1
|
Palme J, Li A, Springer M. The galactokinase enzyme of yeast senses metabolic flux to stabilize galactose pathway regulation. Nat Metab 2025; 7:137-147. [PMID: 39762390 PMCID: PMC11774755 DOI: 10.1038/s42255-024-01181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/18/2024] [Indexed: 01/30/2025]
Abstract
Nutrient sensors allow cells to adapt their metabolisms to match nutrient availability by regulating metabolic pathway expression. Many such sensors are cytosolic receptors that measure intracellular nutrient concentrations. One might expect that inducing the metabolic pathway that degrades a nutrient would reduce intracellular nutrient levels, destabilizing induction. However, in the galactose-responsive (GAL) pathway of Saccharomyces cerevisiae, we find that induction is stabilized by flux sensing. Previously proposed mechanisms for flux sensing postulate the existence of metabolites whose concentrations correlate with flux. The GAL pathway flux sensor uses a different principle: the galactokinase Gal1p both performs the first step in GAL metabolism and reports on flux by signalling to the GAL repressor, Gal80p. Both Gal1p catalysis and Gal1p signalling depend on the concentration of the Gal1p-GAL complex and are therefore directly correlated. Given the simplicity of this mechanism, flux sensing is probably a general feature throughout metabolic regulation.
Collapse
Affiliation(s)
- Julius Palme
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ang Li
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Curtis NJ, Patel KJ, Rizwan A, Jeffery CJ. Moonlighting Proteins: Diverse Functions Found in Fungi. J Fungi (Basel) 2023; 9:1107. [PMID: 37998912 PMCID: PMC10672435 DOI: 10.3390/jof9111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Moonlighting proteins combine multiple functions in one polypeptide chain. An increasing number of moonlighting proteins are being found in diverse fungal taxa that vary in morphology, life cycle, and ecological niche. In this mini-review we discuss examples of moonlighting proteins in fungi that illustrate their roles in transcription and DNA metabolism, translation and RNA metabolism, protein folding, and regulation of protein function, and their interaction with other cell types and host proteins.
Collapse
Affiliation(s)
- Nicole J. Curtis
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | - Krupa J. Patel
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | | | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| |
Collapse
|
3
|
Mahilkar A, Nagendra P, Alugoju P, E R, Saini S. Public good-driven release of heterogeneous resources leads to genotypic diversification of an isogenic yeast population. Evolution 2022; 76:2811-2828. [PMID: 36181481 PMCID: PMC7614384 DOI: 10.1111/evo.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/22/2022] [Indexed: 01/22/2023]
Abstract
Understanding the basis of biological diversity remains a central problem in evolutionary biology. Using microbial systems, adaptive diversification has been studied in (a) spatially heterogeneous environments, (b) temporally segregated resources, and (c) resource specialization in a homogeneous environment. However, it is not well understood how adaptive diversification can take place in a homogeneous environment containing a single resource. Starting from an isogenic population of yeast Saccharomyces cerevisiae, we report rapid adaptive diversification, when propagated in an environment containing melibiose as the carbon source. The diversification is driven due to a public good enzyme α-galactosidase, which hydrolyzes melibiose into glucose and galactose. The diversification is driven by mutations at a single locus, in the GAL3 gene in the S. cerevisiae GAL/MEL regulon. We show that metabolic co-operation involving public resources could be an important mode of generating biological diversity. Our study demonstrates sympatric diversification of yeast starting from an isogenic population and provides detailed mechanistic insights into the factors and conditions responsible for generating and maintaining the population diversity.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prachitha Nagendra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Phaniendra Alugoju
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rajeshkannan E
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
4
|
Horvath R, Hawe N, Lam C, Mestnikov K, Eji-Lasisi M, Rohde J, Sadowski I. TORC1 signaling modulates Cdk8-dependent GAL gene expression in Saccharomyces cerevisiae. Genetics 2021; 219:6381581. [PMID: 34849833 PMCID: PMC8664586 DOI: 10.1093/genetics/iyab168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
Cdk8 of the RNA polymerase II mediator kinase complex regulates gene expression by phosphorylating sequence-specific transcription factors. This function is conserved amongst eukaryotes, but the signals and mechanisms regulating Cdk8 activity and phosphorylation of its substrates are unknown. Full induction of the GAL genes in yeast requires phosphorylation of the transcriptional activator Gal4 by Cdk8. We used a screen to identify regulators of the Cdk8-dependent phosphorylation on Gal4, from which we identified multiple mutants with defects in TORC1 signaling. One mutant, designated gal four throttle 1 (gft1) was identified as a recessive allele of hom3, encoding aspartokinase, and mutations in hom3 caused effects typical of inhibition of TORC1, including rapamycin sensitivity and enhanced nuclear localization of the TORC1-responsive transcription factor Gat1. Mutations in hom3 also inhibit phosphorylation of Gal4 in vivo at the Cdk8-dependent site on Gal4, as did mutations of tor1, but these mutations did not affect activity of Cdk8 assayed in vitro. Disruption of cdc55, encoding a regulatory subunit of the TORC1-regulated protein phosphatase PP2A, suppressed the effect of hom3 and tor1 mutations on GAL expression, and also restored phosphorylation of Gal4 at the Cdk8-dependent site in vivo. These observations demonstrate that TORC1 signaling regulates GAL induction through the activity of PP2A/Cdc55 and suggest that Cdk8-dependent phosphorylation of Gal4 is opposed by PP2A/Cdc55 dephosphorylation. These results provide insight into how induction of transcription by a specific inducer can be modulated by global nutritional signals through regulation of Cdk8-dependent phosphorylation.
Collapse
Affiliation(s)
- Riley Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nicole Hawe
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cindy Lam
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Konstantin Mestnikov
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Mariam Eji-Lasisi
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John Rohde
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
6
|
Kavatalkar V, Saini S, Bhat PJ. Role of Noise-Induced Cellular Variability in Saccharomyces cerevisiae During Metabolic Adaptation: Causes, Consequences and Ramifications. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
The demise of catalysis, but new functions arise: pseudoenzymes as the phoenixes of the protein world. Biochem Soc Trans 2019; 47:371-379. [PMID: 30710059 DOI: 10.1042/bst20180473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023]
Abstract
Pseudoenzymes are noncatalytic homologues of enzymes and are found in most enzyme families. Although lacking catalytic activity and sometimes referred to as 'dead' enzymes, they instead resemble phoenixes because the loss of a catalytic function during evolution was associated with the development of vital new functions. They are important in regulating the activity and location of catalytically active homologues, scaffolding the assembly of signaling complexes, and regulating transcription or translation. They are key actors in cell proliferation and differentiation, proteostasis, and many other biochemical pathways and processes. They perform their functions in diverse ways, but many retain some aspects of the function of their catalytically active homologues. In some pseudoenzymes, their functions are very different from other members of their protein families, suggesting some arose from ancient moonlighting proteins during evolution. Much less is known about pseudoenzymes than their catalytically active counterparts, but a growing appreciation of their key roles in many important biochemical processes and signaling pathways has led to increased investigation in recent years. It is clear that there is still much more to learn about the structures, functions, and cellular roles of these phoenix-like proteins.
Collapse
|
8
|
Wu J, Niu Y, Bakur A, Li H, Chen Q. Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces cerevisiae. Molecules 2017; 22:molecules22071075. [PMID: 28653998 PMCID: PMC6152010 DOI: 10.3390/molecules22071075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022] Open
Abstract
Betulinic acid is a product of plant secondary metabolism which has shown various bioactivities. Several CYP716A subfamily genes were recently characterized encoding multifunctional oxidases capable of C-28 oxidation. CYP716A12 was identified as betulin C-28 oxidase, capable of modifying betulin. This study aimed to induce the transformation of betulin to betulinic acid by co-expressing enzymes CYP716A12 from Medicago truncatula and ATR1 from Arabidopsis thaliana in Saccharomyces cerevisiae. The microsome protein extracted from the transgenic yeast successfully catalyzed the transformation of betulin to betulinic acid. We also characterized the optimization of cell fragmentation, protein extraction method, and the conversion conditions. Response surface methodology was implemented, and the optimal yield of betulinic acid reached 18.70%. After optimization, the yield and the conversion rate of betulin were increased by 83.97% and 136.39%, respectively. These results may present insights and strategies for the sustainable production of betulinic acid in multifarious transgenic microbes.
