact of Host Plant Species and Whitefly Species on Feeding Behavior of Bemisia tabaci. FRONTIERS IN PLANT SCIENCE 2019; 10:1. [PMID: 30723482 PMCID: PMC6349738 DOI: 10.3389/fpls.2019.00001] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/03/2019] [Indexed: 05/20/2023]
Abstract
Whiteflies of the Bemisia tabaci species complex are economically important pests of cassava. In Africa, they cause greatest damage through vectoring viruses responsible for cassava mosaic disease and cassava brown streak disease. Several cryptic species from the B. tabaci complex colonize cassava and neighboring crops, but the feeding interactions between the different crops and B. tabaci species are unknown. The electrical penetration graph (EPG) technique makes it possible to conduct detailed feeding studies of sap-sucking insects by creating an electric circuit through the insect and the plant. The apparatus measures the voltage fluctuations while the wired-up insect feeds and produces graphs that describe feeding behavior. We utilized EPG to explore the feeding behavior of cassava-colonizing whiteflies (SSA1-SG3) on cassava, sweet potato, tomato, and cotton; and sweet potato-colonizing whiteflies (MED and IO) on cassava and sweet potato. Results show that: (1) feeding of SSA1-SG3 is not restricted to cassava. The least preferred host for SSA1-SG3 was tomato, where probing was delayed by 99 min compared to 10 min on other hosts, furthermore mean duration of phloem ingestion events was 36 min compared to 260 min on cassava. (2) Feeding of MED on cassava appeared to be non-functional, as it was characterized by short total phloem ingestion periods (<1 h) and few, short ingestion events, in contrast to feeding on sweet potato which was characterized by long phloem ingestion periods (>5 h). (3) Wire diameter affects the feeding in a statistically and practically significant manner. Implications for whitefly control and studies of host whitefly resistance are discussed.
Collapse
Affiliation(s)
- Milan Milenovic
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | - Carmelo Rapisarda
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - James Peter Legg
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| |
Collapse
|
45
|
Jacobson AL, Duffy S, Sseruwagi P. Whitefly-transmitted viruses threatening cassava production in Africa. Curr Opin Virol 2018; 33:167-176. [PMID: 30243102 DOI: 10.1016/j.coviro.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Emerging plant viruses are one of the greatest problems facing crop production worldwide, and have severe consequences in the developing world where subsistence farming is a major source of food production, and knowledge and resources for management are limited. In Africa, evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) (Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in severe pandemics that continue to spread and threaten cassava production. Identification of genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont profiles that influence vector phenotypes suggest that complex local and regional vector-virus-plant-environment interactions may be driving the evolution and epidemiology of these viruses.
Collapse
Affiliation(s)
- Alana Lynn Jacobson
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| |
Collapse
|
46
|
Zhang D, Xia T, Dang S, Fan G, Wang Z. Investigation of Chinese Wolfberry (Lycium spp.) Germplasm by Restriction Site-Associated DNA Sequencing (RAD-seq). Biochem Genet 2018; 56:575-585. [PMID: 29876687 PMCID: PMC6223726 DOI: 10.1007/s10528-018-9861-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/04/2018] [Indexed: 01/02/2023]
Abstract
Chinese wolfberry (Lycium spp.) is an important edible and medicinal plant, with a long cultivation history. The genetic relationships among wild Lycium species and landraces have been unclear for a number of reasons, which has hindered the breeding of modern Chinese wolfberry cultivars. In this study, we collected 19 accessions of Chinese wolfberry germplasm, and constructed the genetic relationship based on RAD-seq markers. We obtained 30.32 Gb of clean data, with the average value of each sample being 1.596 Gb. The average mapping rate was 85.7%, and the average coverage depth was 6.76 X. The phylogeny results distinguished all accessions clearly. All the studied landraces shared their most recent common ancestor with L. barbarum, which indicated that L. barbarum may be involved in cultivation of these landraces. The relationship of some landraces, namely the ‘Ningqi’ series, ‘Qingqi-1’ and ‘Mengqi-1,’ has been supported by the phylogeny results, while the triploid wolfberry was shown to be based on a hybrid between ‘Ningqi-1’ and a tetraploid wolfberry. This study uncovered the genetic background of Chinese wolfberry, and developed the foundation for species classification, accession identification and protection, and the production of hybrid cultivars of wolfberry.
Collapse
Affiliation(s)
- Defang Zhang
- Qinghai Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Tao Xia
- Qinghai General Health Biotechnology Co., LTD, Xining, 810003, China
| | - Shaofei Dang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
| | - Guanghui Fan
- Qinghai Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
| | - Zhanlin Wang
- Qinghai Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China.
| |
Collapse
|