1
|
Kawai T, Hashimoto M, Eguchi N, Nishino JM, Jinno Y, Mori-Kreiner R, Aspåker M, Chiba D, Ohtsuka Y, Kawanabe A, Nishino AS, Okamura Y. Heterologous functional expression of ascidian Nav1 channels and close relationship with the evolutionary ancestor of vertebrate Nav channels. J Biol Chem 2021; 296:100783. [PMID: 34000300 PMCID: PMC8192821 DOI: 10.1016/j.jbc.2021.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 02/09/2023] Open
Abstract
Voltage-gated sodium channels (Nav1s) are responsible for the initiation and propagation of action potentials in neurons, muscle, and endocrine cells. Many clinically used drugs such as local anesthetics and antiarrhythmics inhibit Nav1s, and a variety of inherited human disorders are caused by mutations in Nav1 genes. Nav1s consist of the main α subunit and several auxiliary β subunits. Detailed information on the structure–function relationships of Nav1 subunits has been obtained through heterologous expression experiments and analyses of protein structures. The basic properties of Nav1s, including their gating and ion permeation, were classically described in the squid giant axon and other invertebrates. However, heterologous functional expression of Nav1s from marine invertebrates has been unsuccessful. Ascidians belong to the Urochordata, a sister group of vertebrates, and the larval central nervous system of ascidians shows a similar plan to that of vertebrates. Here, we report the biophysical properties of ascidian Ciona Nav1 (CiNav1a) heterologously expressed in Xenopus oocytes. CiNav1a exhibited tetrodotoxin-insensitive sodium currents with rapid gating kinetics of activation and inactivation. Furthermore, consistent with the fact that the Ciona genome lacks orthologous genes to vertebrate β subunits, the human β1 subunit did not influence the gating properties when coexpressed with CiNav1a. Interestingly, CiNav1a contains an ankyrin-binding motif in the II–III linker, which can be targeted to the axon initial segment of mammalian cortical neurons. Our findings provide a platform to gain insight into the evolutionary and biophysical properties of Nav1s, which are important for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Takafumi Kawai
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Hashimoto
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | | | - Junko M Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan; Department of Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Hirosaki, Japan
| | - Yuka Jinno
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Risa Mori-Kreiner
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | - Daijiro Chiba
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Yukio Ohtsuka
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akira Kawanabe
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsuo S Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan; Department of Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Hirosaki, Japan
| | - Yasushi Okamura
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 2012; 484:120-4. [PMID: 22425998 PMCID: PMC3321085 DOI: 10.1038/nature10914] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 01/31/2012] [Indexed: 11/08/2022]
Abstract
The basic unit of skeletal muscle in all metazoans is the multinucleate myofibre, within which individual nuclei are regularly positioned. The molecular machinery responsible for myonuclear positioning is not known. Improperly positioned nuclei are a hallmark of numerous diseases of muscle, including centronuclear myopathies, but it is unclear whether correct nuclear positioning is necessary for muscle function. Here we identify the microtubule-associated protein ensconsin (Ens)/microtubule-associated protein 7 (MAP7) and kinesin heavy chain (Khc)/Kif5b as essential, evolutionarily conserved regulators of myonuclear positioning in Drosophila and cultured mammalian myotubes. We find that these proteins interact physically and that expression of the Kif5b motor domain fused to the MAP7 microtubule-binding domain rescues nuclear positioning defects in MAP7-depleted cells. This suggests that MAP7 links Kif5b to the microtubule cytoskeleton to promote nuclear positioning. Finally, we show that myonuclear positioning is physiologically important. Drosophila ens mutant larvae have decreased locomotion and incorrect myonuclear positioning, and these phenotypes are rescued by muscle-specific expression of Ens. We conclude that improper nuclear positioning contributes to muscle dysfunction in a cell-autonomous fashion.
