1
|
Cai C, Yang Y, Zhang L, Cui Y, Wu J, Liang J, Li X, Zhang L, Zhang X, Zhang Y, Guo Z, Chen S, Zhang K, Freeling M, Wang X, Cheng F. Regional active transcription associates with homoeologous exchange breakpoints in synthetic Brassica tetraploids. PLANT PHYSIOLOGY 2024; 196:1965-1979. [PMID: 39162415 PMCID: PMC11531840 DOI: 10.1093/plphys/kiae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Polyploidization plays a crucial role in plant evolution and is becoming increasingly important in breeding. Structural variations and epigenomic repatterning have been observed in synthetic polyploidizations. However, the mechanisms underlying the occurrence and their effects on gene expression and phenotype remain unknown. Here, we investigated genome-wide large deletion/duplication regions (DelDups) and genomic methylation dynamics in leaf organs of progeny from the first eight generations of synthetic tetraploids derived from Chinese cabbage (Brassica rapa L. ssp. pekinensis) and cabbage (Brassica oleracea L. var. capitata). One- or two-copy DelDups, with a mean size of 5.70 Mb (400 kb to 65.85 Mb), occurred from the first generation of selfing and thereafter. The duplication of a fragment in one subgenome consistently coincided with the deletion of its syntenic fragment in the other subgenome, and vice versa, indicating that these DelDups were generated by homoeologous exchanges (HEs). Interestingly, the larger the genomic syntenic region, the higher the frequency of DelDups, further suggesting that the pairing of large homoeologous fragments is crucial for HEs. Moreover, we found that the active transcription of continuously distributed genes in local regions is positively associated with the occurrence of HE breakpoints. In addition, the expression of genes within DelDups exhibited a dosage effect, and plants with extra parental genomic fragments generally displayed phenotypes biased toward the corresponding parent. Genome-wide methylation fluctuated remarkably, which did not clearly affect gene expression on a large scale. Our findings provide insights into the early evolution of polyploid genomes, offering valuable knowledge for polyploidization-based breeding.
Collapse
Affiliation(s)
- Chengcheng Cai
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinqing Yang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinan Cui
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xing Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiyue Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongwei Guo
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shumin Chen
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Wu T, Bafort Q, Mortier F, Almeida-Silva F, Natran A, de Peer YV. The immediate metabolomic effects of whole-genome duplication in the greater duckweed, Spirodela polyrhiza. AMERICAN JOURNAL OF BOTANY 2024; 111:e16383. [PMID: 39087852 PMCID: PMC7616399 DOI: 10.1002/ajb2.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024]
Abstract
PREMISE In plants, whole-genome duplication (WGD) is a common mutation with profound evolutionary potential. Given the costs associated with a superfluous genome copy, polyploid establishment is enigmatic. However, in the right environment, immediate phenotypic changes following WGD can facilitate establishment. Metabolite abundances are the direct output of the cell's regulatory network and determine much of the impact of environmental and genetic change on the phenotype. While it is well known that an increase in the bulk amount of genetic material can increase cell size, the impact of gene dosage multiplication on the metabolome remains largely unknown. METHODS We used untargeted metabolomics on four genetically distinct diploid-neoautotetraploid pairs of the greater duckweed, Spirodela polyrhiza, to investigate how WGD affects metabolite abundances per cell and per biomass. RESULTS Autopolyploidy increased metabolite levels per cell, but the response of individual metabolites varied considerably. However, the impact on metabolite level per biomass was restricted because the increased cell size reduced the metabolite concentration per cell. Nevertheless, we detected both quantitative and qualitative effects of WGD on the metabolome. Many effects were strain-specific, but some were shared by all four strains. CONCLUSIONS The nature and impact of metabolic changes after WGD depended strongly on the genotype. Dosage effects have the potential to alter the plant metabolome qualitatively and quantitatively, but were largely balanced out by the reduction in metabolite concentration due to an increase in cell size in this species.
