1
|
Kadkhoda H, Gholizadeh P, Ghotaslou R, Nabizadeh E, Pirzadeh T, Ahangarzadeh Rezaee M, Feizi H, Samadi Kafil H, Aghazadeh M. Role of CRISPR-cas system on virulence traits and carbapenem resistance in clinical Klebsiella pneumoniae isolates. Microb Pathog 2024; 199:107151. [PMID: 39615707 DOI: 10.1016/j.micpath.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND AND OBJECTIVES The bacterial adaptive immune system known as CRISPR-Cas (clustered regularly interspersed short palindromic repeats-CRISPR-associated protein) is engaged in defense against various mobile genetic elements (MGEs) such as plasmids and bacteriophages. The purpose of this study was to characterize the CRISPR-Cas systems in carbapenem-resistant Klebsiella pneumoniae isolates and assess any possible correlation between these systems with antibiotic susceptibility, biofilm formation, and bacterial virulence. MATERIALS AND METHODS A total of 156 CRKP isolates were collected from different specimens of the inpatients. Biofilm formation and antibiotic susceptibility testing were evaluated using standard methods. Furthermore, the CRISPR-Cas system subtype genes, 11 carbapenemase genes, and 17 virulence genes were identified using separate standard PCR reactions. The diversity of the isolates was determined by random amplified polymorphic DNA (RAPD)-PCR. RESULTS The development of biofilms and antibiotic susceptibility of several CRKP isolates were significantly correlated with the absence or presence of the CRISPR-Cas system. PCR analysis of carbapenemase genes revealed that the frequency of the blaNDM-1 gene was significantly higher in the isolates with the subtype I-E CRISPR-Cas system. Moreover, the isolates with the subtype I-E CRISPR-Cas system exhibited a propensity to possess more virulence genes such as allS, k2A, wcaG, aerobactin, rmpA, iroN, magA, rmpA2, kfu, iutA, iucB, ybtS, repA, and terW. CONCLUSION CRISPR-Cas systems could affect the antibiotic susceptibility, capacity for biofilm formation, and virulence of Klebsiella pneumoniae. Our findings showed that the isolates containing the CRISPR-Cas system were moderate or strong biofilm producers and had a higher frequency of virulence genes.
Collapse
Affiliation(s)
- Hiva Kadkhoda
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Ghotaslou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hossein Samadi Kafil
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Aghazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Rodrigues YC, Silva MJA, dos Reis HS, dos Santos PAS, Sardinha DM, Gouveia MIM, dos Santos CS, Marcon DJ, Aires CAM, Souza CDO, Quaresma AJPG, Lima LNGC, Brasiliense DM, Lima KVB. Molecular Epidemiology of Pseudomonas aeruginosa in Brazil: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2024; 13:983. [PMID: 39452249 PMCID: PMC11504043 DOI: 10.3390/antibiotics13100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Globally, Pseudomonas aeruginosa is a high-priority opportunistic pathogen which displays several intrinsic and acquired antimicrobial resistance (AMR) mechanisms, leading to challenging treatments and mortality of patients. Moreover, its wide virulence arsenal, particularly the type III secretion system (T3SS) exoU+ virulotype, plays a crucial role in pathogenicity and poor outcome of infections. In depth insights into the molecular epidemiology of P. aeruginosa, especially the prevalence of high-risk clones (HRCs), are crucial for the comprehension of virulence and AMR features and their dissemination among distinct strains. This study aims to evaluate the prevalence and distribution of HRCs and non-HRCs among Brazilian isolates of P. aeruginosa. METHODS A systematic review and meta-analysis were conducted on studies published between 2011 and 2023, focusing on the prevalence of P. aeruginosa clones determined by multilocus sequence typing (MLST) in Brazil. Data were extracted from retrospective cross-sectional and case-control studies, encompassing clinical and non-clinical samples. The analysis included calculating the prevalence rates of various sequence types (STs) and assessing the regional variability in the distribution of HRCs and non-HRCs. RESULTS A total of 872 samples were analyzed within all studies, of which 298 (34.17%) were MLST typed, identifying 78 unique STs. HRCs accounted for 48.90% of the MLST-typed isolates, with ST277 being the most prevalent (100/298-33.55%), followed by ST244 (29/298-9.73%), ST235 (13/298-4.36%), ST111 (2/298-0.67%), and ST357 (2/298-0.67%). Significant regional variability was observed, with the Southeast region showing a high prevalence of ST277, while the North region shows a high prevalence of MLST-typed samples and HRCs. CONCLUSIONS Finally, this systematic review and meta-analysis highlight the role of P. aeruginosa clones in critical issue of AMR in P. aeruginosa in Brazil and the need of integration of comprehensive data from individual studies.
Collapse
Affiliation(s)
- Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Herald Souza dos Reis
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Pabllo Antonny Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Daniele Melo Sardinha
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Carolynne Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Davi Josué Marcon
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Caio Augusto Martins Aires
- Department of Health Sciences (DCS), Federal Rural University of the Semi-Arid Region (UFERSA), Av. Francisco Mota, 572-Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil;
| | - Cintya de Oliveira Souza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Luana Nepomuceno Gondim Costa Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| |
Collapse
|
3
|
Monroy-Pérez E, Herrera-Gabriel JP, Olvera-Navarro E, Ugalde-Tecillo L, García-Cortés LR, Moreno-Noguez M, Martínez-Gregorio H, Vaca-Paniagua F, Paniagua-Contreras GL. Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections. Pathogens 2024; 13:868. [PMID: 39452738 PMCID: PMC11510431 DOI: 10.3390/pathogens13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
The increase in the number of hospital strains of hypervirulent and multidrug resistant (MDR) Pseudomonas aeruginosa is a major health problem that reduces medical treatment options and increases mortality. The molecular profiles of virulence and multidrug resistance of P. aeruginosa-associated hospital and community infections in Mexico have been poorly studied. In this study, we analyzed the different molecular profiles associated with the virulence genotypes related to multidrug resistance and the genotypes of multidrug efflux pumps (mex) in P. aeruginosa causing clinically critical infections isolated from Mexican patients with community- and hospital-acquired infections. Susceptibility to 12 antibiotics was determined using the Kirby-Bauer method. The identification of P. aeruginosa and the detection of virulence and efflux pump system genes were performed using conventional PCR. All strains isolated from patients with hospital-acquired (n = 67) and community-acquired infections (n = 57) were multidrug resistant, mainly to beta-lactams (ampicillin [96.7%], carbenicillin [98.3%], cefalotin [97.5%], and cefotaxime [87%]), quinolones (norfloxacin [78.2%]), phenicols (chloramphenicol [91.9%]), nitrofurans (nitrofurantoin [70.9%]), aminoglycosides (gentamicin [75%]), and sulfonamide/trimethoprim (96.7%). Most strains (95.5%) isolated from patients with hospital- and community-acquired infections carried the adhesion (pilA) and biofilm formation (ndvB) genes. Outer membrane proteins (oprI and oprL) were present in 100% of cases, elastases (lasA and lasB) in 100% and 98.3%, respectively, alkaline protease (apr) and alginate (algD) in 99.1% and 97.5%, respectively, and chaperone (groEL) and epoxide hydrolase (cif) in 100% and 97.5%, respectively. Overall, 99.1% of the strains isolated from patients with hospital- and community-acquired infections carried the efflux pump system genes mexB and mexY, while 98.3% of the strains carried mexF and mexZ. These findings show a wide distribution of the virulome related to the genotypic and phenotypic profiles of antibiotic resistance and the origin of the strains isolated from patients with hospital- and community-acquired infections, demonstrating that these molecular mechanisms may play an important role in high-pathogenicity infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Jennefer Paloma Herrera-Gabriel
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Elizabeth Olvera-Navarro
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Lorena Ugalde-Tecillo
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Luis Rey García-Cortés
- Coordinación de Investigación del Estado de México Oriente, Insitituto Mexicano del Seguro Social, Tlalnepantla de Baz 50090, Mexico;
| | - Moisés Moreno-Noguez
- Coordinación Clínica de Educación e Investigación en Salud, Unidad de Medicina Familiar No. 55, Insitituto Mexicano del Seguro Social Estado de México Oriente, Zumpango 55600, Mexico;
| | - Héctor Martínez-Gregorio
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (H.M.-G.); (F.V.-P.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (H.M.-G.); (F.V.-P.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Gloria Luz Paniagua-Contreras
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| |
Collapse
|
4
|
Rossel CAJ, Hendrickx APA, van Alphen LB, van der Horst RPJ, Janssen AHJW, Kooyman CC, Heddema ER. Tracing the origin of NDM-1-producing and extensively drug-resistant Pseudomonas aeruginosa ST357 in the Netherlands. BMC Infect Dis 2024; 24:817. [PMID: 39134941 PMCID: PMC11321177 DOI: 10.1186/s12879-024-09722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND In the hospital environment, carbapenemase-producing Pseudomonas aeruginosa (CPPA) may lead to fatal patient infections. However, the transmission routes of CPPA often remain unknown. Therefore, this case study aimed to trace the origin of CPPA ST357, which caused a hospital-acquired pneumonia in a repatriated critically ill patient suffering from Guillain-Barré Syndrome in 2023. METHODS Antimicrobial susceptibility of the CPPA isolate for 30 single and combination therapies was determined by disk-diffusion, Etest or broth microdilution. Whole-genome sequencing was performed for three case CPPA isolates (one patient and two sinks) and four distinct CPPA ST357 patient isolates received in the Dutch CPPA surveillance program. Furthermore, 193 international P. aeruginosa ST357 assemblies were collected via three genome repositories and analyzed using whole-genome multi-locus sequence typing in combination with antimicrobial resistance gene (ARG) characterization. RESULTS A Dutch patient who carried NDM-1-producing CPPA was transferred from Kenya to the Netherlands, with subsequent dissemination of CPPA isolates to the local sinks within a month after admission. The CPPA case isolates presented an extensively drug-resistant phenotype, with susceptibility only for colistin and cefiderocol-fosfomycin. Phylogenetic analysis showed considerable variation in allelic distances (mean = 150, max = 527 alleles) among the ST357 isolates from Asia (n = 92), Europe (n = 58), Africa (n = 21), America (n = 16), Oceania (n = 2) and unregistered regions (n = 4). However, the case isolates (n = 3) and additional Dutch patient surveillance program isolates (n = 2) were located in a sub-clade of isolates from Kenya (n = 17; varying 15-49 alleles), the United States (n = 7; 21-115 alleles) and other countries (n = 6; 14-121 alleles). This was consistent with previous hospitalization in Kenya of 2/3 Dutch patients. Additionally, over half of the isolates (20/35) in this sub-clade presented an identical resistome with 9/17 Kenyan, 5/5 Dutch, 4/7 United States and 2/6 other countries, which were characterized by the blaNDM-1, aph(3')-VI, ARR-3 and cmlA1 ARGs. CONCLUSION This study presents an extensively-drug resistant subclone of NDM-producing P. aeruginosa ST357 with a unique resistome which was introduced to the Netherlands via repatriation of critically ill patients from Kenya. Therefore, the monitoring of repatriated patients for CPPA in conjunction with vigilance for the risk of environmental contamination is advisable to detect and prevent further dissemination.
Collapse
Affiliation(s)
- Connor A J Rossel
- Department of Medical Microbiology and Infection Prevention, Zuyderland Medical Center, Sittard-Geleen, The Netherlands.
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lieke B van Alphen
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Augustinus H J W Janssen
- Department of Intensive Care Medicine, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - Cornelia C Kooyman
- Department of Medical Microbiology and Infection Prevention, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - Edou R Heddema
- Department of Medical Microbiology and Infection Prevention, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| |
Collapse
|
5
|
Peng K, Liu YX, Sun X, Wang Q, Song L, Wang Z, Li R. Large-scale bacterial genomic and metagenomic analysis reveals Pseudomonas aeruginosa as potential ancestral source of tigecycline resistance gene cluster tmexCD-toprJ. Microbiol Res 2024; 285:127747. [PMID: 38739956 DOI: 10.1016/j.micres.2024.127747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The global dissemination of the multidrug resistance efflux pump gene cluster tmexCD-toprJ has greatly weakened the effects of multiple antibiotics, including tigecycline. However, the potential origin and transmission mechanisms of the gene cluster remain unclear. METHODS Here, we concluded a comprehensive bioinformatics analysis on integrated 73,498 bacterial genomes, including Pseudomonas spp., Klebsiella spp., Aeromonas spp., Proteus spp., and Citrobacter spp., along with 1,152 long-read metagenomic datasets to trace the origin and propagation of tmexCD-toprJ. RESULTS Our results demonstrated that tmexCD-toprJ was predominantly found in Pseudomonas aeruginosa sourced from human hosts in Asian countries and North American countries. Phylogenetic and genomic feature analyses showed that tmexCD-toprJ was likely evolved from mexCD-oprJ of some special clones of P. aeruginosa. Furthermore, metagenomic analysis confirmed that P. aeruginosa is the only potential ancestral bacterium for tmexCD-toprJ. A putative mobile genetic structure harboring tmexCD-toprJ, int-int-hp-hp-tnfxB-tmexCD-toprJ, was the predominant genetic context of tmexCD-toprJ across various bacterial genera, suggesting that the two integrase genes play a pivotal role in the horizontal transmission of tmexCD-toprJ. CONCLUSIONS Based on these findings, it is almost certain that the tmexCD-toprJ gene cluster was derived from P. aeruginosa and further spread to other bacteria.