Collapse
Affiliation(s)
- Jianan Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Yongwu Niu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Abdelmoneim Bakur
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Hao Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Zhou C, Li J, Li C, Zhang Y. Improvement of betulinic acid biosynthesis in yeast employing multiple strategies. BMC Biotechnol 2016; 16:59. [PMID: 27534392 PMCID: PMC4989488 DOI: 10.1186/s12896-016-0290-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Betulinic acid (BA) is a lupane-type triterpene which has been considered as a promising agent to cure melanoma with no side effects. Considering that BA is naturally produced in small quantities in plants, we previously reported the success in engineering its production in yeast. In the present study, we attempted to improve BA biosynthesis in yeast by the use of different strategies. Results We first isolated a gene encoding a lupeol C-28 oxidase (LO) from Betula platyphylla (designated as BPLO). BPLO showed a higher activity in BA biosynthesis compared to the previously reported LOs. In addition, two yeast platforms were compared for engineering the production of BA, which demonstrated that the WAT11 strain was better to host BA pathway than the CEN.PK strain. Based on the WAT11-chassiss, the Gal80p mutant was further constructed. The mutant produced 0.16 mg/L/OD600 of BA, which was 2.2 fold of that produced by the wild type strain (0.07 mg/L/OD600). Conclusions This study reported our efforts to improve BA production in yeast employing multiple strategies, which included the identification of a novel LO enzyme with a higher activity in BA biosynthesis, the evaluation of two yeast strains for hosting the BA pathway, and the up-regulation of the expression of the BA pathway genes by managing yeast GAL gene regulon circuit. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0290-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
10
|
Abstract
The present article addresses the possibilities offered by yeasts to study the problem of the evolution of moonlighting proteins. It focuses on data available on hexokinase from Saccharomyces cerevisiae that moonlights in catabolite repression and on galactokinase from Kluyveromyces lactis that moonlights controlling the induction of the GAL genes. Possible experimental approaches to studying the evolution of moonlighting hexose kinases are suggested.
Collapse
|
11
|
Stockwell SR, Landry CR, Rifkin SA. The yeast galactose network as a quantitative model for cellular memory. MOLECULAR BIOSYSTEMS 2014; 11:28-37. [PMID: 25328105 DOI: 10.1039/c4mb00448e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent experiments have revealed surprising behavior in the yeast galactose (GAL) pathway, one of the preeminent systems for studying gene regulation. Under certain circumstances, yeast cells display memory of their prior nutrient environments. We distinguish two kinds of cellular memory discovered by quantitative investigations of the GAL network and present a conceptual framework for interpreting new experiments and current ideas on GAL memory. Reinduction memory occurs when cells respond transcriptionally to one environment, shut down the response during several generations in a second environment, then respond faster and with less cell-to-cell variation when returned to the first environment. Persistent memory describes a long-term, arguably stable response in which cells adopt a bimodal or unimodal distribution of induction levels depending on their preceding environment. Deep knowledge of how the yeast GAL pathway responds to different sugar environments has enabled rapid progress in uncovering the mechanisms behind GAL memory, which include cytoplasmic inheritance of inducer proteins and positive feedback loops among regulatory genes. This network of genes, long used to study gene regulation, is now emerging as a model system for cellular memory.
Collapse
Affiliation(s)
- Sarah R Stockwell
- Section of Ecology, Behavior, and Evolution, Division of Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA.
| | | | | |
Collapse
|
12
|
Kar RK, Qureshi MT, DasAdhikari AK, Zahir T, Venkatesh KV, Bhat PJ. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae. FEBS J 2014; 281:1798-817. [PMID: 24785355 DOI: 10.1111/febs.12741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GAL1 and GAL3 are paralogous signal transducers that functionally inactivate Gal80p to activate the Gal4p-dependent transcriptional activation of GAL genes in Saccharomyces cerevisiae in response to galactose. Unlike a wild-type strain, the gal3∆ strain shows delayed growth kinetics as a result of the signaling function of GAL1. The mechanism ensuring that GAL1 is eventually expressed to turn on the GAL switch in the gal3∆ strain remains a paradox. Using galactose and histidine growth complementation assays, we demonstrate that 0.3% of the gal3∆ cell population responds to galactose. This is corroborated by flow cytometry and microscopic analysis. The galactose responders and nonresponders isolated from the galactose-adapted population attain the original bimodal state and this phenotype is found to be as hard wired as a genetic trait. Computational analysis suggests that the log-normal distribution in GAL4 synthesis can lead to bimodal expression of GAL80, resulting in the bimodal expression of GAL genes. Heterozygosity at the GAL80 but not at the GAL1, GAL2 or GAL4 locus alters the extent of bimodality of the gal3∆ cell population. We suggest that the asymmetric expression pattern between GAL1 and GAL3 results in the ability of S. cerevisiae to activate the GAL pathway by conferring nongenetic heterogeneity.
Collapse
Affiliation(s)
- Rajesh Kumar Kar
- Molecular Genetics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | | | | | |
Collapse
|
13
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
14
|
Malakar P, Venkatesh KV. GAL regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose. FEMS Yeast Res 2013; 14:346-56. [PMID: 24206532 DOI: 10.1111/1567-1364.12109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 11/27/2022] Open
Abstract
The GAL regulon in Saccharomyces cerevisiae is a well-characterized genetic network that is utilized for the metabolism of galactose as an energy source. The network contains a transcriptional activator, Gal4p, which binds to its cognate-binding site to express GAL genes. Further, Gal80p and Gal3p are the repressor and galactose sensor, respectively, which are also under the regulation of GAL regulon. It is shown that the wild-type strain produces only about 80% of the maximum expression feasible from the regulon, which is observed in a mutant strain lacking Gal80p. This raises a fundamental question regarding the optimality of expression from the GAL regulon in S. cerevisiae. To address this issue, we evaluated the burden on growth due to the synthesis of GAL proteins in S. cerevisiae. The analysis demonstrated that both the media type and the extent of enzyme synthesized play a role in determining the burden on growth. We show that the burden can be quantified by relating to a parameter, β, the ratio of enzyme activity to the initial substrate concentration. The analysis demonstrated that the GAL regulon of the wild-type strain performed effectively to optimize growth on galactose.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | | |
Collapse
|
15
|
Regulations of sugar transporters: insights from yeast. Curr Genet 2013; 59:1-31. [PMID: 23455612 DOI: 10.1007/s00294-013-0388-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 12/24/2022]
Abstract
Transport across the plasma membrane is the first step at which nutrient supply is tightly regulated in response to intracellular needs and often also rapidly changing external environment. In this review, I describe primarily our current understanding of multiple interconnected glucose-sensing systems and signal-transduction pathways that ensure fast and optimum expression of genes encoding hexose transporters in three yeast species, Saccharomyces cerevisiae, Kluyveromyces lactis and Candida albicans. In addition, an overview of GAL- and MAL-specific regulatory networks, controlling galactose and maltose utilization, is provided. Finally, pathways generating signals inducing posttranslational degradation of sugar transporters will be highlighted.
