1
|
Guo H, Ryan JC, Song X, Mallet A, Zhang M, Pabst V, Decrulle AL, Ejsmont P, Wintermute EH, Lindner AB. Spatial engineering of E. coli with addressable phase-separated RNAs. Cell 2022; 185:3823-3837.e23. [PMID: 36179672 DOI: 10.1016/j.cell.2022.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
Biochemical processes often require spatial regulation and specific microenvironments. The general lack of organelles in bacteria limits the potential of bioengineering complex intracellular reactions. Here, we demonstrate synthetic membraneless organelles in Escherichia coli termed transcriptionally engineered addressable RNA solvent droplets (TEARS). TEARS are assembled from RNA-binding protein recruiting domains fused to poly-CAG repeats that spontaneously drive liquid-liquid phase separation from the bulk cytoplasm. Targeting TEARS with fluorescent proteins revealed multilayered structures with composition and reaction robustness governed by non-equilibrium dynamics. We show that TEARS provide organelle-like bioprocess isolation for sequestering biochemical pathways, controlling metabolic branch points, buffering mRNA translation rates, and scaffolding protein-protein interactions. We anticipate TEARS to be a simple and versatile tool for spatially controlling E. coli biochemistry. Particularly, the modular design of TEARS enables applications without expression fine-tuning, simplifying the design-build-test cycle of bioengineering.
Collapse
Affiliation(s)
- Haotian Guo
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France.
| | - Joseph C Ryan
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Xiaohu Song
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Adeline Mallet
- Ultrastructural BioImaging UTechS, C2RT, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Mengmeng Zhang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Victor Pabst
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Antoine L Decrulle
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Paulina Ejsmont
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Edwin H Wintermute
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France.
| |
Collapse
|
2
|
Environmental selection and epistasis in an empirical phenotype-environment-fitness landscape. Nat Ecol Evol 2022; 6:427-438. [PMID: 35210579 DOI: 10.1038/s41559-022-01675-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022]
Abstract
Fitness landscapes, mappings of genotype/phenotype to their effects on fitness, are invaluable concepts in evolutionary biochemistry. Although widely discussed, measurements of phenotype-fitness landscapes in proteins remain scarce. Here, we quantify all single mutational effects on fitness and phenotype (EC50) of VIM-2 β-lactamase across a 64-fold range of ampicillin concentrations. We then construct a phenotype-fitness landscape that takes variations in environmental selection pressure into account. We found that a simple, empirical landscape accurately models the ~39,000 mutational data points, suggesting that the evolution of VIM-2 can be predicted on the basis of the selection environment. Our landscape provides new quantitative knowledge on the evolution of the β-lactamases and proteins in general, particularly their evolutionary dynamics under subinhibitory antibiotic concentrations, as well as the mechanisms and environmental dependence of non-specific epistasis.
Collapse
|
3
|
Labourel F, Rajon E. Resource uptake and the evolution of moderately efficient enzymes. Mol Biol Evol 2021; 38:3938-3952. [PMID: 33964160 PMCID: PMC8382906 DOI: 10.1093/molbev/msab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzymes speed up reactions that would otherwise be too slow to sustain the metabolism of selfreplicators. Yet, most enzymes seem only moderately efficient, exhibiting kinetic parameters orders of magnitude lower than their expected physically achievable maxima and spanning over surprisingly large ranges of values. Here, we question how these parameters evolve using a mechanistic model where enzyme efficiency is a key component of individual competition for resources. We show that kinetic parameters are under strong directional selection only up to a point, above which enzymes appear to evolve under near-neutrality, thereby confirming the qualitative observation of other modeling approaches. While the existence of a large fitness plateau could potentially explain the extensive variation in enzyme features reported, we show using a population genetics model that such a widespread distribution is an unlikely outcome of evolution on a common landscape, as mutation–selection–drift balance occupy a narrow area even when very moderate biases towards lower efficiency are considered. Instead, differences in the evolutionary context encountered by each enzyme should be involved, such that each evolves on an individual, unique landscape. Our results point to drift and effective population size playing an important role, along with the kinetics of nutrient transporters, the tolerance to high concentrations of intermediate metabolites, and the reversibility of reactions. Enzyme concentration also shapes selection on kinetic parameters, but we show that the joint evolution of concentration and efficiency does not yield extensive variance in evolutionary outcomes when documented costs to protein expression are applied.
Collapse
Affiliation(s)
- Florian Labourel
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Etienne Rajon
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| |
Collapse
|
4
|
Zhang X, Ritchie SR, Chang H, Arnold DL, Jackson RW, Rainey PB. Genotypic and phenotypic analyses reveal distinct population structures and ecotypes for sugar beet-associated Pseudomonas in Oxford and Auckland. Ecol Evol 2020; 10:5963-5975. [PMID: 32607204 PMCID: PMC7319117 DOI: 10.1002/ece3.6334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023] Open
Abstract
Fluorescent pseudomonads represent one of the largest groups of bacteria inhabiting the surfaces of plants, but their genetic composition in planta is poorly understood. Here, we examined the population structure and diversity of fluorescent pseudomonads isolated from sugar beet grown at two geographic locations (Oxford, United Kingdom and Auckland, New Zealand). To seek evidence for niche adaptation, bacteria were sampled from three types of leaves (immature, mature, and senescent) and then characterized using a combination of genotypic and phenotypic analysis. We first performed multilocus sequence analysis (MLSA) of three housekeeping genes (gapA, gltA, and acnB) in a total of 152 isolates (96 from Oxford, 56 from Auckland). The concatenated sequences were grouped into 81 sequence types and 22 distinct operational taxonomic units (OTUs). Significant levels of recombination were detected, particularly for the Oxford isolates (rate of recombination to mutation (r/m) = 5.23 for the whole population). Subsequent ancestral analysis performed in STRUCTURE found evidence of six ancestral populations, and their distributions significantly differed between Oxford and Auckland. Next, their ability to grow on 95 carbon sources was assessed using the Biolog™ GN2 microtiter plates. A distance matrix was generated from the raw growth data (A 660) and subjected to multidimensional scaling (MDS) analysis. There was a significant correlation between substrate utilization profiles and MLSA genotypes. Both phenotypic and genotypic analyses indicated presence of a geographic structure for strains from Oxford and Auckland. Significant differences were also detected for MLSA genotypes between strains isolated from immature versus mature/senescent leaves. The fluorescent pseudomonads thus showed an ecotypic population structure, suggestive of adaptation to both geographic conditions and local plant niches.