Collapse
Affiliation(s)
- Tian Wu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, 9000Ghent, Belgium
| | - Frederik Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, 9000Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Annelore Natran
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University Biochemistry, Nanjing210095, China
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
| |
Collapse
|
3
|
Batiru G, Lübberstedt T. Polyploidy in maize: from evolution to breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:182. [PMID: 39001883 DOI: 10.1007/s00122-024-04688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
Polyploidy played an important role in the evolution of the three most important crops: wheat, maize and rice, each of them providing a unique model for studying allopolyploidy, segmental alloploidy or paleopolyploidy. However, its genetic and evolutionary role is still vague. The undelying mechanisms and consequences of polyploidy remain fundamental objectives in the study of eukaryotes. Maize is one of the underutilized crops at the polyploid level. This species has no stable natural polyploids, the existing ones being artificially obtained. From the experimental polyploid series of maize, only the tetraploid forms (4n = 40) are of interest. They are characterized by some valuable morphological, physiological and biochemical features, superior to the diploid forms from which they originated, but also by some drawbacks such as: reduced fertility, slower development, longer vegetation period, low productivity and adaptedness. Due to these barriers to using tetraploids in field production, maize tetraploids primarily found utility in scientific studies regarding genetic variability, inbreeding, heterosis and gene dosage effect. Since the first mention of a triploid maize plant to present, many scientists and schools, devoted their efforts to capitalize on the use of polyploidy in maize. Despite its common disadvantages as a crop, significant progress in developing tetraploid maize with good agronomic performance was achieved leading to registered tetraploid maize varieties. In this review we summarize and discuss the different aspects of polyploidy in maize, such as evolutionary context, methods of induction, morphology, fertility issue, inheritance patterns, gene expression and potential use.
Collapse
Affiliation(s)
- Grigorii Batiru
- Department of Agronomy and Environment, Technical University of Moldova, MD-2049, Chisinau, Republic of Moldova.
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1051, USA
| |
Collapse
|
4
|
Hallahan BF, Quiroz LF, Brychkova G, McKeown PC, Spillane C. Accession-specific parent-of-origin dependent and independent genome dosage effects on salt tolerance in Arabidopsis thaliana. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231766. [PMID: 38721127 PMCID: PMC11076124 DOI: 10.1098/rsos.231766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 07/31/2024]
Abstract
Improving the salt stress tolerance of crops is an important goal in plant breeding. Changes in the number of chromosome sets (i.e. ploidy level) cause genome dosage effects which can result in enhanced or novel traits. Maternal inheritance versus paternal inheritance of the same chromosome sets can have differential epigenetic effects on traits of F1 offspring. Hence, genome dosage effects can be parent-of-origin independent or dependent. The model plant Arabidopsis thaliana displays both genome dosage and parent-of-origin effects on plant growth under non-stress conditions. Using an isogenic ploidy series of diploid, triploid and tetraploid lines, we investigate the extent of genome dosage effects and their parent-of-origin dependency on in vitro salt stress tolerance of seedlings across 10 different A. thaliana accessions (genetic backgrounds). We detected genome dosage effects on salt stress tolerance for tetraploid lines in five accessions. In addition, through the generation of isogenic reciprocal F1 triploid lines, both parent-of-origin dependent and independent genome dosage effects on salt stress tolerance were detected. Thus, our results indicate not only that genome dosage balance effects can have significant impacts on abiotic stress tolerance in A. thaliana but also that parent-of-origin specific genome dosage effects can affect salt stress tolerance in plants.
