1
|
Xiao M, Chen N, He C, Shi S, Lu Q, Lv S. Generation of Yeast Protoplasts by Lytic Actions of Iron Oxide Magnetic Nanoparticles. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Menglin Xiao
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Niuniu Chen
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Qinfu Lu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| | - Shanshan Lv
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
2
|
Liesche J, Marek M, Günther-Pomorski T. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells. Front Microbiol 2015; 6:107. [PMID: 25717323 PMCID: PMC4324143 DOI: 10.3389/fmicb.2015.00107] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/27/2015] [Indexed: 11/13/2022] Open
Abstract
Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.
Collapse
Affiliation(s)
- Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Magdalena Marek
- Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Thomas Günther-Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
3
|
Lefevre SD, Roermund CW, Wanders RJA, Veenhuis M, Klei IJ. The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae. Aging Cell 2013; 12:784-93. [PMID: 23755917 PMCID: PMC3824234 DOI: 10.1111/acel.12113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 12/01/2022] Open
Abstract
We studied the chronological lifespan of glucose-grown Saccharomyces cerevisiae in relation to the function of intact peroxisomes. We analyzed four different peroxisome-deficient (pex) phenotypes. These included Δpex3 cells that lack peroxisomal membranes and in which all peroxisomal proteins are mislocalized together with Δpex6 in which all matrix proteins are mislocalized to the cytosol, whereas membrane proteins are still correctly sorted to peroxisomal ghosts. In addition, we analyzed two mutants in which the peroxisomal location of the β-oxidation machinery is in part disturbed. We analyzed Δpex7 cells that contain virtually normal peroxisomes, except that all matrix proteins that contain a peroxisomal targeting signal type 2 (PTS2, also including thiolase), are mislocalized to the cytosol. In Δpex5 cells, peroxisomes only contain matrix proteins with a PTS2 in conjunction with all proteins containing a peroxisomal targeting signal type 1 (PTS1, including all β-oxidation enzymes except thiolase) are mislocalized to the cytosol. We show that intact peroxisomes are an important factor in yeast chronological aging because all pex mutants showed a reduced chronological lifespan. The strongest reduction was observed in Δpex5 cells. Our data indicate that this is related to the complete inactivation of the peroxisomal β-oxidation pathway in these cells due to the mislocalization of thiolase. Our studies suggest that during chronological aging, peroxisomal β-oxidation contributes to energy generation by the oxidation of fatty acids that are released by degradation of storage materials and recycled cellular components during carbon starvation conditions.
Collapse
Affiliation(s)
- Sophie D. Lefevre
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) University of Groningen P.O. Box 111039700CC Groningen The Netherlands
| | - Carlo W. Roermund
- Departments of Pediatrics and Clinical Chemistry Laboratory of Genetic Metabolic Diseases Academic Medical Centre University of Amsterdam 1105 AZ Amsterdam The Netherlands
| | - Ronald J. A. Wanders
- Departments of Pediatrics and Clinical Chemistry Laboratory of Genetic Metabolic Diseases Academic Medical Centre University of Amsterdam 1105 AZ Amsterdam The Netherlands
| | - Marten Veenhuis
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) University of Groningen P.O. Box 111039700CC Groningen The Netherlands
| | - Ida J. Klei
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) University of Groningen P.O. Box 111039700CC Groningen The Netherlands
| |
Collapse
|
4
|
Role of actin-bundling protein Sac6 in growth of Cryptococcus neoformans at low oxygen concentration. EUKARYOTIC CELL 2012; 11:943-51. [PMID: 22562467 DOI: 10.1128/ec.00120-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cryptococcus neoformans, the etiologic agent of cryptococcosis, is an obligately aerobic yeast that inhabits an environmental niche exposed to ambient air. The cell doubling time was significantly prolonged under 1% O(2) relative to that under normoxic conditions. No apparent cell cycle arrest occurred following a shift from ambient air to 1% O(2). However, yeast cells became hypersensitive to the actin monomer-sequestering agent latrunculin A at 1% O(2), indicating that proper actin function is critical for growth at low oxygen concentrations. We showed that Sac6, an actin-binding protein, played an important role in cell growth under low oxygen conditions. Sac6 colocalized with cortical actin patches and with the ring structures between mother cells and buds. Under low oxygen conditions, the sac6 deletion mutant grew poorly, and accumulation of the actin capping protein Cap1 was observed in the vacuole of the sac6Δ strain. Furthermore, endocytic processes were hampered in the sac6Δ mutant, but cell polarity and cytokinesis were not visibly disturbed. The deficiency of endocytosis in the sac6Δ strain could be rescued by 1 M sorbitol under 1% O(2), but growth remained retarded. These results suggest an absence of a direct link in C. neoformans between endocytosis and coping with the stress of low oxygen conditions. This interpretation is further supported by the observation that deletion of three conserved genes, ABP1, CRN1, and SLA2, which play important roles in endocytosis, had no effect on growth under 1% O(2). Interestingly, deletion of SAC6 in C. neoformans had no effect on virulence in mice.