Collapse
Affiliation(s)
- Xue‐Xian Zhang
- New Zealand Institute for Advanced StudyMassey UniversityAucklandNew Zealand
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| | - Stephen R. Ritchie
- New Zealand Institute for Advanced StudyMassey UniversityAucklandNew Zealand
- Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Hao Chang
- New Zealand Institute for Advanced StudyMassey UniversityAucklandNew Zealand
| | - Dawn L. Arnold
- Centre for Research in BioscienceUniversity of the West of EnglandBristolUK
| | - Robert W. Jackson
- School of Biosciences and Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Paul B. Rainey
- New Zealand Institute for Advanced StudyMassey UniversityAucklandNew Zealand
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire de Génétique de l'Evolution, Chemistry, Biology and Innovation (CBI)UMR8231ESPCI ParisCNRSPSL Research UniversityParisFrance
| |
Collapse
|
5
|
Kemble H, Nghe P, Tenaillon O. Recent insights into the genotype-phenotype relationship from massively parallel genetic assays. Evol Appl 2019; 12:1721-1742. [PMID: 31548853 PMCID: PMC6752143 DOI: 10.1111/eva.12846] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
With the molecular revolution in Biology, a mechanistic understanding of the genotype-phenotype relationship became possible. Recently, advances in DNA synthesis and sequencing have enabled the development of deep mutational scanning assays, capable of scoring comprehensive libraries of genotypes for fitness and a variety of phenotypes in massively parallel fashion. The resulting empirical genotype-fitness maps pave the way to predictive models, potentially accelerating our ability to anticipate the behaviour of pathogen and cancerous cell populations from sequencing data. Besides from cellular fitness, phenotypes of direct application in industry (e.g. enzyme activity) and medicine (e.g. antibody binding) can be quantified and even selected directly by these assays. This review discusses the technological basis of and recent developments in massively parallel genetics, along with the trends it is uncovering in the genotype-phenotype relationship (distribution of mutation effects, epistasis), their possible mechanistic bases and future directions for advancing towards the goal of predictive genetics.
Collapse
Affiliation(s)
- Harry Kemble
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Unité Mixte de Recherche 1137Université Paris Diderot, Université Paris NordParisFrance
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), UMR CNRS‐ESPCI CBI 8231PSL Research UniversityParis Cedex 05France
| | - Philippe Nghe
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), UMR CNRS‐ESPCI CBI 8231PSL Research UniversityParis Cedex 05France
| | - Olivier Tenaillon
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Unité Mixte de Recherche 1137Université Paris Diderot, Université Paris NordParisFrance
| |
Collapse
|
6
|
Abstract
For nearly a century adaptive landscapes have provided overviews of the evolutionary process and yet they remain metaphors. We redefine adaptive landscapes in terms of biological processes rather than descriptive phenomenology. We focus on the underlying mechanisms that generate emergent properties such as epistasis, dominance, trade-offs and adaptive peaks. We illustrate the utility of landscapes in predicting the course of adaptation and the distribution of fitness effects. We abandon aged arguments concerning landscape ruggedness in favor of empirically determining landscape architecture. In so doing, we transform the landscape metaphor into a scientific framework within which causal hypotheses can be tested.
Collapse
Affiliation(s)
- Xiao Yi
- BioTechnology Institute, University of Minnesota, St. Paul, MN
| | - Antony M Dean
- BioTechnology Institute, University of Minnesota, St. Paul, MN
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| |
Collapse
|
7
|
Dykhuizen D. Thoughts Toward a Theory of Natural Selection: The Importance of Microbial Experimental Evolution. Cold Spring Harb Perspect Biol 2016; 8:a018044. [PMID: 26747663 PMCID: PMC4772105 DOI: 10.1101/cshperspect.a018044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Natural selection should no longer be thought of simply as a primitive (magical) concept that can be used to support all kinds of evolutionary theorizing. We need to develop causal theories of natural selection; how it arises. Because the factors contributing to the creation of natural selection are expected to be complex and intertwined, theories explaining the causes of natural selection can only be developed through the experimental method. Microbial experimental evolution provides many benefits that using other organisms does not. Microorganisms are small, so millions can be housed in a test tube; they have short generation times, so evolution over hundreds of generations can be easily studied; they can grow in chemically defined media, so the environment can be precisely defined; and they can be frozen, so the fitness of strains or populations can be directly compared across time. Microbial evolution experiments can be divided into two types. The first is to measure the selection coefficient of two known strains over the first 50 or so generations, before advantageous mutations rise to high frequency. This type of experiment can be used to directly test hypotheses. The second is to allow microbial cultures to evolve over many hundreds or thousands of generations and follow the genetic changes, to infer what phenotypes are selected. In the last section of this article, I propose that selection coefficients are not constant, but change as the population becomes fitter, introducing the idea of the selection space.