Collapse
Affiliation(s)
- Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xinran Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
6
|
Li Y, Ji L, Liu T, Xu G, Wang K, Mu L, Guo Y, Ma Q. Mechanism of Qiguiyin Decoction Sensitizing Levofloxacin Against Multidrug-Resistant Pseudomonas aeruginosa Infection Based on PK-PD and Antibody Chip Technology. Infect Drug Resist 2024; 17:2089-2098. [PMID: 38828375 PMCID: PMC11141581 DOI: 10.2147/idr.s455114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/18/2024] [Indexed: 06/05/2024] Open
Abstract
Background Qiguiyin decoction (QGYD) is a traditional Chinese medicine (TCM) and its combined application with levofloxacin (LVFX) has been confirmed effective in the clinical treatment of multidrug-resistant Pseudomonas aeruginosa (MDR PA) infection. This study investigated the therapeutic effect and possible mechanism of QGYD in sensitizing LVFX against MDR PA infection. Materials and Methods Pulmonary infections were induced in rats by MDR PA. The changes in pharmacokinetics-pharmacodynamics (PK-PD) parameters of LVFX after combined with QGYD were investigated in MDR PA-induced rats. Subsequently, the correlation between PK and PD was analyzed and PK-PD models were established to elucidate the relationship between QGYD-induced alterations in LVFX metabolism and its sensitization to LVFX. Antibody chip technology was used to detect the levels of inflammatory factors, suggesting the relationship between the beneficial effect of immune regulation and the sensitization of QGYD. Results QGYD significantly enhanced the therapeutic efficacy of LVFX against MDR PA infection. The combination of QGYD changed the PK parameters of LVFX such as Tmax, t1/2, MRT, Vd/F, CL/F and PD parameters such as MIC, AUC0-24h/MIC. Predicted results from PK-PD models demonstrated that the antibacterial effect of LVFX was significantly enhanced with the combination of QGYD, consistent with experimental findings. Antibody chip results revealed that the combination of QGYD made IL-1 β, IL-6, TNF- α, IL-10, and MCP-1 levels more akin to those of the blank group. Conclusion These findings indicated that QGYD could change the PK-PD behaviors of LVFX and help the body restore immune balance faster. This implied that a potential drug interaction might occur between QGYD and LVFX, leading to improved clinical efficacy when combined.
Collapse
Affiliation(s)
- Yanling Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Li Ji
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Tian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Guang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Kaihe Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Leixin Mu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Yuying Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Qun Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| |
Collapse
|
7
|
Tribin FE, Lieux C, Maestre-Mesa J, Durkee H, Krishna K, Chou B, Neag E, Tóthová JD, Martinez JD, Flynn HW, Parel JM, Miller D, Amescua G. Clinical Features and Treatment Outcomes of Carbapenem-Resistant Pseudomonas aeruginosa Keratitis. JAMA Ophthalmol 2024; 142:407-415. [PMID: 38512246 PMCID: PMC10958388 DOI: 10.1001/jamaophthalmol.2024.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/27/2023] [Indexed: 03/22/2024]
Abstract
Importance Evaluation of the microbiological diagnostic profile of multidrug-resistant Pseudomonas aeruginosa keratitis and potential management with rose bengal-photodynamic antimicrobial therapy (RB-PDAT) is important. Objective To document the disease progression of carbapenemase-resistant P aeruginosa keratitis after an artificial tear contamination outbreak. Design, Setting, and Participants This retrospective observation case series included 9 patients 40 years or older who presented at Bascom Palmer Eye Institute and had positive test results for multidrug-resistant P aeruginosa keratitis between January 1, 2022, and October 31, 2023. Main Outcomes and Measures Evaluation of type III secretion phenotype, carbapenemase-resistance genes blaGES and blaVIM susceptibility to antibiotics, and in vitro and in vivo outcomes of RB-PDAT against multidrug-resistant P aeruginosa keratitis. Results Among the 9 patients included in the analysis (5 women and 4 men; mean [SD] age, 73.4 [14.0] years), all samples tested positive for exoU and carbapenemase-resistant blaVIM and blaGES genes. Additionally, isolates were resistant to carbapenems as indicated by minimum inhibitory concentration testing. In vitro efficacy of RB-PDAT indicated its potential application for treating recalcitrant cases. These cases highlight the rapid progression and challenging management of multidrug-resistant P aeruginosa. Two patients were treated with RB-PDAT as an adjuvant to antibiotic therapy and had improved visual outcomes. Conclusions and Relevance This case series highlights the concerning progression in resistance and virulence of P aeruginosa and emphasizes the need to explore alternative therapies like RB-PDAT that have broad coverage and no known antibiotic resistance. The findings support further investigation into the potential effects of RB-PDAT for other multidrug-resistant microbes.
Collapse
Affiliation(s)
- Felipe Echeverri Tribin
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Caroline Lieux
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jorge Maestre-Mesa
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Heather Durkee
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Katherine Krishna
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chou
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Emily Neag
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jana D’Amato Tóthová
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jaime D. Martinez
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Harry W. Flynn
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jean Marie Parel
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Darlene Miller
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Guillermo Amescua
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
8
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
9
|
Martínez-Gallardo MJ, Villicaña C, Yocupicio-Monroy M, Alcaraz-Estrada SL, Salazar-Salinas J, Mendoza-Vázquez OF, Damazo-Hernández G, León-Félix J. Comparative genomic analysis of Pseudomonas aeruginosa strains susceptible and resistant to carbapenems and aztreonam isolated from patients with healthcare-associated infections in a Mexican hospital. Mol Genet Genomics 2024; 299:29. [PMID: 38472486 DOI: 10.1007/s00438-024-02122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Pseudomonas aeruginosa (PA) is an important opportunistic pathogen that causes different infections on immunocompromised patients. Within PA accessory genome, differences in virulence, antibiotic resistance and biofilm formation have been described between strains, leading to the emergence of multidrug-resistant strains. The genome sequences of 17 strains isolated from patients with healthcare-associated infections in a Mexican hospital were genomically and phylogenetically analyzed and antibiotic resistance genes, virulence genes, and biofilm formation genes were detected. Fifteen of the 17 strains were resistant to at least two of the carbapenems meropenem, imipenem, and the monobactam aztreonam. The antibiotic resistance (mexA, mexB, and oprM) and the biofilm formation (pslA and pslD) genes were detected in all strains. Differences were found between strains in accessory genome size. The strains had different sequence types, and seven strains had sequence types associated with global high risk epidemic PA clones. All strains were represented in two groups among PA global strains. In the 17 strains, horizontally acquired resistance genes to aminoglycosides and beta-lactams were found, mainly, and between 230 and 240 genes that encode virulence factors. The strains under study were variable in terms of their accessory genome, antibiotic resistance, and virulence genes. With these characteristics, we provide information about the genomic diversity of clinically relevant PA strains.
Collapse
Affiliation(s)
- María José Martínez-Gallardo
- Laboratory of Molecular Biology and Functional Genomics, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Claudia Villicaña
- CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Martha Yocupicio-Monroy
- Postgraduate in Genomic Sciences, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | | | | | | | | | - Josefina León-Félix
- Laboratory of Molecular Biology and Functional Genomics, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico.
| |
Collapse
|
10
|
Shi Q, Zeng S, Yu R, Li M, Shen C, Zhang X, Zhao C, Zeng J, Huang B, Pu J, Chen C. The small RNA PrrH aggravates Pseudomonas aeruginosa-induced acute lung injury by regulating the type III secretion system activator ExsA. Microbiol Spectr 2024; 12:e0062623. [PMID: 38289930 PMCID: PMC10913731 DOI: 10.1128/spectrum.00626-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes acute and chronic infections in immunocompromised individuals. Small regulatory RNAs (sRNAs) regulate multiple bacterial adaptations to environmental changes, especially virulence. Our previous study showed that sRNA PrrH negatively regulates the expression of a number of virulence factors, such as pyocyanin, rhamnolipid, biofilm, and elastase in the P. aeruginosa strain PAO1. However, previous studies have shown that the prrH-deficient mutant attenuates virulence in an acute murine lung infection model. All ΔprrH-infected mice survived the entire 28-day course of the experiment, whereas all mice inoculated with the wild-type or the complemented mutant succumbed to lung infection within 4 days of injection, but the specific mechanism is unclear. Herein, we explored how PrrH mediates severe lung injury by regulating the expression of virulence factors. In vivo mouse and in vitro cellular assays demonstrated that PrrH enhanced the pathogenicity of PAO1, causing severe lung injury. Mechanistically, PrrH binds to the coding sequence region of the mRNA of exsA, which encodes the type III secretion system master regulatory protein. We further demonstrated that PrrH mediates a severe inflammatory response and exacerbates the apoptosis of A549 cells. Overall, our results revealed that PrrH positively regulates ExsA, enhances the pathogenicity of P. aeruginosa, and causes severe lung injury. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium and the leading cause of nosocomial pneumonia. The pathogenicity of P. aeruginosa is due to the secretion of many virulence factors. Small regulatory RNAs (sRNAs) regulate various bacterial adaptations, especially virulence. Therefore, understanding the mechanism by which sRNAs regulate virulence is necessary for understanding the pathogenicity of P. aeruginosa and the treatment of the related disease. In this study, we demonstrated that PrrH enhances the pathogenicity of P. aeruginosa by binding to the coding sequence regions of the ExsA, the master regulatory protein of type III secretion system, causing severe lung injury and exacerbating the inflammatory response and apoptosis. These findings revealed that PrrH is a crucial molecule that positively regulates ExsA. Type III-positive strains are often associated with a high mortality rate in P. aeruginosa infections in clinical practice. Therefore, this discovery may provide a new target for treating P. aeruginosa infections, especially type III-positive strains.
Collapse
Affiliation(s)
- Qixuan Shi
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shenghe Zeng
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Yu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mo Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Shen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuan Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chanjing Zhao
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieying Pu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Timsit S, Armand-Lefèvre L, Le Goff J, Salmona M. The clinical and epidemiological impacts of whole genomic sequencing on bacterial and virological agents. Infect Dis Now 2024; 54:104844. [PMID: 38101516 DOI: 10.1016/j.idnow.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Whole Genome Sequencing (WGS) is a molecular biology tool consisting in the sequencing of the entire genome of a given organism. Due to its ability to provide the finest available resolution of bacterial and virological genetics, it is used at several levels in the field of infectiology. On an individual scale and through application of a single technique, it enables the typological identification and characterization of strains, the characterization of plasmids, and enhanced search for resistance genes and virulence factors. On a collective scale, it enables the characterization of strains and the determination of phylogenetic links between different microorganisms during community outbreaks and healthcare-associated epidemics. The information provided by WGS enables real-time monitoring of strain-level epidemiology on a worldwide scale, and facilitates surveillance of the resistance dissemination and the introduction or emergence of pathogenic variants in humans or their environment. There are several possible approaches to completion of an entire genome. The choice of one method rather than another is essentially dictated by the matrix, either a clinical sample or a culture isolate, and the clinical objective. WGS is an advanced technology that remains costly despite a gradual decrease in its expenses, potentially hindering its implementation in certain laboratories and thus its use in routine microbiology. Even though WGS is making steady inroads as a reference method, efforts remain needed in view of so harmonizing its interpretations and decreasing the time to generation of conclusive results.
Collapse
Affiliation(s)
- Sarah Timsit
- Service de Virologie, Hôpital Saint-Louis, APHP, Paris, France; Service de Bactériologie, Hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Laurence Armand-Lefèvre
- Service de Bactériologie, Hôpital Bichat-Claude Bernard, APHP, Paris, France; IAME UMR 1137, INSERM, Université Paris Cité, Paris, France
| | - Jérôme Le Goff
- Service de Virologie, Hôpital Saint-Louis, APHP, Paris, France; INSERM U976, Insight Team, Université Paris Cité, Paris, France
| | - Maud Salmona
- Service de Virologie, Hôpital Saint-Louis, APHP, Paris, France; INSERM U976, Insight Team, Université Paris Cité, Paris, France.
| |
Collapse
|
12
|
Tun T, Baleivanualala SC, Erdmann MB, Gimenez G, Aung HL. An extensively drug-resistant Pseudomonas aeruginosa isolate from Myanmar. J Glob Antimicrob Resist 2024; 36:1-3. [PMID: 37992964 DOI: 10.1016/j.jgar.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) including multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa has emerged as one of the serious public health threats across the globe. Southeast Asia is a 'hot spot' of antimicrobial-resistant bacteria, including MDR P. aeruginosa. Despite Myanmar being located in Southeast Asia and suffering from a high infectious disease burden, data on MDR and XDR P. aeruginosa from Myanmar are limited. In this communication, we report the draft genome of an XDR P. aeruginosa isolate, MMXDRPA001, that was identified during a routine diagnosis in Myanmar. METHODS An MMXDRPA001 isolate colonising a hospitalised patient was characterised by antibiotic resistance profiling following standard methods and whole-genome sequencing using an Illumina MiSeq platform. The generated reads were de novo assembled using SPAdes (v.3.9.1). Annotation was performed by Prokka (v.1.14.0). Sequence type, antimicrobial resistance and virulence-related genes were predicted from the sequence. The phylogenetic relationships of all P. aeruginosa isolates were determined using core genome single-nucleotide polymorphisms (SNPs) analysis utilising Snippy (v.4.6.0) and Gubbins (v.2.3.4). RESULTS P. aeruginosa MMXDRPA001 was resistant to most antipseudomonal β-lactams, aminoglycosides and quinolones. The assembly comprised 145 contigs totalling 6 808 493 bases of sequence and a total of 6183 coding sequences. The isolate belonged to sequence type (ST) 235, contained carbapenemase-encoding gene blaIMP-1 and was clonally related to a previously reported isolate from Thailand. CONCLUSION The identification of an international high-risk clone of ST235 XDR isolate in Myanmar, genomically relating to that from a neighbouring country underscores the need for coordinated AMR surveillance throughout healthcare settings in Myanmar and in the Southeast Asia region.