Collapse
Affiliation(s)
- Brendan F. Hallahan
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, H91 REW4 , Ireland
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, H91 REW4 , Ireland
| | - Galina Brychkova
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, H91 REW4 , Ireland
| | - Peter C. McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, H91 REW4 , Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, H91 REW4 , Ireland
| |
Collapse
|
5
|
Chen T, Hayes M, Liu Z, Isenegger D, Mason J, Spangenberg G. Modified fructan accumulation through overexpression of wheat fructan biosynthesis pathway fusion genes Ta1SST:Ta6SFT. BMC PLANT BIOLOGY 2024; 24:352. [PMID: 38689209 PMCID: PMC11059666 DOI: 10.1186/s12870-024-05049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Fructans are water-soluble carbohydrates that accumulate in wheat and are thought to contribute to a pool of stored carbon reserves used in grain filling and tolerance to abiotic stress. RESULTS In this study, transgenic wheat plants were engineered to overexpress a fusion of two fructan biosynthesis pathway genes, wheat sucrose: sucrose 1-fructosyltransferase (Ta1SST) and wheat sucrose: fructan 6-fructosyltransferase (Ta6SFT), regulated by a wheat ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (TaRbcS) gene promoter. We have shown that T4 generation transgene-homozygous single-copy events accumulated more fructan polymers in leaf, stem and grain when compared in the same tissues from transgene null lines. Under water-deficit (WD) conditions, transgenic wheat plants showed an increased accumulation of fructan polymers with a high degree of polymerisation (DP) when compared to non-transgenic plants. In wheat grain of a transgenic event, increased deposition of particular fructan polymers such as, DP4 was observed. CONCLUSIONS This study demonstrated that the tissue-regulated expression of a gene fusion between Ta1SST and Ta6SFT resulted in modified fructan accumulation in transgenic wheat plants and was influenced by water-deficit stress conditions.
Collapse
Affiliation(s)
- Tong Chen
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Matthew Hayes
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
| | - Zhiqian Liu
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
| | | | - John Mason
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - German Spangenberg
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Present Address: Qingdao Agricultural University, College of Grassland Science, N0. 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province, 266109, P.R. China
| |
Collapse
|
6
|
Xu X, Yang L, Deng X, Xiao Q, Huang X, Wang C, Zhou Y, Luo X, Zhang Y, Xu X, Qin Q, Liu S. Expression and localization of HPG axis-related genes in Carassius auratus with different ploidy. Front Endocrinol (Lausanne) 2024; 15:1336679. [PMID: 38410696 PMCID: PMC10894961 DOI: 10.3389/fendo.2024.1336679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction In the Dongting water system, the Carassius auratus (Crucian carp) complex is characterized by the coexistence of diploid forms (2n=100, 2nCC) and polyploidy forms. The diploid (2nCC) and triploid C.auratus (3n=150, 3nCC) had the same fertility levels, reaching sexual maturity at one year. Methods The nucleotide sequence, gene expression, methylation, and immunofluorescence of the gonadotropin releasing hormone 2(Gnrh2), Gonadotropin hormone beta(Gthβ), and Gonadotropin-releasing hormone receptor(Gthr) genes pivotal genes of the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Results The analysis results indicated that Gnrh2, follicle-stimulating hormone receptor(Fshr), and Lethal hybrid rescue(Lhr) genes increased the copy number and distinct structural differentiation in 3nCC compared to that in 2nCC. The transcript levels of HPG axis genes in 3nCC were higher than 2nCC (P<0.05), which could promote the production and secretion of sex steroid hormones conducive to the gonadal development of 3nCC. Meanwhile, the DNA methylation levels in the promoter regions of the HPG axis genes were lower in 3nCC than in 2nCC. These results suggested that methylation of the promoter region had a potential regulatory effect on gene expression after triploidization. Immunofluorescence showed that the localization of the Fshβ, Lhβ, and Fshr genes between 3nCC and 2nCC remained unchanged, ensuring the normal expression of these genes at the corresponding sites after triploidization. Discussion Relevant research results provide cell and molecular biology evidence for normal reproductive activities such as gonad development and gamete maturation in triploid C. auratus, and contribute to further understanding of the genetic basis for fertility restoration in triploid C. auratus.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qingwen Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yue Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiang Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yuxin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xidan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- Hunan Yuelu Mountain Science and Technology Co., Ltd., for Aquatic Breeding, Changsha, Hunan, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
