1
|
Ji Y, Hewavithana T, Sharpe AG, Jin L. Understanding grain development in the Poaceae family by comparing conserved and distinctive pathways through omics studies in wheat and maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1393140. [PMID: 39100085 PMCID: PMC11295249 DOI: 10.3389/fpls.2024.1393140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
The Poaceae family, commonly known as the grass family, encompasses a diverse group of crops that play an essential role in providing food, fodder, biofuels, environmental conservation, and cultural value for both human and environmental well-being. Crops in Poaceae family are deeply intertwined with human societies, economies, and ecosystems, making it one of the most significant plant families in the world. As the major reservoirs of essential nutrients, seed grain of these crops has garnered substantial attention from researchers. Understanding the molecular and genetic processes that controls seed formation, development and maturation can provide insights for improving crop yield, nutritional quality, and stress tolerance. The diversity in photosynthetic pathways between C3 and C4 plants introduces intriguing variations in their physiological and biochemical processes, potentially affecting seed development. In this review, we explore recent studies performed with omics technologies, such as genomics, transcriptomics, proteomics and metabolomics that shed light on the mechanisms underlying seed development in wheat and maize, as representatives of C3 and C4 plants respectively, providing insights into their unique adaptations and strategies for reproductive success.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thulani Hewavithana
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew G. Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Wang H, Yan X, Du Q, Yan P, Xi J, Meng X, Li X, Liu H, Liu G, Fu Z, Tang J, Li WX. Maize Dek407 Encodes the Nitrate Transporter 1.5 and Is Required for Kernel Development. Int J Mol Sci 2023; 24:17471. [PMID: 38139299 PMCID: PMC10743814 DOI: 10.3390/ijms242417471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The kernel serves as the storage organ and harvestable component of maize, and it plays a crucial role in determining crop yield and quality. Understanding the molecular and genetic mechanisms of kernel development is of considerable importance for maize production. In this study, we obtained a mutant, which we designated defective kernel 407 (dek407), through ethyl methanesulfonate mutagenesis. The dek407 mutant exhibited reduced kernel size and kernel weight, as well as delayed grain filling compared with those of the wild type. Positional cloning and an allelism test revealed that Dek407 encodes a nitrate transporter 1/peptide transporter family (NPF) protein and is the allele of miniature 2 (mn2) that was responsible for a poorly filled defective kernel phenotype. A transcriptome analysis of the developing kernels showed that the mutation of Dek407 altered the expression of phytohormone-related genes, especially those genes associated with indole-3-acetic acid synthesis and signaling. Phytohormone measurements and analysis indicated that the endogenous indole-3-acetic acid content was significantly reduced by 66% in the dek407 kernels, which may be the primary cause of the defective phenotype. We further demonstrated that natural variation in Dek407 is associated with kernel weight and kernel size. Therefore, Dek407 is a potential target gene for improvement of maize yield.
Collapse
Affiliation(s)
- Hongqiu Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiaolan Yan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengshuai Yan
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Jinjin Xi
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiaoruo Meng
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xuguang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Huijian Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Guoqin Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Zhongjun Fu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Wang Y, Xu J, Yu J, Zhu D, Zhao Q. Maize GSK3-like kinase ZmSK2 is involved in embryonic development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111221. [PMID: 35351312 DOI: 10.1016/j.plantsci.2022.111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 05/28/2023]
Abstract
Grain size and weight are closely related to the yield of cereal crops. Abnormal development of the embryo, an important part of the grain, not only affects crop yield but also impacts next-generation survival. Here, we found that maize GSK3-like kinase ZmSK2, a homolog of BIN2 in Arabidopsis, is involved in embryonic development. ZmSK2 overexpression resulted in severe BR defective phenotypes and arrested embryonic development at the transition stage, while the zmsk2 knockout lines showed enlarged embryos. ZmSK2 interacts with Aux/IAA-transcription factor 28 (ZmIAA28), a negative regulator of auxin signaling, and the interaction region is the auxin degron "GWPPV" motif of ZmIAA28 domain II. Coexpression of ZmSK2 with ZmIAA28 increased the accumulation of ZmIAA28 in maize protoplasts, which may have been due to phosphorylation by ZmSK2. In conclusion, this study reveals the function of ZmSK2 in maize embryonic development and proposes that ZmSK2-ZmIAA28 may be another link in the signaling pathway that integrates BR and auxin.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jianghai Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
4
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
6
|
Liu X, Hu X, Li K, Liu Z, Wu Y, Wang H, Huang C. Genetic mapping and genomic selection for maize stalk strength. BMC PLANT BIOLOGY 2020; 20:196. [PMID: 32380944 PMCID: PMC7204062 DOI: 10.1186/s12870-020-2270-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/29/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Maize is one of the most important staple crops and is widely grown throughout the world. Stalk lodging can cause enormous yield losses in maize production. However, rind penetrometer resistance (RPR), which is recognized as a reliable measurement to evaluate stalk strength, has been shown to be efficient and useful for improving stalk lodging-resistance. Linkage mapping is an acknowledged approach for exploring the genetic architecture of target traits. In addition, genomic selection (GS) using whole genome markers enhances selection efficiency for genetically complex traits. In the present study, two recombinant inbred line (RIL) populations were utilized to dissect the genetic basis of RPR, which was evaluated in seven growth stages. RESULTS The optimal stages to measure stalk strength are the silking phase and stages after silking. A total of 66 and 45 quantitative trait loci (QTL) were identified in each RIL population. Several potential candidate genes were predicted according to the maize gene annotation database and were closely associated with the biosynthesis of cell wall components. Moreover, analysis of gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway further indicated that genes related to cell wall formation were involved in the determination of RPR. In addition, a multivariate model of genomic selection efficiently improved the prediction accuracy relative to a univariate model and a model considering RPR-relevant loci as fixed effects. CONCLUSIONS The genetic architecture of RPR is highly genetically complex. Multiple minor effect QTL are jointly involved in controlling phenotypic variation in RPR. Several pleiotropic QTL identified in multiple stages may contain reliable genes and can be used to develop functional markers for improving the selection efficiency of stalk strength. The application of genomic selection to RPR may be a promising approach to accelerate breeding process for improving stalk strength and enhancing lodging-resistance.
Collapse
Affiliation(s)
- Xiaogang Liu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojiao Hu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kun Li
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhifang Liu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujin Wu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwu Wang
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Changling Huang
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods Mol Biol 2020. [PMID: 31975291 DOI: 10.1007/978-1-0716-0342-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The major tissue types and stem-cell niches of plants are established during embryogenesis, and thus knowledge of embryo development is essential for a full understanding of plant development. Studies of seed development are also important for human health, because the nutrients stored in both the embryo and endosperm of plant seeds provide an essential part of our diet. Arabidopsis and maize have evolved different types of seeds, opening a range of experimental opportunities. Development of the Arabidopsis embryo follows an almost invariant pattern, while cell division patterns of maize embryos are variable. Embryo-endosperm interactions are also different between the two species: in Arabidopsis, the endosperm is consumed during seed development, while mature maize seeds contain an enormous endosperm. Genetic screens have provided important insights into seed development in both species. In the genomic era, genetic analysis will continue to provide important tools for understanding embryo and endosperm biology in plants, because single gene functional studies can now be integrated with genome-wide information. Here, we lay out important factors to consider when designing genetic screens to identify new genes or to probe known pathways in seed development. We then highlight the technical details of two previous genetic screens that may serve as useful examples for future experiments.