Collapse
|
5
|
Abstract
Dynactin is a multisubunit protein complex necessary for dynein function. Here, we investigated the function of dynactin in budding yeast. Loss of dynactin impaired movement and positioning of the mitotic spindle, similar to loss of dynein. Dynactin subunits required for function included p150(Glued), dynamitin, actin-related protein (Arp) 1 and p24. Arp10 and capping protein were dispensable, even in combination. All dynactin subunits tested localized to dynamic plus ends of cytoplasmic microtubules, to stationary foci on the cell cortex and to spindle pole bodies. The number of molecules of dynactin in those locations was small, less than five. In the absence of dynactin, dynein accumulated at plus ends and did not appear at the cell cortex, consistent with a role for dynactin in offloading dynein from the plus end to the cortex. Dynein at the plus end was necessary for dynactin plus-end targeting. p150(Glued) was the only dynactin subunit sufficient for plus-end targeting. Interactions among the subunits support a molecular model that resembles the current model for brain dynactin in many respects; however, three subunits at the pointed end of brain dynactin appear to be absent from yeast.
Collapse
Affiliation(s)
- Jeffrey K Moore
- Department of Cell Biology and Physiology, Washington University, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
6
|
Ko N, Nishihama R, Tully GH, Ostapenko D, Solomon MJ, Morgan DO, Pringle JR. Identification of yeast IQGAP (Iqg1p) as an anaphase-promoting-complex substrate and its role in actomyosin-ring-independent cytokinesis. Mol Biol Cell 2007; 18:5139-53. [PMID: 17942599 PMCID: PMC2096582 DOI: 10.1091/mbc.e07-05-0509] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 10/01/2007] [Accepted: 10/09/2007] [Indexed: 01/06/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, a ring of myosin II forms in a septin-dependent manner at the budding site in late G1. This ring remains at the bud neck until the onset of cytokinesis, when actin is recruited to it. The actomyosin ring then contracts, septum formation occurs concurrently, and cytokinesis is soon completed. Deletion of MYO1 (the only myosin II gene) is lethal on rich medium in the W303 strain background and causes slow-growth and delayed-cell-separation phenotypes in the S288C strain background. These phenotypes can be suppressed by deletions of genes encoding nonessential components of the anaphase-promoting complex (APC/C). This suppression does not seem to result simply from a delay in mitotic exit, because overexpression of a nondegradable mitotic cyclin does not suppress the same phenotypes. Overexpression of either IQG1 or CYK3 also suppresses the myo1Delta phenotypes, and Iqg1p (an IQGAP protein) is increased in abundance and abnormally persistent after cytokinesis in APC/C mutants. In vitro assays showed that Iqg1p is ubiquitinated directly by APC/C(Cdh1) via a novel recognition sequence. A nondegradable Iqg1p (lacking this recognition sequence) can suppress the myo1Delta phenotypes even when expressed at relatively low levels. Together, the data suggest that compromise of APC/C function allows the accumulation of Iqg1p, which then promotes actomyosin-ring-independent cytokinesis at least in part by activation of Cyk3p.
Collapse
Affiliation(s)
- Nolan Ko
- *Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Ryuichi Nishihama
- *Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Gregory H. Tully
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143; and
| | - Denis Ostapenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Mark J. Solomon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - David O. Morgan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143; and
| | - John R. Pringle
- *Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
7
|
Ho HL, Shiau YS, Chen MY. Saccharomyces cerevisiaeTSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex. Curr Genet 2005; 47:273-88. [PMID: 15809876 DOI: 10.1007/s00294-005-0570-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 02/10/2005] [Accepted: 02/20/2005] [Indexed: 12/22/2022]
Abstract
Saccharomyces cerevisiae TSC11/AVO3 is an essential gene encoding one component of TORC2, a multi-protein complex of yeast Tor2p that also contains Lst8p, Avo1p, and Avo2p. Despite the proven physical association among TORC2 components, little is known about the functional linkage or cellular pathways these proteins act in. Here, we present genetic data linking the function of TSC11 to the regulation of cell integrity. Mutants carrying temperature-sensitive (ts) alleles in different regions of TSC11 displayed cell wall defects, evidenced by characteristic osmotic stabilizer-remediable cell lysis, susceptibility to trypan blue staining, and sensitivity to cell wall-digesting enzymes. Dosage suppression analysis identified different groups of genes in rescuing phenotypes of different tsc11(ts) mutants. AVO1 suppressed one class of mutants, whereas active PKC1, AVO2, and SLM1 partially rescued another. Our findings demonstrate functional connections among TORC2 components and we speculate that Tsc11p exerts its function via a Pkc1p-independent mechanism mediated through Avo1p, and a Pkc1p-dependent mechanism mediated through Avo2p and Slm1p.
Collapse
Affiliation(s)
- Hsiang-Ling Ho
- Institute of Biochemistry, School of Life Sciences and Department of Biochemistry, School of Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Shih-Pai, Taipei, 112, Taiwan
| | | | | |
Collapse
|
8
|
Grimme SJ, Gao XD, Martin PS, Tu K, Tcheperegine SE, Corrado K, Farewell AE, Orlean P, Bi E. Deficiencies in the endoplasmic reticulum (ER)-membrane protein Gab1p perturb transfer of glycosylphosphatidylinositol to proteins and cause perinuclear ER-associated actin bar formation. Mol Biol Cell 2004; 15:2758-70. [PMID: 15075373 PMCID: PMC420100 DOI: 10.1091/mbc.e04-01-0035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The essential GAB1 gene, which encodes an endoplasmic reticulum (ER)-membrane protein, was identified in a screen for mutants defective in cellular morphogenesis. A temperature-sensitive gab1 mutant accumulates complete glycosylphosphatidylinositol (GPI) precursors, and its temperature sensitivity is suppressed differentially by overexpression of different subunits of the GPI transamidase, from strong suppression by Gpi8p and Gpi17p, to weak suppression by Gaa1p, and to no suppression by Gpi16p. In addition, both Gab1p and Gpi17p localize to the ER and are in the same protein complex in vivo. These findings suggest that Gab1p is a subunit of the GPI transamidase with distinct relationships to other subunits in the same complex. We also show that depletion of Gab1p or Gpi8p, but not Gpi17p, Gpi16p, or Gaa1p causes accumulation of cofilin-decorated actin bars that are closely associated with the perinuclear ER, which highlights a functional interaction between the ER network and the actin cytoskeleton.