Collapse
|
16
|
Lavy T, Kumar PR, He H, Joshua-Tor L. The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Genes Dev 2012; 26:294-303. [PMID: 22302941 DOI: 10.1101/gad.182691.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A wealth of genetic information and some biochemical analysis have made the GAL regulon of the yeast Saccharomyces cerevisiae a classic model system for studying transcriptional activation in eukaryotes. Galactose induces this transcriptional switch, which is regulated by three proteins: the transcriptional activator Gal4p, bound to DNA; the repressor Gal80p; and the transducer Gal3p. We showed previously that NADP appears to act as a trigger to kick the repressor off the activator. Sustained activation involves a complex of the transducer Gal3p and Gal80p mediated by galactose and ATP. We solved the crystal structure of the complex of Gal3p-Gal80p with α-D-galactose and ATP to 2.1 Å resolution. The interaction between the proteins occurs only when Gal3p is in a "closed" state induced by ligand binding. The structure of the complex provides a rationale for the phenotypes of several well-known Gal80p and Gal3p mutants as well as the lack of galactokinase activity of Gal3p.
Collapse
Affiliation(s)
- Tali Lavy
- Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
17
|
The role of the active site residues in human galactokinase: implications for the mechanisms of GHMP kinases. Bioorg Chem 2011; 39:120-6. [PMID: 21474160 DOI: 10.1016/j.bioorg.2011.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
Galactokinase catalyses the phosphorylation of galactose at the expense of ATP. Like other members of the GHMP family of kinases it is postulated to function through an active site base mechanism in which Asp-186 abstracts a proton from galactose. This asparate residue was altered to alanine and to asparagine by site-directed mutagenesis of the corresponding gene. This resulted in variant enzyme with no detectable galactokinase activity. Alteration of Arg-37, which lies adjacent to Asp-186 and is postulated to assist the catalytic base, to lysine resulted in an active enzyme. However, alteration of this residue to glutamate abolished activity. All the variant enzymes, except the arginine to lysine substitution, were structurally unstable (as judged by native gel electrophoresis in the presence of urea) compared to the wild type. This suggests that the lack of activity results from this structural instability, in addition to any direct effects on the catalytic mechanism. Computational estimations of the pK(a) values of the arginine and aspartate residues, suggest that Arg-37 remains protonated throughout the catalytic cycle whereas Asp-186 has an abnormally high pK(a) value (7.18). Quantum mechanics/molecular mechanics (QM/MM) calculations suggest that Asp-186 moves closer to the galactose molecule during catalysis. The experimental and theoretical studies presented here argue for a mechanism in which the C(1)-OH bond in the sugar is weakened by the presence of Asp-186 thus facilitating nucleophilic attack by the oxygen atom on the γ-phosphorus of ATP.
Collapse
|
18
|
Barnard E, Timson DJ. The GAL genetic switch: visualisation of the interacting proteins by split-EGFP bimolecular fluorescence complementation. J Basic Microbiol 2011; 51:312-7. [PMID: 21298679 DOI: 10.1002/jobm.201000198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/09/2010] [Indexed: 11/08/2022]
Abstract
A split-EGFP bimolecular fluorescence complementation assay was used to visualise and locate three interacting pairs of proteins from the GAL genetic switch of the budding yeast, Saccharomyces cerevisiae. Both the Gal4p-Gal80p and Gal80p-Gal3p pairs were found to be located in the nucleus under inducing conditions. However, the Gal80p-Gal1p complex was located throughout the cell. These results support recent work establishing an initial interaction between Gal3p and Gal80p occurring in the nucleus. Labelling of all three protein pairs impaired the growth of the yeast strains and resulted in reduced galactokinase activity in cell extracts. The most likely cause of this impairment is decreased dissociation rates of the complexes, caused by the essentially irreversible reassembly of the EGFP fragments. This suggests that a fully functional GAL genetic switch requires dynamic interactions between the protein components. These results also highlight the need for caution in the interpretation of in vivo split-EGFP experiments.
Collapse
Affiliation(s)
- Emma Barnard
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | | |
Collapse
|
19
|
Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J, Farinelli L, Barlocher L, Østerås M, Schalk M, Clark A, Nielsen J. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics 2010; 11:723. [PMID: 21176163 PMCID: PMC3022925 DOI: 10.1186/1471-2164-11-723] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/22/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. RESULTS In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. CONCLUSIONS With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk.
Collapse
Affiliation(s)
- José Manuel Otero
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark DK-2800, Kgs. Lyngby, Denmark
- Vaccine & Biologics Process Development, Vaccine Research & Development, Merck Research Labs, West Point, PA, USA
| | - Wanwipa Vongsangnak
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark DK-2800, Kgs. Lyngby, Denmark
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Mohammad A Asadollahi
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark DK-2800, Kgs. Lyngby, Denmark
- Biotechnology Group, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| | - Roberto Olivares-Hernandes
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark DK-2800, Kgs. Lyngby, Denmark
| | - Jérôme Maury
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark DK-2800, Kgs. Lyngby, Denmark
- Fluxome Sciencies A/S, Research & Development, DK-3660 Stenlose, Denmark
| | | | | | | | - Michel Schalk
- Firmenich SA, Corporate Research & Development Division, Geneva, Switzerland
| | - Anthony Clark
- Firmenich SA, Corporate Research & Development Division, Geneva, Switzerland
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Štagoj MN, Komel R. The GAL induction response in yeasts with impaired galactokinase Gal1p activity. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Abstract
Proteins able to participate in unrelated biological processes have been grouped under the generic name of moonlighting proteins. Work with different yeast species has uncovered a great number of moonlighting proteins and shown their importance for adequate functioning of the yeast cell. Moonlighting activities in yeasts include such diverse functions as control of gene expression, organelle assembly, and modification of the activity of metabolic pathways. In this review, we consider several well-studied moonlighting proteins in different yeast species, paying attention to the experimental approaches used to identify them and the evidence that supports their participation in the unexpected function. Usually, moonlighting activities have been uncovered unexpectedly, and up to now, no satisfactory way to predict moonlighting activities has been found. Among the well-characterized moonlighting proteins in yeasts, enzymes from the glycolytic pathway appear to be prominent. For some cases, it is shown that despite close phylogenetic relationships, moonlighting activities are not necessarily conserved among yeast species. Organisms may utilize moonlighting to add a new layer of regulation to conventional regulatory networks. The existence of this type of proteins in yeasts should be taken into account when designing mutant screens or in attempts to model or modify yeast metabolism.
Collapse
Affiliation(s)
- Carlos Gancedo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain.
| | | |
Collapse
|
22
|
Genetic evidence for sites of interaction between the Gal3 and Gal80 proteins of the Saccharomyces cerevisiae GAL gene switch. Genetics 2008; 178:725-36. [PMID: 18245852 DOI: 10.1534/genetics.107.074799] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galactose-activated transcription of the Saccharomyces cerevisiae GAL genes occurs when Gal3 binds the Gal4 inhibitor, Gal80. Noninteracting variants of Gal3 or Gal80 render the GAL genes noninducible. To identify the binding determinants for Gal3's interaction with Gal80 we carried out GAL3-GAL80 intergenic suppression analyses and selected for new GAL3 mutations that impair the Gal3-Gal80 interaction. We show that a GAL3(C)-D368V mutation can suppress the noninducibility due to a GAL80(S-1)-G323R mutation, and a GAL80-M350C mutation can suppress the noninducibility due to a gal3-D111C mutation. A reverse two-hybrid selection for GAL3 mutations that impair the Gal3-Gal80 interaction yielded 12 single-amino-acid substitutions at residues that are predicted to be surface exposed on Gal3. The majority of the affected Gal3 residues localized to a composite surface that includes D111 and a sequence motif containing D368, which has been implicated in interaction with Gal80. The striking colocalization of intergenic suppressor residues and Gal80 nonbinder residues identifies a Gal3 surface that likely interacts with Gal80.