7
|
Wijnen CL, Becker FFM, Okkersen AA, de Snoo CB, Boer MP, van Eeuwijk FA, Wijnker E, Keurentjes JJB. Genetic Mapping of Genotype-by-Ploidy Effects in Arabidopsis thaliana. Genes (Basel) 2023; 14:1161. [PMID: 37372341 DOI: 10.3390/genes14061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Plants can express different phenotypic responses following polyploidization, but ploidy-dependent phenotypic variation has so far not been assigned to specific genetic factors. To map such effects, segregating populations at different ploidy levels are required. The availability of an efficient haploid inducer line in Arabidopsis thaliana allows for the rapid development of large populations of segregating haploid offspring. Because Arabidopsis haploids can be self-fertilised to give rise to homozygous doubled haploids, the same genotypes can be phenotyped at both the haploid and diploid ploidy level. Here, we compared the phenotypes of recombinant haploid and diploid offspring derived from a cross between two late flowering accessions to map genotype × ploidy (G × P) interactions. Ploidy-specific quantitative trait loci (QTLs) were detected at both ploidy levels. This implies that mapping power will increase when phenotypic measurements of monoploids are included in QTL analyses. A multi-trait analysis further revealed pleiotropic effects for a number of the ploidy-specific QTLs as well as opposite effects at different ploidy levels for general QTLs. Taken together, we provide evidence of genetic variation between different Arabidopsis accessions being causal for dissimilarities in phenotypic responses to altered ploidy levels, revealing a G × P effect. Additionally, by investigating a population derived from late flowering accessions, we revealed a major vernalisation-specific QTL for variation in flowering time, countering the historical bias of research in early flowering accessions.
Collapse
Affiliation(s)
- Cris L Wijnen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Andries A Okkersen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - C Bastiaan de Snoo
- Rijk Zwaan R&D Fijnaart, Eerste Kruisweg 9, 4793 RS Fijnaart, The Netherlands
| | - Martin P Boer
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
8
|
Coate JE. Beyond Transcript Concentrations: Quantifying Polyploid Expression Responses per Biomass, per Genome, and per Cell with RNA-Seq. Methods Mol Biol 2023; 2545:227-250. [PMID: 36720816 DOI: 10.1007/978-1-0716-2561-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RNA-seq has been used extensively to study expression responses to polyploidy. Most current methods for normalizing RNA-seq data yield estimates of transcript concentrations (transcripts per transcriptome). The implicit assumption of these normalization methods is that transcriptome size is equivalent between the samples being compared such that transcript concentrations are equivalent to transcripts per cell. In recent years, however, evidence has mounted that transcriptome size can vary dramatically in response to a range of factors including polyploidy and that such variation is ubiquitous. Where such variation exists, transcript concentration is often a poor or even misleading proxy for expression responses at other biologically relevant scales (e.g., expression per cell). Thus, it is important that transcriptomic studies of polyploids move beyond simply comparing transcript concentrations if we are to gain a complete understanding of how genome multiplication affects gene expression. I discuss this issue in more detail and summarize a suite of approaches that can leverage RNA-seq to quantify expression responses per genome, per cell, and per unit of biomass.
Collapse
|
9
|
Sex-specific morphs: the genetics and evolution of intra-sexual variation. Nat Rev Genet 2023; 24:44-52. [PMID: 35971002 DOI: 10.1038/s41576-022-00524-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Sex-specific morphs exhibit discrete phenotypes, often including many disparate traits, that are observed in only one sex. These morphs have evolved independently in many different animals and are often associated with alternative mating strategies. The remarkable diversity of sex-specific morphs offers unique opportunities to understand the genetic basis of complex phenotypes, as the distinct nature of many morphs makes it easier to both categorize and compare genomes than for continuous traits. Sex-specific morphs also expand the study of sexual dimorphism beyond traditional bimodal comparisons of male and female averages, as they allow for a more expansive range of sexualization. Although ecological and endocrinological studies of sex-specific morphs have been advancing for some time, genomic and transcriptomic studies of morphs are far more recent. These studies reveal not only many different paths to the evolution of sex-specific morphs but also many commonalities, such as the role of sex-determining genes and hormone signalling in morph development, and the mixing of male and female traits within some morphs.