Collapse
Affiliation(s)
- Thanda Tun
- Yangon Central Women's Hospital, Yangon, Myanmar; West Yangon General Hospital, Yangon, Myanmar
| | - Sakiusa Cabe Baleivanualala
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mareike Britta Erdmann
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Htin Lin Aung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
13
|
Sadeghi P, Mahnam K, Salari-Jazi A, Aspatwar A, Faghri J. Evolutionary trajectories of beta-lactamase NDM and DLST cluster in Pseudomonas aeruginosa: finding the putative ancestor. Pathog Glob Health 2024; 118:170-181. [PMID: 37464884 PMCID: PMC11141312 DOI: 10.1080/20477724.2023.2236416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Pseudomonas aeruginosa has different antibiotic resistance pathways, such as broad-spectrum lactamases and metallo-β-lactamases (MBL), penicillin-binding protein (PBP) alteration, and active efflux pumps. Polymerase chain reaction (PCR) and sequencing methods were applied for double-locus sequence typing (DLST) and New Delhi metallo-β-lactamase (NDM) typing. We deduced the evolutionary pathways for DLST and NDM genes of P. aeruginosa using phylogenetic network. Among the analyzed isolates, 62.50% of the P. aeruginosa isolates were phenotypically carbapenem resistance (CARBR) isolates. Characterization of isolates revealed that the prevalence of blaNDM, blaVIM, blaIMP, undetermined carbapenemase, and MexAB-OprM were 27.5%, 2%, 2.5%, 12.5%, and 15%, respectively. The three largest clusters found were DLST t20-105, DLST t32-39, and DLST t32-52. The network phylogenic tree revealed that DLST t26-46 was a hypothetical ancestor for other DLSTs, and NDM-1 was as a hypothetical ancestor for NDMs. The combination of the NDM and DLST phylogenic trees revealed that DLST t32-39 and DLST tN2-N3 with NDM-4 potentially derived from DLST t26-46 along with NDM-1. Similarly, DLST t5-91 with NDM-5 diversified from DLST tN2-N3 with NDM-4. This is the first study in which DLST and NDM evolutionary routes were performed to investigate the origin of P. aeruginosa isolates. Our study showed that the utilization of medical equipment common to two centers, staff members common to two centers, limitations in treatment options, and prescription of unnecessary high levels of meropenem are the main agents that generate new types of resistant bacteria and spread resistance among hospitals.
Collapse
Affiliation(s)
- Parisa Sadeghi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shehrekord University, Shehrekord, Iran
| | - Azhar Salari-Jazi
- Department of Drug Development and Innovation, Behban Pharmed Lotus, Tehran, Iran
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jamshid Faghri
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Bloomfield SJ, Palau R, Holden ER, Webber MA, Mather AE. Genomic characterization of Pseudomonas spp. on food: implications for spoilage, antimicrobial resistance and human infection. BMC Microbiol 2024; 24:20. [PMID: 38212698 PMCID: PMC10782663 DOI: 10.1186/s12866-023-03153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Pseudomonas species are common on food, but their contribution to the antimicrobial resistance gene (ARG) burden within food or as a source of clinical infection is unknown. Pseudomonas aeruginosa is an opportunistic pathogen responsible for a wide range of infections and is often hard to treat due to intrinsic and acquired ARGs commonly carried by this species. This study aimed to understand the potential role of Pseudomonas on food as a reservoir of ARGs and to assess the presence of potentially clinically significant Pseudomonas aeruginosa strains on food. To achieve this, we assessed the genetic relatedness (using whole genome sequencing) and virulence of food-derived isolates to those collected from humans. RESULTS A non-specific culturing approach for Pseudomonas recovered the bacterial genus from 28 of 32 (87.5%) retail food samples, although no P. aeruginosa was identified. The Pseudomonas species recovered were not clinically relevant, contained no ARGs and are likely associated with food spoilage. A specific culture method for P. aeruginosa resulted in the recovery of P. aeruginosa from 14 of 128 (11%) retail food samples; isolates contained between four and seven ARGs each and belonged to 16 sequence types (STs), four of which have been isolated from human infections. Food P. aeruginosa isolates from these STs demonstrated high similarity to human-derived isolates, differing by 41-312 single nucleotide polymorphisms (SNPs). There were diverse P. aeruginosa collected from the same food sample with distinct STs present on some samples and isolates belonging to the same ST differing by 19-67 SNPs. The Galleria mellonella infection model showed that 15 of 16 STs isolated from food displayed virulence between a low-virulence (PAO1) and a high virulence (PA14) control. CONCLUSION The most frequent Pseudomonas recovered from food examined in this study carried no ARGs and are more likely to play a role in food spoilage rather than infection. P. aeruginosa isolates likely to be able to cause human infections and with multidrug resistant genotypes are present on a relatively small but still substantial proportions of retail foods examined. Given the frequency of exposure, the potential contribution of food to the burden of P. aeruginosa infections in humans should be evaluated more closely.
Collapse
Affiliation(s)
| | - Raphaёlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Emma R Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- University of East Anglia, Norwich, UK.
| |
Collapse
|
15
|
Brébant V, Eschenbacher E, Hitzenbichler F, Pemmerl S, Prantl L, Pawlik M. Pathogens and their resistance behavior in necrotizing fasciitis. Clin Hemorheol Microcirc 2024; 86:169-181. [PMID: 37807775 DOI: 10.3233/ch-238119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Necrotizing fasciitis (NF) is a rare but life-threatening condition in which extensive soft tissue destruction can occur very quickly if left untreated. Therefore, timely broad-spectrum antibiotic administration is of prognostic importance in addition to radical surgical debridement. AIM This study evaluates the cases of NF in our hospital during the last ten years retrospectively with respect to the pathogens involved and their antimicrobial resistance. This approach aims to provide guidance regarding the most targeted initial antibiotic therapy. METHODS We performed a retrospective microbiological study evaluating pathogen detection and resistance patterns including susceptibility testing of 42 patients with NF. RESULTS Type 1 NF (polymicrobial infection) occurred in 45% of the patients; 31% presented type 2 NF (monomicrobial infection). The most common pathogens detected were E. coli, staphylococci such as Staphylococcus aureus and Staphylococcus epidermidis, Proteus mirabilis, enterococci, and streptococci such as Streptococcus pyogenes. Twelve percent presented an additional fungus infection (type 4). Ten percent showed no cultivation. Two percent (one patient) presented cocci without specification. CONCLUSION Most pathogens were sensitive to antibiotics recommended by guidelines. This confirms the targeting accuracy of the guidelines. Further studies are necessary to identify risk factors associated with multidrug resistant infections requiring early vancomycin/meropenem administration.
Collapse
Affiliation(s)
- Vanessa Brébant
- University Centre for Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Eschenbacher
- University Centre for Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Florian Hitzenbichler
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Sylvia Pemmerl
- Department of Hygiene, Caritas-Hospital St. Josef, Regensburg, Germany
| | - Lukas Prantl
- University Centre for Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Michael Pawlik
- Department of Anaesthesiology, Intensive Care and Emergency Medicine, Caritas St. Josef Medical Centre, University Medical Centre Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Wu X, Yang L, Wu Y, Li H, Shao B. Spread of multidrug-resistant Pseudomonas aeruginosa in animal-derived foods in Beijing, China. Int J Food Microbiol 2023; 403:110296. [PMID: 37392610 DOI: 10.1016/j.ijfoodmicro.2023.110296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/04/2023] [Accepted: 06/16/2023] [Indexed: 07/03/2023]
Abstract
Pseudomonas aeruginosa is the most common bacterium occurred in nosocomial infections and is also an important indicator of food spoilage. The worldwide spread of multidrug resistant (MDR) P. aeruginosa is threatening public health. However, the prevalence and spread of MDR P. aeruginosa through the food chain is little referred under the One Health perspective. Here, we collected a total of 259 animal-derived foods (168 chicken and 91 pork) from 16 supermarkets and farmer's markets in six regions of Beijing, China. The prevalence of P. aeruginosa in chicken and pork was 42.1 %. The phenotypic antimicrobial susceptibility testing showed that 69.7 % of isolates were MDR, and isolates from Chaoyang district exhibited a higher resistance rate compared to that from Xicheng district (p < 0.05). P. aeruginosa isolates exhibited high levels of resistance against β-lactams (91.7 %), cephalosporins (29.4 %), and carbapenems (22.9 %). Interestingly, none of strains showed resistance to amikacin. Whole-genome sequencing showed that all isolates carried various kinds of antimicrobial resistance genes (ARGs) and virulence genes (VGs), especially for blaOXA genes and phz genes. Multilocus sequence typing (MLST) analysis indicated that ST111 (12.8 %) was the most predominant ST. Notably, the emergence of ST697 clones in food-borne P. aeruginosa was firstly reported. In addition, the toxin pyocyanin was detected in 79.8 % of P. aeruginosa strains. These findings help to decipher the prevalence and the strong toxigenic ability of MDR P. aeruginosa from animal-derived foods and highlight the effective supervision of animal-derived food hygiene should be strengthened to prevent the spread of ARGs in a One Health strategy.
Collapse
Affiliation(s)
- Xuan Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Lu Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| |
Collapse
|
17
|
Hu J, Liang L, He M, Lu Y. Sensitive and Direct Analysis of Pseudomonas aeruginosa through Self-Primer-Assisted Chain Extension and CRISPR-Cas12a-Based Color Reaction. ACS OMEGA 2023; 8:34852-34858. [PMID: 37779973 PMCID: PMC10536833 DOI: 10.1021/acsomega.3c04180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common opportunistic Gram-negative pathogen that may cause infections to immunocompromised patients. However, sensitive and reliable analysis of P. aeruginosa remains a huge challenge. In this method, target recognition assists the formation of a self-primer and initiates single-stranded chain production. The produced single-stranded DNA chain is identified by CRISPR-Cas12a, and consequently, the trans-cleavage activity of the Cas12a enzyme is activated to parallelly digest Ag+ aptamer sequences that are chelated with silver ions (Ag+). The released Ag+ reacted with 3,3',5,5'-tetramethylbenzidine (TMB) for coloring. Compared with the traditional color developing strategies, which mainly rely on the DNA hybridization, the color developing strategy in this approach exhibits a higher efficiency due to the robust trans-cleavage activity of the Cas12a enzyme. Consequently, the method shows a low limit of detection of a wide detection of 5 orders of magnitudes and a low limit of detection of 21 cfu/mL, holding a promising prospect in early diagnosis of infections. Herein, we develop a sensitive and reliable method for direct and colorimetric detection of P. aeruginosa by integrating self-primer-assisted chain production and CRISPR-Cas12a-based color reaction and believe that the established approach will facilitate the development of bacteria-analyzing sensors.