Collapse
|
23
|
Sellick CA, Campbell RN, Reece RJ. Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:111-50. [PMID: 18779058 DOI: 10.1016/s1937-6448(08)01003-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzymes of the Leloir pathway catalyze the conversion of galactose to a more metabolically useful version, glucose-6-phosphate. This pathway is required as galactose itself cannot be used for glycolysis directly. In most organisms, including the yeast Saccharomyces cerevisiae, five enzymes are required to catalyze this conversion: a galactose mutarotase, a galactokinase, a galactose-1-phosphate uridyltransferase, a UDP-galactose-4-epimerase, and a phosphoglucomutase. In yeast, the genes encoding these enzymes are tightly controlled at the level of transcription and are only transcribed under specific sets of conditions. In the presence of glucose, the genes encoding the Leloir pathway enzymes (often called the GAL genes) are repressed through the action of a transcriptional repressor Mig1p. In the presence of galactose, but in the absence of glucose, the concerted actions of three other proteins Gal4p, Gal80p, and Gal3p, and two small molecules (galactose and ATP) enable the rapid and high-level activation of the GAL genes. The precise molecular mechanism of the GAL genetic switch is controversial. Recent work on solving the three-dimensional structures of the various GAL enzymes proteins and the GAL transcriptional switch proteins affords a unique opportunity to delve into the precise, and potentially unambiguous, molecular mechanism of a highly exploited transcriptional circuit. Understanding the details of the transcriptional and metabolic events that occur in this pathway can be used as a paradigm for understanding the integration of metabolism and transcriptional control more generally, and will assist our understanding of fundamental biochemical processes and how these might be exploited.
Collapse
|
24
|
Hartl L, Kubicek CP, Seiboth B. Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. J Biol Chem 2007; 282:18654-18659. [PMID: 17452322 DOI: 10.1074/jbc.m700955200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae galactokinase ScGal1, a key enzyme for D-galactose metabolism, catalyzes the conversion of D-galactose to D-galactose 1-phosphate, whereas its catalytically inactive paralogue, ScGal3, activates the transcription of the GAL pathway genes. In Kluyveromyces lactis the transcriptional inducer function and the galactokinase activity are encoded by a single bifunctional KlGal1. Here, we investigated the cellular function of the single galactokinase GAL1 in the multicellular ascomycete Hypocrea jecorina (=Trichoderma reesei) in the induction of the gal genes and of the galactokinase-dependent induction of the cellulase genes by lactose (1,4-O-beta-D-galactopyranosyl-D-glucose). A comparison of the transcriptional response of a strain deleted in the gal1 gene (no putative transcriptional inducer and no galactokinase activity), a strain expressing a catalytically inactive GAL1 version (no galactokinase activity but a putative inducer function), and a strain expressing the Escherichia coli galK (no putative transcriptional inducer but galactokinase activity) showed that, in contrast to the two yeasts, both the GAL1 protein and the galactokinase activity are fully dispensable for induction of the Leloir pathway gene gal7 by D-galactose and that only the galactokinase activity is required for cellulase induction by lactose. The data document a fundamental difference in the mechanisms by which yeasts and multicellular fungi respond to the presence of D-galactose, showing that the Gal1/Gal3-Gal4-Gal80-dependent regulatory circuit does not operate in multicellular fungi.
Collapse
Affiliation(s)
- Lukas Hartl
- Molecular Biotechnology Group, Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Technische Universität Wien, Getreidemarkt 9-166.5, A-1060 Vienna, Austria.
| | - Christian P Kubicek
- Molecular Biotechnology Group, Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Technische Universität Wien, Getreidemarkt 9-166.5, A-1060 Vienna, Austria
| | - Bernhard Seiboth
- Molecular Biotechnology Group, Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Technische Universität Wien, Getreidemarkt 9-166.5, A-1060 Vienna, Austria
| |
Collapse
|
25
|
Thoden JB, Sellick CA, Reece RJ, Holden HM. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J Biol Chem 2006; 282:1534-8. [PMID: 17121853 DOI: 10.1074/jbc.c600285200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In yeast, the GAL genes encode the enzymes required for normal galactose metabolism. Regulation of these genes in response to the organism being challenged with galactose has served as a paradigm for eukaryotic transcriptional control over the last 50 years. Three proteins, the activator Gal4p, the repressor Gal80p, and the ligand sensor Gal3p, control the switch between inert and active gene expression. Gal80p, the focus of this investigation, plays a pivotal role both in terms of repressing the activity of Gal4p and allowing the GAL switch to respond to galactose. Here we present the three-dimensional structure of Gal80p from Kluyveromyces lactis and show that it is structurally homologous to glucose-fructose oxidoreductase, an enzyme in the sorbitol-gluconate pathway. Our results clearly define the overall tertiary and quaternary structure of Gal80p and suggest that Gal4p and Gal3p bind to Gal80p at distinct but overlapping sites. In addition to providing a molecular basis for previous biochemical and genetic studies, our structure demonstrates that much of the enzymatic scaffold of the oxidoreductase has been maintained in Gal80p, but it is utilized in a very different manner to facilitate transcriptional regulation.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
26
|
Hawkins KM, Smolke CD. The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae. J Biol Chem 2006; 281:13485-13492. [PMID: 16524886 DOI: 10.1074/jbc.m512317200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GAL genetic switch of Saccharomyces cerevisiae exhibits an ultrasensitive response to the inducer galactose as well as the "all-or-none" behavior characteristic of many eukaryotic regulatory networks. We have constructed a strain that allows intermediate levels of gene expression from a tunable GAL1 promoter at both the population and the single cell level by altering the regulation of the galactose permease Gal2p. Similar modifications to other feedback loops regulating the Gal80p repressor and the Gal3p signaling protein did not result in similarly tuned responses, indicating that the level of inducer transport is unique in its ability to control the switch response of the network. In addition, removal of the Gal1p galactokinase from the network resulted in a regimed response due to the dual role of this enzyme in galactose catabolism and transport. These two activities have competing effects on the response of the network to galactose such that the transport effects of Gal1p are dominant at low galactose concentrations, whereas its catabolic effects are dominant at high galactose concentrations. In addition, flow cytometry analysis revealed the unexpected phenomenon of multiple populations in the gal1delta strains, which were not present in the isogenic GAL1 background. This result indicates that Gal1p may play a previously undescribed role in the stability of the GAL network response.
Collapse
Affiliation(s)
- Kristy M Hawkins
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Christina D Smolke
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
27
|
Diep CQ, Peng G, Bewley M, Pilauri V, Ropson I, Hopper JE. Intragenic suppression of Gal3C interaction with Gal80 in the Saccharomyces cerevisiae GAL gene switch. Genetics 2006; 172:77-87. [PMID: 16219783 PMCID: PMC1456197 DOI: 10.1534/genetics.105.050807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/05/2005] [Indexed: 11/18/2022] Open
Abstract
Gal4-mediated activation of GAL gene transcription in Saccharomyces cerevisiae requires the interaction of Gal3 with Gal80, the Gal4 inhibitor protein. While it is known that galactose and ATP activates Gal3 interaction with Gal80, neither the mechanism of activation nor the surface that binds to Gal80 is known. We addressed this through intragenic suppression of GAL3C alleles that cause galactose-independent Gal3-Gal80 interaction. We created a new allele, GAL3SOC, and showed that it suppressed a new GAL3C allele. We tested the effect of GAL3SOC on several newly isolated and existing GAL3C alleles that map throughout the gene. All except one GAL3C allele, D368V, were suppressible by GAL3SOC. GAL3SOC and all GAL3C alleles were localized on a Gal3 homology model that is based on the structure of the highly related Gal1 protein. These results provide evidence for allosterism in the galactose- and ATP-activation of Gal3 binding to Gal80. In addition, because D368V and residues corresponding to Gal80-nonbinder mutations colocalized to a domain that is absent in homologous proteins that do not bind to Gal80, we suggest that D368 is a part of the Gal80-binding surface.