Collapse
Affiliation(s)
- Stephen J Grimme
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim K, Yamashita A, Wear MA, Maéda Y, Cooper JA. Capping protein binding to actin in yeast: biochemical mechanism and physiological relevance. ACTA ACUST UNITED AC 2004; 164:567-80. [PMID: 14769858 PMCID: PMC2171992 DOI: 10.1083/jcb.200308061] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which capping protein (CP) binds barbed ends of actin filaments is not understood, and the physiological significance of CP binding to actin is not defined. The CP crystal structure suggests that the COOH-terminal regions of the CP α and β subunits bind to the barbed end. Using purified recombinant mutant yeast CP, we tested this model. CP lacking both COOH-terminal regions did not bind actin. The α COOH-terminal region was more important than that of β. The significance of CP's actin-binding activity in vivo was tested by determining how well CP actin-binding mutants rescued null mutant phenotypes. Rescue correlated well with capping activity, as did localization of CP to actin patches, indicating that capping is a physiological function for CP. Actin filaments of patches appear to be nucleated first, then capped with CP. The binding constants of yeast CP for actin suggest that actin capping in yeast is more dynamic than in vertebrates.
Collapse
Affiliation(s)
- Kyoungtae Kim
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
10
|
Huang S, Blanchoin L, Kovar DR, Staiger CJ. Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J Biol Chem 2003; 278:44832-42. [PMID: 12947123 DOI: 10.1074/jbc.m306670200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The precise regulation of actin filament polymerization and depolymerization is essential for many cellular processes and is choreographed by a multitude of actin-binding proteins (ABPs). In higher plants the number of well characterized ABPs is quite limited, and some evidence points to significant differences in the biochemical properties of apparently conserved proteins. Here we provide the first evidence for the existence and biochemical properties of a heterodimeric capping protein from Arabidopsis thaliana (AtCP). The purified recombinant protein binds to actin filament barbed ends with Kd values of 12-24 nM, as assayed both kinetically and at steady state. AtCP prevents the addition of profilin actin to barbed ends during a seeded elongation reaction and suppresses dilution-mediated depolymerization. It does not, however, sever actin filaments and does not have a preference for the source of actin. During assembly from Mg-ATP-actin monomers, AtCP eliminates the initial lag period for actin polymerization and increases the maximum rate of polymerization. Indeed, the efficiency of actin nucleation of 0.042 pointed ends created per AtCP polypeptide compares favorably with mouse CapZ, which has a maximal nucleation of 0.17 pointed ends per CapZ polypeptide. AtCP activity is not affected by calcium but is sensitive to phosphatidylinositol 4,5-bisphosphate. We propose that AtCP is a major regulator of actin dynamics in plant cells that, together with abundant profilin, is responsible for maintaining a large pool of actin subunits and a surprisingly small population of F-actin.
Collapse
Affiliation(s)
- Shanjin Huang
- Department of Biological Sciences and Purdue Motility Group, Purdue University, West Lafayette, Indiana 47907-2064, USA
| | | | | | | |
Collapse
|
11
|
Nigavekar SS, Cannon JF. Characterization of genes that are synthetically lethal with ade3 or leu2 in Saccharomyces cerevisiae. Yeast 2002; 19:115-22. [PMID: 11788966 DOI: 10.1002/yea.807] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Combinations of two non-lethal mutations that result in cell death are synthetically lethal. Such a genetic relationship suggests a functional interaction between the corresponding gene products. Frequently, an ade2 ade3 colony-sectoring assay is used to screen for synthetic lethal mutants. In these screens, mutants are sought that fail to lose a plasmid that bears a gene of interest. However, a subset of mutants is often found that is dependent on plasmid components other than the target gene. To understand the mechanism of this dependence, we characterized those mutants that, although prevalent in most mutant hunts, are usually discarded. Using a LEU2-ADE3 plasmid, plasmid-dependent mutations were found in the SHM2, PTR3, BAP2 and SSY1 genes. Double shm2 ade3 mutants are non-viable because the two pathways for tetrahydrofolate synthesis are blocked. Mutations in PTR3, BAP2 and SSY1 disrupt sensing and transport of extracellular leucine. Therefore, ptr3, bap2 or ssy1 mutants must be leucine prototrophs to grow on rich media. In light of these findings, we propose modifications that should improve the efficiency of synthetic lethal screening procedures.