Collapse
Affiliation(s)
- Daniel Dykhuizen
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
8
|
Wang P, Lv C, Zhu G. Novel type II and monomeric NAD+ specific isocitrate dehydrogenases: phylogenetic affinity, enzymatic characterization, and evolutionary implication. Sci Rep 2015; 5:9150. [PMID: 25775177 PMCID: PMC4360740 DOI: 10.1038/srep09150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/23/2015] [Indexed: 11/09/2022] Open
Abstract
NAD(+) use is an ancestral trait of isocitrate dehydrogenase (IDH), and the NADP(+) phenotype arose through evolution as an ancient adaptation event. However, no NAD(+)-specific IDHs have been found among type II IDHs and monomeric IDHs. In this study, novel type II homodimeric NAD-IDHs from Ostreococcus lucimarinus CCE9901 IDH (OlIDH) and Micromonas sp. RCC299 (MiIDH), and novel monomeric NAD-IDHs from Campylobacter sp. FOBRC14 IDH (CaIDH) and Campylobacter curvus (CcIDH) were reported for the first time. The homodimeric OlIDH and monomeric CaIDH were determined by size exclusion chromatography and MALDI-TOF/TOF mass spectrometry. All the four IDHs were demonstrated to be NAD(+)-specific, since OlIDH, MiIDH, CaIDH and CcIDH displayed 99-fold, 224-fold, 61-fold and 37-fold preferences for NAD(+) over NADP(+), respectively. The putative coenzyme discriminating amino acids (Asp326/Met327 in OlIDH, Leu584/Asp595 in CaIDH) were evaluated, and the coenzyme specificities of the two mutants, OlIDH R(326)H(327) and CaIDH H(584)R(595), were completely reversed from NAD(+) to NADP(+). The detailed biochemical properties, including optimal reaction pH and temperature, thermostability, and metal ion effects, of OlIDH and CaIDH were further investigated. The evolutionary connections among OlIDH, CaIDH, and all the other forms of IDHs were described and discussed thoroughly.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Changqi Lv
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| |
Collapse
|
9
|
Stochasticity of metabolism and growth at the single-cell level. Nature 2014; 514:376-9. [PMID: 25186725 DOI: 10.1038/nature13582] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/16/2014] [Indexed: 01/09/2023]
Abstract
Elucidating the role of molecular stochasticity in cellular growth is central to understanding phenotypic heterogeneity and the stability of cellular proliferation. The inherent stochasticity of metabolic reaction events should have negligible effect, because of averaging over the many reaction events contributing to growth. Indeed, metabolism and growth are often considered to be constant for fixed conditions. Stochastic fluctuations in the expression level of metabolic enzymes could produce variations in the reactions they catalyse. However, whether such molecular fluctuations can affect growth is unclear, given the various stabilizing regulatory mechanisms, the slow adjustment of key cellular components such as ribosomes, and the secretion and buffering of excess metabolites. Here we use time-lapse microscopy to measure fluctuations in the instantaneous growth rate of single cells of Escherichia coli, and quantify time-resolved cross-correlations with the expression of lac genes and enzymes in central metabolism. We show that expression fluctuations of catabolically active enzymes can propagate and cause growth fluctuations, with transmission depending on the limitation of the enzyme to growth. Conversely, growth fluctuations propagate back to perturb expression. Accordingly, enzymes were found to transmit noise to other unrelated genes via growth. Homeostasis is promoted by a noise-cancelling mechanism that exploits fluctuations in the dilution of proteins by cell-volume expansion. The results indicate that molecular noise is propagated not only by regulatory proteins but also by metabolic reactions. They also suggest that cellular metabolism is inherently stochastic, and a generic source of phenotypic heterogeneity.
Collapse
|
10
|
Goulart CP, Mahmudi M, Crona KA, Jacobs SD, Kallmann M, Hall BG, Greene DC, Barlow M. Designing antibiotic cycling strategies by determining and understanding local adaptive landscapes. PLoS One 2013; 8:e56040. [PMID: 23418506 PMCID: PMC3572165 DOI: 10.1371/journal.pone.0056040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022] Open
Abstract
The evolution of antibiotic resistance among bacteria threatens our continued ability to treat infectious diseases. The need for sustainable strategies to cure bacterial infections has never been greater. So far, all attempts to restore susceptibility after resistance has arisen have been unsuccessful, including restrictions on prescribing [1] and antibiotic cycling [2], [3]. Part of the problem may be that those efforts have implemented different classes of unrelated antibiotics, and relied on removal of resistance by random loss of resistance genes from bacterial populations (drift). Here, we show that alternating structurally similar antibiotics can restore susceptibility to antibiotics after resistance has evolved. We found that the resistance phenotypes conferred by variant alleles of the resistance gene encoding the TEM β-lactamase (blaTEM) varied greatly among 15 different β-lactam antibiotics. We captured those differences by characterizing complete adaptive landscapes for the resistance alleles blaTEM-50 and blaTEM-85, each of which differs from its ancestor blaTEM-1 by four mutations. We identified pathways through those landscapes where selection for increased resistance moved in a repeating cycle among a limited set of alleles as antibiotics were alternated. Our results showed that susceptibility to antibiotics can be sustainably renewed by cycling structurally similar antibiotics. We anticipate that these results may provide a conceptual framework for managing antibiotic resistance. This approach may also guide sustainable cycling of the drugs used to treat malaria and HIV.