Collapse
Affiliation(s)
- Cuong Q Diep
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ferreira Júnior JR, Ramos ASP, Chambergo FS, Stambuk BU, Muschellack LK, Schumacher R, El-Dorry H. Functional expression of the maize mitochondrial URF13 down-regulates galactose-induced GAL1 gene expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2005; 339:30-6. [PMID: 16297867 DOI: 10.1016/j.bbrc.2005.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 11/01/2005] [Indexed: 11/21/2022]
Abstract
Genes for the enzymes that metabolize galactose in Saccharomyces cerevisiae are strongly induced by galactose and tightly repressed by glucose. Because glucose also represses mitochondrial activity, we examined if derepression of the GAL1 galactokinase gene requires physiologically active mitochondria. The effect of mitochondria on the expression of GAL1 was analyzed by a novel approach in which the activity of the organelles was altered by functional expression of URF13, a mitochondrial protein unique to the Texas-type cytoplasmic male sterility phenotype in maize. Mitochondrial targeting and functional expression of the URF13 protein in yeast result in a decrease of the mitochondrial membrane potential similar to those observed in cells treated with mitochondrial inhibitors such as antimycin A or sodium azide. Activation of URF13 in galactose-induced cells results in the inhibition of GAL1 expression in the absence of repressing concentrations of glucose. Our data reveal the existence of a regulatory pathway that connects the derepression of the GAL1 gene with mitochondrial activity.
Collapse
Affiliation(s)
- José Ribamar Ferreira Júnior
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Prof. Lineu Prestes, 748-São Paulo, SP 05508-000, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Sellick CA, Reece RJ. Eukaryotic transcription factors as direct nutrient sensors. Trends Biochem Sci 2005; 30:405-12. [PMID: 15950477 DOI: 10.1016/j.tibs.2005.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/03/2005] [Accepted: 05/24/2005] [Indexed: 11/23/2022]
Abstract
The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well-characterized systems by which the presence or absence of an individual metabolite can be recognized by a cell. The recognition of a metabolite is, however, just one step of a process that often results in changes in the expression of sets of genes required to respond to that metabolite. The signalling pathway between metabolite recognition and transcriptional control is often complex. However, recent evidence from yeast suggests that complex signalling pathways might be circumvented via the direct interaction between individual metabolites and regulators of RNA polymerase II transcription.
Collapse
Affiliation(s)
- Christopher A Sellick
- The University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
30
|
Lakshminarasimhan A, Bhat PJ. Replacement of a conserved tyrosine by tryptophan in Gal3p of Saccharomyces cerevisiae reduces constitutive activity: implications for signal transduction in the GAL regulon. Mol Genet Genomics 2005; 274:384-93. [PMID: 16160853 DOI: 10.1007/s00438-005-0031-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 06/14/2005] [Indexed: 05/04/2023]
Abstract
The ability of Saccharomyces cerevisiae to utilize galactose is regulated by the nucleo-cytoplasmic shuttling of a transcriptional repressor, the Gal80 protein. Gal80 interacts with the transcriptional activator Gal4 in the nucleus and inhibits its function, preventing induction of the GAL genes. In response to galactose, the relative amounts of Gal80 in the cytoplasm and the nucleus are modulated by the action of a signal transducer, Gal3. Although it has been speculated that Gal3 binds galactose, this has not been experimentally demonstrated. In this study, we show that replacement of a conserved tyrosine in Gal3 by tryptophan leads to a reduction of its constitutive activity in the absence of galactose. In addition, this mutant protein was fully functional in vivo only when high concentrations of galactose were present in the medium. When overexpressed, the mutant was found to activate the genes GAL1 and GAL7/10 differentially. The implications of these findings for the fine regulation of GAL genes, and its physiological significance, are discussed.
Collapse
Affiliation(s)
- Anirudha Lakshminarasimhan
- Laboratory of Molecular Genetics, School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India.
| | | |
Collapse
|
31
|
Thoden JB, Sellick CA, Timson DJ, Reece RJ, Holden HM. Molecular structure of Saccharomyces cerevisiae Gal1p, a bifunctional galactokinase and transcriptional inducer. J Biol Chem 2005; 280:36905-11. [PMID: 16115868 DOI: 10.1074/jbc.m508446200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gal1p of Saccharomyces cerevisiae is capable of performing two independent cellular functions. First, it is a key enzyme in the Leloir pathway for galactose metabolism where it catalyzes the conversion of alpha-d-galactose to galactose 1-phosphate. Second, it has the capacity to induce the transcription of the yeast GAL genes in response to the organism being challenged with galactose as the sole source of carbon. This latter function is normally performed by a highly related protein, Gal3p, but in its absence Gal1p can induce transcription, albeit inefficiently, both in vivo and in vitro. Here we report the x-ray structure of Gal1p in complex with alpha-d-galactose and Mg-adenosine 5'-(beta,gamma-imido)triphosphate (AMPPNP) determined to 2.4 Angstrom resolution. Overall, the enzyme displays a marked bilobal appearance with the active site being wedged between distinct N- and C-terminal domains. Despite being considerably larger than other galactokinases, Gal1p shares a similar molecular architecture with these enzymes as well as with other members of the GHMP superfamily. The extraordinary levels of similarity between Gal1p and Gal3p ( approximately 70% amino acid identity and approximately 90% similarity) have allowed a model for Gal3p to be constructed. By identifying the locations of mutations of Gal3p that result in altered transcriptional properties, we suggest potential models for Gal3p function and mechanisms for its interaction with the transcriptional inhibitor Gal80p. The GAL genetic switch has long been regarded as a paradigm for the control of gene expression in eukaryotes. Understanding the manner in which two of the proteins that function in transcriptional regulation interact with one another is an important step in determining the overall molecular mechanism of this switch.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
32
|
Rubio-Texeira M. A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. FEMS Yeast Res 2005; 5:1115-28. [PMID: 16014343 DOI: 10.1016/j.femsyr.2005.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/12/2005] [Accepted: 05/18/2005] [Indexed: 11/21/2022] Open
Abstract
Despite their close phylogenetic relationship, Kluyveromyces lactis and Saccharomyces cerevisiae have adapted their carbon utilization systems to different environments. Although they share identities in the arrangement, sequence and functionality of their GAL gene set, both yeasts have evolved important differences in the GAL genetic switch in accordance to their relative preference for the utilization of galactose as a carbon source. This review provides a comparative overview of the GAL-specific regulatory network in S. cerevisiae and K. lactis, discusses the latest models proposed to explain the transduction of the galactose signal, and describes some of the particularities that both microorganisms display in their regulatory response to different carbon sources. Emphasis is placed on the potential for improved strategies in biotechnological applications using yeasts.
Collapse
Affiliation(s)
- Marta Rubio-Texeira
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Bhat PJ, Venkatesh KV. Stochastic variation in the concentration of a repressor activates GAL genetic switch: implications in evolution of regulatory network. FEBS Lett 2005; 579:597-603. [PMID: 15670814 DOI: 10.1016/j.febslet.2004.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 12/13/2004] [Indexed: 11/30/2022]
Abstract
In Saccharomyces cerevisiae, a recessive mutation in the signal transducer encoded by GAL3 leads to a significant lag in the induction of GAL genes, referred to as long term adaptation phenotype (LTA). Further, gal3 mutation in combination with other genetic defects leads to the non-inducibility of GAL genes. It was shown that the expression of GAL1 encoded galactokinase, a redundant GAL3 like signal transducer, eventually substitutes for the lack of GAL3 signal transduction function. However, how GAL1 gets induced in the absence of GAL3 is not clear. We hypothesize that GAL1 induction in gal3 cells exposed to galactose is due to a stochastic decrease in the repressor, Gal80p concentration, leading to heterogeneity in the population. This observation explains not only LTA observed in gal3 cells but also explains the non-inducibility of gal3 mutants in combination with other genetic defects. By recruiting a dedicated signal transducer, GAL3, S. cerevisiae GAL switch has evolved to overcome the fortuitous induction, which occurs due to low signal to noise ratio in certain mutants of Escherichia coli and Kluveromyces lactis.