Collapse
|
10
|
Islam MM, Deepo DM, Nasif SO, Siddique AB, Hassan O, Siddique AB, Paul NC. Cytogenetics and Consequences of Polyploidization on Different Biotic-Abiotic Stress Tolerance and the Potential Mechanisms Involved. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202684. [PMID: 36297708 PMCID: PMC9609754 DOI: 10.3390/plants11202684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/12/2023]
Abstract
The application of polyploidy in sustainable agriculture has already brought much appreciation among researchers. Polyploidy may occur naturally or can be induced in the laboratory using chemical or gaseous agents and results in complete chromosome nondisjunction. This comprehensive review described the potential of polyploidization on plants, especially its role in crop improvement for enhanced production and host-plant resistance development against pests and diseases. An in-depth investigation on techniques used in the induction of polyploidy, cytogenetic evaluation methods of different ploidy levels, application, and current research trends is also presented. Ongoing research has mainly aimed to bring the recurrence in polyploidy, which is usually detected by flow cytometry, chromosome counting, and cytogenetic techniques such as fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH). Polyploidy can bring about positive consequences in the growth and yield attributes of crops, making them more tolerant to abiotic and biotic stresses. However, the unexpected change in chromosome set and lack of knowledge on the mechanism of stress alleviation is hindering the application of polyploidy on a large scale. Moreover, a lack of cost-benefit analysis and knowledge gaps on the socio-economic implication are predominant. Further research on polyploidy coupling with modern genomic technologies will help to bring real-world market prospects in the era of changing climate. This review on polyploidy provides a solid foundation to do next-generation research on crop improvement.
Collapse
Affiliation(s)
- Md Mazharul Islam
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
- Research and Development, Horticultural Crop Breeding, Quality Feeds Limited, Dhaka 1230, Bangladesh
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| | - Saifullah Omar Nasif
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Abu Bakar Siddique
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736 Umeå, Sweden
| | - Oliul Hassan
- Department of Ecology and Environmental System, College of Ecology and Environmental Sciences, Kyungpook National University, Sangju 37224, Korea
| | - Abu Bakar Siddique
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Narayan Chandra Paul
- Kumho Life Science Laboratory, Department of Integrative Food Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
11
|
Birchler JA, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. THE PLANT CELL 2022; 34:2466-2474. [PMID: 35253876 PMCID: PMC9252495 DOI: 10.1093/plcell/koac076] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 05/13/2023]
Abstract
Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
12
|
Carlson CH, Choi Y, Chan AP, Town CD, Smart LB. Nonadditive gene expression is correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow (Salix spp.). G3 (BETHESDA, MD.) 2022; 12:6472355. [PMID: 35100357 PMCID: PMC9210313 DOI: 10.1093/g3journal/jkab436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Many studies have highlighted the complex and diverse basis for heterosis in inbred crops. Despite the lack of a consensus model, it is vital that we turn our attention to understanding heterosis in undomesticated, heterozygous, and polyploid species, such as willow (Salix spp.). Shrub willow is a dedicated energy crop bred to be fast-growing and high yielding on marginal land without competing with food crops. A trend in willow breeding is the consistent pattern of heterosis in triploids produced from crosses between diploid and tetraploid species. Here, we test whether differentially expressed genes are associated with heterosis in triploid families derived from diploid Salix purpurea, diploid Salix viminalis, and tetraploid Salix miyabeana parents. Three biological replicates of shoot tips from all family progeny and parents were collected after 12 weeks in the greenhouse and RNA extracted for RNA-Seq analysis. This study provides evidence that nonadditive patterns of gene expression are correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow. Expression-level dominance was most correlated with heterosis for biomass yield traits and was highly enriched for processes involved in starch and sucrose metabolism. In addition, there was a global dosage effect of parent alleles in triploid hybrids, with expression proportional to copy number variation. Importantly, differentially expressed genes between family parents were most predictive of heterosis for both field and greenhouse collected traits. Altogether, these data will be used to progress models of heterosis to complement the growing genomic resources available for the improvement of heterozygous perennial bioenergy crops.