Collapse
Affiliation(s)
- Christiane P. Goulart
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Mentar Mahmudi
- School of Engineering, University of California Merced, Merced, California, United States of America
| | - Kristina A. Crona
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Stephen D. Jacobs
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Marcelo Kallmann
- School of Engineering, University of California Merced, Merced, California, United States of America
| | - Barry G. Hall
- Bellingham Research Institute, Bellingham, Washington, United States of America
| | - Devin C. Greene
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Miriam Barlow
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Zhang XX, Chang H, Tran SL, Gauntlett JC, Cook GM, Rainey PB. Variation in transport explains polymorphism of histidine and urocanate utilization in a natural Pseudomonas population. Environ Microbiol 2012; 14:1941-51. [PMID: 22225938 DOI: 10.1111/j.1462-2920.2011.02692.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phenotypic variation is a fundamental requirement for evolution by natural selection. While evidence of phenotypic variation in natural populations abounds, its genetic basis is rarely understood. Here we report variation in the ability of plant-colonizing Pseudomonas to utilize histidine, and its derivative, urocanate, as sole sources of carbon and nitrogen. From a population of 164 phyllosphere-colonizing Pseudomonas strains, 77% were able to utilize both histidine and urocanate (His(+) , Uro(+) ) as growth substrates, whereas the remainder could utilize histidine, but not urocanate (His(+) , Uro(-) ), or vice versa (His(-) , Uro(+) ). An in silico analysis of the hut locus, which determines capacity to utilize both histidine and urocanate, from genome-sequenced Pseudomonas strains, showed significant variation in the number of putative transporters. To identify transporter genes specific for histidine and urocanate, we focused on a single genotype of Pseudomonas fluorescens, strain SBW25, which is capable of utilizing both substrates. Site-directed mutagenesis, combined with [(3) H]histidine transport assays, shows that hutT(u) encodes a urocanate-specific transporter; hutT(h) encodes the major high-affinity histidine transporter; and hutXWV encodes an ABC-type transporter that plays a minor role in histidine uptake. Introduction of cloned copies of hutT(h) and hutT(u) from SBW25 into strains incapable of utilizing either histidine, or urocanate, complemented the defect, demonstrating a lack of functional transporters in these strains. Taken together our data show that variation in transport systems, and not in metabolic genes, explains a naturally occurring phenotypic polymorphism.
Collapse
Affiliation(s)
- Xue-Xian Zhang
- NZ Institute for Advanced Study, Massey University, Auckland 0745, New Zealand.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Genes are regulated because their expression involves a fitness cost to the organism. The production of proteins by transcription and translation is a well-known cost factor, but the enzymatic activity of the proteins produced can also reduce fitness, depending on the internal state and the environment of the cell. Here, we map the fitness costs of a key metabolic network, the lactose utilization pathway in Escherichia coli. We measure the growth of several regulatory lac operon mutants in different environments inducing expression of the lac genes. We find a strikingly nonlinear fitness landscape, which depends on the production rate and on the activity rate of the lac proteins. A simple fitness model of the lac pathway, based on elementary biophysical processes, predicts the growth rate of all observed strains. The nonlinearity of fitness is explained by a feedback loop: production and activity of the lac proteins reduce growth, but growth also affects the density of these molecules. This nonlinearity has important consequences for molecular function and evolution. It generates a cliff in the fitness landscape, beyond which populations cannot maintain growth. In viable populations, there is an expression barrier of the lac genes, which cannot be exceeded in any stationary growth process. Furthermore, the nonlinearity determines how the fitness of operon mutants depends on the inducer environment. We argue that fitness nonlinearities, expression barriers, and gene–environment interactions are generic features of fitness landscapes for metabolic pathways, and we discuss their implications for the evolution of regulation. The levels of protein produced by an organism are likely to change its fitness, potentially driving the evolution of genetic regulation. Importantly, protein expression generates costs as well as benefits. Here, we use a model genetic system, the lac operon of Escherichia coli, to investigate different sources of fitness costs. We find that fitness depends not only on the production rate of proteins but also on their enzymatic activity. A simple quantitative model, which is based on the biophysics of protein production and activity, accurately reproduces the experimental results and provides testable predictions. The model describes a feedback cycle between a molecular pathway and the growth rate of cells: pathway activity impedes growth, but growth itself affects the pathway. This feedback can generate dramatic effects, such as gene expression barriers, fitness cliffs, and population extinctions, which can be triggered by small environmental or genetic changes. Our results disentangle the complex interplay of protein production and activity, and they show how these processes shape the evolution of simple organisms.
Collapse
|
13
|
Wong A, Kassen R. Parallel evolution and local differentiation in quinolone resistance in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2011; 157:937-944. [PMID: 21292748 DOI: 10.1099/mic.0.046870-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The emergence and spread of antibiotic resistance in pathogens is a major impediment to the control of microbial disease. Here, we review mechanisms of quinolone resistance in Pseudomonas aeruginosa, an important nosocomial pathogen and a major cause of morbidity in cystic fibrosis (CF) patients. In this quantitative literature review, we find that mutations in DNA gyrase A, the primary target of quinolones in Gram-negative bacteria, are the most common resistance mutations identified in clinical samples of all origins, in keeping with previous observations. However, the identities of non-gyrase resistance mutations vary systematically between samples isolated from CF patients and those isolated from acute infections. CF-derived strains tend to harbour mutations in the efflux pump regulator nfxB, while non-CF strains tend to bear mutations in the efflux regulator mexR or in parC, which encodes one of two subunits of DNA topoisomerase IV. We suggest that differences in resistance mechanisms between CF and non-CF strains result either from local adaptation to different sites of infection or from differences in mutational processes between different environments. We further discuss the therapeutic implications of local differentiation in resistance mechanisms to a common antibiotic.