Collapse
Affiliation(s)
- Shraddha S Nigavekar
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | |
Collapse
|
12
|
Nakano K, Satoh K, Morimatsu A, Ohnuma M, Mabuchi I. Interactions among a fimbrin, a capping protein, and an actin-depolymerizing factor in organization of the fission yeast actin cytoskeleton. Mol Biol Cell 2001; 12:3515-26. [PMID: 11694585 PMCID: PMC60272 DOI: 10.1091/mbc.12.11.3515] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We report studies of the fission yeast fimbrin-like protein Fim1, which contains two EF-hand domains and two actin-binding domains (ABD1 and ABD2). Fim1 is a component of both F-actin patches and the F-actin ring, but not of F-actin cables. Fim1 cross-links F-actin in vitro, but a Fim1 protein lacking either EF-hand domains (Fim1A12) or both the EF-hand domains and ABD1 (Fim1A2) has no actin cross-linking activity. Overexpression of Fim1 induced the formation of F-actin patches throughout the cell cortex, whereas the F-actin patches disappear in cells overexpressing Fim1A12 or Fim1A2. Thus, the actin cross-linking activity of Fim1 is probably important for the formation of F-actin patches. The overexpression of Fim1 also excluded the actin-depolymerizing factor Adf1 from the F-actin patches and inhibited the turnover of actin in these structures. Thus, Fim1 may function in stabilizing the F-actin patches. We also isolated the gene encoding Acp1, a subunit of the heterodimeric F-actin capping protein. fim1 acp1 double null cells showed more severe defects in the organization of the actin cytoskeleton than those seen in each single mutant. Thus, Fim1 and Acp1 may function in a similar manner in the organization of the actin cytoskeleton. Finally, genetic studies suggested that Fim1 may function in cytokinesis in cooperation with Cdc15 (PSTPIP) and Rng2 (IQGAP), respectively.
Collapse
Affiliation(s)
- K Nakano
- Division of Biology, Department of Life Sciences, Graduate Program in Interdisciplinary Sciences, School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
13
|
Chepurnaya OV, Kozhina TN, Peshekhonov VT, Korolev VG. The REC41 gene of Saccharomyces cerevisiae: isolation and genetic analysis. Mutat Res 2001; 486:41-52. [PMID: 11356335 DOI: 10.1016/s0921-8777(01)00079-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recombination-deficient strains have been proven useful for the understanding of the genetic control of homologous recombination. As the genetic screens used to isolate recombination-deficient (rec(-)) yeast mutants have not been saturated, we sought to develop a simple colony color assay to identify mutants with low or elevated rates of recombination. Using this system we isolated a collection of rec(-) mutants. We report the characterization of the REC41 gene identified in this way. REC41 is required for normal levels of interplasmid recombination and gamma-ray induced mitotic interchromosomal recombination. The rec41-1 mutant failed to grow at 37 degrees C. Microscopic analysis of plated cells showed that 45-50% of them did not form visible colonies at permissive temperature. Haploid cells of the rec41 mutant show the same gamma-ray sensitivity as wild type ones. However, the diploid rec41 mutant shows gamma-ray sensitivity which is comparable with heterozygous REC41/rec41-1 diploid cells. This fact indicates semidominance of the rec41-1 mutation. Diploid strains homozygous for the rec41 rad52 mutations had the same gamma-ray sensitivity as single rad52 diploids and exhibited dramatically decreased growth rate. The expression of the HO gene does not lead to inviability of rec41 cells. The rec41 mutation has an effect on meiosis, likely meiotic recombination, even in the heterozygous state. We cloned the REC41 gene. Sequence analysis revealed that the REC41 gene is encoded by ORF YDR245w. Earlier, this ORF was attributed to MNN10, BED1, SLC2, CAX5 genes. Two multicopy plasmids with suppressers of the rec41-1 mutation (pm21 and pm32) were isolated. The deletion analysis showed that only DNA fragments with the CDC43 and HAC1 genes can partially complement the rec41-1 mutation.
Collapse
Affiliation(s)
- O V Chepurnaya
- Laboratory of Eukaryotic Genetics, Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, RAS, Gatchina, 188350 Leningrad distr., Russia
| | | | | | | |
Collapse
|
14
|
Abstract
The actin cytoskeleton provides the structural basis for cell polarity in Saccharomyces cerevisiae as well as most other eukaryotes. In Part I of this two-part commentary, presented in the previous issue of Journal of Cell Science, we discussed the basis by which yeast establishes and maintains different states of polarity through Ρ GTPases and cyclin-dependent protein kinase signaling. Here we discuss how, in response to those signals, the actin cytoskeleton guides growth of the yeast cell. A polarized array of actin cables at the cell cortex is the primary structural determinant of polarity. Motors such as class V myosins use this array to transport secretory vesicles, mRNA and organelles towards growth sites, where they are anchored by a cap of cytoskeletal and regulatory proteins. Cortical actin patches enhance and maintain this polarity, probably through endocytic recycling, which allows reuse of materials and prevents continued growth at old sites. The dynamic arrangement of targeting and recycling provides flexibility for the precise control of morphogenesis.
Collapse
Affiliation(s)
- D Pruyne
- Department of Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
15
|
Andrews PD, Stark MJ. Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae. J Cell Sci 2000; 113 ( Pt 3):507-20. [PMID: 10639337 DOI: 10.1242/jcs.113.3.507] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GLC7 encodes the catalytic subunit of type 1 protein serine/threonine phosphatase (PP1) in the yeast Saccharomyces cerevisiae. Here we have characterized the temperature-sensitive glc7-10 allele, which displays aberrant bud morphology and an abnormal actin cytoskeleton at the restrictive temperature. At 37 degrees C glc7-10 strains accumulated a high proportion of budded cells with an unmigrated nucleus, duplicated spindle pole bodies, a short spindle, delocalized cortical actin and 2C DNA content, indicating a cell cycle block prior to the metaphase to anaphase transition. glc7-10 was suppressed by growth on high osmolarity medium and exhibited temperature-sensitive cell lysis upon hypo-osmotic stress. Pkc1p, the yeast protein kinase C homolog which is thought to regulate the Mpk1p MAP kinase pathway involved in cell wall remodelling and polarized cell growth, was found to act as a dosage suppressor of glc7-10. Although neither activation of BCK1 (MEKK) by the dominant BCK1-20 mutation nor increased dosage of MKK1 (MEK) or MPK1 (MAP kinase) mimicked PKC1 as a glc7-10 dosage suppressor, extra copies of genes encoding upstream components of the Pkc1p pathway such as ROM2, RHO2, HCS77/WSC1/SLG1 and MID2 also suppressed glc7-10 effectively. Conversely, mpk1delta glc7-10 and bck1delta glc7-10 double mutants displayed a synthetic cell lysis defect compared with each single mutant and glc7-10 was hypersensitive to reduced PKC1 function, displaying highly aberrant morphologies and inviability even at the normally permissive temperature of 26 degrees C. Dephosphorylation by PP1 therefore functions positively to promote cell integrity, bud morphology and polarization of the actin cytoskeleton and glc7-10 cells require higher levels of Pkc1p activity to sustain these functions.