Collapse
|
8
|
Dai D, Tong H, Cheng L, Peng F, Zhang T, Qi W, Song R. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5173-5187. [PMID: 31173102 PMCID: PMC6793443 DOI: 10.1093/jxb/erz268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
The maize (Zea mays) defective kernel 33 (dek33) mutant produces defective and occasionally viviparous kernel phenotypes. In this study, we cloned Dek33 by positional cloning and found that it encodes a pyrimidine reductase in riboflavin biosynthesis. In dek33, a single-base mutation (G to A) in the C-terminal COG3236 domain caused a premature stop codon (TGA), producing a weak mutant allele with only a truncated form of the DEK33 protein that occurred at much lower levels that the completed WT form, and with a reduced riboflavin content. The dek33 mutation significantly affected oil-body formation and suppressed endoreduplication. It also disrupted ABA biosynthesis, resulting in lower ABA content that might be responsible for the viviparous embryo. In addition, our results indicated that the COG3236 domain is important for the protein stability of DEK33. Yeast two-hybrid experiments identified several proteins that interacted with DEK33, including RGLG2 and SnRK1, suggesting possible post-translational regulation of DEK33 stability. The interaction between DEK33 and these proteins was further confirmed by luciferase complementation image assays. This study provides a weak mutant allele that can be utilized to explore cellular responses to impaired riboflavin biosynthesis during seed development. Our findings indicate that the COG3236 domain might be an essential regulatory structure for DEK33 stability in maize.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongyang Tong
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lijun Cheng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fei Peng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingting Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
9
|
Zhang J, Wu S, Boehlein SK, McCarty DR, Song G, Walley JW, Myers A, Settles AM. Maize defective kernel5 is a bacterial TamB homologue required for chloroplast envelope biogenesis. J Cell Biol 2019; 218:2638-2658. [PMID: 31235479 PMCID: PMC6683743 DOI: 10.1083/jcb.201807166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 05/07/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023] Open
Abstract
Zhang et al. show that the maize dek5 locus is required for chloroplast envelope biogenesis and encodes a TamB-like protein. Bacterial TamB proteins facilitate insertion of β-barrel outer membrane proteins, indicating plastids have a conserved mechanism for envelope membrane biogenesis. Chloroplasts are of prokaryotic origin with a double-membrane envelope separating plastid metabolism from the cytosol. Envelope membrane proteins integrate chloroplasts with the cell, but envelope biogenesis mechanisms remain elusive. We show that maize defective kernel5 (dek5) is critical for envelope biogenesis. Amyloplasts and chloroplasts are larger and reduced in number in dek5 with multiple ultrastructural defects. The DEK5 protein is homologous to rice SSG4, Arabidopsis thaliana EMB2410/TIC236, and Escherichia coli tamB. TamB functions in bacterial outer membrane biogenesis. DEK5 is localized to the envelope with a topology analogous to TamB. Increased levels of soluble sugars in dek5 developing endosperm and elevated osmotic pressure in mutant leaf cells suggest defective intracellular solute transport. Proteomics and antibody-based analyses show dek5 reduces levels of Toc75 and chloroplast envelope transporters. Moreover, dek5 chloroplasts reduce inorganic phosphate uptake with at least an 80% reduction relative to normal chloroplasts. These data suggest that DEK5 functions in plastid envelope biogenesis to enable transport of metabolites and proteins.
Collapse
Affiliation(s)
- Junya Zhang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Susan K Boehlein
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL.,Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Donald R McCarty
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL.,Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Gaoyuan Song
- Plant Pathology and Microbiology, Iowa State University, Ames, IA
| | - Justin W Walley
- Plant Pathology and Microbiology, Iowa State University, Ames, IA
| | - Alan Myers
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - A Mark Settles
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL .,Horticultural Sciences Department, University of Florida, Gainesville, FL
| |
Collapse
|
10
|
Huang Y, Wang H, Huang X, Wang Q, Wang J, An D, Li J, Wang W, Wu Y. Maize VKS1 Regulates Mitosis and Cytokinesis During Early Endosperm Development. THE PLANT CELL 2019; 31:1238-1256. [PMID: 30962394 PMCID: PMC6588315 DOI: 10.1105/tpc.18.00966] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 05/18/2023]
Abstract
Cell number is a critical factor that determines kernel size in maize (Zea mays). Rapid mitotic divisions in early endosperm development produce most of the cells that make up the starchy endosperm; however, the mechanisms underlying early endosperm development remain largely unknown. We isolated a maize mutant that shows a varied-kernel-size phenotype (vks1). Vks1 encodes ZmKIN11, which belongs to the kinesin-14 subfamily and is predominantly expressed in early endosperm development. VKS1 dynamically localizes to the nucleus and microtubules and plays key roles in the migration of free nuclei in the coenocyte as well as in mitosis and cytokinesis in early mitotic divisions. Absence of VKS1 has relatively minor effects on plants but causes deformities in spindle assembly, sister chromatid separation, and phragmoplast formation in early endosperm development, thereby resulting in reduced cell proliferation. Severities of aberrant mitosis and cytokinesis within individual vks1 endosperms differ, thereby resulting in varied kernel sizes. Our discovery highlights VKS1 as a central regulator of mitosis in early maize endosperm development and provides a potential approach for future yield improvement.
Collapse
Affiliation(s)
- Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiqin Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Doll NM, Depège-Fargeix N, Rogowsky PM, Widiez T. Signaling in Early Maize Kernel Development. MOLECULAR PLANT 2017; 10:375-388. [PMID: 28267956 DOI: 10.1016/j.molp.2017.01.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/26/2023]
Abstract
Developing the next plant generation within the seed requires the coordination of complex programs driving pattern formation, growth, and differentiation of the three main seed compartments: the embryo (future plant), the endosperm (storage compartment), representing the two filial tissues, and the surrounding maternal tissues. This review focuses on the signaling pathways and molecular players involved in early maize kernel development. In the 2 weeks following pollination, functional tissues are shaped from single cells, readying the kernel for filling with storage compounds. Although the overall picture of the signaling pathways regulating embryo and endosperm development remains fragmentary, several types of molecular actors, such as hormones, sugars, or peptides, have been shown to be involved in particular aspects of these developmental processes. These molecular actors are likely to be components of signaling pathways that lead to transcriptional programming mediated by transcriptional factors. Through the integrated action of these components, multiple types of information received by cells or tissues lead to the correct differentiation and patterning of kernel compartments. In this review, recent advances regarding the four types of molecular actors (hormones, sugars, peptides/receptors, and transcription factors) involved in early maize development are presented.
Collapse
Affiliation(s)
- Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Nathalie Depège-Fargeix
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France.
| |
Collapse
|
12
|
Sangiorgio S, Carabelli L, Gabotti D, Manzotti PS, Persico M, Consonni G, Gavazzi G. A mutational approach for the detection of genetic factors affecting seed size in maize. PLANT REPRODUCTION 2016; 29:301-310. [PMID: 27858171 DOI: 10.1007/s00497-016-0294-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Genes influencing seed size. The designation emp (empty pericarp) refers to a group of defective kernel mutants that exhibit a drastic reduction in endosperm tissue production. They allow the isolation of genes controlling seed development and affecting seed size. Nine independently isolated emp mutants have been analyzed in this study and in all cases longitudinal sections of mature seeds revealed the absence of morphogenesis in the embryo proper, an observation that correlates with their failure to germinate. Complementation tests with the nine emp mutants, crossed inter se in all pairwise combinations, identified complementing and non-complementing pairs in the F1 progenies. Data were then validated in the F2/F3 generations. Mutant chromosomal location was also established. Overall our study has identified two novel emp genes and a novel allele at the previously identified emp4 gene. The introgression of single emp mutants in a different genetic background revealed the existence of a cryptic genetic variation (CGV) recognizable as a variable increase in the endosperm tissue. The unmasking of CGV by introducing single mutants in different genetic backgrounds is the result of the interaction of the emp mutants with a suppressor that has no obvious phenotype of its own and is present in the genetic background of the inbred lines into which the emp mutants were transferred. On the basis of these results, emp mutants could be used as tools for the detection of genetic factors that enhance the amount of endosperm tissue in the maize kernel and which could thus become valuable targets to exploit in future breeding programs.
Collapse
Affiliation(s)
- Stefano Sangiorgio
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Laura Carabelli
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Damiano Gabotti
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Priscilla Sofia Manzotti
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Martina Persico
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Gabriella Consonni
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy.
| | - Giuseppe Gavazzi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| |
Collapse
|
13
|
Parent-of-Origin-Effect rough endosperm Mutants in Maize. Genetics 2016; 204:221-31. [PMID: 27440865 DOI: 10.1534/genetics.116.191775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023] Open
Abstract
Parent-of-origin-effect loci have non-Mendelian inheritance in which phenotypes are determined by either the maternal or paternal allele alone. In angiosperms, parent-of-origin effects can be caused by loci required for gametophyte development or by imprinted genes needed for seed development. Few parent-of-origin-effect loci have been identified in maize (Zea mays) even though there are a large number of imprinted genes known from transcriptomics. We screened rough endosperm (rgh) mutants for parent-of-origin effects using reciprocal crosses with inbred parents. Six maternal rough endosperm (mre) and three paternal rough endosperm (pre) mutants were identified with three mre loci mapped. When inherited from the female parent, mre/+ seeds reduce grain fill with a rough, etched, or pitted endosperm surface. Pollen transmission of pre mutants results in rgh endosperm as well as embryo lethality. Eight of the mutants had significant distortion from the expected one-to-one ratio for parent-of-origin effects. Linked markers for mre1, mre2, and mre3 indicated that the mutant alleles have no bias in transmission. Histological analysis of mre1, mre2, mre3, and pre*-949 showed altered timing of starch grain accumulation and basal endosperm transfer cell layer (BETL) development. The mre1 locus delays BETL and starchy endosperm development, while mre2 and pre*-949 cause ectopic starchy endosperm differentiation. We conclude that many parent-of-origin effects in maize have incomplete penetrance of kernel phenotypes and that there is a large diversity of endosperm developmental roles for parent-of-origin-effect loci.