Collapse
Affiliation(s)
- Jiangchun Hu
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| | - Ling Liang
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| | - Mingfang He
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| | - Yongping Lu
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| |
Collapse
|
18
|
Ersanli C, Tzora A, Voidarou C(C, Skoufos S, Zeugolis DI, Skoufos I. Biodiversity of Skin Microbiota as an Important Biomarker for Wound Healing. BIOLOGY 2023; 12:1187. [PMID: 37759587 PMCID: PMC10525143 DOI: 10.3390/biology12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Cutaneous wound healing is a natural and complex repair process that is implicated within four stages. However, microorganisms (e.g., bacteria) can easily penetrate through the skin tissue from the wound bed, which may lead to disbalance in the skin microbiota. Although commensal and pathogenic bacteria are in equilibrium in normal skin, their imbalance in the wound area can cause the delay or impairment of cutaneous wounds. Moreover, skin microbiota is in constant crosstalk with the immune system and epithelial cells, which has significance for the healing of a wound. Therefore, understanding the major bacteria species in the cutaneous wound as well as their communication with the immune system has gained prominence in a way that allows for the emergence of a new perspective for wound healing. In this review, the major bacteria isolated from skin wounds, the role of the crosstalk between the cutaneous microbiome and immune system to heal wounds, the identification techniques of these bacteria populations, and the applied therapies to manipulate the skin microbiota are investigated.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Stylianos Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
| |
Collapse
|
19
|
González de Aledo M, Blasco L, Lopez M, Ortiz-Cartagena C, Bleriot I, Pacios O, Hernández-García M, Cantón R, Tomas M. Prophage identification and molecular analysis in the genomes of Pseudomonas aeruginosa strains isolated from critical care patients. mSphere 2023; 8:e0012823. [PMID: 37366636 PMCID: PMC10449497 DOI: 10.1128/msphere.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Prophages are bacteriophages integrated into the bacterial host's chromosome. This research aims to analyze and characterize the existing prophages within a collection of 53 Pseudomonas aeruginosa strains from intensive care units (ICUs) in Portugal and Spain. A total of 113 prophages were localized in the collection, with 18 of them being present in more than one strain simultaneously. After annotation, five of them were discarded as incomplete, and the 13 remaining prophages were characterized. Of 13, 10 belonged to the siphovirus tail morphology group, 2 to the podovirus tail morphology group, and 1 to the myovirus tail morphology group. All prophages had a length ranging from 20,199 to 63,401 bp and a GC% between 56.2% and 63.6%. The number of open reading frames (ORFs) oscillated between 32 and 88, and in 3/13 prophages, more than 50% of the ORFs had an unknown function. With our findings, we show that prophages are present in the majority of the P. aeruginosa strains isolated from Portuguese and Spanish critically ill patients, many of them found in more than one circulating strain at the same time and following a similar clonal distribution pattern. Although a great sum of ORFs had an unknown function, number of proteins in relation to viral defense (anti-CRISPR proteins, toxin/antitoxin modules, proteins against restriction-modification systems) as well as to prophage interference into their host's quorum sensing system and regulatory cascades were found. This supports the idea that prophages have an influence in bacterial pathogenesis and anti-phage defense. IMPORTANCE Despite being known for decades, prophages remain understudied when compared to the lytic phages employed in phage therapy. This research aims to shed some light into the nature, composition, and role of prophages found within a set of circulating strains of Pseudomas aeruginosa, with special attention to high-risk clones. Given the fact that prophages can effectively influence bacterial pathogenesis, prophage basic research constitutes a topic of growing interest. Furthermore, the abundance of viral defense and regulatory proteins within prophage genomes detected in this study evidences the importance of characterizing the most frequent prophages in circulating clinical strains and in high-risk clones if phage therapy is to be used.
Collapse
Affiliation(s)
- Manuel González de Aledo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Blasco
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Maria Lopez
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Concha Ortiz-Cartagena
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Inés Bleriot
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Olga Pacios
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Maria Tomas
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| |
Collapse
|
20
|
Deshpande LM, Vega S, Tinoco JC, Castanheira M. Endemicity of Pseudomonas aeruginosa producing IMP-18 and/or VIM-2 MBLs from the high-risk clone ST111 in Central America. JAC Antimicrob Resist 2023; 5:dlad092. [PMID: 37533761 PMCID: PMC10391700 DOI: 10.1093/jacamr/dlad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Background Pseudomonas aeruginosa is an important cause of serious nosocomial infections. Despite the overall genetic diversity of this species, highly conserved clonal complexes (CCs) have been observed among MDR isolates. Many of these CCs are associated with MBL-producing isolates. Objectives To evaluate five P. aeruginosa isolates from Central America that carried IMP-18- and/or VIM-2-encoding genes from the SENTRY Antimicrobial Surveillance Program (2017-2018). Methods Susceptibility testing was performed by broth microdilution (CLSI). WGS was performed using MiSeq (Illumina) and MinION (Oxford Nanopore). Assembled contigs from short and long reads were combined for in silico screening of resistance genes, MLST, core genome (cg)MLST and SNP analysis. Results The P. aeruginosa isolates were collected in Panama and Mexico from patients with urinary tract infections or pneumonia. Isolates were categorized as XDR (CLSI/EUCAST). All isolates belonged to ST111 but carried different combinations of resistance-encoding genes. Transposon-associated MBL genes, blaIMP-18 and/or blaVIM-2, were chromosomally located. blaIMP-18 was detected in an In1666 integron whereas blaVIM-2 was embedded in an In59-like integron. Isolates were closely related based on cgMLST (average allele distance 2-34) and SNP analysis (5-423 different SNPs). Conclusions MBL-producing ST111 P. aeruginosa have become endemic in Panama and may have spread to Mexico via clonal dissemination. Recombination events are apparent in the evolution of this CC. Surveillance is warranted to track the expansion and movement of this clone.
Collapse
Affiliation(s)
| | - Silvio Vega
- Complejo Hospitalario Metropolitano, Senacyt, Panamá
| | | | | |
Collapse
|
21
|
Jiang B, Luo Y, Yan N, Shen Z, Li W, Hou C, Xiao L, Ma C, Zhang L, Chen Y, Cheng X, Lian M, Ji C, Zhu Z, Wang Z. An X-ray inactivated vaccine against Pseudomonas aeruginosa Keratitis in mice. Vaccine 2023:S0264-410X(23)00627-8. [PMID: 37353454 DOI: 10.1016/j.vaccine.2023.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the most prevalent pathogens of bacterial keratitis. Bacterial keratitis is a major cause of blindness worldwide. The rising incidence of multidrug resistance of P. aeruginosa precludes treatment with conventional antibiotics. Herein, we evaluated the protective efficiency and explored the possible underlying mechanism of an X-ray inactivated vaccine (XPa) using a murine P. aeruginosa keratitis model. Mice immunized with XPa exhibit reduced corneal bacterial loads and pathology scores. XPa vaccination induced corneal macrophage polarization toward M2, averting an excessive inflammatory reaction. Furthermore, histological observations indicated that XPa vaccination suppressed corneal fibroblast activation and prevented irreversible visual impairment. The potency of XPa against keratitis highlights its potential utility as an effective and promising vaccine candidate for P. aeruginosa.
Collapse
Affiliation(s)
- Boguang Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yingjie Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixue Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wenfang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cuicui Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xingjun Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Mao Lian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chengjie Ji
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Chengdu 641400, China
| | - Ziyi Zhu
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Chengdu 641400, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| |
Collapse
|
22
|
de Souza Nunes LH, Bernardi Lora JF, Fanhani Cracco LA, da Costa Manuel JA, Westarb Cruz JA, Telles JP, Tuon FF. Pseudomonas aeruginosa in tracheal aspirate: Colonization, infection, and recurrence. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:439-446. [PMID: 37105554 DOI: 10.1111/crj.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Pseudomonas aeruginosa respiratory infections are challenging, and the risk of recurrence is a frequent problem. The aim of this study was to investigate the risk factors associated with the presence of P. aeruginosa, and the risk factors related to the recurrence and death of lower airway infections in inpatients in a Brazilian hospital. METHODS Retrospective cohort with inpatients that had a sample of airways culture (tracheal aspirate or bronchoalveolar lavage) with the detection of P. aeruginosa. The patients with clinical criteria of infection were classified as ventilator-associated, hospital-acquired, or community-acquired pneumonia. P. aeruginosa in respiratory samples without symptoms was considered colonization. The antimicrobial treatment adequacy and the clinical data were evaluated. Outcome variables included mortality and recurrence. RESULTS One hundred and fifty-four patients were included in the study, most of them were men, and the majority (102) were considered infected. The average length of stay was superior to 30 days. Previous pulmonary disease was associated with the occurrence of colonization. Aminoglycosides were the most active drug according to susceptibility tests and were successfully used as monotherapy. Septic shock was a risk factor for death in the infected patients. The use of adequate antimicrobial therapy was associated with major survival, independent of the infection classification. CONCLUSION It is possible to evaluate clinical data associated with recurrence and mortality in patients with different lung infections by P. aeruginosa. Aminoglycoside monotherapy is safe and effective in P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Larissa Hermann de Souza Nunes
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - João Felipe Bernardi Lora
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Luiz Augusto Fanhani Cracco
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | | | - Joao Paulo Telles
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
23
|
Comparison of Virulence-Factor-Encoding Genes and Genotype Distribution amongst Clinical Pseudomonas aeruginosa Strains. Int J Mol Sci 2023; 24:ijms24021269. [PMID: 36674786 PMCID: PMC9863696 DOI: 10.3390/ijms24021269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen encoding several virulence factors in its genome, which is well-known for its ability to cause severe and life-threatening infections, particularly among cystic fibrosis patients. The organism is also a major cause of nosocomial infections, mainly affecting patients with immune deficiencies and burn wounds, ventilator-assisted patients, and patients affected by other malignancies. The extensively reported emergence of multidrug-resistant (MDR) P. aeruginosa strains poses additional challenges to the management of infections. The aim of this study was to compare the incidence rates of selected virulence-factor-encoding genes and the genotype distribution amongst clinical multidrug-sensitive (MDS) and MDR P. aeruginosa strains. The study involved 74 MDS and 57 MDR P. aeruginosa strains and the following virulence-factor-encoding genes: lasB, plC H, plC N, exoU, nan1, pilA, and pilB. The genotype distribution, with respect to the antimicrobial susceptibility profiles of the strains, was also analyzed. The lasB and plC N genes were present amongst several P. aeruginosa strains, including all the MDR P. aeruginosa, suggesting that their presence might be used as a marker for diagnostic purposes. A wide variety of genotype distributions were observed among the investigated isolates, with the MDS and MDR strains exhibiting, respectively, 18 and 9 distinct profiles. A higher prevalence of genes determining the virulence factors in the MDR strains was observed in this study, but more research is needed on the prevalence and expression levels of these genes in additional MDR strains.
Collapse
|
24
|
Hishinuma T, Tada T, Tohya M, Shintani M, Suzuki M, Shimojima M, Kirikae T. Plasmids Harboring a Tandem Duplicate of blaVIM-24 in Carbapenem-Resistant ST1816 Pseudomonas aeruginosa in Japan. Microb Drug Resist 2023; 29:10-17. [PMID: 36378829 DOI: 10.1089/mdr.2022.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to clarify the biological and clinical significance of a tandem duplicate of blaVIM-24 in Pseudomonas aeruginosa ST1816 isolates. Thirteen ST1816 isolates carrying a plasmid harboring blaVIMs were obtained from two medical settings in Japan between 2016 and 2019. Complete sequencing revealed that, of the 13 plasmids, four had a tandem duplicate of blaVIM-24. These four plasmids harbored a replicon, a relaxase gene, and T4SS genes belonging to IncP-9, MOBF, and MPFT, respectively. All four plasmids transferred to PAO1 by filter mating. Cefepime marginally affected the growth of PAO1, carrying a pUCP19 harboring the tandem duplicate. Western blotting analysis showed that the relative intensity of VIM-24 metallo-β-lactamase produced by a PAO1 transformant containing a tandem duplicate was 2.6-fold higher than that produced by a PAO1 transformant containing a single copy. These results suggest that the tandem duplicate of blaVIM-24 in plasmids may confer resistance against cefepime, enabling P. aeruginosa ST1816 strains to proliferate in hospitals in Japan.
Collapse
Affiliation(s)
- Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mari Tohya
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Teruo Kirikae
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Anbo M, Jelsbak L. A bittersweet fate: detection of serotype switching in Pseudomonas aeruginosa. Microb Genom 2023; 9:mgen000919. [PMID: 36748704 PMCID: PMC9973846 DOI: 10.1099/mgen.0.000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-risk clone types in Pseudomonas aeruginosa are problematic global multidrug-resistant clones. However, apart from their ability to resist antimicrobial treatment, not much is known about what sets these clones apart from the multitude of other clones. In high-risk clone ST111, it has previously been shown that replacement of the native serotype biosynthetic gene cluster (O4) by a different gene cluster (O12) by horizontal gene transfer and recombination may have contributed to the global success of this clone. However, the extent to which isolates undergo this type of serotype switching has not been adequately explored in P. aeruginosa. In the present study, a bioinformatics tool has been developed and utilized to provide a first estimate of serotype switching in groups of multidrug resistant (MDR) clinical isolates. The tool detects serotype switching by analysis of core-genome phylogeny and in silico serotype. Analysis of a national survey of MDR isolates found a prevalence of 3.9 % of serotype-switched isolates in high-risk clone types ST111, ST244 and ST253. A global survey of MDR isolates was additionally analysed, and it was found that 2.3 % of isolates had undergone a serotype switch. To further understand this process, we determined the exact boundaries of the horizontally transferred serotype O12 island. We found that the size of the serotype island correlates with the clone type of the receiving isolate and additionally we found intra-clone type variations in size and boundaries. This suggests multiple serotype switch events. Moreover, we found that the housekeeping gene gyrA is co-transferred with the O12 serotype island, which prompted us to analyse this allele for all serotype O12 isolates. We found that 95 % of ST111 O12 isolates had a resistant gyrA allele and 86 % of all O12 isolates had a resistant gyrA allele. The rates of resistant gyrA alleles in isolates with other prevalent serotypes are all lower. Together, these results show that the transfer and acquisition of serotype O12 in high-risk clone ST111 has happened multiple times and may be facilitated by multiple donors, which clearly suggests a strong selection pressure for this process. However, gyrA-mediated antibiotic resistance may not be the only evolutionary driver.