Collapse
Affiliation(s)
- P D Andrews
- Department of Biochemistry, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK
| | | |
Collapse
|
16
|
Bi E, Chiavetta JB, Chen H, Chen GC, Chan CS, Pringle JR. Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast. Mol Biol Cell 2000; 11:773-93. [PMID: 10679030 PMCID: PMC14809 DOI: 10.1091/mbc.11.2.773] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, Cdc24p functions at least in part as a guanine-nucleotide-exchange factor for the Rho-family GTPase Cdc42p. A genetic screen designed to identify possible additional targets of Cdc24p instead identified two previously known genes, MSB1 and CLA4, and one novel gene, designated MSB3, all of which appear to function in the Cdc24p-Cdc42p pathway. Nonetheless, genetic evidence suggests that Cdc24p may have a function that is distinct from its Cdc42p guanine-nucleotide-exchange factor activity; in particular, overexpression of CDC42 in combination with MSB1 or a truncated CLA4 in cells depleted for Cdc24p allowed polarization of the actin cytoskeleton and polarized cell growth, but not successful cell proliferation. MSB3 has a close homologue (designated MSB4) and two more distant homologues (MDR1 and YPL249C) in S. cerevisiae and also has homologues in Schizosaccharomyces pombe, Drosophila (pollux), and humans (the oncogene tre17). Deletion of either MSB3 or MSB4 alone did not produce any obvious phenotype, and the msb3 msb4 double mutant was viable. However, the double mutant grew slowly and had a partial disorganization of the actin cytoskeleton, but not of the septins, in a fraction of cells that were larger and rounder than normal. Like Cdc42p, both Msb3p and Msb4p localized to the presumptive bud site, the bud tip, and the mother-bud neck, and this localization was Cdc42p dependent. Taken together, the data suggest that Msb3p and Msb4p may function redundantly downstream of Cdc42p, specifically in a pathway leading to actin organization. From previous work, the BNI1, GIC1, and GIC2 gene products also appear to be involved in linking Cdc42p to the actin cytoskeleton. Synthetic lethality and multicopy suppression analyses among these genes, MSB, and MSB4, suggest that the linkage is accomplished by two parallel pathways, one involving Msb3p, Msb4p, and Bni1p, and the other involving Gic1p and Gic2p. The former pathway appears to be more important in diploids and at low temperatures, whereas the latter pathway appears to be more important in haploids and at high temperatures.
Collapse
Affiliation(s)
- E Bi
- Department of Biology and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The Golgi complex is the site where the terminal carbohydrate modification of proteins and lipids occurs. These carbohydrates play a variety of biological roles, ranging from the stabilization of glycoprotein structure to the provision of ligands for cell-cell interactions to the regulation of cell surface properties. Progress in our understanding of the biosynthesis and regulation of glycoconjugates has been accelerating at a rapid pace. Recent advances in the field of yeast glycobiology have been particularly impressive. This review focuses on glycosylation of proteins in the Golgi of the yeast Saccharomyces cerevisiae, with emphasis on the candidate mannosyltransferases that participate in the synthesis of N-linked oligosaccharides. Current views on how these enzymes may be regulated and how glycosylation relates on other cellular processes are also discussed.
Collapse
Affiliation(s)
- N Dean
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
18
|
Bähler J, Steever AB, Wheatley S, Wang YL, Pringle JR, Gould KL, McCollum D. Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J Cell Biol 1998; 143:1603-16. [PMID: 9852154 PMCID: PMC2132972 DOI: 10.1083/jcb.143.6.1603] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/1998] [Revised: 10/20/1998] [Indexed: 11/22/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe divides symmetrically using a medial F-actin- based contractile ring to produce equal-sized daughter cells. Mutants defective in two previously described genes, mid1 and pom1, frequently divide asymmetrically. Here we present the identification of three new temperature-sensitive mutants defective in localization of the division plane. All three mutants have mutations in the polo kinase gene, plo1, and show defects very similar to those of mid1 mutants in both the placement and organization of the medial ring. In both cases, ring formation is frequently initiated near the cell poles, indicating that Mid1p and Plo1p function in recruiting medial ring components to the cell center. It has been reported previously that during mitosis Mid1p becomes hyperphosphorylated and relocates from the nucleus to a medial ring. Here we show that Mid1p first forms a diffuse cortical band during spindle formation and then coalesces into a ring before anaphase. Plo1p is required for Mid1p to exit the nucleus and form a ring, and Pom1p is required for proper placement of the Mid1p ring. Upon overexpression of Plo1p, Mid1p exits the nucleus prematurely and displays a reduced mobility on gels similar to that of the hyperphosphorylated form observed previously in mitotic cells. Genetic and two-hybrid analyses suggest that Plo1p and Mid1p act in a common pathway distinct from that involving Pom1p. Plo1p localizes to the spindle pole bodies and spindles of mitotic cells and also to the medial ring at the time of its formation. Taken together, the data indicate that Plo1p plays a role in the positioning of division sites by regulating Mid1p. Given its previously known functions in mitosis and the timing of cytokinesis, Plo1p is thus implicated as a key molecule in the spatial and temporal coordination of cytokinesis with mitosis.