Collapse
|
14
|
Abstract
Maize is an especially well-suited species for studying the effects of aneuploidy on plant development. We used B-A translocations and testers that were crossed seven times into inbred W22 to generate a dosage series for 14 chromosome arms. This is the first report of dosage effects on maize morphogenesis using inbred B-A stocks and inbred tester stocks. We compared plants containing one dose or three doses of each of the 14 chromosome arms with plants containing two doses for seven measured traits. These were leaf width, leaf length, plant height, ear height, internode length, ear node circumference, and tassel branch number. We observed the typical maize aneuploid syndrome wherein one dose was more widespread and more severe in its effects than three doses. All but two of the one-dose effects were negative, and all of the three-dose effects were negative. The occurrence of positive responses by hyperploid plants in our earlier B-A-A study and the absence of any positive responses among the hyperploids reported for the 14 simple B-A translocations tested for dosage effects in the present study and previously may reflect gene dosage interaction between the two chromosome arm segments present in the B-A-A translocations. The overall congruence of our results with those of previous studies suggests that the traits measured are quantitative traits controlled by multiple genes whose activities provide a balanced regulation that transcends individual inbred lines or diverse genetic backgrounds and that such genes may be especially abundant in chromosome arm 1L.
Collapse
|
15
|
Locascio A, Roig-Villanova I, Bernardi J, Varotto S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. FRONTIERS IN PLANT SCIENCE 2014; 5:412. [PMID: 25202316 PMCID: PMC4142864 DOI: 10.3389/fpls.2014.00412] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/03/2014] [Indexed: 05/18/2023]
Abstract
The seed represents the unit of reproduction of flowering plants, capable of developing into another plant, and to ensure the survival of the species under unfavorable environmental conditions. It is composed of three compartments: seed coat, endosperm and embryo. Proper seed development depends on the coordination of the processes that lead to seed compartments differentiation, development and maturation. The coordination of these processes is based on the constant transmission/perception of signals by the three compartments. Phytohormones constitute one of these signals; gradients of hormones are generated in the different seed compartments, and their ratios comprise the signals that induce/inhibit particular processes in seed development. Among the hormones, auxin seems to exert a central role, as it is the only one in maintaining high levels of accumulation from fertilization to seed maturation. The gradient of auxin generated by its PIN carriers affects several processes of seed development, including pattern formation, cell division and expansion. Despite the high degree of conservation in the regulatory mechanisms that lead to seed development within the Spermatophytes, remarkable differences exist during seed maturation between Monocots and Eudicots species. For instance, in Monocots the endosperm persists until maturation, and constitutes an important compartment for nutrients storage, while in Eudicots it is reduced to a single cell layer, as the expanding embryo gradually replaces it during the maturation. This review provides an overview of the current knowledge on hormonal control of seed development, by considering the data available in two model plants: Arabidopsis thaliana, for Eudicots and Zea mays L., for Monocots. We will emphasize the control exerted by auxin on the correct progress of seed development comparing, when possible, the two species.
Collapse
Affiliation(s)
- Antonella Locascio
- Department of Agronomy Food Natural Resources Animals Environment - University of PadovaPadova, Italy
- IBMCP-CSIC, Universidad Politécnica de ValenciaValencia, Spain
- *Correspondence: Antonella Locascio, IBMCP-CSIC, Universidad Politécnica de Valencia, Avda de los Naranjos s/n, ed.8E, 46020 Valencia, Spain e-mail:
| | | | - Jamila Bernardi
- Istituto di Agronomia Genetica e Coltivazioni Erbacee, Università Cattolica del Sacro CuorePiacenza, Italy
| | - Serena Varotto
- Department of Agronomy Food Natural Resources Animals Environment - University of PadovaPadova, Italy
| |
Collapse
|
16
|
Xu X, Li L, Dong X, Jin W, Melchinger AE, Chen S. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1083-96. [PMID: 23349137 PMCID: PMC3580820 DOI: 10.1093/jxb/ers393] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Production of maternal haploids via a male inducer can greatly accelerate maize breeding and is an interesting biological phenomenon in double fertilization. However, the mechanism behind haploid induction remains elusive. Segregation distortion, which is increasingly recognized as a potentially powerful evolutionary force, has recently been observed during maternal haploid induction in maize. The results present here showed that both male gametophytic and zygotic selection contributed to severe segregation distortion of a locus, named segregation distortion 1 (sed1), during maternal haploid induction in maize. Interestingly, analysis of reciprocal crosses showed that sed1 is expressed in the male gametophyte. A novel mapping strategy based on segregation distortion has been used to fine-map this locus. Strong selection for the presence of the sed1 haplotype from inducers in kernels with haploid formation and defects could be detected in the segregating population. Dual-pollination experiments showed that viable pollen grains from inducers had poor pollen competitive ability against pollen from normal genotypes. Although defective kernels and haploids have different phenotypes, they are most probably caused by the sed1 locus, and possible mechanisms for production of maternal haploids and the associated segregation distortion are discussed. This research also provides new insights into the process of double fertilization.
Collapse
Affiliation(s)
- Xiaowei Xu
- National Maize Improvement Center, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Liang Li
- National Maize Improvement Center, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Xin Dong
- National Maize Improvement Center, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Weiwei Jin
- National Maize Improvement Center, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Albrecht E. Melchinger
- Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Shaojiang Chen
- National Maize Improvement Center, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, 100193, Beijing, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:405-16. [PMID: 23020630 DOI: 10.1111/tpj.12038] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 05/20/2023]
Abstract
Maize plant height is closely associated with biomass, lodging resistance and grain yield. Determining the genetic basis of plant height by characterizing and cloning plant height genes will guide the genetic improvement of crops. In this study, a quantitative trait locus (QTL) for plant height, qPH3.1, was identified on chromosome 3 using populations derived from a cross between Zong3 and its chromosome segment substitution line, SL15. The plant height of the two lines was obviously different, and application of exogenous gibberellin A(3) removed this difference. QTL mapping placed qPH3.1 within a 4.0 cM interval, explaining 32.3% of the phenotypic variance. Furthermore, eight homozygous segmental isolines (SILs) developed from two larger F(2) populations further narrowed down qPH3.1 to within a 12.6 kb interval. ZmGA3ox2, an ortholog of OsGA3ox2, which encodes a GA3 β-hydroxylase, was positionally cloned. Association mapping identified two polymorphisms in ZmGA3ox2 that were significantly associated with plant height across two experiments. Quantitative RT-PCR showed that SL15 had higher ZmGA3ox2 expression relative to Zong3. The resultant higher GA(1) accumulation led to longer internodes in SL15 because of increased cell lengths. Moreover, a large deletion in the coding region of ZmGA3ox2 is responsible for the dwarf mutant d1-6016. The successfully isolated qPH3.1 enriches our knowledge on the genetic basis of plant height in maize, and provides an opportunity for improvement of plant architecture in maize breeding.
Collapse
Affiliation(s)
- Feng Teng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Becraft PW, Gutierrez-Marcos J. Endosperm development: dynamic processes and cellular innovations underlying sibling altruism. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:579-93. [PMID: 23801534 DOI: 10.1002/wdev.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endosperm is a product of fertilization that evolved to support and nourish its genetic twin sibling embryo. Cereal endosperm accumulates starch and protein stores, which later support the germinating seedling. These nutritional stores prompted the domestication of cereals and are the focus of ongoing efforts for crop improvement and biotechnological innovations. Endosperm development entails several novel modifications to basic cellular and developmental processes. Cereals display nuclear endosperm development, which begins with a period of free nuclear division to generate a coenocyte. Cytoskeletal arrays distribute nuclei around the periphery of the cytoplasm and direct the subsequent deposition of cell wall material during cellularization. Positional cues and signaling systems function dynamically in the specification of the four major cell types: transfer cells, embryo-surrounding cells, starchy endosperm (SE), and aleurone. Genome balance, epigenetic gene regulation, and parent-of-origin effects are essential for directing these processes. Transfer cells transport solutes, including sugars and amino acids, from the maternal plant tissues into the developing grain where they are partitioned between embryo and SE cells. Cells of the embryo-surrounding region appear to coordinate development of the embryo and endosperm. As the seed matures, SE cells assimilate starch and protein stores, undergo DNA endoreduplication, and finally undergo programmed cell death. In contrast, aleurone cells follow a maturation program similar to the embryo, allowing them to survive desiccation. At germination, the aleurone cells secrete amylases and proteases that hydrolyze the storage products of the SE to nourish the germinating seedling.
Collapse
Affiliation(s)
- Philip W Becraft
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | | |
Collapse
|
19
|
Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J. Genome-wide genetic changes during modern breeding of maize. Nat Genet 2012; 44:812-5. [DOI: 10.1038/ng.2312] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/07/2012] [Indexed: 12/18/2022]
|
20
|
Takacs EM, Suzuki M, Scanlon MJ. Discolored1 (DSC1) is an ADP-Ribosylation Factor-GTPase Activating Protein Required to Maintain Differentiation of Maize Kernel Structures. FRONTIERS IN PLANT SCIENCE 2012; 3:115. [PMID: 22666226 PMCID: PMC3364507 DOI: 10.3389/fpls.2012.00115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/14/2012] [Indexed: 05/20/2023]
Abstract
The embryo and endosperm are the products of double fertilization and comprise the clonally distinct products of angiosperm seed development. Recessive mutations in the maize gene discolored1 (dsc1) condition inviable seed that are defective in both embryo and endosperm development. Here, detailed phenotypic analyses illustrate that discolored mutant kernels are able to establish, but fail to maintain, differentiated embryo, and endosperm structures. Development of the discolored mutant embryo and endosperm is normal albeit delayed, prior to the abortion and subsequent degeneration of all differentiated kernel structures. Using a genomic fragment that was previously isolated by transposon tagging, the full length dsc1 transcript is identified and shown to encode an ADP-ribosylation factor-GTPase activating protein (ARF-GAP) that co-localizes with the trans-Golgi network/early endosomes and the plasma membrane during transient expression assays in N. benthamiana leaves. DSC1 function during endomembrane trafficking and the maintenance of maize kernel differentiation is discussed.