Collapse
|
3
|
Siller Q, Ponce G, Lozano S, Flores AE. Update on the frequency of Ile1016 mutation in voltage-gated sodium channel gene of Aedes aegypti in Mexico. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2011; 27:357-62. [PMID: 22329266 DOI: 10.2987/11-6149.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We analyzed 790 Aedes aegypti from 14 localities of Mexico in 2009 to update information on the frequency of the Ile1016 allele in the voltage-gated sodium channel gene that confers resistance to pyrethroids and DDT. The Ile1016 mutation was present in all 17 collections, and was close to fixation in Acapulco (frequency = 0.97), Iguala (0.93), and San Nicolas (0.90). Genotypes at the 1016 locus were not in Hardy-Weinberg proportions in collections from Panuco, Veracruz, Cosoleacaque, Coatzacoalcos, Tantoyuca, and Monterrey due in every case to an excess of homozygotes. The high frequencies of this mutation in Ae. aegypti are probably due to selection pressure from pyrethroid insecticides, particularly permethrin, which has been used in mosquito control programs for >10 years in Mexico.
Collapse
Affiliation(s)
- Quetzaly Siller
- Laboratorio de Entomología Medica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 Mexico
| | | | | | | |
Collapse
|
4
|
García GP, Flores AE, Fernández-Salas I, Saavedra-Rodríguez K, Reyes-Solis G, Lozano-Fuentes S, Guillermo Bond J, Casas-Martínez M, Ramsey JM, García-Rejón J, Domínguez-Galera M, Ranson H, Hemingway J, Eisen L, Black WC. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México. PLoS Negl Trop Dis 2009; 3:e531. [PMID: 19829709 PMCID: PMC2759509 DOI: 10.1371/journal.pntd.0000531] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 09/15/2009] [Indexed: 11/20/2022] Open
Abstract
Background Aedes aegypti, the ‘yellow fever mosquito’, is the primary vector to humans of dengue and yellow fever flaviviruses (DENV, YFV), and is a known vector of the chikungunya alphavirus (CV). Because vaccines are not yet available for DENV or CV or are inadequately distributed in developing countries (YFV), management of Ae. aegypti remains the primary option to prevent and control outbreaks of the diseases caused by these arboviruses. Permethrin is one of the most widely used active ingredients in insecticides for suppression of adult Ae. aegypti. In 2007, we documented a replacement mutation in codon 1,016 of the voltage-gated sodium channel gene (para) of Ae. aegypti that encodes an isoleucine rather than a valine and confers resistance to permethrin. Ile1,016 segregates as a recessive allele conferring knockdown resistance to homozygous mosquitoes at 5–10 µg of permethrin in bottle bioassays. Methods and Findings A total of 81 field collections containing 3,951 Ae. aegypti were made throughout México from 1996 to 2009. These mosquitoes were analyzed for the frequency of the Ile1,016 mutation using a melting-curve PCR assay. Dramatic increases in frequencies of Ile1,016 were recorded from the late 1990's to 2006–2009 in several states including Nuevo León in the north, Veracruz on the central Atlantic coast, and Yucatán, Quintana Roo and Chiapas in the south. From 1996 to 2000, the overall frequency of Ile1,016 was 0.04% (95% confidence interval (CI95) = 0.12%; n = 1,359 mosquitoes examined). The earliest detection of Ile1,016 was in Nuevo Laredo on the U.S. border in 1997. By 2003–2004 the overall frequency of Ile1,016 had increased ∼100-fold to 2.7% (±0.80% CI95; n = 808). When checked again in 2006, the frequency had increased slightly to 3.9% (±1.15% CI95; n = 473). This was followed in 2007–2009 by a sudden jump in Ile1,016 frequency to 33.2% (±1.99% CI95; n = 1,074 mosquitoes). There was spatial heterogeneity in Ile1,016 frequencies among 2007–2008 collections, which ranged from 45.7% (±2.00% CI95) in the state of Veracruz to 51.2% (±4.36% CI95) in the Yucatán peninsula and 14.5% (±2.23% CI95) in and around Tapachula in the state of Chiapas. Spatial heterogeneity was also evident at smaller geographic scales. For example within the city of Chetumal, Quintana Roo, Ile1,016 frequencies varied from 38.3%–88.3%. A linear regression analysis based on seven collections from 2007 revealed that the frequency of Ile1,016 homozygotes accurately predicted knockdown rate for mosquitoes exposed to permethrin in a bioassay (R2 = 0.98). Conclusions We have recorded a dramatic increase in the frequency of the Ile1,016 mutation in the voltage-gated sodium channel gene of Ae. aegypti in México from 1996 to 2009. This may be related to heavy use of permethrin-based insecticides in mosquito control programs. Spatial heterogeneity in Ile1,016 frequencies in 2007 and 2008 collections may reflect differences in selection pressure or in the initial frequency of Ile1,016. The rapid recent increase in Ile1,016 is predicted by a simple model of positive directional selection on a recessive allele. Unfortunately this model also predicts rapid fixation of Ile1,016 unless there is negative fitness associated with Ile1,016 in the absence of permethrin. If so, then spatial refugia of susceptible Ae. aegypti or rotational schedules of different classes of adulticides could be established to slow or prevent fixation of Ile1,016. Pyrethroid insecticides prolong the opening of voltage-dependent sodium channels in insect nerves to produce instant paralysis and “knock-down.” Many insects have evolved knock-down resistance through nonsynonymous mutations that reduce pyrethroid binding in the channels. In 2006 we discovered one such mutation in the arbovirus mosquito vector Aedes aegypti, called Ile1,016, that confers very high knockdown resistance to the pyrethroid insecticide permethrin in mosquitoes homozygous for this mutation. We examined collections of Ae. aegypti from México during 1996–2009 and found that the overall Ile1,016 frequency increased from <0.1% in 1996–2000, to 2%–5% in 2003–2006, to 38.3%–88.3% in 2007–2009 depending upon collection location. We also demonstrate a strong linear relationship between the frequency of Ile1,016 homozygotes and knockdown rate in bioassays and speculate that widespread use of permethrin-based insecticides in México may be impacting the frequency of Ile1,016. Such a rapid increase is predicted by a simple model of positive directional selection acting on a recessive allele. Unfortunately this model also predicts rapid fixation of Ile1,016 unless there is a negative fitness associated with Ile1,016 in the absence of permethrin and if insecticidal pressure can be reduced.
Collapse
Affiliation(s)
- Gustavo Ponce García
- Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Adriana E. Flores
- Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Ildefonso Fernández-Salas
- Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Karla Saavedra-Rodríguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Guadalupe Reyes-Solis
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - J. Guillermo Bond
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Mauricio Casas-Martínez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Julián García-Rejón
- Universidad Autónoma de Yucatán, Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Marco Domínguez-Galera
- Servicios Estatales de Salud de Quintana Roo, Servicios Estatales de Salud de Quintana Roo, Chetumal, Quintana Roo, México
| | - Hilary Ranson
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Janet Hemingway
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lars Eisen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C. Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
5
|
Tseng TT, McMahon AM, Johnson VT, Mangubat EZ, Zahm RJ, Pacold ME, Jakobsson E. Sodium channel auxiliary subunits. J Mol Microbiol Biotechnol 2007; 12:249-62. [PMID: 17587873 DOI: 10.1159/000099646] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits. Recent interests in pharmacological properties of these auxiliary subunits have prompted significant amounts of efforts in understanding their physiological roles. Some auxiliary subunits can potentially serve as drug targets for novel analgesics. Three families of sodium channel auxiliary subunits are described here: beta1 and beta3, beta2 and beta4, and temperature-induced paralytic E (TipE). While sodium channel beta-subunits are encoded in many animal genomes, TipE has only been found exclusively in insects. In this review, we present phylogenetic analyses, discuss potential evolutionary origins and functional data available for each of these subunits. For each family, we also correlate the functional specificity with the history of evolution for the individual auxiliary subunits.