Collapse
Affiliation(s)
- J Bähler
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
McMillan JN, Sia RA, Lew DJ. A morphogenesis checkpoint monitors the actin cytoskeleton in yeast. J Cell Biol 1998; 142:1487-99. [PMID: 9744879 PMCID: PMC2141759 DOI: 10.1083/jcb.142.6.1487] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Revised: 08/11/1998] [Indexed: 11/22/2022] Open
Abstract
A morphogenesis checkpoint in budding yeast delays cell cycle progression in response to perturbations of cell polarity that prevent bud formation (Lew, D.J., and S.I. Reed. 1995. J. Cell Biol. 129:739- 749). The cell cycle delay depends upon the tyrosine kinase Swe1p, which phosphorylates and inhibits the cyclin-dependent kinase Cdc28p (Sia, R.A.L., H.A. Herald, and D.J. Lew. 1996. Mol. Biol. Cell. 7:1657- 1666). In this report, we have investigated the nature of the defect(s) that trigger this checkpoint. A Swe1p- dependent cell cycle delay was triggered by direct perturbations of the actin cytoskeleton, even when polarity establishment functions remained intact. Furthermore, actin perturbation could trigger the checkpoint even in cells that had already formed a bud, suggesting that the checkpoint directly monitors actin organization, rather than (or in addition to) polarity establishment or bud formation. In addition, we show that the checkpoint could detect actin perturbations through most of the cell cycle. However, the ability to respond to such perturbations by delaying cell cycle progression was restricted to a narrow window of the cell cycle, delimited by the periodic accumulation of the checkpoint effector, Swe1p.
Collapse
Affiliation(s)
- J N McMillan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
20
|
Sekiya-Kawasaki M, Botstein D, Ohya Y. Identification of functional connections between calmodulin and the yeast actin cytoskeleton. Genetics 1998; 150:43-58. [PMID: 9725829 PMCID: PMC1460329 DOI: 10.1093/genetics/150.1.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of four intragenic complementing groups of temperature-sensitive yeast calmodulin mutations, cmd1A, results in a characteristic functional defect in actin organization. We report here that among the complementing mutations, a representative cmd1A mutation (cmd1-226: F92A) is synthetically lethal with a mutation in MYO2 that encodes a class V unconventional myosin with calmodulin-binding domains. Gel overlay assay shows that a mutant calmodulin with the F92A alteration has severely reduced binding affinity to a GST-Myo2p fusion protein. Random replacement and site-directed mutagenesis at position 92 of calmodulin indicate that hydrophobic and aromatic residues are allowed at this position, suggesting an importance of hydrophobic interaction between calmodulin and Myo2p. To analyze other components involved in actin organization through calmodulin, we isolated and characterized mutations that show synthetic lethal interaction with cmd1-226; these "cax" mutants fell into five complementation groups. Interestingly, all the mutations themselves affect actin organization. Unlike cax2, cax3, cax4, and cax5 mutations, cax1 shows allele-specific synthetic lethality with the cmd1A allele. CAX1 is identical to ANP1/GEM3/MCD2, which is involved in protein glycosylation. CAX4 is identical to the ORF YGR036c, and CAX5 is identical to MNN10/SLC2/BED1. We discuss possible roles for Cax proteins in the regulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- M Sekiya-Kawasaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
21
|
Karpova TS, Moltz SL, Riles LE, Güldener U, Hegemann JH, Veronneau S, Bussey H, Cooper JA. Depolarization of the actin cytoskeleton is a specific phenotype in Saccharomyces cerevisiae. J Cell Sci 1998; 111 ( Pt 17):2689-96. [PMID: 9701567 PMCID: PMC2365718 DOI: 10.1242/jcs.111.17.2689] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast actin cytoskeleton is polarized during most of the cell cycle. Certain environmental factors and mutations are associated with depolarization of the actin cytoskeleton. Is depolarization of the actin cytoskeleton a specific response, or is it a nonspecific reaction to harsh conditions or poor metabolism? If depolarization is a nonspecific response, then any mutation that slows growth should induce depolarization. In addition, the number of genes with the depolarization phenotype should constitute a relatively large part of the genome. To address this question, we determined the effect of slow growth on the actin cytoskeleton, and we determined the frequency of mutations that affect the actin cytoskeleton. Eight mutants with slow growth showed no defect in actin polarization, indicating that slow growth alone is not sufficient to cause depolarization. Among 273 viable haploids disrupted for ORFs of chromosome I and VIII and 950 viable haploids with random genome disruptions, none had depolarization of the cytoskeleton. We conclude that depolarization of the actin cytoskeleton is a specific phenotype.