Collapse
Affiliation(s)
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
- *Correspondence: Michael J. Scanlon, Department of Plant Biology, Cornell University, 412 Mann Library, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|
21
|
Fouquet R, Martin F, Fajardo DS, Gault CM, Gómez E, Tseung CW, Policht T, Hueros G, Settles AM. Maize rough endosperm3 encodes an RNA splicing factor required for endosperm cell differentiation and has a nonautonomous effect on embryo development. THE PLANT CELL 2011; 23:4280-97. [PMID: 22138152 PMCID: PMC3269866 DOI: 10.1105/tpc.111.092163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 09/30/2011] [Accepted: 11/18/2011] [Indexed: 05/18/2023]
Abstract
Endosperm and embryo development are coordinated via epigenetic regulation and signaling between these tissues. In maize (Zea mays), the endosperm-embryo signals are not known, but endosperm cellularization is a key event for embryos to form shoots and roots. We screened seed mutants for nonautonomous functions in endosperm and embryo development with genetically nonconcordant seeds and identified the recessive mutant rough endosperm3 (rgh3). The wild-type Rgh3 allele is required in the endosperm for embryos to develop and has an autonomous role in embryo and seedling development. Endosperm cell differentiation is defective in rgh3. Results from endosperm cell culture indicate that rgh3 mutants remain in a proliferative state through mid-seed development. Rgh3 encodes the maize U2AF(35) Related Protein (URP), an RNA splicing factor involved in both U2 and U12 splicing. The Rgh3 allele produces at least 19 alternative splice variants with only one isoform encoding a full-length ortholog to URP. The full-length RGH3α isoform localizes to the nucleolus and displays a speckled pattern within the nucleoplasm, and RGH3α colocalizes with U2AF(65). A survey of alternatively spliced transcripts found that, in the rgh3 mutant, a fraction of noncanonical splicing events are altered. Our findings suggest that differentiation of maize endosperm cell types is necessary for embryos to develop. The molecular cloning of Rgh3 suggests that alternative RNA splicing is needed for cell differentiation, development, and plant viability.
Collapse
Affiliation(s)
- Romain Fouquet
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Federico Martin
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Diego S. Fajardo
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Christine M. Gault
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Elisa Gómez
- Departamento de Biología Celular y Genética, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - Chi-Wah Tseung
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Tyler Policht
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Gregorio Hueros
- Departamento de Biología Celular y Genética, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - A. Mark Settles
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Address correspondence to
| |
Collapse
|
22
|
Analysis of stunter1, a maize mutant with reduced gametophyte size and maternal effects on seed development. Genetics 2011; 187:1085-97. [PMID: 21270392 DOI: 10.1534/genetics.110.125286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many higher eukaryotes have evolved strategies for the maternal control of growth and development of their offspring. In higher plants this is achieved in part by postmeiotic gene activity controlling the development of the haploid female gametophyte. stunter1 (stt1) is a novel, recessive, maternal effect mutant in maize that displays viable, miniature kernels. Maternal inheritance of stt1 results in seeds with reduced but otherwise normal endosperms and embryos. The stt1 mutation displays reduced transmission through the male and female parents and causes significant changes in the sizes of both male and female gametophytes. stt1 pollen grains are smaller than wild type, have reduced germination efficiency, and reduced pollen tube growth. stt1 embryo sacs have smaller central cells and abnormal antipodal cells that are larger, more vacuolated, and fewer in number than wild type. Embryos and endosperms produced by fertilization of stt1 embryo sacs develop and grow more slowly than wild type. The data suggest that the morphology of mutant embryo sacs influences endosperm development, leading to the production of miniature kernels in stt1. Analysis of seeds carrying a mutant maternal allele of stt1 over a deletion of the paternal allele demonstrates that both parental alleles are active after fertilization in both the endosperm and embryo. This analysis also indicates that embryo development until the globular stage in maize can proceed without endosperm development and is likely supported directly by the diploid mother plant.
Collapse
|
23
|
Woodward JB, Abeydeera ND, Paul D, Phillips K, Rapala-Kozik M, Freeling M, Begley TP, Ealick SE, McSteen P, Scanlon MJ. A maize thiamine auxotroph is defective in shoot meristem maintenance. THE PLANT CELL 2010; 22:3305-17. [PMID: 20971897 PMCID: PMC2990124 DOI: 10.1105/tpc.110.077776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/27/2010] [Accepted: 09/25/2010] [Indexed: 05/18/2023]
Abstract
Plant shoots undergo organogenesis throughout their life cycle via the perpetuation of stem cell pools called shoot apical meristems (SAMs). SAM maintenance requires the coordinated equilibrium between stem cell division and differentiation and is regulated by integrated networks of gene expression, hormonal signaling, and metabolite sensing. Here, we show that the maize (Zea mays) mutant bladekiller1-R (blk1-R) is defective in leaf blade development and meristem maintenance and exhibits a progressive reduction in SAM size that results in premature shoot abortion. Molecular markers for stem cell maintenance and organ initiation reveal that both of these meristematic functions are progressively compromised in blk1-R mutants, especially in the inflorescence and floral meristems. Positional cloning of blk1-R identified a predicted missense mutation in a highly conserved amino acid encoded by thiamine biosynthesis2 (thi2). Consistent with chromosome dosage studies suggesting that blk1-R is a null mutation, biochemical analyses confirm that the wild-type THI2 enzyme copurifies with a thiazole precursor to thiamine, whereas the mutant enzyme does not. Heterologous expression studies confirm that THI2 is targeted to chloroplasts. All blk1-R mutant phenotypes are rescued by exogenous thiamine supplementation, suggesting that blk1-R is a thiamine auxotroph. These results provide insight into the role of metabolic cofactors, such as thiamine, during the proliferation of stem and initial cell populations.
Collapse
Affiliation(s)
- John B. Woodward
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | | | - Debamita Paul
- Department of Chemistry, Cornell University, Ithaca, New York 14853
| | - Kimberly Phillips
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Maria Rapala-Kozik
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94704
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77842
| | - Steven E. Ealick
- Department of Chemistry, Cornell University, Ithaca, New York 14853
| | - Paula McSteen
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
- Address correspondence to
| |
Collapse
|
24
|
Tebbji F, Nantel A, Matton DP. Transcription profiling of fertilization and early seed development events in a solanaceous species using a 7.7 K cDNA microarray from Solanum chacoense ovules. BMC PLANT BIOLOGY 2010; 10:174. [PMID: 20704744 PMCID: PMC3095305 DOI: 10.1186/1471-2229-10-174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 08/12/2010] [Indexed: 05/09/2023]
Abstract
BACKGROUND To provide a broad analysis of gene expression changes in developing embryos from a solanaceous species, we produced amplicon-derived microarrays with 7741 ESTs isolated from Solanum chacoense ovules bearing embryos from all developmental stages. Our aims were to: 1) identify genes expressed in a tissue-specific and temporal-specific manner; 2) define clusters of genes showing similar patterns of spatial and temporal expression; and 3) identify stage-specific or transition-specific candidate genes for further functional genomic analyses. RESULTS We analyzed gene expression during S. chacoense embryogenesis in a series of experiments with probes derived from ovules isolated before and after fertilization (from 0 to 22 days after pollination), and from leaves, anthers, and styles. From the 6374 unigenes present in our array, 1024 genes were differentially expressed (>or= +/- 2 fold change, p value <or= 0.01) in fertilized ovules compared to unfertilized ovules and only limited expression overlap was observed between these genes and the genes expressed in the other tissues tested, with the vast majority of the fertilization-regulated genes specifically or predominantly expressed in ovules (955 genes). During embryogenesis three major expression profiles corresponding to early, middle and late stages of embryo development were identified. From the early and middle stages, a large number of genes corresponding to cell cycle, DNA processing, signal transduction, and transcriptional regulation were found. Defense and stress response-related genes were found in all stages of embryo development. Protein biosynthesis genes, genes coding for ribosomal proteins and other components of the translation machinery were highly expressed in embryos during the early stage. Genes for protein degradation were overrepresented later in the middle and late stages of embryo development. As expected, storage protein transcripts accumulated predominantly in the late stage of embryo development. CONCLUSION Our analysis provides the first study in a solanaceous species of the transcriptional program that takes place during the early phases of plant reproductive development, including all embryogenesis steps during a comprehensive time-course. Our comparative expression profiling strategy between fertilized and unfertilized ovules identified a subset of genes specifically or predominantly expressed in ovules while a closer analysis between each consecutive time point allowed the identification of a subset of stage-specific and transition-specific genes.