Collapse
Affiliation(s)
- Tsai-Tien Tseng
- Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Clarac F, Pearlstein E. Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century. ACTA ACUST UNITED AC 2007; 54:113-61. [PMID: 17500093 DOI: 10.1016/j.brainresrev.2006.12.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review summarized the contribution to neurobiology achieved through the use of invertebrate preparations in the second half of the 20th century. This fascinating period was preceded by pioneers who explored a wide variety of invertebrate phyla and developed various preparations appropriate for electrophysiological studies. Their work advanced general knowledge about neuronal properties (dendritic, somatic, and axonal excitability; pre- and postsynaptic mechanisms). The study of invertebrates made it possible to identify cell bodies in different ganglia, and monitor their operation in the course of behavior. In the 1970s, the details of central neural circuits in worms, molluscs, insects, and crustaceans were characterized for the first time and well before equivalent findings were made in vertebrate preparations. The concept and nature of a central pattern generator (CPG) have been studied in detail, and the stomatogastric nervous system (STNS) is a fine example, having led to many major developments since it was first examined. The final part of the review is a discussion of recent neuroethological studies that have addressed simple cognitive functions and confirmed the utility of invertebrate models. After presenting our invertebrate "mice," the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, our conclusion, based on arguments very different from those used fifty years ago, is that invertebrate models are still essential for acquiring insight into the complexity of the brain.
Collapse
Affiliation(s)
- François Clarac
- P3M, CNRS, Université de la Méditerranée, Marseille, France.
| | | |
Collapse
|
7
|
Vijayakrishnan N, Broadie K. Temperature-sensitive paralytic mutants: insights into the synaptic vesicle cycle. Biochem Soc Trans 2006; 34:81-7. [PMID: 16417488 DOI: 10.1042/bst0340081] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Forward genetic screens have identified numerous proteins with critical roles in neurotransmission. One particularly fruitful screening target in Drosophila has been TS (temperature-sensitive) paralytic mutants, which have revealed proteins acutely required in neuronal signalling. In the present paper, we review recent insights and current questions from one recently cloned TS paralytic mutant, rbo (rolling blackout). The rbo mutant identifies a putative integral lipase of the pre-synaptic plasma membrane that is required for the SV (synaptic vesicle) cycle. Identification of this mutant adds to a growing body of evidence that lipid-modifying enzymes locally control specialized lipid microenvironments and lipid signalling pathways with key functions regulating neurotransmission strength. The RBO protein is absolutely required for phospholipase C signalling in phototransduction. We posit that RBO might be required to regulate the availability of fusogenic lipids such as phosphatidylinositol 4,5-bisphosphate and diacylglycerol that may directly modify membrane properties and/or activate lipid-binding fusogenic proteins mediating SV exocytosis.
Collapse
Affiliation(s)
- N Vijayakrishnan
- Neuroscience Graduate Program, Vanderbilt University, VU Station B, Nashville, TN 37235-1634, USA
| | | |
Collapse
|
8
|
Derst C, Walther C, Veh RW, Wicher D, Heinemann SH. Four novel sequences in Drosophila melanogaster homologous to the auxiliary Para sodium channel subunit TipE. Biochem Biophys Res Commun 2005; 339:939-48. [PMID: 16325765 DOI: 10.1016/j.bbrc.2005.11.096] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 11/12/2005] [Indexed: 11/25/2022]
Abstract
TipE is an auxiliary subunit of the Drosophila Para sodium channel. Here we describe four sequences, TEH1-4, homologous to TipE in the Drosophila melanogaster genome, harboring all typical structures of both TipE and the beta-Subunit family of big-conductance Ca(2+)-activated potassium channels: short cytosolic N- and C-terminal stretches, two transmembrane domains, and a large extracellular loop with two disulfide bonds. Whereas TEH1 and TEH2 lack the TipE-specific extension in the extracellular loop, both TEH3 and TEH4 possess two extracellular EGF-like domains. A CNS-specific expression was found for TEH1, while TEH2-4 were more widely expressed. The genes for TEH2-4 are localized close to the tipE gene on chromosome 3L. Coexpression of TEH subunits with Para in Xenopus oocytes showed a strong (30-fold, TEH1), medium (5- to 10-fold, TEH2 and TEH3), or no (TEH4) increase in sodium current amplitude, while TipE increased the current 20-fold. In addition, steady-state inactivation and the recovery from fast inactivation were altered by coexpression of Para with TEH1. We conclude that members of the TEH-family are auxiliary subunits for Para sodium channels and possibly other ion channels.