Collapse
Affiliation(s)
- T S Karpova
- Department of Cell Biology and Physiology, Washington University, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Roeder AD, Hermann GJ, Keegan BR, Thatcher SA, Shaw JM. Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. Mol Biol Cell 1998; 9:917-30. [PMID: 9529388 PMCID: PMC25318 DOI: 10.1091/mbc.9.4.917] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1998] [Accepted: 01/26/1998] [Indexed: 02/07/2023] Open
Abstract
In wild-type yeast mitochondrial inheritance occurs early in the cell cycle concomitant with bud emergence. Cells lacking the PTC1 gene initially produce buds without a mitochondrial compartment; however, these buds later receive part of the mitochondrial network from the mother cell. Thus, the loss of PTC1 causes a delay, but not a complete block, in mitochondrial transport. PTC1 encodes a serine/threonine phosphatase in the high-osmolarity glycerol response (HOG) pathway. The mitochondrial inheritance delay in the ptc1 mutant is not attributable to changes in intracellular glycerol concentrations or defects in the organization of the actin cytoskeleton. Moreover, epistasis experiments with ptc1delta and mutations in HOG pathway kinases reveal that PTC1 is not acting through the HOG pathway to control the timing of mitochondrial inheritance. Instead, PTC1 may be acting either directly or through a different signaling pathway to affect the mitochondrial transport machinery in the cell. These studies indicate that the timing of mitochondrial transport in wild-type cells is genetically controlled and provide new evidence that mitochondrial inheritance does not depend on a physical link between the mitochondrial network and the incipient bud site.
Collapse
Affiliation(s)
- A D Roeder
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
23
|
Wang T, Bretscher A. Mutations synthetically lethal with tpm1delta lie in genes involved in morphogenesis. Genetics 1997; 147:1595-607. [PMID: 9409824 PMCID: PMC1208334 DOI: 10.1093/genetics/147.4.1595] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Yeast contains two genes, TPM1 and TPM2, encoding tropomyosins, either of which can provide an essential function in the yeast cytoskeleton. To elucidate more clearly the function of the major tropomyosin, encoded by TPM1, we have isolated mutations that confer synthetic lethality with the null mutant of TPM1. Here we describe a phenotypic and genetic analysis of mutations in TSL1/BEM2, TSL2, TSL3, TSL5, and TSL6 (tropomyosin synthetic lethal). All the mutants exhibit clear morphological and some actin cytoskeletal defects, but are not noticeably defective in secretion, endocytosis, or organelle segregation. The lethality conferred by tsl tpm1delta mutations could be specifically suppressed by either TPM1 or an additional copy of TPM2. This implies that the essential function compromised in the tsl tpm1delta constructs is the same essential function for which Tpm1p or Tpm2p is necessary. Synthetic interactions and unlinked noncomplementation were observed between the tsl mutants, suggesting that they participate in related functions involving morphogenesis. In support of this, tsl6-1 was identified as an allele of the nonessential gene SLT2 or MPK1 whose product is a MAP kinase regulating cell wall synthesis. These results indicate that this synthetic lethality approach provides a sensitive screen for the isolation of mutations affecting morphogenesis, many of which are likely to be in nonessential genes, like BEM2 and SLT2.
Collapse
Affiliation(s)
- T Wang
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
24
|
Abstract
A summary of previously defined phenotypes in the yeast Saccharomyces cerevisiae is presented. The purpose of this review is to provide a compendium of phenotypes that can be readily screened to identify pleiotropic phenotypes associated with primary or suppressor mutations. Many of these phenotypes provide a convenient alternative to the primary phenotype for following a gene, or as a marker for cloning a gene by genetic complementation. In many cases a particular phenotype or set of phenotypes can suggest a function for the product of the mutated gene.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| |
Collapse
|
25
|
Affiliation(s)
- B Winsor
- Institut de Biologie Moléculaire et Cellulaire, UPR 9005 du CNRS, Strasbourg, France
| | | |
Collapse
|
26
|
Evans DR, Stark MJ. Mutations in the Saccharomyces cerevisiae type 2A protein phosphatase catalytic subunit reveal roles in cell wall integrity, actin cytoskeleton organization and mitosis. Genetics 1997; 145:227-41. [PMID: 9071579 PMCID: PMC1207790 DOI: 10.1093/genetics/145.2.227] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Temperature-sensitive mutations were generated in the Saccharomyces cerevisiae PPH22 gene that, together with its homologue PPH21, encode the catalytic subunit of type 2A protein phosphatase (PP2A). At the restrictive temperature (37 degrees), cells dependent solely on pph22 alleles for PP2A function displayed a rapid arrest of proliferation. Ts pph22 mutant cells underwent lysis at 37 degrees, showing an accompanying viability loss that was suppressed by inclusion of 1 M sorbitol in the growth medium. Ts pph22 mutant cells also displayed defects in bud morphogenesis and polarization of the cortical actin cytoskeleton at 37 degrees. PP2A is therefore required for maintenance of cell integrity and polarized growth. On transfer from 24 degrees to 37 degrees, Ts- pph22 mutant cells accumulated a 2N DNA content indicating a cell cycle block before completion of mitosis. However, during prolonged incubation at 37 degrees, many Ts- pph22 mutant cells progressed through an aberrant nuclear division and accumulated multiple nuclei. Ts- pph22 mutant cells also accumulated aberrant microtubule structures at 37 degrees, while under semi-permissive conditions they were sensitive to the microtubule-destabilizing agent benomyl, suggesting that PP2A is required for normal microtubule function. Remarkably, the multiple defects of Ts- pph22 mutant cells were suppressed by a viable allele (SSD1-v1) of the polymorphic SSD1 gene.