Collapse
Affiliation(s)
- Faiza Tebbji
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
- Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - André Nantel
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
- Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Daniel P Matton
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| |
Collapse
|
25
|
Martin F, Dailey S, Settles AM. Distributed simple sequence repeat markers for efficient mapping from maize public mutagenesis populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:697-704. [PMID: 20401644 DOI: 10.1007/s00122-010-1341-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/03/2010] [Indexed: 05/29/2023]
Abstract
The genome sequence of the B73 maize inbred enables map-based cloning of genetic variants underlying phenotypes. In parallel to sequencing efforts, multiple public mutagenesis resources are being developed predominantly in the W22 and B73 inbreds. Efficient platforms to map mutants in these genetic backgrounds would aid molecular genetic analysis of the public resources. We screened 505 simple sequence repeat markers for polymorphisms between the B73, Mo17, and W22 inbreds. Using common thermocycling conditions, 47.1% of the markers showed co-dominant polymorphisms in at least one pair of inbreds. Based on these results, we identified 85 distributed markers for mapping in all three inbred pairs. For each inbred pair, the distributed set has 64-71 polymorphic markers with a mean distance of 27-29 cM between markers. The distributed markers give nearly complete coverage of the genetic map for each inbred pair. We demonstrate the utility of the marker set for efficient placement of mutants on the maize genetic map with an example mapping experiment of a seed mutant from the UniformMu mutagenesis resource. We conclude that these distributed molecular markers enable rapid mapping of phenotypic variants from public mutagenesis populations.
Collapse
Affiliation(s)
- Federico Martin
- Horticultural Sciences Department, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611-0690, USA
| | | | | |
Collapse
|
26
|
Liu YY, Li JZ, Li YL, Wei MG, Cui QX, Wang QL. Identification of differentially expressed genes at two key endosperm development stages using two maize inbreds with large and small grain and integration with detected QTL for grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:433-47. [PMID: 20364377 DOI: 10.1007/s00122-010-1321-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 03/05/2010] [Indexed: 05/24/2023]
Abstract
Maize endosperm accounts for more than 80% of the grain weight. Cell division and grain filling are the two key stages for endosperm development. Previous studies showed that gene expression during differential stages in endosperm development is greatly different. However, information on systematic identification and characterization of the differentially expressed genes between the two stages are limited. In this study, suppression subtractive hybridization (SSH) was used to generate four subtracted cDNA libraries for the two stages using two maize inbreds with large and small grain. Totally, 4,784 differentially expressed sequence tags (ESTs) were sequenced and 902 were non-redundant, which consisted of 344 unique ESTs. Among them 192 had high sequence similarity to the GenBank entries and represent diverse of functional categories, such as metabolism, cell growth/division, transcription, signal transduction, protein destination/storage, protein synthesis and others. The expression patterns of 75.7% SSH-derived cDNAs were confirmed by reverse Northern blot and semi-quantitative reverse transcription polymerase chain reaction, and exhibited the similar results (75.0%). Genes differentially expressed between two key stages for the two inbreds were involved in diverse physiological process pathway, which might be responsible for the formation of grain weight. 43.8% (70 of the 160 unique ESTs) of the identified ESTs were assigned to 39 chromosome bins distributed over all ten maize chromosomes. Eleven ESTs were found to co-localize with previous detected QTLs for grain weight, which might be considered as the candidate genes of grain weight for further study.
Collapse
Affiliation(s)
- Y Y Liu
- College of Agriculture, Henan Agricultural University, 95 Wenhua Rd, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
27
|
Strable J, Scanlon MJ. Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harb Protoc 2010; 2009:pdb.emo132. [PMID: 20147033 DOI: 10.1101/pdb.emo132] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Zea mays ssp. mays is one of the world's most important crop plants, boasting a multibillion dollar annual revenue. In addition to its agronomic importance, maize has been a keystone model organism for basic research for nearly a century. Within the cereals, which include other plant model species such as rice (Oryza sativa), sorghum (Sorghum bicolor), wheat (Triticum spp.), and barley (Hordeum vulgare), maize is the most thoroughly researched genetic system. Several attributes of the maize plant, including a vast collection of mutant stocks, large heterochromatic chromosomes, extensive nucleotide diversity, and genic colinearity within related grasses, have positioned this species as a centerpiece for genetic, cytogenetic, and genomic research. As a model organism, maize is the subject of such far-ranging biological investigations as plant domestication, genome evolution, developmental physiology, epigenetics, pest resistance, heterosis, quantitative inheritance, and comparative genomics. These and other studies will be advanced by the completed sequencing and annotation of the maize gene space, which will be realized during 2009. Here we present an overview of the use of maize as a model system and provide links to several protocols that enable its genetic and genomic analysis.
Collapse
Affiliation(s)
- Josh Strable
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
28
|
|
29
|
Manicacci D, Camus-Kulandaivelu L, Fourmann M, Arar C, Barrault S, Rousselet A, Feminias N, Consoli L, Francès L, Méchin V, Murigneux A, Prioul JL, Charcosset A, Damerval C. Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize. PLANT PHYSIOLOGY 2009; 150:506-20. [PMID: 19329568 PMCID: PMC2675748 DOI: 10.1104/pp.108.131888] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 03/23/2009] [Indexed: 05/18/2023]
Abstract
Association genetics is a powerful method to track gene polymorphisms responsible for phenotypic variation, since it takes advantage of existing collections and historical recombination to study the correlation between large genetic diversity and phenotypic variation. We used a collection of 375 maize (Zea mays ssp. mays) inbred lines representative of tropical, American, and European diversity, previously characterized for genome-wide neutral markers and population structure, to investigate the roles of two functionally related candidate genes, Opaque2 and CyPPDK1, on kernel quality traits. Opaque2 encodes a basic leucine zipper transcriptional activator specifically expressed during endosperm development that controls the transcription of many target genes, including CyPPDK1, which encodes a cytosolic pyruvate orthophosphate dikinase. Using statistical models that correct for population structure and individual kinship, Opaque2 polymorphism was found to be strongly associated with variation of the essential amino acid lysine. This effect could be due to the direct role of Opaque2 on either zein transcription, zeins being major storage proteins devoid of lysine, or lysine degradation through the activation of lysine ketoglutarate reductase. Moreover, we found that a polymorphism in the Opaque2 coding sequence and several polymorphisms in the CyPPDK1 promoter nonadditively interact to modify both lysine content and the protein-versus-starch balance, thus revealing the role in quantitative variation in plants of epistatic interactions between a transcriptional activator and one of its target genes.
Collapse
Affiliation(s)
- Domenica Manicacci
- University Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif sur Yvette, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sabelli PA, Larkins BA. The development of endosperm in grasses. PLANT PHYSIOLOGY 2009; 149:14-26. [PMID: 19126691 PMCID: PMC2613697 DOI: 10.1104/pp.108.129437] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/18/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Paolo A Sabelli
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
31
|
Settles AM. Transposon Tagging and Reverse Genetics. MOLECULAR GENETIC APPROACHES TO MAIZE IMPROVEMENT 2008. [DOI: 10.1007/978-3-540-68922-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
32
|
Prioul JL, Méchin V, Damerval C. Molecular and biochemical mechanisms in maize endosperm development: The role of pyruvate-Pi-dikinase and Opaque-2 in the control of C/N ratio. C R Biol 2008; 331:772-9. [DOI: 10.1016/j.crvi.2008.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Cossegal M, Chambrier P, Mbelo S, Balzergue S, Martin-Magniette ML, Moing A, Deborde C, Guyon V, Perez P, Rogowsky P. Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels. PLANT PHYSIOLOGY 2008; 146:1553-70. [PMID: 18287491 PMCID: PMC2287333 DOI: 10.1104/pp.107.112698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/15/2008] [Indexed: 05/09/2023]
Abstract
During the cloning of monogenic recessive mutations responsible for a defective kernel phenotype in a Mutator-induced Zea mays mutant collection, we isolated a new mutant allele in Brittle2 (Bt2), which codes for the small subunit of ADP-glucose pyrophosphorylase (AGPase), a key enzyme in starch synthesis. Reverse transcription-polymerase chain reaction experiments with gene-specific primers confirmed a predominant expression of Bt2 in endosperm, of Agpsemzm in embryo, and of Agpslzm in leaf, but also revealed considerable additional expression in various tissues for all three genes. Bt2a, the classical transcript coding for a cytoplasmic isoform, was almost exclusively expressed in the developing endosperm, whereas Bt2b, an alternative transcript coding for a plastidial isoform, was expressed in almost all tissues tested with a pattern very similar to that of Agpslzm. The phenotypic analysis showed that, at 30 d after pollination (DAP), mutant kernels were plumper than wild-type kernels, that the onset of kernel collapse took place between 31 and 35 DAP, and that the number of starch grains was greatly reduced in the mutant endosperm but not the mutant embryo. A comparative transcriptome analysis of wild-type and bt2-H2328 kernels at middevelopment (35 DAP) with the 18K GeneChip Maize Genome Array led to the conclusion that the lack of Bt2-encoded AGPase triggers large-scale changes on the transcriptional level that concern mainly genes involved in carbohydrate or amino acid metabolic pathways. Principal component analysis of (1)H nuclear magnetic resonance metabolic profiles confirmed the impact of the bt2-H2328 mutation on these pathways and revealed that the bt2-H2328 mutation did not only affect the endosperm, but also the embryo at the metabolic level. These data suggest that, in the bt2-H2328 endosperms, regulatory networks are activated that redirect excess carbon into alternative biosynthetic pathways (amino acid synthesis) or into other tissues (embryo).