Collapse
Affiliation(s)
- Alex Wong
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Rees Kassen
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Gudelj I, Weitz JS, Ferenci T, Claire Horner-Devine M, Marx CJ, Meyer JR, Forde SE. An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure. Ecol Lett 2010; 13:1073-84. [PMID: 20576029 PMCID: PMC3069490 DOI: 10.1111/j.1461-0248.2010.01507.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trade-offs have been put forward as essential to the generation and maintenance of diversity. However, variation in trade-offs is often determined at the molecular level, outside the scope of conventional ecological inquiry. In this study, we propose that understanding the intracellular basis for trade-offs in microbial systems can aid in predicting and interpreting patterns of diversity. First, we show how laboratory experiments and mathematical models have unveiled the hidden intracellular mechanisms underlying trade-offs key to microbial diversity: (i) metabolic and regulatory trade-offs in bacteria and yeast; (ii) life-history trade-offs in bacterial viruses. Next, we examine recent studies of marine microbes that have taken steps toward reconciling the molecular and the ecological views of trade-offs, despite the challenges in doing so in natural settings. Finally, we suggest avenues for research where mathematical modelling, experiments and studies of natural microbial communities provide a unique opportunity to integrate studies of diversity across multiple scales.
Collapse
Affiliation(s)
- Ivana Gudelj
- Department of Mathematics, Imperial College London, London SW72A7, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Peña MI, Van Itallie E, Bennett MR, Shamoo Y. Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness. CHAOS (WOODBURY, N.Y.) 2010; 20:026107. [PMID: 20590336 PMCID: PMC2909312 DOI: 10.1063/1.3453623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/23/2010] [Indexed: 05/29/2023]
Abstract
Evolution by natural selection is the driving force behind the endless variation we see in nature, yet our understanding of how changes at the molecular level give rise to different phenotypes and altered fitness at the population level remains inadequate. The reproductive fitness of an organism is the most basic metric that describes the chance that an organism will succeed or fail in its environment and it depends upon a complex network of inter- and intramolecular interactions. A deeper understanding of the quantitative relationships relating molecular evolution to adaptation, and consequently fitness, can guide our understanding of important issues in biomedicine such as drug resistance and the engineering of new organisms with applications to biotechnology. We have developed the "weak link" approach to determine how changes in molecular structure and function can relate to fitness and evolutionary outcomes. By replacing adenylate kinase (AK), an essential gene, in a thermophile with a homologous AK from a mesophile we have created a maladapted weak link that produces a temperature-sensitive phenotype. The recombinant strain adapts to nonpermissive temperatures through point mutations to the weak link that increase both stability and activity of the enzyme AK at higher temperatures. Here, we propose a fitness function relating enzyme activity to growth rate and use it to create a dynamic model of a population of bacterial cells. Using metabolic control analysis we show that the growth rate exhibits thresholdlike behavior, saturating at high enzyme activity as other reactions in the energy metabolism pathway become rate limiting. The dynamic model accurately recapitulates observed evolutionary outcomes. These findings suggest that in vitro enzyme kinetic data, in combination with metabolic network analysis, can be used to create fitness functions and dynamic models of evolution within simple metabolic systems.
Collapse
Affiliation(s)
- Matthew I Peña
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main St., MS-140, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
16
|
Zhong S, Miller SP, Dykhuizen DE, Dean AM. Transcription, translation, and the evolution of specialists and generalists. Mol Biol Evol 2009; 26:2661-78. [PMID: 19706726 DOI: 10.1093/molbev/msp187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We used DNA microarrays to measure transcription and iTRAQ 2D liquid chromatography-mass spectrometry/mass spectrometry (a mass-tag labeling proteomic technique) to measure protein expression in 14 strains of Escherichia coli adapted for hundreds of generations to growth-limiting concentrations of either lactulose, methylgalactoside, or a 72:28 mixture of the two. The two ancestors, TD2 and TD10, differ only in their lac operons and have similar transcription and protein expression profiles. Changes in transcription and protein expression are observed at 30-250 genes depending on the evolved strain. Lactulose specialists carry duplications of the lac operon and show increased transcription and translation at lac. Methylgalactoside specialists are galS(-) and so constitutively transcribe and translate mgl, which encodes a transporter of methylgalactoside. However, there are two strains that carry lac duplications, are galS(-), and show increased transcription and translation at both operons. One is a generalist, the other a lactulose specialist. The generalist fails to sweep to fixation because its lac(+), galS(+) competitor expresses the csg adhesin and sticks to the chemostat wall, thereby preventing complete washout. Transcription and translation are sometimes decoupled. Lactulose-adapted strains show increased protein expression at fru, a fructose transporter, without evidence of increased transcription. This suggests that fructose, produced by the action of beta-galactosidase on lactulose, may leach from cells before being recouped. Reduced expression, at "late" flagella genes and the constitutive gat operon, is an adaptation to starvation. A comparison with two other long-term evolution experiments suggests that certain aspects of adaptation are predictable, some are characteristic of an experimental system, whereas others seem erratic.
Collapse
Affiliation(s)
- Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, North Dakota, USA
| | | | | | | |
Collapse
|
17
|
Lunzer M, Miller SP, Felsheim R, Dean AM. The biochemical architecture of an ancient adaptive landscape. Science 2005; 310:499-501. [PMID: 16239478 DOI: 10.1126/science.1115649] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Molecular evolution is moving from statistical descriptions of adaptive molecular changes toward predicting the fitness effects of mutations. Here, we characterize the fitness landscape of the six amino acids controlling coenzyme use in isopropylmalate dehydrogenase (IMDH). Although all natural IMDHs use nicotinamide adenine dinucleotide (NAD) as a coenzyme, they can be engineered to use nicotinamide adenine dinucleotide phosphate (NADP) instead. Intermediates between these two phenotypic extremes show that each amino acid contributes additively to enzyme function, with epistatic contributions confined to fitness. The genotype-phenotype-fitness map shows that NAD use is a global optimum.