Collapse
Affiliation(s)
- D R Evans
- Department of Biochemistry, University of Dundee, United Kingdom
| | | |
Collapse
|
27
|
Sizonenko GI, Karpova TS, Gattermeir DJ, Cooper JA. Mutational analysis of capping protein function in Saccharomyces cerevisiae. Mol Biol Cell 1996; 7:1-15. [PMID: 8741835 PMCID: PMC278608 DOI: 10.1091/mbc.7.1.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To investigate physiologic functions and structural correlates for actin capping protein (CP), we analyzed site-directed mutations in CAP1 and CAP2, which encode the alpha and beta subunits of CP in Saccharomyces cerevisiae. Mutations in four different regions caused a loss of CP function in vivo despite the presence of mutant protein in the cells. Mutations in three regions caused a complete loss of all aspects of function, including the actin distribution, viability with sac6, and localization of CP to actin cortical patches. Mutation of the fourth region led to partial loss of only one function-formation of actin cables. Some mutations retained function and exhibited the complete wild-type phenotype, and some mutations led to a complete loss of protein and therefore loss of function. The simplest hypothesis that can explain these results is that a single biochemical property is necessary for all in vivo functions. This biochemical property is most likely binding to actin filaments, because the nonfunctional mutant CPs no longer co-localize with actin filaments in vivo and because direct binding of CP to actin filaments has been well established by studies with purified proteins in vitro. More complex hypotheses, involving the existence of additional biochemical properties important for function, cannot be excluded by this analysis.
Collapse
Affiliation(s)
- G I Sizonenko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
28
|
Karpova TS, Tatchell K, Cooper JA. Actin filaments in yeast are unstable in the absence of capping protein or fimbrin. J Cell Biol 1995; 131:1483-93. [PMID: 8522605 PMCID: PMC2120666 DOI: 10.1083/jcb.131.6.1483] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Many actin-binding proteins affect filament assembly in vitro and localize with actin in vivo, but how their molecular actions contribute to filament assembly in vivo is not understood well. We report here that capping protein (CP) and fimbrin are both important for actin filament assembly in vivo in Saccharomyces cerevisiae, based on finding decreased actin filament assembly in CP and fimbrin mutants. We have also identified mutations in actin that enhance the CP phenotype and find that those mutants also have decreased actin filament assembly in vivo. In vitro, actin purified from some of these mutants is defective in polymerization or binding fimbrin. These findings support the conclusion that CP acts to stabilize actin filaments in vivo. This conclusion is particularly remarkable because it is the opposite of the conclusion drawn from recent studies in Dictyostelium (Hug, C., P.Y. Jay, I. Reddy, J.G. McNally, P.C. Bridgman, E.L. Elson, and J.A. Cooper. 1995. Cell. 81:591-600). In addition, we find that the unpolymerized pool of actin in yeast is very small relative to that found in higher cells, which suggests that actin filament assembly is less dynamic in yeast than higher cells.
Collapse
Affiliation(s)
- T S Karpova
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, Missouri, USA
| | | | | |
Collapse
|
29
|
Govindan B, Novick P. Development of cell polarity in budding yeast. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1995; 273:401-24. [PMID: 8576696 DOI: 10.1002/jez.1402730505] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B Govindan
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
30
|
Cid VJ, Durán A, del Rey F, Snyder MP, Nombela C, Sánchez M. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 1995; 59:345-86. [PMID: 7565410 PMCID: PMC239365 DOI: 10.1128/mr.59.3.345-386.1995] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle.
Collapse
Affiliation(s)
- V J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
A detailed description of the cytoskeletal rearrangements that orchestrate bud formation is beginning to emerge from studies on yeast morphogenesis. In this review, we focus on recent advances in our understanding of how the timing of these rearrangements is controlled. Dramatic changes in cell polarity that occur in G1 (polarization to the bud site), G2 (depolarization within the bud), and mitosis (repolarization to the mother/bud neck) are triggered by changes in the kinase activity of Cdc28, the universal regulator of cell cycle progression. The hunt for Cdc28 morphogenesis substrates is on.
Collapse
Affiliation(s)
- D J Lew
- Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
32
|
Muhua L, Karpova TS, Cooper JA. A yeast actin-related protein homologous to that in vertebrate dynactin complex is important for spindle orientation and nuclear migration. Cell 1994; 78:669-79. [PMID: 8069915 DOI: 10.1016/0092-8674(94)90531-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spindle orientation controls nuclear migration and segregation during mitosis. In yeast, defects in dynein and astral microtubules lead to abnormal spindle orientation and nuclear migration. Dynactin complex is necessary for dynein-mediated vesicle motility in vitro. The major polypeptide of dynactin complex is an actin-related protein in the family Arp1. We have identified in S. cerevisiae a novel actin-related gene, ACT5, in the Arp1 family. An act5 null mutant has defects in spindle orientation and nuclear migration, as does overexpression of Act5p. The phenotype of a double mutant lacking dynein and Act5p is similar to that of single mutants. Therefore, dynactin complex is in the same pathway as dynein and may be necessary for the action of dynein in vivo.
Collapse
Affiliation(s)
- L Muhua
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
33
|
Abstract
Budding and fission yeast present significant advantages for studies of the actin cytoskeleton. The application of classical and molecular genetic techniques provides a facile route for the analysis of structure/function relationships, for the isolation of novel proteins involved in cytoskeletal function, and for deciphering the signals that regulate actin assembly in vivo. This review focuses on the budding yeast Saccharomyces cerevisiae and also identifies some recent advances from studies on the fission yeast Schizosaccharomyces pombe, for which studies on the actin cytoskeleton are still in their infancy.
Collapse
Affiliation(s)
- M D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|