Collapse
Affiliation(s)
- Mikkel Anbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
- *Correspondence: Lars Jelsbak,
| |
Collapse
|
26
|
Soonthornsit J, Pimwaraluck K, Kongmuang N, Pratya P, Phumthanakorn N. Molecular epidemiology of antimicrobial-resistant Pseudomonas aeruginosa in a veterinary teaching hospital environment. Vet Res Commun 2023; 47:73-86. [PMID: 35449493 DOI: 10.1007/s11259-022-09929-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/17/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate sites for colonization and molecular epidemiology of antimicrobial-resistant Pseudomonas aeruginosa in a veterinary teaching hospital. Bacterial specimens from surface and liquid samples (n = 165) located in five rooms were collected three times every 2 months, and antimicrobial susceptibility was subsequently determined by minimum inhibitory concentrations. The genomes of resistant strains were further analyzed using whole-genome sequencing. Among 19 P. aeruginosa isolates (11.5%, 19/165), sinks were the most frequent colonization site (53.3%), followed by rubber tubes (44.4%), and anesthesia-breathing circuit (33.3%). The highest resistance to gentamicin (47.4%), followed by piperacillin/tazobactam (36.8%), levofloxacin (36.8%), and ciprofloxacin (36.8%), was observed from 19 P. aeruginosa isolates, of which 10 were resistant strains. Of these 10 antimicrobial-resistant isolates, five were multidrug-resistant isolates, including carbapenem. From the multilocus sequence typing (MLST) analysis, five sequence types (STs), including a high-risk clone of human ST235 (n = 3), and ST244 (n = 3), ST606 (n = 2), ST485 (n = 1), and ST3405 (n = 1) were identified in resistant strains. Multiresistant genes were identified consistent with STs, except ST235. The MLST approach and single nucleotide polymorphism analysis revealed a link between resistant strains from ward rooms and those from examination, wound care, and operating rooms. The improvement of routine cleaning, especially of sink environments, and the continued monitoring of antimicrobial resistance of P. aeruginosa in veterinary hospitals are necessary to prevent the spread of resistant clones and ensure infection control.
Collapse
Affiliation(s)
- Jeerawat Soonthornsit
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon Nakhon Pathom, Thailand
| | | | | | - Ploy Pratya
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Nathita Phumthanakorn
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon Nakhon Pathom, Thailand.
| |
Collapse
|
27
|
Mensah CN, Ampomah GB, Mensah JO, Gasu EN, Aboagye CI, Ekuadzi E, Boadi NO, Borquaye LS. N-alkylimidazole derivatives as potential inhibitors of quorum sensing in Pseudomonas aeruginosa. Heliyon 2022; 8:e12581. [PMID: 36643307 PMCID: PMC9834748 DOI: 10.1016/j.heliyon.2022.e12581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/20/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a threat to global public health. Microbial resistance is mediated by biofilm formation and virulence behavior during infection. Quorum sensing (QS), a cell-to-cell communication is frequently used by microbes to evade host immune systems. Inhibiting QS channels is a potential route to halt microbial activities and eliminate them. Imidazole has been shown to be a potent warhead in various antimicrobial agents. This study aims to evaluate alkyl-imidazole derivatives as potential inhibitors of QS and to explore the interactions of the compounds with LasR, a key protein in the QS machinery of Pseudomonas aeruginosa. The study revealed that imidazole derivatives with longer alkyl chains possessed better antimicrobial activities. Octylimidazole and decylimidazole emerged as compounds with better anti-virulence and biofilm inhibition properties while hexylimidazole showed the best inhibitory activity against Pseudomonas aeruginosa PAO1. The binding affinity of the compounds with LasR followed a similar trend as that observed in the QS inhibitory assays, suggesting that interaction with LasR may be important for QS inhibition.
Collapse
Affiliation(s)
- Caleb Nketia Mensah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gilbert Boadu Ampomah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Edward Ntim Gasu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana,Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Caleb Impraim Aboagye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edmund Ekuadzi
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana,Department of Pharmacognosy, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nathaniel Owusu Boadi
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana,Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana,Corresponding author.
| |
Collapse
|
28
|
Liu K, Xu H, Sun J, Liu Y, Li W. Investigation and analysis of carbapenem-resistant gram-negative bacterial infection rates across hospitals in Shandong Province in China. Front Public Health 2022; 10:1014995. [PMID: 36420011 PMCID: PMC9677124 DOI: 10.3389/fpubh.2022.1014995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Background The increasing incidence of carbapenem-resistant bacterial infections has become a serious public health threat. This study aimed to investigate and analyze the current regional differences in carbapenem-resistant gram-negative bacteria (CRGN) in a major Province of China, and provide suggestions for preventing hospital infections. Methods A questionnaire survey was used to obtain the current data on CRGN from 36 hospitals in Shandong Province, China, from 2019 to 2020. The association between the detection rates and discovery rates of CRGN and the use of antibacterial drugs was analyzed using Spearman's correlation coefficient. In addition, we compared the detection rates of CRGN and antibacterial drugs using hospitals categorized according to different levels and economic areas using the Kruskal-Wallis test. Results The average detection rates of CRGN across the 36 hospitals varied from 1.91% to 66.04%. The discovery rate of carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant Acinetobacter baumannii (CRAB) remained below 5‰, and that of carbapenem-resistant Pseudomonas aeruginosa (CRPA) was below 10‰. Except for CRAB, the correlations between the detection rate and antimicrobial drug use intensity and carbapenem drug use percentage were 0.11-0.29 and 0.31-0.47, respectively. Carbapenem drug use was higher in the provincial hospital group than in the prefecture-level hospitals (P < 0.05), and that in the high-economic regional hospital group was higher than in the low-economic regional hospital group (P < 0.05). Conclusions The detection and discovery rates of CRE were low, and those of CRAB were high in Shandong Province. Larger hospitals have higher carbapenem drug use. These results can be used as a reference for preventing CRGN infections in developing countries and provide a basis for regional carbapenem resistance prevention and control strategies.
Collapse
Affiliation(s)
- Keke Liu
- Department of Infection Control, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hua Xu
- Department of Infection Control, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jian Sun
- Department of Infection Control, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China,Yuqing Liu
| | - Weiguang Li
- Department of Infection Control, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Weiguang Li
| |
Collapse
|
29
|
Excellent treatment activity of biscoumarins and dihydropyrans against P. aeruginosa pneumonia and reinforcement learning for designing novel inhibitors. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Emergence and Transfer of Plasmid-Harbored rmtB in a Clinical Multidrug-Resistant Pseudomonas aeruginosa Strain. Microorganisms 2022; 10:microorganisms10091818. [PMID: 36144421 PMCID: PMC9500886 DOI: 10.3390/microorganisms10091818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa poses a great challenge to clinical treatment. In this study, we characterized a ST768 MDR P. aeruginosa strain, Pa150, that was isolated from a diabetic foot patient. The minimum inhibitory concentration (MIC) assay showed that Pa150 was resistant to almost all kinds of antibiotics, especially aminoglycosides. Whole genome sequencing revealed multiple antibiotic resistant genes on the chromosome and a 437-Kb plasmid (named pTJPa150) that harbors conjugation-related genes. A conjugation assay verified its self-transmissibility. On the pTJPa150 plasmid, we identified a 16S rRNA methylase gene, rmtB, that is flanked by mobile genetic elements (MGEs). The transfer of the pTJPa150 plasmid or the cloning of the rmtB gene into the reference strain, PAO1, significantly increased the bacterial resistance to aminoglycoside antibiotics. To the best of our knowledge, this is the first report of an rmtB-carrying conjugative plasmid isolated from P. aeruginosa, revealing a novel possible transmission mechanism of the rmtB gene.
Collapse
|
31
|
Garcia-Bustos V, Cabañero-Navalón MD, Salavert Lletí M. Resistance to beta-lactams in Gram-negative bacilli: relevance and potential therapeutic alternatives. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35 Suppl 2:1-15. [PMID: 36193979 PMCID: PMC9632057 DOI: 10.37201/req/s02.01.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The indiscriminate and massive antibiotic use in the clinical practice and in agriculture or cattle during the past few decades has produced a serious world health problem that entails high morbidity and mortality: the antibiotic multi-drug resistance. In 2017 and 2019, the World Health Organization published a list of urgent threats and priorities in the context of drug resistance, which only included Gram-negative bacteria and specially focused on carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa, as well as carbapenem and third generation cephalosporin-resistant Enterobacteriaceae. This scenario emphasizes the need of developing and testing new antibiotics from different families, such as new beta-lactams, highlighting cefiderocol and its original mechanism of action; new beta-lactamase inhibitors, with vaborbactam or relebactam among others; new quinolones such as delafloxacin, and also omadacycline or eravacycline, as members of the tetracycline family. The present work reviews the importance and impact of Gram-negative bacterial infections and their resistance mechanisms, and analyzes the current therapeutic paradigm as well as the role of new antibiotics with a promising future in the era of multi and pan-drug resistance.
Collapse
Affiliation(s)
| | | | - M Salavert Lletí
- Miguel Salavert Lletí. Unidad de Enfermedades Infecciosas. Área Clínica Médica. Hospital Universitario y Politécnico La Fe, Valencia. Spain.
| |
Collapse
|
32
|
Huang Y, Wang W, Huang Q, Wang Z, Xu Z, Tu C, Wan D, He M, Yang X, Xu H, Wang H, Zhao Y, Tu M, Zhou Q. Clinical Efficacy and In Vitro Drug Sensitivity Test Results of Azithromycin Combined With Other Antimicrobial Therapies in the Treatment of MDR P. aeruginosa Ventilator-Associated Pneumonia. Front Pharmacol 2022; 13:944965. [PMID: 36034783 PMCID: PMC9399346 DOI: 10.3389/fphar.2022.944965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of the research was to study the effect of azithromycin (AZM) in the treatment of MDR P. aeruginosa VAP combined with other antimicrobial therapies. Methods: The clinical outcomes were retrospectively collected and analyzed to elucidate the efficacy of different combinations involving azithromycin in the treatment of MDR-PA VAP. The minimal inhibitory concentration (MIC) of five drugs was measured by the agar dilution method against 27 isolates of MDR-PA, alone or in combination. Results: The incidence of VAP has increased approximately to 10.4% (961/9245) in 5 years and 18.4% (177/961) caused by P. aeruginosa ranking fourth. A total of 151 cases of MDR P. aeruginosa were included in the clinical retrospective study. Clinical efficacy results are as follows: meropenem + azithromycin (MEM + AZM) was 69.2% (9/13), cefoperazone/sulbactam + azithromycin (SCF + AZM) was 60% (6/10), and the combination of three drugs containing AZM was 69.2% (9/13). The curative effect of meropenem + amikacin (MEM + AMK) was better than that of the meropenem + levofloxacin (MEM + LEV) group, p = 0.029 (p < 0.05). The curative effect of cefoperazone/sulbactam + amikacin (SCF + AMK) was better than that of the cefoperazone/sulbactam + levofloxacin (SCF + LEV) group, p = 0.025 (p < 0.05). There was no significant difference between combinations of two or three drugs containing AZM, p > 0.05 (p = 0.806). From the MIC results, the AMK single drug was already very sensitive to the selected strains. When MEM or SCF was combined with AZM, the sensitivity of them to strains can be significantly increased. When combined with MEM and AZM, the MIC50 and MIC90 of MEM decreased to 1 and 2 ug/mL from 8 to 32 ug/mL. When combined with SCF + AZM, the MIC50 of SCF decreased to 16 ug/mL, and the curve shifted obviously. However, for the combination of SCF + LEV + AZM, MIC50 and MIC90 could not achieve substantive changes. From the FIC index results, the main actions of MEM + AZM were additive effects, accounting for 72%; for the combination of SCF + AZM, the additive effect was 40%. The combination of AMK or LEV with AZM mainly showed unrelated effects, and the combination of three drugs could not improve the positive correlation between LEV and AZM. Conclusion: AZM may increase the effect of MEM or SCF against MDR P. aeruginosa VAP. Based on MEM or SCF combined with AMK or AZM, we can achieve a good effect in the treatment of MDR P. aeruginosa VAP.
Collapse
Affiliation(s)
- Yuqin Huang
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Wenguo Wang
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Qiang Huang
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhengyan Wang
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhuanzhuan Xu
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Chaochao Tu
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Dongli Wan
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Miaobo He
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Xiaoyi Yang
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Huaqiang Xu
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Ying Zhao
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Mingli Tu
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Quan Zhou
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| |
Collapse
|
33
|
New Variants of Pseudomonas aeruginosa High-Risk Clone ST233 Associated with an Outbreak in a Mexican Paediatric Hospital. Microorganisms 2022; 10:microorganisms10081533. [PMID: 36013951 PMCID: PMC9414371 DOI: 10.3390/microorganisms10081533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Recent multidrug resistance in Pseudomonas aeruginosa has favoured the adaptation and dissemination of worldwide high-risk strains. In June 2018, 15 P. aeruginosa strains isolated from patients and a contaminated multi-dose meropenem vial were characterized to assess their association to an outbreak in a Mexican paediatric hospital. The strains were characterized by antibiotic susceptibility profiling, virulence factors’ production, and biofilm formation. The clonal relationship among isolates was determined with pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) sequencing. Repressor genes for the MexAB-OprM efflux pump were sequenced for haplotype identification. Of the strains, 60% were profiled as extensively drug-resistant (XDR), 33% as multidrug-resistant (MDR), and 6.6% were classified as sensitive (S). All strains presented intermediate resistance to colistin, and 80% were sensitive to aztreonam. Pyoverdine was the most produced virulence factor. The PFGE technique was performed for the identification of the outbreak, revealing eight strains with the same electrophoretic pattern. ST235 and ten new sequence types (STs) were identified, all closely related to ST233. ST3241 predominated in 26.66% of the strains. Twenty-five synonymous and seventeen nonsynonymous substitutions were identified in the regulatory genes of the MexAB-OprM efflux pump, and nalC was the most variable gene. Six different haplotypes were identified. Strains from the outbreak were metallo-β-lactamases and phylogenetically related to the high-risk clone ST233.