Collapse
Affiliation(s)
- Mark Lunzer
- BioTechnology Institute, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
18
|
Stanton ML, Thiede DA. Statistical convenience vs biological insight: consequences of data transformation for the analysis of fitness variation in heterogeneous environments. THE NEW PHYTOLOGIST 2005; 166:319-337. [PMID: 15760373 DOI: 10.1111/j.1469-8137.2004.01311.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plants, more favourable environmental conditions can lead to dramatic increases in both mean fitness and variance in fitness. This results in data that violate the equality-of-variance assumption of anova, a problem that most empiricists would address by log-transforming fitness values. Using heuristic data sets and simple simulations, we show that anova on log-transformed fitness consistently fails to match the outcome of selection in a heterogeneous environment or its sensitivity to environmental frequency. Only anova based on relative fitness within environments accurately predicts the sensitivity of genotype selection to the frequency of alternative environments. Parallel analyses of variance based on absolute fitness and relative fitness can bracket the expected success of alternative genotypes under hard and soft selection, respectively. For example, for Sinapis arvensis growing in full sun and partial shade treatments, families achieving high fitness in the best environment are favoured under hard selection, whereas soft selection favours different families that achieve consistently good performance across environments. Based on these findings, we recommend that log-transformation of fitness should no longer be standard practice in ecological genetics studies. Weighted anova is a preferable method for dealing with unequal variances, and investigators should also make greater use of techniques such as quantile regression or resampling to describe and evaluate fitness variation across heterogeneous environments.
Collapse
Affiliation(s)
- Maureen L Stanton
- Section of Evolution and Ecology and The Center for Population Biology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
19
|
Abstract
The impact of adaptation on the persistence of a balanced polymorphism was explored using the lactose operon of Escherichia coli as a model system. Competition in chemostats for two substitutable resources, methylgalactoside and lactulose, generates stabilizing frequency-dependent selection when two different naturally isolated lac operons (TD2 and TD10) are used. The fate of this balanced polymorphism was tracked over evolutionary time by monitoring the frequency of fhuA-, a linked neutral genetic marker that confers resistance to the bacteriophage T5. In four out of nine chemostats the lac polymorphism persisted for 400-600 generations when the experiments were terminated. In the other five chemostats the fhuA polymorphism, and consequently the lac operon polymorphism, was lost between 86 and 219 generations. Four of 13 chemostat cultures monomorphic for the lac operon retained the neutral fhuA polymorphism for 450-550 generations until they were terminated; the remainder became monomorphic at fhuA between 63 and 303 generations. Specialists on each galactoside were isolated from chemostats that maintained the fhuA polymorphism, whether polymorphic or monomorphic at the lac operon. Strains isolated from three of four chemostats in which the lac polymorphism was preserved had switched their galactoside preference. Most of the chemostats where the fhuA polymorphism was lost also contained specialists. These results demonstrate that the initial polymorphism at lac was of little consequence to the outcome of long-term adaptive evolution. Instead, the fitnesses of evolved strains were dominated by mutations arising elsewhere in the genome, a fact confirmed by showing that operons isolated from their evolved backgrounds were alone unable to explain the presence of both specialists. Our results suggest that, once stabilized, ecological specialization prevented selective sweeps through the entire population, thereby promoting the maintenance of linked neutral polymorphisms.
Collapse
Affiliation(s)
- Daniel E Dykhuizen
- Department of Ecology and Evolution, SUNY, Stony Brook, New York 11794, USA
| | | |
Collapse
|
20
|
Durso LM, Smith D, Hutkins RW. Measurements of fitness and competition in commensal Escherichia coli and E. coli O157:H7 strains. Appl Environ Microbiol 2005; 70:6466-72. [PMID: 15528507 PMCID: PMC525243 DOI: 10.1128/aem.70.11.6466-6472.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the main reservoirs for pathogenic Escherichia coli O157:H7 are cattle and the cattle environment, factors that affect its tenure in the bovine host and its survival outside humans and cattle have not been well studied. It is also not understood what physiological properties, if any, distinguish these pathogens from commensal counterparts that live as normal members of the human and bovine gastrointestinal tracts. To address these questions, individual and competitive fitness experiments, indirect antagonism assays, and antibiotic resistance and carbon utilization analyses were conducted using a strain set consisting of 122 commensal and pathogenic strains. The individual fitness experiments, under four different environments (rich medium, aerobic and anaerobic; rumen medium, anaerobic; and a minimal medium, aerobic) revealed no differences in growth rates between commensal E. coli and E. coli O157:H7 strains. Indirect antagonism assays revealed that E. coli O157:H7 strains more frequently produced inhibitory substances than commensal strains did, under the conditions tested, although both groups displayed moderate sensitivity. Only minor differences were noted in the antibiotic resistance patterns of the two groups. In contrast, several differences between commensal and O157:H7 groups were observed based on their carbon utilization profiles. Of 95 carbon sources tested, 27 were oxidized by commensal E. coli strains but not by the E. coli O157:H7 strains. Despite the observed physiological and biochemical differences between these two groups of E. coli strains, however, the O157:H7 strains did not appear to possess traits that would confer advantages in the bovine or extraintestinal environment.
Collapse
Affiliation(s)
- Lisa M Durso
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68583-0919, USA
| | | | | |
Collapse
|
21
|
Abstract
Analysis of a continuous-time model shows that a protected polymorphism can arise in a haploid population subject to temporal fluctuations in selection. The requirements are that population size is regulated in a density-dependent manner and that an allele's arithmetic mean relative growth rate is greater than one when rare and that its harmonic mean relative growth rate is less than one when common. There is no requirement that relative growth rate be frequency dependent. Comparisons with discrete-time models show that the standard formalism used by population genetics ignores forced changes in generation time as rare advantageous alleles sweep into a population. In temporally variable environments, frequency-dependent changes in generation times tend to counteract these invasions. Such changes can prevent fixation and protect polymorphisms.