Collapse
Affiliation(s)
- Magalie Cossegal
- Reproduction et Développement des Plantes, UMR 879 INRA-CNRS-ENSL-UCBL, IFR128 BioSciences Lyon-Gerland, F-69364 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible in this organism, and emphasize the available tools. Screens exploit the well-studied behaviour of transposon systems, and the distinctive chromosomes allow an integration of cytogenetics into mutagenesis screens and analyses. The imminent completion of the maize genome sequence provides the essential resource to move seamlessly from gene to phenotype and back.
Collapse
|
35
|
Méchin V, Thévenot C, Le Guilloux M, Prioul JL, Damerval C. Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. PLANT PHYSIOLOGY 2007; 143:1203-19. [PMID: 17237188 PMCID: PMC1820922 DOI: 10.1104/pp.106.092148] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 01/09/2007] [Indexed: 05/13/2023]
Abstract
Although the morphological steps of maize (Zea mays) endosperm development are well described, very little is known concerning the coordinated accumulation of the numerous proteins involved. Here, we present a proteomic study of maize endosperm development. The accumulation pattern of 409 proteins at seven developmental stages was examined. Hierarchical clustering analysis allowed four main developmental profiles to be recognized. Comprehensive investigation of the functions associated with clusters resulted in a consistent picture of the developmental coordination of cellular processes. Early stages, devoted to cellularization, cell division, and cell wall deposition, corresponded to maximal expression of actin, tubulins, and cell organization proteins, of respiration metabolism (glycolysis and tricarboxylic acid cycle), and of protection against reactive oxygen species. An important protein turnover, which is likely associated with the switch from growth and differentiation to storage, was also suggested from the high amount of proteases. A relative increase of abundance of the glycolytic enzymes compared to tricarboxylic acid enzymes is consistent with the recent demonstration of anoxic conditions during starch accumulation in the endosperm. The specific late-stage accumulation of the pyruvate orthophosphate dikinase may suggest a critical role of this enzyme in the starch-protein balance through inorganic pyrophosphate-dependent restriction of ADP-glucose synthesis in addition to its usually reported influence on the alanine-aromatic amino acid synthesis balance.
Collapse
Affiliation(s)
- Valérie Méchin
- Unité Mixte de Recherche 206, Chimie Biologique, Institut National de la Recherche Agronomique, Institut National Agronomique Paris-Grignon, F-78850 Thiverval Grignon, France.
| | | | | | | | | |
Collapse
|
36
|
Gutiérrez-Marcos JF, Dal Prà M, Giulini A, Costa LM, Gavazzi G, Cordelier S, Sellam O, Tatout C, Paul W, Perez P, Dickinson HG, Consonni G. empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. THE PLANT CELL 2007; 19:196-210. [PMID: 17259266 PMCID: PMC1820960 DOI: 10.1105/tpc.105.039594] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The pentatricopeptide repeat (PPR) family represents one of the largest gene families in plants, with >440 members annotated in Arabidopsis thaliana. PPR proteins are thought to have a major role in the regulation of posttranscriptional processes in organelles. Recent studies have shown that Arabidopsis PPR proteins play an essential, nonredundant role during embryogenesis. Here, we demonstrate that mutations in empty pericarp4 (emp4), a maize (Zea mays) PPR-encoding gene, confer a seed-lethal phenotype. Mutant endosperms are severely impaired, with highly irregular differentiation of transfer cells in the nutrient-importing basal endosperm. Analysis of homozygous mutant plants generated from embryo-rescue experiments indicated that emp4 also affects general plant growth. The emp4-1 mutation was identified in an active Mutator (Mu) population, and cosegregation analysis revealed that it arose from a Mu3 element insertion. Evidence of emp4 molecular cloning was provided by the isolation of four additional emp4 alleles obtained by a reverse genetics approach. emp4 encodes a novel type of PPR protein of 614 amino acids. EMP4 contains nine 35-amino acid PPR motifs and an N-terminal mitochondrion-targeted sequence peptide, which was confirmed by a translational EMP4-green fluorescent protein fusion that localized to mitochondria. Molecular analyses further suggest that EMP4 is necessary to regulate the correct expression of a small subset of mitochondrial transcripts in the endosperm.
Collapse
|
37
|
Dolfini S, Consonni G, Viotti C, Dal Prà M, Saltini G, Giulini A, Pilu R, Malgioglio A, Gavazzi G. A mutational approach to the study of seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:1197-205. [PMID: 17244631 DOI: 10.1093/jxb/erl290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The maize seed comprises two major compartments, the embryo and the endosperm, both originating from the double fertilization event. The embryogenetic process allows the formation of a well-differentiated embryonic axis, surrounded by a single massive cotyledon, the scutellum. The mature endosperm constitutes the bulk of the seed and comprises specific regions containing reserve proteins, complex carbohydrates, and oils. To gain more insight into molecular events that underlie seed development, three monogenic mutants were characterized, referred to as emp (empty pericarp) on the basis of their extreme endosperm reduction, first recognizable at about 12 d after pollination. Their histological analysis reveals a partial development of the endosperm domains as well as loss of adhesion between pedicel tissues and the basal transfer layer. In the endosperm, programmed cell death (PCD) is delayed. The embryo appears retarded in its growth, but not impaired in its morphogenesis. The mutants can be rescued by culturing immature embryos, even though the seedlings appear retarded in their growth. The analysis of seeds with discordant embryo-endosperm phenotype (mutant embryo, normal endosperm and vice-versa), obtained using B-A translocations, suggests that emp expression in the embryo is necessary, but not sufficient, for proper seed development. In all three mutants the picture emerging is one of a general delay in processes related to growth, as a result of a mutation affecting endosperm development as a primary event.
Collapse
Affiliation(s)
- Silvana Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Philippar K, Büchsenschütz K, Edwards D, Löffler J, Lüthen H, Kranz E, Edwards KJ, Hedrich R. The auxin-induced K(+) channel gene Zmk1 in maize functions in coleoptile growth and is required for embryo development. PLANT MOLECULAR BIOLOGY 2006; 61:757-68. [PMID: 16897490 DOI: 10.1007/s11103-006-0047-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 03/16/2006] [Indexed: 05/09/2023]
Abstract
The transcript level and in turn protein density of the K(+)-uptake channel ZMK1 in maize (Zea mays) coleoptiles is controlled by the phytohormone auxin. ZMK1 is involved in auxin-regulated coleoptile elongation as well as gravi- and phototropism. To provide unequivocal evidence for the role of ZMK1 in these elementary processes we screened for maize plants containing a Mutator-tagged Zmk1 gene. In a site-selected approach, we were able to identify three independent alleles of Mutator-transposon insertions in Zmk1. zmk1-m1::Mu1 plants were characterised by a Mu1 transposon inside intron 1 of ZMK1. When we analysed the Zmk1-transcript abundance in growing coleoptiles of these homozygous mutants, however, we found the K(+)-channel allele overexpressed. In consequence, elevated levels of K(+)-channel transcripts resulted in a growth phenotype as expected from more efficient K(+)-uptake, representing a central factor for turgor formation. Following Zmk1 expression during maize embryogenesis, we found this K(+)-channel gene constitutively expressed throughout embryo development and upregulated in late stages. In line with a vital role in embryogenesis, the mutations of exon 2 and intron 2 of Zmk1-zmk1-m2::Mu8 and zmk1-m3::MuA2-caused a lethal, defective-kernel phenotype. Thus, these results demonstrate the central role of the auxin-regulated K(+)-channel gene Zmk1 in coleoptile growth and embryo development.