Collapse
Affiliation(s)
- Paike Jayadeva Bhat
- School of Biosciences & Bioengineering, Indian Institute of Technology, Powai, Mumbai 400 076, India.
| | | |
Collapse
|
34
|
Verma M, Bhat PJ, Bhartiya S, Venkatesh KV. A steady-state modeling approach to validate an in vivo mechanism of the GAL regulatory network in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 271:4064-74. [PMID: 15479235 DOI: 10.1111/j.1432-1033.2004.04344.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular regulation is a result of complex interactions arising from DNA-protein and protein-protein binding, autoregulation, and compartmentalization and shuttling of regulatory proteins. Experiments in molecular biology have identified these mechanisms recruited by a regulatory network. Mathematical models may be used to complement the knowledge-base provided by in vitro experimental methods. Interactions identified by in vitro experiments can lead to the hypothesis of multiple candidate models explaining the in vivo mechanism. The equilibrium dissociation constants for the various interactions and the total component concentration constitute constraints on the candidate models. In this work, we identify the most plausible in vivo network by comparing the output response to the experimental data. We demonstrate the methodology using the GAL system of Saccharomyces cerevisiae for which the steady-state analysis reveals that Gal3p neither dimerizes nor shuttles between the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Malkhey Verma
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | |
Collapse
|
35
|
Verma M, Bhat PJ, Venkatesh KV. Quantitative Analysis of GAL Genetic Switch of Saccharomyces cerevisiae Reveals That Nucleocytoplasmic Shuttling of Gal80p Results in a Highly Sensitive Response to Galactose. J Biol Chem 2003; 278:48764-9. [PMID: 14512430 DOI: 10.1074/jbc.m303526200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleocytoplasmic shuttling of the repressor Gal80p is known to play a pivotal role in the signal transduction process of GAL genetic switch of Saccharomyces cerevisiae (Peng, G., and Hopper, J. E. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 8548-8553). We have developed a comprehensive model of this GAL switch to quantify the expression from the GAL promoter containing one or two Gal4p-binding sites and to understand the biological significance of the shuttling process. Our experiments show that the expression of proteins from the GAL promoter containing one and two binding sites for Gal4p is ultrasensitive (a steep response to a given input). Furthermore, the model revealed that the shuttling of Gal80p is the key step in imparting ultrasensitive response to the inducer. During induction, free Gal80p concentration is altered by sequestration, without any change in the distribution coefficient across the nuclear membrane. Furthermore, the estimated concentrations of Gal80p and Gal3p allow basal expression of alpha-galactosidase, but not beta-galactosidase, from the GAL promoter containing one and two binding sites for Gal4p, respectively. Conversely, the expression from genes with two binding sites is more sensitive to inducer concentration as compared with one binding site. We show that autoregulation of Gal80p is coincidental to the autoregulation of Gal3p, and it does not impart ultrasensitivity. We conclude from our analysis that the ultrasensitivity of the GAL genetic switch is solely because of the shuttling phenomena of the repressor Gal80p across the nuclear membrane.
Collapse
Affiliation(s)
- Malkhey Verma
- Department of Chemical Engineering and School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India
| | | | | |
Collapse
|
36
|
Khanday FA, Saha M, Bhat PJ. Molecular characterization of MRG19 of Saccharomyces cerevisiae. Implication in the regulation of galactose and nonfermentable carbon source utilization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5840-50. [PMID: 12444972 DOI: 10.1046/j.1432-1033.2002.03303.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have reported previously that multiple copies of MRG19 suppress GAL genes in a wild-type but not in a gal80 strain of Saccharomyces cerevisiae. In this report we show that disruption of MRG19 leads to a decrease in GAL induction when S. cerevisiae is induced with 0.02% but not with 2.0% galactose. Disruption of MRG19 in a gal3 background (this strain shows long-term adaptation phenotype) further delays the GAL induction, supporting the notion that its function is important only under low inducing signals. As a corollary, disruption of MRG19 in a gal80 strain did not decrease the constitutive expression of GAL genes. These results suggest that MRG19 has a role in GAL regulation only when the induction signal is weak. Unlike the effect on GAL gene expression, disruption of MRG19 leads to de-repression of CYC1-driven beta-galactosidase activity. MRG19 disruptant also showed a twofold increase in the rate of oxygen uptake as compared with the wild-type strain. ADH2, CTA1, DLD1, and CYC7 promoters that are active during nonfermentative growth did not show any de-repression of beta-galactosidase activity in the MRG19 disruptant. Western blot analysis indicated that MRG19 is a glucose repressible gene and is expressed in galactose and glycerol plus lactate. Experiments using green fluorescent protein fusion constructs indicate that Mrg19p is localized in the nucleus consistent with the presence of a consensus nuclear localization signal sequence. Based on the above results, we propose that Mrg19p is a regulator of galactose and nonfermentable carbon utilization.
Collapse
Affiliation(s)
- Firdous A Khanday
- Laboratory of Molecular Genetics, Biotechnology Center, Indian Institute of Technology, Powai, Mumbai, India
| | | | | |
Collapse
|
37
|
Peng G, Hopper JE. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc Natl Acad Sci U S A 2002; 99:8548-53. [PMID: 12084916 PMCID: PMC124307 DOI: 10.1073/pnas.142100099] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Indexed: 01/22/2023] Open
Abstract
Galactose-inducible genes (GAL genes) in yeast Saccharomyces cerevisiae are efficiently transcribed only when the sequence-specific transcription activator Gal4p is activated. Activation of Gal4p requires the interaction between the Gal4p inhibitory protein Gal80p and the galactokinase paralog, Gal3p. It has been proposed that Gal3p binds to a Gal80p-Gal4p complex in the nucleus to activate Gal4p. Here, we present evidence that the Gal3p-Gal80p interaction occurs in the cytoplasm, and concurrently, Gal80p is removed from Gal4p at the GAL gene promoter. We also show that GAL gene expression can be activated by heterologous protein-protein interaction in the cytoplasm that is independent of galactose and Gal3p function. These results indicate that galactose-triggered Gal3p-Gal80p association in the cytoplasm activates Gal4p in the nucleus.
Collapse
Affiliation(s)
- Gang Peng
- Graduate Program in Biochemistry and Molecular Biology, Intercollege Graduate Program in Genetics, and Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
38
|
Timson DJ, Reece RJ. Kinetic analysis of yeast galactokinase: implications for transcriptional activation of the GAL genes. Biochimie 2002; 84:265-72. [PMID: 12106903 DOI: 10.1016/s0300-9084(02)01399-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Galactokinase (EC 2.7.1.6) catalyses the first step in the catabolism of galactose. Yeast galactokinase, Gal1p, and the closely related but catalytically inactive Gal3p, also function as ligand sensors in the GAL genetic switch. In the presence of galactose and ATP (the substrates of the reaction catalysed by Gal1p) Gal1p or Gal3p can bind to Gal80p, a transcriptional repressor. This relieves the inhibition of a transcriptional activator, Gal4p, and permits expression of the GAL genes. In order to learn more about the mechanism of ligand sensing by Gal3p and Gal1p, we studied the kinetics of the reaction catalysed by Gal1p. Galactose-1-phosphate, a product of the reaction, is a mixed inhibitor both with respect to galactose and to ATP suggesting that the reaction proceeds via a compulsory, ordered, ternary complex mechanism. There is little variation in either the turnover number or the specificity constants in the pH range 6.0-9.5, implying that no catalytic base is required in the reaction. These data are discussed both in the context of galactokinase enzymology and their implications for the mechanism of transcriptional induction.