Collapse
|
34
|
Wu Q, Cui L, Liu Y, Li R, Dai M, Xia Z, Wu M. CRISPR-Cas systems target endogenous genes to impact bacterial physiology and alter mammalian immune responses. MOLECULAR BIOMEDICINE 2022; 3:22. [PMID: 35854035 PMCID: PMC9296731 DOI: 10.1186/s43556-022-00084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
CRISPR-Cas systems are an immune defense mechanism that is widespread in archaea and bacteria against invasive phages or foreign genetic elements. In the last decade, CRISPR-Cas systems have been a leading gene-editing tool for agriculture (plant engineering), biotechnology, and human health (e.g., diagnosis and treatment of cancers and genetic diseases), benefitted from unprecedented discoveries of basic bacterial research. However, the functional complexity of CRISPR systems is far beyond the original scope of immune defense. CRISPR-Cas systems are implicated in influencing the expression of physiology and virulence genes and subsequently altering the formation of bacterial biofilm, drug resistance, invasive potency as well as bacterial own physiological characteristics. Moreover, increasing evidence supports that bacterial CRISPR-Cas systems might intriguingly influence mammalian immune responses through targeting endogenous genes, especially those relating to virulence; however, unfortunately, their underlying mechanisms are largely unclear. Nevertheless, the interaction between bacterial CRISPR-Cas systems and eukaryotic cells is complex with numerous mysteries that necessitate further investigation efforts. Here, we summarize the non-canonical functions of CRISPR-Cas that potentially impact bacterial physiology, pathogenicity, antimicrobial resistance, and thereby altering the courses of mammalian immune responses.
Collapse
Affiliation(s)
- Qun Wu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Yingying Liu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA.
| |
Collapse
|
35
|
Genomic Diversity of Hospital-Acquired Infections Revealed through Prospective Whole-Genome Sequencing-Based Surveillance. mSystems 2022; 7:e0138421. [PMID: 35695507 PMCID: PMC9238379 DOI: 10.1128/msystems.01384-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Healthcare-associated infections (HAIs) cause mortality, morbidity, and waste of health care resources. HAIs are also an important driver of antimicrobial resistance, which is increasing around the world. Beginning in November 2016, we instituted an initiative to detect outbreaks of HAIs using prospective whole-genome sequencing-based surveillance of bacterial pathogens collected from hospitalized patients. Here, we describe the diversity of bacteria sampled from hospitalized patients at a single center, as revealed through systematic analysis of bacterial isolate genomes. We sequenced the genomes of 3,004 bacterial isolates from hospitalized patients collected over a 25-month period. We identified bacteria belonging to 97 distinct species, which were distributed among 14 groups of related species. Within these groups, isolates could be distinguished from one another by both average nucleotide identity (ANI) and principal-component analysis of accessory genes (PCA-A). Core genome genetic distances and rates of evolution varied among species, which has practical implications for defining shared ancestry during outbreaks and for our broader understanding of the origins of bacterial strains and species. Finally, antimicrobial resistance genes and putative mobile genetic elements were frequently observed, and our systematic analysis revealed patterns of occurrence across the different species sampled from our hospital. Overall, this study shows how understanding the population structure of diverse pathogens circulating in a single health care setting can improve the discriminatory power of genomic epidemiology studies and can help define the processes leading to strain and species differentiation. IMPORTANCE Hospitalized patients are at increased risk of becoming infected with antibiotic-resistant organisms. We used whole-genome sequencing to survey and compare over 3,000 clinical bacterial isolates collected from hospitalized patients at a large medical center over a 2-year period. We identified nearly 100 different bacterial species, which we divided into 14 different groups of related species. When we examined how genetic relatedness differed between species, we found that different species were likely evolving at different rates within our hospital. This is significant because the identification of bacterial outbreaks in the hospital currently relies on genetic similarity cutoffs, which are often applied uniformly across organisms. Finally, we found that antibiotic resistance genes and mobile genetic elements were abundant and were shared among the bacterial isolates we sampled. Overall, this study provides an in-depth view of the genomic diversity and evolutionary processes of bacteria sampled from hospitalized patients, as well as genetic similarity estimates that can inform hospital outbreak detection and prevention efforts.
Collapse
|
36
|
Sid Ahmed MA, Abdel Hadi H, Abu Jarir S, Ahmad Khan F, Arbab MA, Hamid JM, Alyazidi MA, Al-Maslamani MA, Skariah S, Sultan AA, Al Khal AL, Söderquist B, Ibrahim EB, Jass J, Ziglam H. Prevalence and microbiological and genetic characteristics of multidrug-resistant Pseudomonas aeruginosa over three years in Qatar. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2022; 2:e96. [PMID: 36483382 PMCID: PMC9726487 DOI: 10.1017/ash.2022.226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Antimicrobial resistance (AMR) is a global priority with significant clinical and economic consequences. Multidrug-resistant (MDR) Pseudomonas aeruginosa is one of the major pathogens associated with significant morbidity and mortality. In healthcare settings, the evaluation of prevalence, microbiological characteristics, as well as mechanisms of resistance is of paramount importance to overcome associated challenges. METHODS Consecutive clinical specimens of P. aeruginosa were collected prospectively from 5 acute-care and specialized hospitals between October 2014 and September 2017, including microbiological, clinical characteristics and outcomes. Identification and antimicrobial susceptibility test were performed using the BD Phoenix identification and susceptibility testing system, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), and minimum inhibitory concentration (MIC) test strips. Overall, 78 selected MDR P. aeruginosa isolates were processed for whole-genome sequencing (WGS). RESULTS The overall prevalence of MDR P. aeruginosa isolates was 5.9% (525 of 8,892) and showed a decreasing trend; 95% of cases were hospital acquired and 44.8% were from respiratory samples. MDR P. aeruginosa demonstrated >86% resistance to cefepime, ciprofloxacin, meropenem, and piperacillin-tazobactam but 97.5% susceptibility to colistin. WGS revealed 29 different sequence types: 20.5% ST235, 10.3% ST357, 7.7% ST389, and 7.7% ST1284. ST233 was associated with bloodstream infections and increased 30-day mortality. All ST389 isolates were obtained from patients with cystic fibrosis. Encoded exotoxin genes were detected in 96.2% of isolates. CONCLUSIONS MDR P. aeruginosa isolated from clinical specimens from Qatar has significant resistance to most agents, with a decreasing trend that should be explored further. Genomic analysis revealed the dominance of 5 main clonal clusters associated with mortality and bloodstream infections. Microbiological and genomic monitoring of MDR P. aeruginosa has enhanced our understanding of AMR in Qatar.
Collapse
Affiliation(s)
- Mazen A. Sid Ahmed
- Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
- The Life Science Centre – Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Hamad Abdel Hadi
- Department of Infectious Diseases, Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Sulieman Abu Jarir
- Department of Infectious Diseases, Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Faisal Ahmad Khan
- The Life Science Centre – Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Jemal M. Hamid
- Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed A. Alyazidi
- Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Muna A. Al-Maslamani
- Department of Infectious Diseases, Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Doha, Qatar
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Doha, Qatar
| | - Abdul Latif Al Khal
- Department of Infectious Diseases, Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Orebro University, Orebro, Sweden
| | - Emad Bashir Ibrahim
- Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Jana Jass
- The Life Science Centre – Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Hisham Ziglam
- Department of Infectious Diseases, Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
37
|
Mahmoud SF, Fayez M, Swelum AA, Alswat AS, Alkafafy M, Alzahrani OM, Alsunaini SJ, Almuslem A, Al Amer AS, Yusuf S. Genetic Diversity, Biofilm Formation, and Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Cow, Camel, and Mare with Clinical Endometritis. Vet Sci 2022; 9:vetsci9050239. [PMID: 35622767 PMCID: PMC9147788 DOI: 10.3390/vetsci9050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic bacterium that causes diseases in animals and humans. This study aimed to investigate the genetic diversity, antimicrobial resistance, biofilm formation, and virulence and antibiotic resistance genes of P. aeruginosa isolated from the uterus of cow, camel, and mare with clinical endometritis and their drinking water. Among the 180 uterine swabs and 90 drinking water samples analysed, 54 (20%) P. aeruginosa isolates were recovered. Isolates were identified biochemically to the genus level by the automated Vitek 2 system and genetically by the amplification of the gyrB gene and the sequencing of the 16S rRNA gene. Multilocus sequence typing identified ten different sequence types for the P. aeruginosa isolates. The identification of ST2012 was significantly (p ≤ 0.05) higher than that of ST296, ST308, ST111, and ST241. The isolates exhibited significantly (p ≤ 0.05) increased resistance to piperacillin (77.8%), ciprofloxacin (59.3%), gentamicin (50%), and ceftazidime (38.9%). Eight (14.8%) isolates showed resistance to imipenem; however, none of the isolates showed resistance to colistin. Multidrug resistance (MDR) was observed in 24 isolates (44.4%) with a multiple antibiotic resistance index ranging from 0.44 to 0.77. MDR was identified in 30 (33.3%) isolates. Furthermore, 38.8% and 9.2% of the isolates exhibited a positive extended-spectrum-β-lactamase (ESBL) and metallo-β-lactamase (MBL) phenotype, respectively. The most prevalent β-lactamase encoding genes were blaTEM and blaCTX-M, however, the blaIPM gene was not detected in any of the isolates. Biofilm formation was observed in 49 (90.7%) isolates classified as: 11.1% weak biofilm producers; 38.9% moderate biofilm producers; 40.7% strong biofilm producers. A positive correlation was observed between the MAR index and biofilm formation. In conclusion, the results highlighted that farm animals with clinical endometritis could act as a reservoir for MDR and virulent P. aeruginosa. The emergence of ESBLs and MBLs producing P. aeruginosa in different farm animals is a public health concern. Therefore, surveillance programs to monitor and control MDR P. aeruginosa in animals are required.
Collapse
Affiliation(s)
- Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.F.M.); (A.S.A.); (M.A.)
| | - Mahmoud Fayez
- Al-Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia; (S.J.A.); (A.A.); (A.S.A.A.)
- Department of Bacteriology, Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo 12618, Egypt
- Correspondence:
| | - Ayman A. Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Amal S. Alswat
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.F.M.); (A.S.A.); (M.A.)
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.F.M.); (A.S.A.); (M.A.)
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Saleem J. Alsunaini
- Al-Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia; (S.J.A.); (A.A.); (A.S.A.A.)
| | - Ahmed Almuslem
- Al-Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia; (S.J.A.); (A.A.); (A.S.A.A.)
| | - Abdulaziz S. Al Amer
- Al-Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia; (S.J.A.); (A.A.); (A.S.A.A.)
| | - Shaymaa Yusuf
- Department of Microbiology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| |
Collapse
|
38
|
Kiyaga S, Kyany'a C, Muraya AW, Smith HJ, Mills EG, Kibet C, Mboowa G, Musila L. Genetic Diversity, Distribution, and Genomic Characterization of Antibiotic Resistance and Virulence of Clinical Pseudomonas aeruginosa Strains in Kenya. Front Microbiol 2022; 13:835403. [PMID: 35369511 PMCID: PMC8964364 DOI: 10.3389/fmicb.2022.835403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of nosocomial infections worldwide. It can produce a range of debilitating infections, have a propensity for developing antimicrobial resistance, and present with a variety of potent virulence factors. This study investigated the sequence types (ST), phenotypic antimicrobial susceptibility profiles, and resistance and virulence genes among clinical isolates from urinary tract and skin and soft tissue infections. Fifty-six P. aeruginosa clinical isolates were obtained from six medical centers across five counties in Kenya between 2015 and 2020. Whole-genome sequencing (WGS) was performed to conduct genomic characterization, sequence typing, and phylogenetic analysis of the isolates. Results showed the presence of globally distributed high-risk clones (ST244 and ST357), local high-risk clones (ST2025, ST455, and ST233), and a novel multidrug-resistant (MDR) clone carrying virulence genes (ST3674). Furthermore, 31% of the study isolates were found to be MDR with phenotypic resistance to a variety of antibiotics, including piperacillin (79%), ticarcillin-clavulanic acid (57%), meropenem (34%), levofloxacin (70%), and cefepime (32%). Several resistance genes were identified, including carbapenemases VIM-6 (ST1203) and NDM-1 (ST357), fluoroquinolone genes, crpP, and qnrVCi, while 14 and 22 different chromosomal mutations were detected in the gyrA and parC genes, respectively. All isolates contained at least three virulence genes. Among the virulence genes identified, phzB1 was the most abundant (50/56, 89%). About 21% (12/56) of the isolates had the exoU+/exoS- genotype, while 73% (41/56) of the isolates had the exoS+/exoU- genotype. This study also discovered 12 novel lineages of P. aeruginosa, of which one (ST3674) demonstrated both extensive antimicrobial resistance and the highest number of virulence genes (236/242, 98%). Although most high-risk clones were detected in Nairobi County, high-risk and clones of interest were found throughout the country, indicating the local spread of global epidemic clones and the emergence of new strains. Thus, this study illustrates the urgent need for coordinated local, regional, and international antimicrobial resistance surveillance efforts.