Collapse
Affiliation(s)
- Christian Derst
- Center for Anatomy, Charité Berlin, Philippstr. 12, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Ficklin MB, Zhao S, Feng G. Ubiquilin-1 regulates nicotine-induced up-regulation of neuronal nicotinic acetylcholine receptors. J Biol Chem 2005; 280:34088-95. [PMID: 16091357 DOI: 10.1074/jbc.m506781200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic exposure to nicotine, as in tobacco smoking, up-regulates nicotinic acetylcholine receptor surface expression in neurons. This up-regulation has been proposed to play a role in nicotine addiction and withdrawal. The regulatory mechanisms behind nicotine-induced up-regulation of surface nicotinic acetylcholine receptors remain to be determined. It has recently been suggested that nicotine stimulation acts through increased assembly and maturation of receptor subunits into functional pentameric receptors. Studies of muscle nicotinic acetylcholine receptors suggest that the availability of unassembled subunits in the endoplasmic reticulum can be regulated by the ubiquitin-proteosome pathway, resulting in altered surface expression. Here, we describe a role for ubiquilin-1, a ubiquitin-like protein with the capacity to interact with both the proteosome and ubiquitin ligases, in regulating nicotine-induced up-regulation of neuronal nicotinic acetylcholine receptors. Ubiquilin-1 interacts with unassembled alpha3 and alpha4 subunits when coexpressed in heterologous cells and interacts with endogenous nicotinic acetylcholine receptors in neurons. Coexpression of ubiquilin-1 and neuronal nicotinic acetylcholine receptors in heterologous cells dramatically reduces the expression of the receptors on the cell surface. In cultured superior cervical ganglion neurons, expression of ubiquilin-1 abolishes nicotine-induced up-regulation of nicotinic acetylcholine receptors but has no effect on the basal level of surface receptors. Coimmunostaining shows that the interaction of ubiquilin-1 with the alpha3 subunit draws the receptor subunit and proteosome into a complex. These data suggest that ubiquilin-1 limits the availability of unassembled nicotinic acetylcholine receptor subunits in neurons by drawing them to the proteosome, thus regulating nicotine-induced up-regulation.
Collapse
Affiliation(s)
- Mary Beth Ficklin
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
10
|
Foster SP, Young S, Williamson MS, Duce I, Denholm I, Devine GJ. Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies. Heredity (Edinb) 2003; 91:98-106. [PMID: 12886275 DOI: 10.1038/sj.hdy.6800285] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We show that single-point mutations conferring target-site resistance (kdr) to pyrethroids and DDT in aphids and houseflies, and gene amplification conferring metabolic resistance (carboxylesterase) to organophosphates and carbamates in aphids, can have deleterious pleiotropic effects on fitness. Behavioural studies on peach-potato aphids showed that a reduced response to alarm pheromone was associated with both gene amplification and the kdr target-site mutation. In this species, gene amplification was also associated with a decreased propensity to move from senescing leaves to fresh leaves at low temperature. Housefly genotypes possessing the identical kdr mutation were also shown to exhibit behavioural differences in comparison with susceptible insects. In this species, resistant individuals showed no positional preference along a temperature gradient while susceptible genotypes exhibited a strong preference for warmer temperatures.
Collapse
Affiliation(s)
- S P Foster
- Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden AL5 2JQ, UK
| | | | | | | | | | | |
Collapse
|
11
|
Feng G, Reale V, Chatwin H, Kennedy K, Venard R, Ericsson C, Yu K, Evans PD, Hall LM. Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster. Eur J Neurosci 2003; 18:227-38. [PMID: 12887405 DOI: 10.1046/j.1460-9568.2003.02719.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA clone encoding a seven-transmembrane domain, G-protein-coupled receptor (NPFR76F, also called GPCR60), has been isolated from Drosophila melanogaster. Deletion mapping showed that the gene encoding this receptor is located on the left arm of the third chromosome at position 76F. Northern blotting and whole mount in situ hybridization have shown that this receptor is expressed in a limited number of neurons in the central and peripheral nervous systems of embryos and adults. Analysis of the deduced amino acid sequence suggests that this receptor is related to vertebrate neuropeptide Y receptors. This Drosophila receptor shows 62-66% similarity and 32-34% identity to type 2 neuropeptide Y receptors cloned from a variety of vertebrate sources. Coexpression in Xenopus oocytes of NPFR76F with the promiscuous G-protein Galpha16 showed that this receptor is activated by the vertebrate neuropeptide Y family to produce inward currents due to the activation of an endogenous oocyte calcium-dependent chloride current. Maximum receptor activation was achieved with short, putative Drosophila neuropeptide F peptides (Drm-sNPF-1, 2 and 2s). Neuropeptide F-like peptides in Drosophila have been implicated in a signalling system that modulates food response and social behaviour. The identification of this neuropeptide F-like receptor and its endogenous ligand by reverse pharmacology will facilitate genetic and behavioural studies of neuropeptide functions in Drosophila.