Collapse
Affiliation(s)
- David J Timson
- School of Biological Sciences, The University of Manchester, 2.205 Stopford Building, Oxford Road, M13 9PT, Manchester, UK
| | | |
Collapse
|
39
|
Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. THE PLANT CELL 2002; 14 Suppl:S185-205. [PMID: 12045277 PMCID: PMC151255 DOI: 10.1105/tpc.010455] [Citation(s) in RCA: 613] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2001] [Accepted: 02/20/2002] [Indexed: 05/18/2023]
Affiliation(s)
| | | | - Jen Sheen
- To whom correspondence should be addressed. E-mail ; fax 617-726-6893
| |
Collapse
|
40
|
Bhat PJ, Murthy TV. Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol Microbiol 2001; 40:1059-66. [PMID: 11401712 DOI: 10.1046/j.1365-2958.2001.02421.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the interplay between Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes needed for galactose utilization. The interaction between Gal80p and Gal4p has been studied in great detail; however, our understanding of the mechanism of Gal3p in transducing the signal from galactose to Gal4p has only begun to emerge recently. Historically, Gal3p was believed to be an enzyme (catalytic model) that converts galactose to an inducer or co-inducer, which was thought to interact with GAL80p, the repressor of the system. However, recent genetic analyses indicate an alternative 'protein-protein interaction model'. According to this model, Gal3p is activated by galactose, which leads to its interaction with Gal80p. Biochemical and genetic experiments that support this model provided new insights into how Gal3p interacts with the Gal80p-Gal4p complex, alleviates the repression of Gal80p and thus allows Gal4p to activate transcription. Recently, a galactose-independent signal was suggested to co-ordinate the induction of GAL genes with the energy status of the cell.
Collapse
Affiliation(s)
- P J Bhat
- Molecular Genetics Laboratory, Biotechnology Centre, Indian Institute of Technology, Powai, Mumbai 400 076, India.
| | | |
Collapse
|
41
|
Abstract
Plant fructokinases are the gateway to fructose metabolism. Here, we discuss the properties of published plant fructokinases and compare the available protein sequences. In addition, we speculate on the possible function of fructokinases as sugar sensors. A proposal is presented to clarify the confusing fructokinase nomenclature. Only a few plant fructokinase genes have been cloned but the recent isolations of two such genes in tomato and three in Arabidopsis have given this research an important impulse.
Collapse
Affiliation(s)
- J V Pego
- Dept of Biology, Minho University, Gualtar campus, 4710-057 Braga, Portugal
| | | |
Collapse
|
42
|
Levett LJ, Si-Hoe SM, Liddle S, Wheeler K, Smith D, Lamb HK, Newton GH, Coggins JR, Hawkins AR. Identification of domains responsible for signal recognition and transduction within the QUTR transcription repressor protein. Biochem J 2000; 350 Pt 1:189-97. [PMID: 10926843 PMCID: PMC1221241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
QUTR (qutR-encoded transcription-repressing protein) is a multi-domain repressor protein active in the signal-transduction pathway that regulates transcription of the quinic acid utilization (qut) gene cluster in Aspergillus nidulans. In the presence of quinate, production of mRNA from the eight genes of the qut pathway is stimulated by the activator protein QUTA (qutA-encoded transcription-activating protein). Mutations in the qutR gene alter QUTR function such that the transcription of the qut gene cluster is permanently on (constitutive phenotype) or is insensitive to the presence of quinate (super-repressed phenotype). These mutant phenotypes imply that the QUTR protein plays a key role in signal recognition and transduction, and we have used deletion analysis to determine which regions of the QUTR protein are involved in these functions. We show that the QUTR protein recognizes and binds to the QUTA protein in vitro and that the N-terminal 88 amino acids of QUTR are sufficient to inactivate QUTA function in vivo. Deletion analysis and domain-swap experiments imply that the two C-terminal domains of QUTR are mainly involved in signal recognition.
Collapse
Affiliation(s)
- L J Levett
- Department of Biochemistry and Genetics, Catherine Cookson Building, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Murthy TV, Jayadeva Bhat P. Disruption of galactokinase signature sequence in gal3p of Saccharomyces cerevisiae does not lead to loss of signal transduction function. Biochem Biophys Res Commun 2000; 273:824-8. [PMID: 10891331 DOI: 10.1006/bbrc.2000.3015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gal3p of Saccharomyces cerevisiae is a 520-amino-acid residue protein, which activates the GAL genes in the presence of galactose by relieving the repression of Gal80p. It shows significant amino acid sequence homology to galactokinases but does not possess galactokinase activity. Deletion mutants of Gal3p were generated to identify the role of N-terminal amino acid residues required for function. The mutant versions of Gal3p could be detected on a Western blot. The Gal3p mutant lacking N-terminal 50-amino-acid residues which is disrupted for galactokinase signature sequence was found to be functional. These results suggest that the evolutionarily conserved galactokinase signature sequence present in known galactokinases may not have a role in Gal3p function.
Collapse
Affiliation(s)
- T V Murthy
- Molecular Genetics Laboratory, Indian Institute of Technology, Powai, Mumbai, 400 076, India
| | | |
Collapse
|
44
|
Peng G, Hopper JE. Evidence for Gal3p's cytoplasmic location and Gal80p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:5140-8. [PMID: 10866670 PMCID: PMC85963 DOI: 10.1128/mcb.20.14.5140-5148.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetics and in vitro studies have shown that the direct interaction between Gal3p and Gal80p plays a central role in galactose-dependent Gal4p-mediated GAL gene expression in the yeast Saccharomyces cerevisiae. Precisely how Gal3p-Gal80p interaction effects induction is not clear. It has been assumed that Gal3p interacts with Gal80p in the nucleus upon galactose addition to release Gal80p inhibition of Gal4p. Although Gal80p has been shown to possess nuclear localization signal (NLS) peptides, the subcellular distribution of neither Gal80p nor Gal3p was previously determined. Here we report that Gal3p is located in the cytoplasm and apparently excluded from the nucleus. We show that Gal80p is located in both the cytoplasm and the nucleus. Converting Gal80p into a nucleus-localized protein (NLS-Gal80p) by exogenous NLS addition impairs GAL gene induction. The impaired induction can be partially suppressed by targeting Gal3p to the nucleus (NLS-Gal3p). We document a very rapid association between NLS-Gal3p and Gal80p in vivo in response to galactose, illustrating that the nuclear import of Gal80p is very rapid and efficient. We also demonstrate that nucleus-localized NLS-Gal80p can move out of the nucleus and shuttle between nuclei in yeast heterokaryons. These results are the first indication that the subcellular distribution dynamics of the Gal3 and Gal80 proteins play a role in regulating Gal4p-mediated GAL gene expression in vivo.
Collapse
Affiliation(s)
- G Peng
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
45
|
Abstract
Gal4p activates transcription of the Saccharomyces GAL genes in response to galactose and is phosphorylated during interaction with the RNA polymerase II (Pol II) holoenzyme. One phosphorylation at S699 is necessary for full GAL induction and is mediated by Srb10p/CDK8 of the RNA Pol II holoenzyme mediator subcomplex. Gal4p S699 phosphorylation is necessary for sensitive response to inducer, and its requirement for GAL induction can be abrogated by high concentrations of galactose in strains expressing wild-type GAL2 and GAL3. Gal4p S699 phosphorylation occurs independently of Gal3p and is responsible for the long-term adaptation response observed in gal3 yeast. SRB10 and GAL3 are shown to represent parallel mechanisms for GAL gene induction. These results demonstrate that Gal4p activity is controlled by two independent signals: one that acts through Gal3p-galactose and a second that is mediated by the holoenzyme-associated cyclin-dependent kinase Srb10p. Since Srb10p is regulated independently of galactose, our results suggest a function for CDK8 in coordinating responses to specific inducers with the environment through the phosphorylation of gene-specific activators.