Collapse
Affiliation(s)
- Shahiid Kiyaga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Cecilia Kyany'a
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Angela W. Muraya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Hunter J. Smith
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Emma G. Mills
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Caleb Kibet
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lillian Musila
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
39
|
Doumith M, Alhassinah S, Alswaji A, Alzayer M, Alrashidi E, Okdah L, Aljohani S, Balkhy HH, Alghoribi MF. Genomic Characterization of Carbapenem-Non-susceptible Pseudomonas aeruginosa Clinical Isolates From Saudi Arabia Revealed a Global Dissemination of GES-5-Producing ST235 and VIM-2-Producing ST233 Sub-Lineages. Front Microbiol 2022; 12:765113. [PMID: 35069471 PMCID: PMC8770977 DOI: 10.3389/fmicb.2021.765113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Carbapenem-resistant P. aeruginosa has become a major clinical problem due to limited treatment options. However, studies assessing the trends in the molecular epidemiology and mechanisms of antibiotic resistance in this pathogen are lacking in Saudi Arabia. Here, we reported the genome characterization in a global context of carbapenem non-susceptible clinical isolates from a nationally representative survey. The antibiotic resistance profiles of the isolates (n = 635) collected over 14 months between March 2018 and April 2019 from different geographical regions of Saudi Arabia showed resistance rates to relevant β-lactams, aminoglycosides and quinolones ranging between 6.93 and 27.56%. Overall, 22.52% (143/635) of the isolates exhibited resistance to both imipenem and meropenem that were mainly explained by porin loss and efflux overexpression. However, 18.18% of resistant isolates harbored genes encoding GES (69.23%), VIM (23.07%), NDM (3.85%) or OXA-48-like (3.85%) carbapenemases. Most common GES-positive isolates produced GESs −5, −15 or −1 and all belonged to ST235 whereas the VIM-positive isolates produced mainly VIM-2 and belonged to ST233 or ST257. GES and VIM producers were detected at different sampling periods and in different surveyed regions. Interestingly, a genome-wide comparison revealed that the GES-positive ST235 and VIM-2-positive ST233 genomes sequenced in this study and those available through public databases from various locations worldwide, constituted each a phylogenetically closely related sub-lineage. Profiles of virulence determinants, antimicrobial resistance genes and associated mobile elements confirmed relatedness within each of these two different sub-lineages. Sequence analysis located the blaGES gene in nearly all studied genomes (95.4%) in the same integrative conjugative element that also harbored the acc(6′)-Ib, aph(3′)-XV, aadA6, sul1, tet(G), and catB resistance genes while blaVIM–2 in most (98.89%) ST233-positive genomes was co-located with aac(6′)-I1, dfrB-5, and aac(3′)-Id in the same class I integron. The study findings revealed the global spread of GES-5 ST235 and VIM-2 ST233 sub-lineages and highlighted the importance of routine detection of rare β-lactamases.
Collapse
Affiliation(s)
- Michel Doumith
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sarah Alhassinah
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulrahman Alswaji
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maha Alzayer
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Essa Alrashidi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Liliane Okdah
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sameera Aljohani
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | | | | | - Majed F Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Sid Ahmed MA, Khan FA, Hadi HA, Skariah S, Sultan AA, Salam A, Al Khal AL, Söderquist B, Ibrahim EB, Omrani AS, Jass J. Association of blaVIM-2, blaPDC-35, blaOXA-10, blaOXA-488 and blaVEB-9 β-Lactamase Genes with Resistance to Ceftazidime–Avibactam and Ceftolozane–Tazobactam in Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:antibiotics11020130. [PMID: 35203733 PMCID: PMC8868128 DOI: 10.3390/antibiotics11020130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Ceftazidime–avibactam and ceftolozane–tazobactam are approved for the treatment of complicated Gram-negative bacterial infections including multidrug-resistant (MDR) Pseudomonas aeruginosa. Resistance to both agents has been reported, but the underlying mechanisms have not been fully explored. This study aimed to correlate β-lactamases with phenotypic resistance to ceftazidime–avibactam and/or ceftolozane–tazobactam in MDR-P. aeruginosa from Qatar. A total of 525 MDR-P. aeruginosa isolates were collected from clinical specimens between 2014 and 2017. Identification and antimicrobial susceptibility were performed by the BD PhoenixTM system and gradient MIC test strips. Of the 75 sequenced MDR isolates, 35 (47%) were considered as having difficult-to-treat resistance, and 42 were resistant to ceftazidime–avibactam (37, 49.3%), and/or ceftolozane–tazobactam (40, 53.3%). They belonged to 12 sequence types, with ST235 being predominant (38%). Most isolates (97.6%) carried one or more β-lactamase genes, with blaOXA-488 (19%) and blaVEB-9 (45.2%) being predominant. A strong association was detected between class B β-lactamase genes and both ceftazidime–avibactam and ceftolozane–tazobactam resistance, while class A genes were associated with ceftolozane–tazobactam resistance. Co-resistance to ceftazidime–avibactam and ceftolozane–tazobactam correlated with the presence of blaVEB-9, blaPDC-35, blaVIM-2, blaOXA-10 and blaOXA-488. MDR-P. aeruginosa isolates resistant to both combination drugs were associated with class B β-lactamases (blaVIM-2) and class D β-lactamases (blaOXA-10), while ceftolozane–tazobactam resistance was associated with class A (blaVEB-9), class C (blaVPDC-35), and class D β-lactamases (blaOXA-488).
Collapse
Affiliation(s)
- Mazen A. Sid Ahmed
- Department of Laboratory Medicine and Pathology, Microbiology Division, Hamad Medical Corporation, Doha 3050, Qatar or (M.A.S.A.); (E.B.I.)
- The Life Science Centre—Biology, School of Science and Technology, Orebro University, 701 82 Örebro, Sweden;
| | - Faisal Ahmad Khan
- The Life Science Centre—Biology, School of Science and Technology, Orebro University, 701 82 Örebro, Sweden;
| | - Hamad Abdel Hadi
- Communicable Diseases Center, Hamad Medical Corporation, Doha 3050, Qatar; (H.A.H.); (A.L.A.K.); (A.S.O.)
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha 2713, Qatar; (S.S.); (A.A.S.)
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha 2713, Qatar; (S.S.); (A.A.S.)
| | - Abdul Salam
- Department of Epidemiology and Biostatistics, King Fahad Specialist Hospital, Dammam 31444, Saudi Arabia;
| | - Abdul Latif Al Khal
- Communicable Diseases Center, Hamad Medical Corporation, Doha 3050, Qatar; (H.A.H.); (A.L.A.K.); (A.S.O.)
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Orebro University, 701 82 Örebro, Sweden;
| | - Emad Bashir Ibrahim
- Department of Laboratory Medicine and Pathology, Microbiology Division, Hamad Medical Corporation, Doha 3050, Qatar or (M.A.S.A.); (E.B.I.)
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha 2713, Qatar; (S.S.); (A.A.S.)
| | - Ali S. Omrani
- Communicable Diseases Center, Hamad Medical Corporation, Doha 3050, Qatar; (H.A.H.); (A.L.A.K.); (A.S.O.)
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
| | - Jana Jass
- The Life Science Centre—Biology, School of Science and Technology, Orebro University, 701 82 Örebro, Sweden;
- Correspondence:
| |
Collapse
|
41
|
Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic Resistance in Pseudomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:117-143. [DOI: 10.1007/978-3-031-08491-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Prediction of Potential Drug Targets and Vaccine Candidates Against Antibiotic-Resistant Pseudomonas aeruginosa. Int J Pept Res Ther 2022; 28:160. [PMCID: PMC9640888 DOI: 10.1007/s10989-022-10463-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections, characterized by increasing antibiotic resistance, severity and mortality. Therefore, numerous efforts have been made nowadays to identify new therapeutic targets. This study aimed to find potential drug targets and vaccine candidates in drug-resistant strains of P. aeruginosa. Extensive antibiotic-resistant and carbapenem-resistant strains of P. aeruginosa with complete genome were selected and ten common hypothetical proteins (HPs) containing more than 200 amino acids were obtained. The structural, functional and immunological predictions of these HPs were performed with the utility of bioinformatics approaches. Two common HPs (Gene ID: 2877781645 and 2877781936) among other investigated proteins were revealed as potential candidates for pharmaceutical and vaccine purposes based on structural and physicochemical properties, functional domains, subcellular localizations, signal peptides, toxicity, virulence factor, antigenicity, allergenicity and immunoinformatic predictions. The consequence of this predictive study will assist in novel drug and vaccine design through experimental investigations.
Collapse
|
43
|
Lebreton F, Snesrud E, Hall L, Mills E, Galac M, Stam J, Ong A, Maybank R, Kwak YI, Johnson S, Julius M, Ly M, Swierczewski B, Waterman PE, Hinkle M, Jones A, Lesho E, Bennett JW, McGann P. A panel of diverse Pseudomonas aeruginosa clinical isolates for research and development. JAC Antimicrob Resist 2021; 3:dlab179. [PMID: 34909689 DOI: 10.1093/jacamr/dlab179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Pseudomonas aeruginosa is a leading cause of community- and hospital-acquired infections. Successful treatment is hampered by its remarkable ability to rapidly develop resistance to antimicrobial agents, primarily through mutation. In response, WHO listed carbapenem-resistant P. aeruginosa as a Priority 1 (Critical) pathogen for research and development of new treatments. A key resource in developing effective countermeasures is access to diverse and clinically relevant strains for testing. Herein we describe a panel of 100 diverse P. aeruginosa strains to support this endeavour. Methods WGS was performed on 3785 P. aeruginosa isolates in our repository. Isolates were cultured from clinical samples collected from healthcare facilities around the world between 2003 and 2017. Core-genome MLST and high-resolution SNP-based phylogenetic analyses were used to select a panel of 100 strains that captured the genetic diversity of this collection. Antibiotic susceptibility testing was also performed using 14 clinically relevant antibiotics. Results This 100-strain diversity panel contained representative strains from 91 different STs, including genetically distinct strains from major epidemic clones ST-111, ST-235, ST-244 and ST-253. Seventy-one distinct antibiotic susceptibility profiles were identified ranging from pan-susceptible to pan-resistant. Known resistance alleles as well as the most prevalent mutations underlying the antibiotic susceptibilities were characterized for all isolates. Conclusions This panel provides a diverse and comprehensive set of P. aeruginosa strains for use in developing solutions to antibiotic resistance. The isolates and available metadata, including genome sequences, are available to industry, academia, federal and other laboratories at no additional cost.
Collapse
Affiliation(s)
- Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Erik Snesrud
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsey Hall
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Emma Mills
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Madeline Galac
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason Stam
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ana Ong
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rosslyn Maybank
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Yoon I Kwak
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheila Johnson
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael Julius
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Melissa Ly
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Brett Swierczewski
- Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Mary Hinkle
- Infectious Diseases Unit, Rochester General Hospital, Rochester, NY, USA
| | - Anthony Jones
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Emil Lesho
- Infectious Diseases Unit, Rochester General Hospital, Rochester, NY, USA
| | - Jason W Bennett
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick McGann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
44
|
Mahto M, Shah A, Show KL, Moses FL, Stewart AG. Pseudomonas aeruginosa in Nepali hospitals: poor outcomes amid 10 years of increasing antimicrobial resistance. Public Health Action 2021; 11:58-63. [PMID: 34778017 DOI: 10.5588/pha.21.0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To determine antimicrobial resistance patterns and prevalence of multi- (MDR, i.e., resistant to ⩾3 classes of antimicrobial agents) and extensively (XDR, i.e., resistant to ⩾3, susceptible to ⩽2 groups of antibiotics) drug-resistant strains of Pseudomonas aeruginosa. METHODS This was a cross-sectional study conducted in Nepal Mediciti Hospital, Lalitpur, Nepal, using standard microbiological methods with Kirby Bauer disc diffusion to identify antimicrobial susceptibility. RESULTS P. aeruginosa (n = 447) were most frequently isolated in respiratory (n = 203, 45.4%) and urinary samples (n = 120, 26.8%). AWaRe Access antibiotics showed 25-30% resistance, Watch antibiotics 30-55%. Susceptibility to AWaRe Reserve antibiotics remains high; however, 32.8% were resistant to aztreonam. Overall, 190 (42.5%) were MDR and 99 (22.1%) XDR (first Nepali report) based on mainly non-respiratory samples. The majority of infected patients were >40 years (n = 229, 63.2%) or inpatients (n = 181, 50.0%); 36 (15.2%) had an unfavourable outcome, including death (n = 25, 10.5%). Our larger study showed a failure of improvement over eight previous studies covering 10 years. CONCLUSION Antibiotic resistance in P. aeruginosa occurred to all 19 AWaRe group antibiotics tested. Vulnerable patients are at significant risk from such resistant strains, with a high death rate. Sustainable and acceptable antibiotic surveillance and control are urgently needed across Nepal, as antimicrobial resistance has deteriorated over the last decade.