Collapse
Affiliation(s)
- Katrin Philippar
- Julius-von-Sachs-Institut, Lehrstuhl Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fu S, Rogowsky P, Nover L, Scanlon MJ. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors. PLANTA 2006; 224:42-52. [PMID: 16331466 DOI: 10.1007/s00425-005-0191-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Accepted: 11/15/2005] [Indexed: 05/05/2023]
Abstract
The heat shock response (HSR) is a conserved mechanism by which transcripts of heat shock protein (hsp) genes accumulate following mobilization of heat shock transcription factors (HSFs) in response to thermal stress. Studies in animals identified the heat shock factor-binding protein1 (HSBP1) that interacts with heat shock transcription factor1 (HSF1) during heat shock attenuation; overexpression analyses revealed that the coiled-coil protein HSBP1 functions as a negative regulator of the HSR. Zea mays contains two HSBP paralogs, EMP2 and HSBP2, which exhibit differential accumulation during the HSR and plant development. Embryo-lethal recessive emp2 mutations revealed that EMP2 is required for the down-regulation of hsp transcription during embryogenesis, whereas accumulation of HSBP2 is induced in seedlings following heat shock. Notwithstanding, no interaction has yet been demonstrated between a plant HSBP and a plant HSF. In this report 22 maize HSF isoforms are identified comprising three structural classes: HSF-A, HSF-B and HSF-C. Phylogenetic analysis of Arabidopsis, maize and rice HSFs reveals that at least nine ancestral HSF isoforms were present prior to the separation of monocot and eudicots, followed by differential amplification of HSF members in these lineages. Yeast two-hybrid analyses show that EMP2 and HSBP2 interact non-redundantly with specific HSF-A isoforms. Site-specific mutagenesis of HSBP2 reveals that interactions between hydrophobic residues within the coiled coil are required for HSF::HSBP2 binding; domain swapping demonstrate that the isoform specificity of HSF::HSBP interaction is conferred by residues outside of the coiled coil. These data suggest that the non-redundant functions of the maize HSBPs may be explained, at least in part, by the specificity of HSBP::HSF interactions during plant development.
Collapse
Affiliation(s)
- Suneng Fu
- Plant Biology Department, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
40
|
McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch KE, Hannah LC. Steady-state transposon mutagenesis in inbred maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:52-61. [PMID: 16167895 DOI: 10.1111/j.1365-313x.2005.02509.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We implement a novel strategy for harnessing the power of high-copy transposons for functional analysis of the maize genome, and report behavioral features of the Mutator system in a uniform inbred background. The unique UniformMu population and database facilitate high-throughput molecular analysis of Mu-tagged mutants and gene knockouts. Key features of the population include: (i) high mutation frequencies (7% independent seed mutations) and moderation of copy number (approximately 57 total Mu elements; 1-2 MuDR copies per plant) were maintained by continuous back-crossing into a phenotypically uniform inbred background; (ii) a bz1-mum9 marker enabled selection of stable lines (loss of MuDR), inhibiting further transpositions in lines selected for molecular analysis; (iii) build-up of mutation load was prevented by screening Mu-active parents to exclude plants carrying pre-existing seed mutations. To create a database of genomic sequences flanking Mu insertions, selected mutant lines were analyzed by sequencing of MuTAIL PCR clone libraries. These sequences were annotated and clustered to facilitate bioinformatic subtraction of ancestral elements and identification of insertions unique to mutant lines. New insertions targeted low-copy, gene-rich sequences, and in silico mapping revealed a random distribution of insertions over the genome. Our results indicate that Mu populations differ markedly in the occurrence of Mu insertion hotspots and the frequency of suppressible mutations. We suggest that controlled MuDR copy number in UniformMu lines is a key determinant of these differences. The public database (http://uniformmu.org; http://endosperm.info) includes pedigree and phenotypic data for over 2000 independent seed mutants selected from a population of 31 548 F2 lines and integrated with analyses of 34 255 MuTAIL sequences.
Collapse
Affiliation(s)
- Donald R McCarty
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Consonni G, Gavazzi G, Dolfini S. Genetic analysis as a tool to investigate the molecular mechanisms underlying seed development in maize. ANNALS OF BOTANY 2005; 96:353-62. [PMID: 15998629 PMCID: PMC4246769 DOI: 10.1093/aob/mci187] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND In angiosperms the seed is the outcome of double fertilization, a process leading to the formation of the embryo and the endosperm. The development of the two seed compartments goes through three main phases: polarization, differentiation of the main tissues and organs and maturation. SCOPE This review focuses on the maize kernel as a model system for developmental and genetic studies of seed development in angiosperms. An overview of what is known about the genetic and molecular aspects underlying embryo and endosperm formation and maturation is presented. The role played by embryonic meristems in laying down the plant architecture is discussed. The acquisition of the different endosperm domains are presented together with the use of molecular markers available for the detection of these domains. Finally the role of programmed cell death in embryo and endosperm development is considered. CONCLUSIONS The sequence of events occurring in the developing maize seed appears to be strictly regulated. Proper seed development requires the co-ordinated expression of embryo and endosperm genes and relies on the interaction between the two seed components and between the seed and the maternal tissues. Mutant analysis is instrumental in unravelling the genetic control underlying the formation of each compartment as well as the molecular signals interplaying between the two compartments.
Collapse
Affiliation(s)
- Gabriella Consonni
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | | | | |
Collapse
|
42
|
Verza NC, E Silva TR, Neto GC, Nogueira FTS, Fisch PH, de Rosa VE, Rebello MM, Vettore AL, da Silva FR, Arruda P. Endosperm-preferred expression of maize genes as revealed by transcriptome-wide analysis of expressed sequence tags. PLANT MOLECULAR BIOLOGY 2005; 59:363-74. [PMID: 16247562 DOI: 10.1007/s11103-005-8924-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Accepted: 06/19/2005] [Indexed: 05/05/2023]
Abstract
The transcriptome-wide endosperm-preferred expression of maize genes was addressed by analyzing a large database of expressed sequence tags (ESTs). We generated 30,531 high quality sequence-reads from the 5'-ends of cDNA libraries from maize endosperm harvested at 10, 15, and 20 days after pollination. A further 196,900 maize sequence-reads retrieved from public databases were added to this endosperm collection to generate MAIZEST, a database with tools for data storage and analysis. MAIZEST contains 227,431 ESTs, one third of which represents developing endosperm and the remaining two-thirds represent transcripts from 49 cDNA libraries constructed from different organs and tissues. Assembling the MAIZEST ESTs generated 29,206 putative transcripts, of which a set of 4032 assembled sequences was composed exclusively of sequences derived from endosperm cDNA libraries. After sequence analysis using overlapping parameters, a sub-set of 2403 assembled sequences was functionally annotated and revealed a wide variety of putative new genes involved in endosperm development and metabolism.
Collapse
Affiliation(s)
- Natalia C Verza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Henderson DC, Muehlbauer GJ, Scanlon MJ. Radial leaves of the maize mutant ragged seedling2 retain dorsiventral anatomy. Dev Biol 2005; 282:455-66. [PMID: 15950610 DOI: 10.1016/j.ydbio.2005.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/18/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
ragged seedling2 (rgd2) is a novel, recessive mutation affecting lateral organ development in maize. The mutant phenotype of homozygous rgd2-R leaves is variable. Mild leaf phenotypes have a reduced midrib and may be moderately narrow and furcated; severe Rgd2-R(-) leaves are filamentous or even radial. Despite their radial morphology, severe Rgd2-R(-) mutant leaves develop distinct adaxial and abaxial anatomical features. Although Rgd2-R(-) mutants exhibit no reduction in adaxial or abaxial cell types, areas of epidermal cell swapping may occur that are associated with misaligned vascular bundles and outgrowths of ectopic margins. Scanning electron microscopy of young primordia and analyses of leaf developmental-marker gene expression in mutant apices reveal that RGD2 functions during recruitment of leaf founder cells and during expansive growth of leaf primordia. Overall, these phenotypes suggest that development is uncoordinated in Rgd2-R(-) mutant leaves, so that leaf components and tissues may develop quasi-independently. Models whereby RGD2 is required for developmental signaling during the initiation, anatomical patterning, and lateral expansion of maize leaves are discussed.
Collapse
Affiliation(s)
- David C Henderson
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
44
|
Fu S, Scanlon MJ. Clonal mosaic analysis of EMPTY PERICARP2 reveals nonredundant functions of the duplicated HEAT SHOCK FACTOR BINDING PROTEINs during maize shoot development. Genetics 2005; 167:1381-94. [PMID: 15280250 PMCID: PMC1470956 DOI: 10.1534/genetics.104.026575] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The paralogous maize proteins EMPTY PERICARP2 (EMP2) and HEAT SHOCK FACTOR BINDING PROTEIN2 (HSBP2) each contain a single recognizable motif: the coiled-coil domain. EMP2 and HSBP2 accumulate differentially during maize development and heat stress. Previous analyses revealed that EMP2 is required for regulation of heat shock protein (hsp) gene expression and also for embryo morphogenesis. Developmentally abnormal emp2 mutant embryos are aborted during early embryogenesis. To analyze EMP2 function during postembryonic stages, plants mosaic for sectors of emp2 mutant tissue were constructed. Clonal sectors of emp2 mutant tissue revealed multiple defects during maize vegetative shoot development, but these sector phenotypes are not correlated with aberrant hsp gene regulation. Furthermore, equivalent phenotypes are observed in emp2 sectored plants grown under heat stress and nonstress conditions. Thus, the function of EMP2 during regulation of the heat stress response can be separated from its role in plant development. The discovery of emp2 mutant phenotypes in postembryonic shoots reveals that the duplicate genes emp2 and hsbp2 encode nonredundant functions throughout maize development. Distinct developmental phenotypes correlated with the developmental timing, position, and tissue layer of emp2 mutant sectors, suggesting that EMP2 has evolved diverse developmental functions in the maize shoot.