Collapse
Affiliation(s)
- Antony M Dean
- BioTechnology Institute and Department of Ecology Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108-6106, USA.
| |
Collapse
|
22
|
Zhong S, Khodursky A, Dykhuizen DE, Dean AM. Evolutionary genomics of ecological specialization. Proc Natl Acad Sci U S A 2004; 101:11719-24. [PMID: 15289609 PMCID: PMC511043 DOI: 10.1073/pnas.0404397101] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 11/18/2022] Open
Abstract
We used a combination of genomic techniques to monitor chromosomal evolution across hundreds of generations as Escherichia coli adapted to growth-limiting concentrations of either lactulose, methyl-galactoside, or a 72:28 mixture of the two. DNA microarrays identified 8 unique duplications and 16 unique deletions among 42 evolvants from 23 chemostat experiments. Each mutation was confirmed by sequencing PCR-amplified flanking genomic DNA and, except for one deletion, an insertion sequence was found at the break point. vPCR of insertion sequences identified these same mutations and 16 additional insertions (all confirmed by sequencing). The pattern of genomic evolution is highly reproducible. Statistical analyses show that duplications at lac and mutations in mgl are adaptations specific to lactulose and to methyl-galactoside, respectively. Adaptation to mixed sugars is characterized by similar mutations, but lac duplications and mgl mutations usually arise in different backgrounds, producing ecological specialists for each sugar. This suggests that an antagonistic pleiotropic tradeoff between duplications at lac and mutations in mgl retards the evolution of generalists. Other mutations that repeatedly appear in replicate experiments are adaptations to the chemostat environment and are not specific to one or the other sugar.
Collapse
Affiliation(s)
- Shaobin Zhong
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
23
|
Remold SK, Lenski RE. Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat Genet 2004; 36:423-6. [PMID: 15072075 DOI: 10.1038/ng1324] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effects of mutations on phenotype and fitness may depend on the environment (phenotypic plasticity), other mutations (genetic epistasis) or both. Here we examine the fitness effects of 18 random insertion mutations in E. coli in two resource environments and five genetic backgrounds. We tested each mutation for plasticity and epistasis by comparing its fitness effects across these ecological and genetic contexts. Some mutations had no measurable effect in any of these contexts. None of the mutations had effects on phenotypic plasticity that were independent of genetic background. However, half the mutations had epistatic interactions such that their effects differed among genetic backgrounds, usually in an environment-dependent manner. Also, the pattern of mutational effects across backgrounds indicated that epistasis had been shaped primarily by unique events in the evolutionary history of a population rather than by repeatable events associated with shared environmental history.
Collapse
Affiliation(s)
- Susanna K Remold
- Center for Microbial Ecology, Michigan State University, East Lansing, 48824, USA.
| | | |
Collapse
|
24
|
Feldgarden M, Stoebel DM, Brisson D, Dykhuizen DE. SIZE DOESN'T MATTER: MICROBIAL SELECTION EXPERIMENTS ADDRESS ECOLOGICAL PHENOMENA. Ecology 2003; 84:1679-1687. [PMID: 21423836 DOI: 10.1890/0012-9658(2003)084[1679:sdmmse]2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Experimental evolution is relevant to ecology because it can connect physiology, and in particular metabolism, to questions in ecology. The investigation of the linkage between the environment and the evolution of metabolism is tractable because these experiments manipulate a very simple environment to produce predictable evolutionary outcomes. In doing so, microbial selection experiments can examine the causal elements of natural selection: how specific traits in varying environments will yield different fitnesses. Here, we review the methodology of microbial evolution experiments and address three issues that are relevant to ecologists: genotype-by-environment interactions, ecological diversification due to specialization, and negative frequency-dependent selection. First, we expect that genotype-by-environment interactions will be ubiquitous in biological systems. Second, while antagonistic pleiotropy is implicated in some cases of ecological specialization, other mechanisms also seem to be at work. Third, while negative frequency-dependent selection can maintain ecological diversity in laboratory systems, a mechanistic (biochemical) analysis of these systems suggests that negative frequency dependence may only apply within a narrow range of environments if resources are substitutable. Finally, we conclude that microbial experimental evolution needs to avail itself of molecular techniques that could enable a mechanistic understanding of ecological diversification in these simple systems.
Collapse
Affiliation(s)
- Michael Feldgarden
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794-5245 USA
| | | | | | | |
Collapse
|
25
|
Lunzer M, Natarajan A, Dykhuizen DE, Dean AM. Enzyme kinetics, substitutable resources and competition: from biochemistry to frequency-dependent selection in lac. Genetics 2003; 162:485-99. [PMID: 12242256 PMCID: PMC1462262 DOI: 10.1093/genetics/162.1.485] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trade-offs in catalytic efficiency at the lac permease of Escherichia coli produce alleles with different substrate specializations that are selectively favored on different galactosides. We show that differential resource utilization during competition for mixtures of galactosides produces frequency-dependent selection at lac. However, the polymorphism is protected only in a narrow range of galactoside ratios despite intense selection on the pure galactosides. Hence, stabilizing frequency-dependent selection protecting natural allozyme polymorphisms through differential resource utilization will be sporadic and ephemeral in randomly changing environments. A comparison of predictions, based on first principles, with experimental outcomes reveals an additional, unanticipated source of weak selection.