Collapse
Affiliation(s)
- Guoping Feng
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hodges DD, Lee D, Preston CF, Boswell K, Hall LM, O'Dowd DK. tipE regulates Na+-dependent repetitive firing in Drosophila neurons. Mol Cell Neurosci 2002; 19:402-16. [PMID: 11906212 DOI: 10.1006/mcne.2001.1088] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tipE gene, originally identified by a temperature-sensitive paralytic mutation in Drosophila, encodes a transmembrane protein that dramatically influences sodium channel expression in Xenopus oocytes. There is evidence that tipE also modulates sodium channel expression in the fly; however, its role in regulating neuronal excitability remains unclear. Here we report that the majority of neurons in both wild-type and tipE mutant (tipE-) embryo cultures fire sodium-dependent action potentials in response to depolarizing current injection. However, the percentage of tipE- neurons capable of firing repetitively during a sustained depolarization is significantly reduced. Expression of a tipE+ transgene, in tipE- neurons, restores repetitive firing to wild-type levels. Analysis of underlying currents reveals a slower rate of repolarization-dependent recovery of voltage-gated sodium currents during repeated activation in tipE- neurons. This phenotype is also rescued by expression of the tipE+ transgene. These data demonstrate that tipE regulates sodium-dependent repetitive firing and recovery of sodium currents during repeated activation. Furthermore, the duration of the interstimulus interval necessary to fire a second full-sized action potential is significantly longer in single- versus multiple-spiking transgenic neurons, suggesting that a slow rate of recovery of sodium currents contributes to the decrease in repetitive firing in tipE- neurons.
Collapse
Affiliation(s)
- Dianne D Hodges
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92697-1280, USA
| | | | | | | | | | | |
Collapse
|
13
|
Vais H, Williamson MS, Hick CA, Eldursi N, Devonshire AL, Usherwood PN. Functional analysis of a rat sodium channel carrying a mutation for insect knock-down resistance (kdr) to pyrethroids. FEBS Lett 1997; 413:327-32. [PMID: 9280307 DOI: 10.1016/s0014-5793(97)00931-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pyrethroid insensitivity in resistant (kdr) insects has been correlated with a leucine to phenylalanine replacement in the S6 transmembrane segment of domain II of the axonal sodium channel alpha(para)-subunit. An alpha-subunit of rat brain type II sodium channel containing this mutation has been expressed and its sensitivity to permethrin compared with that of the wild-type channel. The steady-state activation curve of the mutant was shifted 14 mV in the depolarizing direction. We propose that an equivalent shift of the sodium current activation curve in kdr insects could account for their low sensitivity to permethrin toxicity.
Collapse
Affiliation(s)
- H Vais
- Department of Life Science, University of Nottingham, UK
| | | | | | | | | | | |
Collapse
|
14
|
Warmke JW, Reenan RA, Wang P, Qian S, Arena JP, Wang J, Wunderler D, Liu K, Kaczorowski GJ, Van der Ploeg LH, Ganetzky B, Cohen CJ. Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology. J Gen Physiol 1997; 110:119-33. [PMID: 9236205 PMCID: PMC2233785 DOI: 10.1085/jgp.110.2.119] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1996] [Accepted: 05/14/1997] [Indexed: 02/04/2023] Open
Abstract
The Drosophila para sodium channel alpha subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (Kd congruent with 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels.