Collapse
Affiliation(s)
- Suneng Fu
- Plant Biology Department, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
45
|
Lai J, Dey N, Kim CS, Bharti AK, Rudd S, Mayer KFX, Larkins BA, Becraft P, Messing J. Characterization of the maize endosperm transcriptome and its comparison to the rice genome. Genome Res 2004; 14:1932-7. [PMID: 15466291 PMCID: PMC524417 DOI: 10.1101/gr.2780504] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cereal endosperm is a major organ of the seed and an important component of the world's food supply. To understand the development and physiology of the endosperm of cereal seeds, we focused on the identification of genes expressed at various times during maize endosperm development. We constructed several cDNA libraries to identify full-length clones and subjected them to a twofold enrichment. A total of 23,348 high-quality sequence-reads from 5'- and 3'-ends of cDNAs were generated and assembled into a unigene set representing 5326 genes with paired sequence-reads. Additional sequencing yielded a total of 3160 (59%) completely sequenced, full-length cDNAs. From 5326 unigenes, 4139 (78%) can be aligned with 5367 predicted rice genes and by taking only the "best hit" be mapped to 3108 positions on the rice genome. The 22% unigenes not present in rice indicate a rapid change of gene content between rice and maize in only 50 million years. Differences in rice and maize gene numbers also suggest that maize has lost a large number of duplicated genes following tetraploidization. The larger number of gene copies in rice suggests that as many as 30% of its genes arose from gene amplification, which would extrapolate to a significant proportion of the estimated 44,027 candidate genes of its entire genome. Functional classification of the maize endosperm unigene set indicated that more than a fourth of the novel functionally assignable genes found in this study are involved in carbohydrate metabolism, consistent with its role as a storage organ.
Collapse
Affiliation(s)
- Jinsheng Lai
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang X, Colleoni C, Ratushna V, Sirghie-Colleoni M, James MG, Myers AM. Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. PLANT MOLECULAR BIOLOGY 2004; 54:865-79. [PMID: 15604657 DOI: 10.1007/s11103-004-0312-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mutations in the maize gene sugary2 ( su2 ) affect starch structure and its resultant physiochemical properties in useful ways, although the gene has not been characterized previously at the molecular level. This study tested the hypothesis that su2 codes for starch synthase IIa (SSIIa). Two independent mutations of the su2 locus, su2-2279 and su2-5178 , were identified in a Mutator -active maize population. The nucleotide sequence of the genomic locus that codes for SSIIa was compared between wild type plants and those homozygous for either novel mutation. Plants bearing su2-2279 invariably contained a Mutator transposon in exon 3 of the SSIIa gene, and su2-5178 mutants always contained a small retrotransposon-like insertion in exon 10. Six allelic su2 (-) mutations conditioned loss or reduction in abundance of the SSIIa protein detected by immunoblot. These data indicate that su2 codes for SSIIa and that deficiency in this isoform is ultimately responsible for the altered physiochemical properties of su2 (-) mutant starches. A specific starch synthase isoform among several identified in soluble endosperm extracts was absent in su2-2279 or su2-5178 mutants, indicating that SSIIa is active in the soluble phase during kernel development. The immediate structural effect of the su2 (-) mutations was shown to be increased abundance of short glucan chains in amylopectin and a proportional decrease in intermediate length chains, similar to the effects of SSII deficiency in other species.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, IA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Olsen OA. Nuclear endosperm development in cereals and Arabidopsis thaliana. THE PLANT CELL 2004; 16 Suppl:S214-27. [PMID: 15010513 PMCID: PMC2643391 DOI: 10.1105/tpc.017111] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Odd-Arne Olsen
- Pioneer Hi-Bred International, A DuPont Company, Johnston, Iowa 50131, USA.
| |
Collapse
|
48
|
Costa LM, Gutierrez-Marcos JF, Brutnell TP, Greenland AJ, Dickinson HG. The globby1-1 (glo1-1) mutation disrupts nuclear and cell division in the developing maize seed causing alterations in endosperm cell fate and tissue differentiation. Development 2003; 130:5009-17. [PMID: 12952903 DOI: 10.1242/dev.00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cereal endosperm tissues account for most of the world's calorific intake, yet the regulation of monocot seed development remains poorly understood. The maize endosperm originates with a series of free-nuclear divisions, followed by cellularisation and subsequent formation of a range of functional cellular domains. We describe the isolation and characterisation of a mutation that induces aberrant globular embryo and endosperm morphology, globby1-1 (glo1-1). Our data indicate that glo1-1 plays a role in nuclear division and cytokinesis in the developing seed. Pattern formation in the embryo is severely impaired with development arresting at premature stages, while in the endosperm, the effects of the glo1-1 mutation are manifest at the free-nuclear or syncytial stage. During cellularisation, and at later stages of development, aberrant cell division and localised domains of cell proliferation are apparent in glo1-1 endosperms. As a consequence, cell fate acquisition and subsequent differentiation of endosperm tissues are affected to varying degrees of severity. To date, it has been hypothesised that BETL cell fate is specified in the syncytium and that cell files subsequently develop in response to a gradient of signal(s) derived from the maternal pedicel region. Based on our findings, however, we propose that specification of BETL cells is an irreversible event that occurs within a narrow window of syncytial development, and that BETL cell identity is subsequently inherited in a lineage-dependent manner. Additionally, our data suggest that acquisition of aleurone cell fate does not solely rely upon signalling from the maternal surrounding tissue to the periphery of the endosperm, as previously thought, but that other factor(s) present within the endosperm are involved.
Collapse
Affiliation(s)
- Liliana M Costa
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | |
Collapse
|
49
|
Fu S, Meeley R, Scanlon MJ. Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. THE PLANT CELL 2002; 14:3119-32. [PMID: 12468731 PMCID: PMC151206 DOI: 10.1105/tpc.006726] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The heat shock response (HSR) is an evolutionarily conserved molecular/biochemical reaction to thermal stress that is essential to the survival of eukaryotic organisms. Recessive Mutator transposon mutations at the maize empty pericarp2 (emp2) locus led to dramatically increased expression of heat shock genes, retarded embryo development, and early-stage abortion of embryogenesis. The developmental timing of emp2 mutant embryo lethality was correlated with the initial competence of maize kernels to invoke the HSR. Cloning and sequence analyses revealed that the emp2 gene encoded a predicted protein with high similarity to HEAT SHOCK BINDING PROTEIN1, which was first described in animals as a negative regulator of the HSR. emp2 is a loss-of-function mutation of an HSR-negative regulator in plants. Despite the recessive emp2 phenotype, steady state levels of emp2 transcripts were abundant in mutant kernels, and the predicted coding region was unaffected. These expression data suggest that emp2 transcription is feedback regulated, whereas S1 nuclease mapping suggests that emp2 mutant transcripts are 5' truncated and nontranslatable. In support of this model, immunoblot assays revealed that EMP2 protein did not accumulate in mutant kernels. These data support a model whereby an unattenuated HSR results in the early abortion of emp2 mutant embryos. Furthermore, the developmental retardation of emp2 mutant kernels before the HSR suggests an additional role for EMP2 during embryo development distinct from the HSR.
Collapse
Affiliation(s)
- Suneng Fu
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
50
|
Becraft PW, Li K, Dey N, Asuncion-Crabb Y. The maize dek1 gene functions in embryonic pattern formation and cell fate specification. Development 2002; 129:5217-25. [PMID: 12399313 DOI: 10.1242/dev.129.22.5217] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutants in the maize defective kernel1 (dek1) gene are blocked in embryogenesis and the endosperm is chalky and lacks an aleurone layer. Here we show that intermediate alleles result in embryos that lack a shoot axis while weak alleles result in endosperms with mosaic aleurone and deformed plants with epidermal cells that resemble bulliform cells, a specialized epidermal cell type. This indicates that dek1 functions in embryonic pattern formation, cell fate specification and pattern formation in the leaf epidermis, and cell fate specification in the endosperm. Thus, thedek1 gene product appears to control different cellular-developmental processes depending on cellular context. The phenotype of the weakdek1-Dooner allele resembles the crinkly4 (cr4)mutant phenotype. Double mutants between dek1 and cr4 showed elements of epistasis, additivity and synergy, suggesting that the gene products may function in overlapping developmental processes. cr4transcript was detectable in dek1 mutant kernels indicating that DEK1 was not required for Cr4 transcript accumulation. To test whether DEK1 regulated the ligand for the CR4 receptor kinase, a genetic mosaic analysis was performed. The dek1 phenotype appeared to be generally cell-autonomous, leading to the conclusion that it was not likely to produce a diffusible signal molecule, and therefore was not likely to regulate the CR4 ligand.
Collapse
Affiliation(s)
- Philip W Becraft
- Zoology and Genetics Department, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|