Collapse
Affiliation(s)
- Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Yongwook Choi
- Plant Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Agnes P Chan
- Plant Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | | | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
13
|
Rempfer C, Wiedemann G, Schween G, Kerres KL, Lucht JM, Horres R, Decker EL, Reski R. Autopolyploidization affects transcript patterns and gene targeting frequencies in Physcomitrella. PLANT CELL REPORTS 2022; 41:153-173. [PMID: 34636965 PMCID: PMC8803787 DOI: 10.1007/s00299-021-02794-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In Physcomitrella, whole-genome duplications affected the expression of about 3.7% of the protein-encoding genes, some of them relevant for DNA repair, resulting in a massively reduced gene-targeting frequency. Qualitative changes in gene expression after an autopolyploidization event, a pure duplication of the whole genome (WGD), might be relevant for a different regulation of molecular mechanisms between angiosperms growing in a life cycle with a dominant diploid sporophytic stage and the haploid-dominant mosses. Whereas angiosperms repair DNA double-strand breaks (DSB) preferentially via non-homologous end joining (NHEJ), in the moss Physcomitrella homologous recombination (HR) is the main DNA-DSB repair pathway. HR facilitates the precise integration of foreign DNA into the genome via gene targeting (GT). Here, we studied the influence of ploidy on gene expression patterns and GT efficiency in Physcomitrella using haploid plants and autodiploid plants, generated via an artificial WGD. Single cells (protoplasts) were transfected with a GT construct and material from different time-points after transfection was analysed by microarrays and SuperSAGE sequencing. In the SuperSAGE data, we detected 3.7% of the Physcomitrella genes as differentially expressed in response to the WGD event. Among the differentially expressed genes involved in DNA-DSB repair was an upregulated gene encoding the X-ray repair cross-complementing protein 4 (XRCC4), a key player in NHEJ. Analysing the GT efficiency, we observed that autodiploid plants were significantly GT suppressed (p < 0.001) attaining only one third of the expected GT rates. Hence, an alteration of global transcript patterns, including genes related to DNA repair, in autodiploid Physcomitrella plants correlated with a drastic suppression of HR.
Collapse
Affiliation(s)
- Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Gabriele Schween
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Corteva Agriscience, Pioneer Hi-Bred Northern Europe, Münstertäler Strasse 26, 79427, Eschbach, Germany
| | - Klaus L Kerres
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Jan M Lucht
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Scienceindustries, Nordstrasse 15, 8006, Zurich, Switzerland
| | - Ralf Horres
- GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt am Main, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
14
|
Bacteriophage self-counting in the presence of viral replication. Proc Natl Acad Sci U S A 2021; 118:2104163118. [PMID: 34916284 DOI: 10.1073/pnas.2104163118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
When host cells are in low abundance, temperate bacteriophages opt for dormant (lysogenic) infection. Phage lambda implements this strategy by increasing the frequency of lysogeny at higher multiplicity of infection (MOI). However, it remains unclear how the phage reliably counts infecting viral genomes even as their intracellular number increases because of replication. By combining theoretical modeling with single-cell measurements of viral copy number and gene expression, we find that instead of hindering lambda's decision, replication facilitates it. In a nonreplicating mutant, viral gene expression simply scales with MOI rather than diverging into lytic (virulent) and lysogenic trajectories. A similar pattern is followed during early infection by wild-type phage. However, later in the infection, the modulation of viral replication by the decision genes amplifies the initially modest gene expression differences into divergent trajectories. Replication thus ensures the optimal decision-lysis upon single-phage infection and lysogeny at higher MOI.