Collapse
Affiliation(s)
- M Mahto
- Nepal Mediciti Hospital, Lalitpur, Nepal
| | - A Shah
- Kist Medical College and Teaching Hospital, Lalitpur, Nepal
| | - K L Show
- Department of Medical Research, Yangon, Myanmar
| | - F L Moses
- Sierra Leone Ministry of Health and Sanitation, Freetown, Sierra Leone.,College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - A G Stewart
- College of Life and Environmental Science, University of Exeter, Exeter, UK
| |
Collapse
|
45
|
Hotinger JA, Morris ST, May AE. The Case against Antibiotics and for Anti-Virulence Therapeutics. Microorganisms 2021; 9:2049. [PMID: 34683370 PMCID: PMC8537500 DOI: 10.3390/microorganisms9102049] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Although antibiotics have been indispensable in the advancement of modern medicine, there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence by patients. This generates populations of resistant bacteria that can then spread resistance genes horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics are used appropriately, they harm commensal bacteria leading to increased secondary infection risk. Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing resistance gene transfer. These problems highlight the need for new approaches to treating bacterial infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and antibiotic stewardship programs. These mediate the issues but do not address their root cause. One emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis instead of using bactericidal agents. In this review, we discuss select examples of potential anti-virulence targets and strategies that could be developed into bacterial infection treatments: the bacterial type III secretion system, quorum sensing, and liposomes.
Collapse
Affiliation(s)
| | | | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA; (J.A.H.); (S.T.M.)
| |
Collapse
|
46
|
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that often causes nosocomial infections resistant to treatment. Rates of antimicrobial resistance (AMR) are increasing, as are rates of multidrug-resistant (MDR) and possible extensively drug-resistant (XDR) infections. Our objective was to characterize the molecular epidemiology and AMR mechanisms of this pathogen. We sequenced the whole genome for each of 176 P. aeruginosa isolates collected in the Philippines in 2013–2014; derived the multilocus sequence type (MLST), presence of AMR determinants and relatedness between isolates; and determined concordance between phenotypic and genotypic resistance. Carbapenem resistance was associated with loss of function of the OprD porin and acquisition of the metallo-β-lactamase (MBL) gene blaVIM. Concordance between phenotypic and genotypic resistance was 93.27% overall for six antibiotics in three classes, but varied among aminoglycosides. The population of P. aeruginosa was diverse, with clonal expansions of XDR genomes belonging to MLSTs ST235, ST244, ST309 and ST773. We found evidence of persistence or reintroduction of the predominant clone ST235 in one hospital, and of transfer between hospitals. Most of the ST235 genomes formed a distinct lineage from global genomes, thus raising the possibility that they may be unique to the Philippines. In addition, long-read sequencing of one representative XDR ST235 isolate identified an integron carrying multiple resistance genes (including blaVIM-2), with differences in gene composition and synteny from the P. aeruginosa class 1 integrons described previously. The survey bridges the gap in genomic data from the Western Pacific Region and will be useful for ongoing surveillance; it also highlights the importance of curtailing the spread of ST235 within the Philippines.
Collapse
|
47
|
Ababneh MA, Rababa'h AM, Almomani BA, Ayoub AM, Al-Azzam SI. A ten-year surveillance of P aeruginosa bloodstream infections in a tertiary care hospital: Trends and risk factors for mortality. Int J Clin Pract 2021; 75:e14409. [PMID: 34051030 DOI: 10.1111/ijcp.14409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P aeruginosa) is a leading cause of nosocomial bloodstream infections worldwide. This study aimed to evaluate the incidence of P aeruginosa bloodstream infections and to identify predictors of 30-day mortality. METHODS A retrospective study was conducted in an academic tertiary hospital in Jordan. The medical records of patients hospitalised over ten years (1 January 2008-31 December 2017) were reviewed to identify patients' positive blood culture of P aeruginosa. Annual incidence, antimicrobial susceptibility patterns and risk factors for 30-day mortality were analysed. RESULTS A total of 169 cases of P aeruginosa bloodstream infection were identified, with an overall incidence rate of 0.23 case/1000 admission. The overall crude 30-day mortality was 36.7%. Receipt of corticosteroids (OR = 4.5; P = .0017), severe sepsis and septic shock (OR = 2.7; P = .0476), admission to intensive care unit (OR = 5.9; P = .0004), end-stage renal disease (OR = 4.1; P = .0123), inappropriate empirical therapy (OR = 3.2; P = .0143) and inappropriate definitive therapy (OR = 2.9; P = .0110) were identified as independent risk factors for mortality. CONCLUSION The annual incidence of P aeruginosa BSIs was fluctuating over ten years period. Several predictors for 30-day mortality in patients with P aeruginosa BSIs were identified, including inappropriate empirical and definitive therapy.
Collapse
Affiliation(s)
- Mera A Ababneh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Basima A Almomani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abeer M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sayer I Al-Azzam
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
48
|
Urbanowicz P, Izdebski R, Baraniak A, Żabicka D, Hryniewicz W, Gniadkowski M. Molecular and genomic epidemiology of VIM/IMP-like metallo-β-lactamase-producing Pseudomonas aeruginosa genotypes in Poland. J Antimicrob Chemother 2021; 76:2273-2284. [PMID: 34179963 DOI: 10.1093/jac/dkab188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To identify key factors of the expansion of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) in Poland, focusing on the role of clonal epidemic(s). METHODS MPPA isolates were typed by PFGE, followed by MLST. blaVIM/IMP MBL genes were amplified and sequenced within class 1 integrons. Their location was assessed by S1 nuclease-hybridization assays. Short-read WGS was performed, and genomes were subjected to SNP-based phylogenetic and resistome analyses. RESULTS Of 1314 MPPA isolates collected in 2005-15 from 212 hospitals, 454 representatives were selected. The isolates belonged to 120 pulsotypes and 52 STs, of which ST235 (∼31%), ST111 (∼17%), ST273 (∼16%) and ST654 (∼9%) prevailed, followed by ST244, ST17, ST395, ST175 and ST1567. The isolates produced seven VIM variants (97.5%) and four IMPs encoded by 46 integrons, most of which were observed only or mainly in Poland. Around 60% of the isolates resulted from (inter)regional clonal outbreaks of 10 individual ST235, ST111, ST273 and ST654 genotypes. The phylogenetic analysis of 163 genomes revealed heterogeneity of ST235 and ST111 populations, arising from transnational circulation and on-site differentiation of several clades/branches. Contrarily, ST273 and ST654 formed relatively homogeneous and apparently Poland-specific lineages, and a unique ST273 genotype with integron In249 was the most expansive organism. CONCLUSIONS Together with a previous report on self-transmissible In461-carrying IncP-2-type plasmids, this study revealed the molecular/genomic background of the rapid MPPA increase in Poland in 2001-15, evidencing multi-clonal spread as its leading factor. Numerous novel/specific MPPA characteristics were identified.
Collapse
Affiliation(s)
- P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, 00-725, Warsaw, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, 00-725, Warsaw, Poland
| | - A Baraniak
- Department of Molecular Microbiology, National Medicines Institute, 00-725, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, 00-725, Warsaw, Poland
| |
Collapse
|
49
|
Nakamura S, Arima T, Tashiro R, Yasumizu S, Aikou H, Watanabe E, Nakashima T, Nagatomo Y, Kakimoto I, Motoya T. Impact of an antimicrobial stewardship in a 126-bed community hospital with close communication between pharmacists working on post-prescription audit, ward pharmacists, and the antimicrobial stewardship team. J Pharm Health Care Sci 2021; 7:25. [PMID: 34332639 PMCID: PMC8325832 DOI: 10.1186/s40780-021-00206-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Antimicrobial stewardship (AS) is defined as coordinated interventions to improve and measure the appropriate use of antimicrobial agents. However, available resources for AS differ depending on the size of the clinical setting. Therefore, AS programs based on guidelines need to be selected in order to implement AS in small- to medium-sized hospitals. The present study compared the impact of AS in a 126-bed community hospital between pre- and post-AS periods. Methods The present study was retrospectively performed by selecting data on eligible patients from electronic medical records stored in the central database of the hospital. The roles of the AS team included weekly rounds and recommendations on the appropriate use of antimicrobials, and pharmacists working on post-prescription audits and pharmaceutical care at the bedside closely communicated with the AS team to assist with its implementation. As process measurements, the order rate of culture examinations, the conducting rate of de-escalation, antimicrobial use density (AUD), days of therapy (DOT), and the AUD/DOT ratio of carbapenems and tazobactam-piperacillin (TAZ/PIPC) were measured. Thirty-day mortality and recurrence rates were examined as clinical outcomes. Results A total of 535 patients (288 in the pre-AS period and 247 in the post-AS period) were enrolled in the present study. The recommendation rate to prescribers significantly increased (p < 0.01) from 10.4% in the pre-AS period to 21.1% in the post-AS period. The order rate of culture examinations increased from 56.3 to 73.3% (p < 0.01). The conducting rate of de-escalation increased from 10.2 to 30.8% (p < 0.05). The AUD of carbapenems and TAZ/PIPC significantly decreased (p < 0.05). The DOT of carbapenems (p < 0.01) and TAZ/PIPC (p < 0.05) also significantly decreased. The AUD/DOT ratio of carbapenem significantly increased from 0.37 to 0.60 (p < 0.01). Thirty-day mortality rates were 11.2 and 14.2%, respectively, and were not significantly different. The 30-day recurrence rate significantly decreased (p < 0.05) from 14.7 to 7.5%. Conclusions The implementation of AS in this hospital improved the appropriate use of antimicrobials without negatively affecting clinical outcomes. These results may be attributed to close communication between pharmacists working on post-prescription audits and pharmaceutical care at the bedside and the AS team.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Infection Control Team and Antimicrobial Stewardship Team, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan.,Division of Pharmacy, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan
| | - Takashi Arima
- Infection Control Team and Antimicrobial Stewardship Team, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan.,Division of Urology, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan
| | - Ryoichi Tashiro
- Infection Control Team and Antimicrobial Stewardship Team, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan.,Department of Nursing, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan
| | - Satomi Yasumizu
- Infection Control Team and Antimicrobial Stewardship Team, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan.,Division of Clinical Laboratory, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan
| | - Hayato Aikou
- Division of Pharmacy, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan
| | - Emi Watanabe
- Division of Pharmacy, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan
| | - Takashi Nakashima
- Division of Pharmacy, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan
| | - Yuho Nagatomo
- Division of Pharmacy, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan
| | - Ikuyo Kakimoto
- Division of Pharmacy, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan
| | - Toshiro Motoya
- Division of Pharmacy, Tarumizu Chuo Hospital, Tarumizu Municipal Medical Center, Tarumizu, Japan.
| |
Collapse
|
50
|
Tran HA, Vu TNB, Trinh ST, Tran DL, Pham HM, Ngo THH, Nguyen MT, Tran ND, Pham DT, Dang DA, Shibayama K, Suzuki M, Yoshida LM, Trinh HS, Le VT, Vu PT, Luu TVN, Bañuls AL, Trinh KL, Tran VA, Tran HH, van Doorn HR. Resistance mechanisms and genetic relatedness among carbapenem-resistant Pseudomonas aeruginosa isolates from three major hospitals in Hanoi, Vietnam (2011-15). JAC Antimicrob Resist 2021; 3:dlab103. [PMID: 34322671 PMCID: PMC8313516 DOI: 10.1093/jacamr/dlab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Background MDR bacteria including carbapenem-resistant Pseudomonas aeruginosa are recognized as an important cause of hospital-acquired infections worldwide. This investigation seeks to determine the molecular characterization and antibiotic resistance genes associated with carbapenem-resistant P. aeruginosa. Methods We conducted WGS and phylogenetic analysis of 72 carbapenem-resistant P. aeruginosa isolated from hospital-acquired infection patients from August 2011 to March 2015 in three major hospitals in Hanoi, Vietnam. Results We identified three variants of IMP gene, among which blaIMP-15 was the most frequent (n = 34) in comparison to blaIMP-26 (n = 2) and blaIMP-51 (n = 12). We observed two isolates with imipenem MIC >128 mg/L that co-harboured blaIMP-15 and blaDIM-1 genes and seven isolates (imipenem MIC > 128 mg/L) with a blaKPC-1 gene from the same hospital. MLST data shows that these 72 isolates belong to 18 STs and phylogenetic tree analysis has divided these isolates into nine groups. Conclusions Our results provide evidence that not only blaIMP-26 but other IMP variants such as blaIMP-15 and blaIMP-51 genes and several STs (ST235, ST244, ST277, ST310, ST773 and ST3151) have been disseminating in healthcare settings in Vietnam. In addition, we report the emergence of two isolates belonging to ST1240 and ST3340 that harboured two important carbapenemase genes (blaIMP-15 and blaDIM-1) and seven isolates belonging to ST3151 of P. aeruginosa that carried the blaKPC-1 gene in Vietnam, which could potentially cause serious restricted availability of treatment options in healthcare settings.
Collapse
Affiliation(s)
| | | | - Son Tung Trinh
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Dieu Linh Tran
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Ha My Pham
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | | | | | - Nhu Duong Tran
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Duy Thai Pham
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Masato Suzuki
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Lay-Myint Yoshida
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Viet Thanh Le
- Oxford University Clinical Research Unit, Hanoi, Vietnam.,Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | | | - Anne-Laure Bañuls
- MIVEGEC Univ Montpellier-IRD-CNRS, Centre IRD, Montpellier, France.,LMI DRISA, Hanoi, Vietnam
| | | | | | - Huy Hoang Tran
- Hanoi Medical University, Hanoi, Vietnam.,National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|