Collapse
Affiliation(s)
- J W Warmke
- Department of Genetics and Molecular Biology, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Mutations in the seizure (sei) locus cause temperature-induced hyperactivity, followed by paralysis. Gene cloning studies have established that the seizure gene product is the Drosophila homolog of HERG, a member of the eag family of K+ channels implicated in one form of hereditary long QT syndrome in humans. A series of five null alleles with premature stop codons are all recessive, but viable. A missense mutation in the sei gene, which changes the charge at a conserved glutamate residue near the outer mouth of the pore, has a semidominant phenotype, suggesting that the mutant seizure protein acts as a poison in a multimeric complex. Transformation rescue of a null allele with a cDNA under the control of an inducible promoter demonstrates that induced expression of seizure potassium channels in adults rescues the paralytic phenotype. This rescue decays with a t1/2 of approximately 1-1.5 d after gene induction is discontinued, providing the first estimate of ion channel stability in an intact, multicellular animal.
Collapse
|
16
|
Wang XJ, Reynolds ER, Déak P, Hall LM. The seizure locus encodes the Drosophila homolog of the HERG potassium channel. J Neurosci 1997; 17:882-90. [PMID: 8994043 PMCID: PMC6573183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutations in the seizure (sei) locus cause temperature-induced hyperactivity, followed by paralysis. Gene cloning studies have established that the seizure gene product is the Drosophila homolog of HERG, a member of the eag family of K+ channels implicated in one form of hereditary long QT syndrome in humans. A series of five null alleles with premature stop codons are all recessive, but viable. A missense mutation in the sei gene, which changes the charge at a conserved glutamate residue near the outer mouth of the pore, has a semidominant phenotype, suggesting that the mutant seizure protein acts as a poison in a multimeric complex. Transformation rescue of a null allele with a cDNA under the control of an inducible promoter demonstrates that induced expression of seizure potassium channels in adults rescues the paralytic phenotype. This rescue decays with a t1/2 of approximately 1-1.5 d after gene induction is discontinued, providing the first estimate of ion channel stability in an intact, multicellular animal.
Collapse
Affiliation(s)
- X J Wang
- Department of Biochemical Pharmacology, State University of New York at Buffalo 14260-1200, USA
| | | | | | | |
Collapse
|
17
|
Abstract
A cDNA clone is described that encodes a novel G-protein-coupled dopamine receptor (DopR99B) expressed in Drosophila heads. The DopR99B receptor maps to 99B3-5, close to the position of the octopamine/tyramine receptor gene at 99A10-B1, suggesting that the two may be related through a gene duplication. Agonist stimulation of DopR99B receptors expressed in Xenopus oocytes increased intracellular Ca2+ levels monitored as changes in an endogenous inward Ca2+-dependent chloride current. In addition to initiating this intracellular Ca2+ signal, stimulation of DopR99B increased cAMP levels. The rank order of potency of agonists in stimulating the chloride current is: dopamine > norepinephrine > epinephrine > tyramine. Octopamine and 5-hydroxytryptamine are not active (< 100 microM). This pharmacological profile plus the second-messenger coupling pattern suggest that the DopR99B receptor is a D1-like dopamine receptor. However, the hydrophobic core region of the DopR99B receptor shows almost equal amino acid sequence identity (40-48%) with vertebrate serotonergic, alpha 1- and beta-adrenergic, and D1-like and D2-like dopaminergic receptors. Thus, this Drosophila receptor defines a novel structural class of dopamine receptors. Because DopR99B is the second dopamine receptor cloned from Drosophila, this work establishes dopamine receptor diversity in a system amenable to genetic dissection.