Collapse
Affiliation(s)
- Mark Lunzer
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
26
|
Conner JK, Franks R, Stewart C. Expression of additive genetic variances and covariances for wild radish floral traits: comparison between field and greenhouse environments. Evolution 2003; 57:487-95. [PMID: 12703938 DOI: 10.1111/j.0014-3820.2003.tb01540.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Measurements of the genetic variation and covariation underlying quantitative traits are crucial to our understanding of current evolutionary change and the mechanisms causing this evolution. This fact has spurred a large number of studies estimating heritabilities and genetic correlations in a variety of organisms. Most of these studies have been done in laboratory or greenhouse settings, but it is not well known how accurately these measurements estimate genetic variance and covariance expressed in the field. We conducted a quantitative genetic half-sibling analysis on six floral traits in wild radish. Plants were grown from seed in the field and were exposed to natural environmental variation throughout their lives, including herbivory and intra- and interspecific competition. The estimates of heritabilities and the additive genetic variance-covariance matrix (G) obtained from this analysis were then compared to previous greenhouse estimates of the same floral traits from the same natural population. Heritabilities were much lower in the field for all traits, and this was due to both large increases in environmental variance and decreases in additive genetic variance. Additive genetic covariance expressed was also much lower in the field. These differences resulted in highly significant differences in the G matrix between the greenhouse and field environments using two complementary testing methods. Although the G matrices shared some principal components in common, they were not simply proportional to each other. Therefore, the greenhouse results did not accurately depict how the floral traits would respond to natural selection in the field.
Collapse
Affiliation(s)
- Jeffrey K Conner
- W. K. Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, Michigan 49060, USA.
| | | | | |
Collapse
|
27
|
Conner JK, Franks R, Stewart C. EXPRESSION OF ADDITIVE GENETIC VARIANCES AND COVARIANCES FOR WILD RADISH FLORAL TRAITS: COMPARISON BETWEEN FIELD AND GREENHOUSE ENVIRONMENTS. Evolution 2003. [DOI: 10.1554/0014-3820(2003)057[0487:eoagva]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Watt WB, Dean AM. Molecular-functional studies of adaptive genetic variation in prokaryotes and eukaryotes. Annu Rev Genet 2001; 34:593-622. [PMID: 11092840 DOI: 10.1146/annurev.genet.34.1.593] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Knowledge of both prokaryotic and eukaryotic organisms is essential to the study of molecular evolution. Their common ancestry mandates that their molecular functions share many aspects of adaptation and constraint, yet their differences in size, ploidy, and structural complexity also give rise to divergent evolutionary options. We explore the interplay of adaptation, constraint, and neutrality in their evolution by the use of genetic variants to probe molecular function in context of molecular structure, metabolic organization, and phenotype-environment interactions. Case studies ranging from bacteria to butterflies, flies, and vertebrates emphasize, among other points: the importance of moving from initial recording of evolutionary pattern variation to studying the processes underlying the patterns, by experiment, reconstructive inference, or both; the complementarity, not conflict, of finding different performance and fitness impacts of natural variants in prokaryotes or eukaryotes, depending on the nature and magnitude of the variants, their locations and roles in pathways, the nature of molecular function affected, and the resulting organismal phenotype-environment interactions leading to selection or its absence; the importance of adaptive functional interaction of different kinds of variants, as in gene expression variants versus variants altering polypeptide properties, or interaction of changes in enzymes' active sites with complementary changes elsewhere that adjust catalytic function in different ways, or coadaptation of different steps' properties in pathways; the power afforded by combining structural and functional analyses of variants with study of the variants' phenotype-environment interactions to understand how molecular changes affect (or fail to affect) adaptive mechanisms "in the wild." Comparative study of prokaryotes and eukaryotes in this multifaceted way promises to deliver both new insights into evolution and a host of new and productive questions about it.
Collapse
Affiliation(s)
- W B Watt
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | |
Collapse
|
29
|
Travisano M. Long-term experimental evolution in Escherichia coli. VI. Environmental constraints on adaptation and divergence. Genetics 1997; 146:471-9. [PMID: 9177998 PMCID: PMC1207989 DOI: 10.1093/genetics/146.2.471] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effect of environment on adaptation and divergence was examined in two sets of populations of Escherichia coli selected for 1000 generations in either maltose-or glucose-limited media. Twelve replicate populations selected in maltose-limited medium improved in fitness in the selected environment, by an average of 22.5%. Statistically significant among-population genetic variation for fitness was observed during the course of the propagation, but this variation was small relative to the fitness improvement. Mean fitness in a novel nutrient environment, glucose-limited medium, improved to the same extent as in the selected environment, with no statistically significant among-population genetic variation. In contrast, 12 replicate populations previously selected for 1000 generations in glucose-limited medium showed no improvement, as a group, in fitness in maltose-limited medium and substantial genetic variation. This asymmetric pattern of correlated responses suggests that small changes in the environment can have profound effects on adaptation and divergence.
Collapse
Affiliation(s)
- M Travisano
- Center for Microbial Ecology, Michigan State University, East Lansing 48824-1325, USA.
| |
Collapse
|
30
|
Dean AM, Golding GB. Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase. Proc Natl Acad Sci U S A 1997; 94:3104-9. [PMID: 9096353 PMCID: PMC20329 DOI: 10.1073/pnas.94.7.3104] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Evolutionary analysis indicates that eubacterial NADP-dependent isocitrate dehydrogenases (EC 1.1.1.42) first evolved from an NAD-dependent precursor about 3.5 billion years ago. Selection in favor of utilizing NADP was probably a result of niche expansion during growth on acetate, where isocitrate dehydrogenase provides 90% of the NADPH necessary for biosynthesis. Amino acids responsible for differing coenzyme specificities were identified from x-ray crystallographic structures of Escherichia coli isocitrate dehydrogenase and the distantly related Thermus thermophilus NAD-dependent isopropylmalate dehydrogenase. Site-directed mutagenesis at sites lining the coenzyme binding pockets has been used to invert the coenzyme specificities of both enzymes. Reconstructed ancestral sequences indicate that these replacements are ancestral. Hence the adaptive history of molecular evolution is amenable to experimental investigation.
Collapse
Affiliation(s)
- A M Dean
- Department of Biological Chemistry, The Chicago Medical School, North Chicago, IL 60064-3095, USA
| | | |
Collapse
|