Collapse
Affiliation(s)
- J R Rohde
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
46
|
Platt A, Ross HC, Hankin S, Reece RJ. The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase. Proc Natl Acad Sci U S A 2000; 97:3154-9. [PMID: 10737789 PMCID: PMC16208 DOI: 10.1073/pnas.97.7.3154] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcriptional induction of the GAL genes of Saccharomyces cerevisiae occurs when galactose and ATP interact with Gal3p. This protein-small molecule complex associates with Gal80p to relieve its inhibitory effect on the transcriptional activator Gal4p. Gal3p shares a high degree of sequence homology to galactokinase, Gal1p, but does not itself possess galactokinase activity. By constructing chimeric proteins in which regions of the GAL1 gene are inserted into the GAL3 coding sequence, we have been able to impart galactokinase activity upon Gal3p as judged in vivo and in vitro. Remarkably, the insertion of just two amino acids from Gal1p into the corresponding region of Gal3p confers galactokinase activity onto the resultant protein. The chimeric protein, termed Gal3p+SA, retains its ability to efficiently induce the GAL genes. Kinetic analysis of Gal3p+SA reveals that the K(m) for galactose is similar to that of Gal1p, but the K(m) for ATP is increased. The chimeric enzyme was found to have a decreased turnover number in comparison to Gal1p. These results are discussed in terms of both the mechanism of galactokinase function and that of transcriptional induction.
Collapse
Affiliation(s)
- A Platt
- School of Biological Sciences, The University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
47
|
Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE. The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Mol Cell Biol 1999; 19:7828-40. [PMID: 10523671 PMCID: PMC84853 DOI: 10.1128/mcb.19.11.7828] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gal3, Gal80, and Gal4 proteins of Saccharomyces cerevisiae comprise a signal transducer that governs the galactose-inducible Gal4p-mediated transcription activation of GAL regulon genes. In the absence of galactose, Gal80p binds to Gal4p and prohibits Gal4p from activating transcription, whereas in the presence of galactose, Gal3p binds to Gal80p and relieves its inhibition of Gal4p. We have found that immunoprecipitation of full-length Gal4p from yeast extracts coprecipitates less Gal80p in the presence than in the absence of Gal3p, galactose, and ATP. We have also found that retention of Gal80p by GSTG4AD (amino acids [aa] 768 to 881) is markedly reduced in the presence compared to the absence of Gal3p, galactose, and ATP. Consistent with these in vitro results, an in vivo two-hybrid genetic interaction between Gal80p and Gal4p (aa 768 to 881) was shown to be weaker in the presence than in the absence of Gal3p and galactose. These compiled results indicate that the binding of Gal3p to Gal80p results in destabilization of a Gal80p-Gal4p complex. The destabilization was markedly higher for complexes consisting of G4AD (aa 768 to 881) than for full-length Gal4p, suggesting that Gal80p relocated to a second site on full-length Gal4p. Congruent with the idea of a second site, we discovered a two-hybrid genetic interaction involving Gal80p and the region of Gal4p encompassing aa 225 to 797, a region of Gal4p linearly remote from the previously recognized Gal80p binding peptide within Gal4p aa 768 to 881.
Collapse
Affiliation(s)
- A K Sil
- Department of Biochemistry, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mehta DV, Kabir A, Bhat PJ. Expression of human inositol monophosphatase suppresses galactose toxicity in Saccharomyces cerevisiae: possible implications in galactosemia. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1454:217-26. [PMID: 10452956 DOI: 10.1016/s0925-4439(99)00037-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A suppressor of galactose toxicity in a gal7 yeast strain (lacking galactose 1-phosphate uridyl transferase) has been isolated from a HeLa cell cDNA library. Analysis of the plasmid clone indicated that the insert has an ORF identical to that of hIMPase (human myo-inositol monophosphatase). The ability of hIMPase to suppress galactose toxicity is sensitive to the presence of Li(+) in the medium. A gal7 yeast strain harboring a plasmid containing cloned hIMPase grows on galactose as a sole carbon source. hIMPase mediated galactose metabolism is dependent on the functionality of GAL1 as well as GAL10 encoded galactokinase and epimerase respectively. These results predicted that the UDP-glucose/galactose pyrophosphorylase mediated pathway may be responsible for the relief of galactose toxicity. Experiments conducted to test this prediction revealed that expression of UGP1 encoded UDP-glucose pyrophosphorylase can indeed overcome the relief of galactose toxicity. Moreover, expression of UGP1 allows a gal7 strain to grow on galactose as a sole carbon source. Unlike the hIMPase mediated relief of galactose toxicity, UGP1 mediated relief of galactose toxicity is lithium insensitive. Based on our results and on the basis of available information on galactose toxicity, we suggest an alternative explanation for the molecular mechanism of galactose toxicity.
Collapse
Affiliation(s)
- D V Mehta
- Laboratory of Molecular Genetics, Biotechnology Centre, Indian Institute of Technology, Powai, Mumbai 400 076, India
| | | | | |
Collapse
|
49
|
Zenke FT, Kapp L, Breunig KD. Regulated phosphorylation of the Gal4p inhibitor Gal80p of Kluyveromyces lactis revealed by mutational analysis. Biol Chem 1999; 380:419-30. [PMID: 10355628 DOI: 10.1515/bc.1999.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The yeast Gal80 protein inhibits the transcription activation function of Gal4p by physically interacting with the activation domain (Gal4-AD). Gal80p interaction with Gal1p or Gal3p is required to relieve Gal4p inhibition in response to galactose. Gal80p orthologs of Saccharomyces cerevisiae and Kluyveromyces lactis, ScGal80p and KIGal80p, can also inhibit the heterologous Gal4p variants; however, heterologous Gal3p/Gal1p only regulate ScGal80p but not KIGal80p. To compare KIGal80p and ScGal80p, point mutations known to affect ScGal80p function were introduced at corresponding positions in KIGal80p, and Gal4p regulation in vivo and KIGal80p-binding to Gst-Gal1p and Gst-Gal4-AD in vitro were analysed. The in vitro binding properties of the KIGal80p mutants were similar to those of ScGal80p, but two out of four mutants differed in Gal4p regulation. E. g. KIGAL80s-0(G302R) but not ScGAL80s-0 (G301R) alleviates Gal4p inhibition. Possibly, this difference is related to a role of phosphorylation in the regulation of Gal80p function in K. lactis. Wild-type and mutant forms of KIGal80p are shown to be subject to carbon source regulated phosphorylation whereas no evidence for ScGal80p phosphorylation exists. (Hyper-)phosphorylation of KIGal80p is strongly reduced in galactose-containing medium. This reduction requires KIGal1p but no interaction with KIGal4p. The inhibition deficient KIGal80s-0p (G302R) variant is under-phosphorylated. We thus propose that phosphorylation of Gal80p in Kluyveromyces lactis contributes to the regulation of Gal4p mediated transcription.
Collapse
Affiliation(s)
- F T Zenke
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
50
|
Platt A, Reece RJ. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J 1998; 17:4086-91. [PMID: 9670023 PMCID: PMC1170741 DOI: 10.1093/emboj/17.14.4086] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Saccharomyces cerevisiae responds to galactose as the sole source of carbon by activating the GAL genes encoding the enzymes of the Leloir pathway. Here, we show in vitro that the switch from repressed to activated gene expression involves the interplay of three proteins [an activator (Gal4p), a repressor (Gal80p) and an inducer (Gal3p)] and two small molecules (galactose and ATP). We also show that the galactose- and ATP-dependent interaction between Gal3p and Gal80p occurs without disruption of the Gal80p-Gal4p interaction. Thus, Gal3p-mediated activation of transcription occurs via the formation of a tripartite protein complex.
Collapse
Affiliation(s)
- A Platt
- School of Biological Sciences, The University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|