Collapse
|
18
|
Feng G, Hannan F, Reale V, Hon YY, Kousky CT, Evans PD, Hall LM. Cloning and functional characterization of a novel dopamine receptor from Drosophila melanogaster. J Neurosci 1996; 16:3925-33. [PMID: 8656286 PMCID: PMC6578617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1995] [Revised: 03/26/1996] [Accepted: 04/02/1996] [Indexed: 02/01/2023] Open
Abstract
A cDNA clone is described that encodes a novel G-protein-coupled dopamine receptor (DopR99B) expressed in Drosophila heads. The DopR99B receptor maps to 99B3-5, close to the position of the octopamine/tyramine receptor gene at 99A10-B1, suggesting that the two may be related through a gene duplication. Agonist stimulation of DopR99B receptors expressed in Xenopus oocytes increased intracellular Ca2+ levels monitored as changes in an endogenous inward Ca2+-dependent chloride current. In addition to initiating this intracellular Ca2+ signal, stimulation of DopR99B increased cAMP levels. The rank order of potency of agonists in stimulating the chloride current is: dopamine > norepinephrine > epinephrine > tyramine. Octopamine and 5-hydroxytryptamine are not active (< 100 microM). This pharmacological profile plus the second-messenger coupling pattern suggest that the DopR99B receptor is a D1-like dopamine receptor. However, the hydrophobic core region of the DopR99B receptor shows almost equal amino acid sequence identity (40-48%) with vertebrate serotonergic, alpha 1- and beta-adrenergic, and D1-like and D2-like dopaminergic receptors. Thus, this Drosophila receptor defines a novel structural class of dopamine receptors. Because DopR99B is the second dopamine receptor cloned from Drosophila, this work establishes dopamine receptor diversity in a system amenable to genetic dissection.
Collapse
Affiliation(s)
- G Feng
- Department of Biochemical Pharmacology, State University of New York at Buffalo 14260-1200, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Hurd DD, Stern M, Saxton WM. Mutation of the axonal transport motor kinesin enhances paralytic and suppresses Shaker in Drosophila. Genetics 1996; 142:195-204. [PMID: 8770597 PMCID: PMC1206948 DOI: 10.1093/genetics/142.1.195] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To investigate the possibility that kinesin transports vesicles bearing proteins essential for ion channel activity, the effects of kinesin (Khc) and ion channel mutations were compared in Drosophila using established tests. Our results show that Khc mutations produce defects and genetic interactions characteristic of paralytic (para) and maleless (mle) mutations that cause reduced expression or function of the alpha-subunit of voltage-gated sodium channels. Like para and mle mutations, Khc mutations cause temperature-sensitive (TS) paralysis. When combined with para or mle mutations, Khe mutations cause synthetic lethality and a synergistic enhancement of TS-paralysis. Furthermore, Khc: mutations suppress Shaker and ether-a-go-go mutations that disrupt potassium channel activity. In light of previous physiological tests that show that Khc mutations inhibit compound action potential propagation in segmental nerves, these data indicate that kinesin activity is required for normal inward sodium currents during neuronal action potentials. Tests for phenotypic similarities and genetic interactions between kinesin and sodium/potassium ATPse mutations suggest that impaired kinesin function does not affect the driving force on sodium ions. We hypothesize that a loss of kinesin function inhibits the anterograde axonal transport of vesicles bearing sodium channels.
Collapse
Affiliation(s)
- D D Hurd
- Department of Biology, Indiana University, bloomington 47405, USA
| | | | | |
Collapse
|
20
|
Feng G, Deák P, Chopra M, Hall LM. Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell 1995; 82:1001-11. [PMID: 7553842 DOI: 10.1016/0092-8674(95)90279-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Voltage-dependent sodium channels are involved in the initiation and propagation of action potentials in many excitable cells. Here we report that tipE, a gene defined by a temperature-sensitive paralytic mutation in Drosophila, encodes a novel integral membrane protein that dramatically stimulates functional expression in Xenopus oocytes of the Drosophila sodium channel alpha subunit encoded by the paralytic (para) locus. Using a heat shock promoter to control tipE+ gene expression in transgenic flies, we demonstrate that tipE+ gene expression is required during pupal development to rescue adult paralysis. In addition, we demonstrate a role for the tipE gene product in adults.
Collapse
Affiliation(s)
- G Feng
- Department of Biochemical Pharmacology, State University of New York at Buffalo 14260-1200, USA
| | | | | | | |
Collapse
|