Collapse
|
15
|
Birchler JA, Veitia RA. One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenet Genome Res 2021; 161:529-550. [PMID: 34814143 DOI: 10.1159/000519592] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
A century ago experiments with the flowering plant Datura stramonium and the fruit fly Drosophila melanogaster revealed that adding an extra chromosome to a karyotype was much more detrimental than adding a whole set of chromosomes. This phenomenon was referred to as gene balance and has been recapitulated across eukaryotic species. Here, we retrace some developments in this field. Molecular studies suggest that the basis of balance involves stoichiometric relationships of multi-component interactions. This concept has implication for the mechanisms controlling gene expression, genome evolution, sex chromosome evolution/dosage compensation, speciation mechanisms, and the underlying genetics of quantitative traits.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Reiner A Veitia
- Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France.,Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Fontenay aux Roses, France
| |
Collapse
|
16
|
Boatwright JL, Yeh CT, Hu HC, Susanna A, Soltis DE, Soltis PS, Schnable PS, Barbazuk WB. Trajectories of Homoeolog-Specific Expression in Allotetraploid Tragopogon castellanus Populations of Independent Origins. FRONTIERS IN PLANT SCIENCE 2021; 12:679047. [PMID: 34249049 PMCID: PMC8261302 DOI: 10.3389/fpls.2021.679047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Polyploidization can have a significant ecological and evolutionary impact by providing substantially more genetic material that may result in novel phenotypes upon which selection may act. While the effects of polyploidization are broadly reviewed across the plant tree of life, the reproducibility of these effects within naturally occurring, independently formed polyploids is poorly characterized. The flowering plant genus Tragopogon (Asteraceae) offers a rare glimpse into the intricacies of repeated allopolyploid formation with both nascent (< 90 years old) and more ancient (mesopolyploids) formations. Neo- and mesopolyploids in Tragopogon have formed repeatedly and have extant diploid progenitors that facilitate the comparison of genome evolution after polyploidization across a broad span of evolutionary time. Here, we examine four independently formed lineages of the mesopolyploid Tragopogon castellanus for homoeolog expression changes and fractionation after polyploidization. We show that expression changes are remarkably similar among these independently formed polyploid populations with large convergence among expressed loci, moderate convergence among loci lost, and stochastic silencing. We further compare and contrast these results for T. castellanus with two nascent Tragopogon allopolyploids. While homoeolog expression bias was balanced in both nascent polyploids and T. castellanus, the degree of additive expression was significantly different, with the mesopolyploid populations demonstrating more non-additive expression. We suggest that gene dosage and expression noise minimization may play a prominent role in regulating gene expression patterns immediately after allopolyploidization as well as deeper into time, and these patterns are conserved across independent polyploid lineages.
Collapse
Affiliation(s)
- J. Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, United States
| | - Cheng-Ting Yeh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Heng-Cheng Hu
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Covance Inc., Indianapolis, IN, United States
| | - Alfonso Susanna
- Botanic Institute of Barcelona, Consejo Superior de Investigaciones Científicas, ICUB, Barcelona, Spain
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Biodiversity Institute, University of Florida, Gainesville, FL, United States
| | - Pamela S. Soltis
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Biodiversity Institute, University of Florida, Gainesville, FL, United States
| | | | - William B. Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Madani H, Escrich A, Hosseini B, Sanchez-Muñoz R, Khojasteh A, Palazon J. Effect of Polyploidy Induction on Natural Metabolite Production in Medicinal Plants. Biomolecules 2021; 11:biom11060899. [PMID: 34204200 PMCID: PMC8234191 DOI: 10.3390/biom11060899] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Polyploidy plays an important role in plant diversification and speciation. The ploidy level of plants is associated with morphological and biochemical characteristics, and its modification has been used as a strategy to alter the quantitative and qualitative patterns of secondary metabolite production in different medicinal plants. Polyploidization can be induced by many anti-mitotic agents, among which colchicine, oryzalin, and trifluralin are the most common. Other variables involved in the induction process include the culture media, explant types, and exposure times. Due to the effects of polyploidization on plant growth and development, chromosome doubling has been applied in plant breeding to increase the levels of target compounds and improve morphological characteristics. Prompted by the importance of herbal medicines and the increasing demand for drugs based on plant secondary metabolites, this review presents an overview of how polyploidy can be used to enhance metabolite production in medicinal plants.
Collapse
Affiliation(s)
- Hadi Madani
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran; (H.M.); (B.H.)
| | - Ainoa Escrich
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - Bahman Hosseini
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran; (H.M.); (B.H.)
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium;
| | - Abbas Khojasteh
- Department of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan, XXIII, 08028 Barcelona, Spain;
| | - Javier Palazon
- Department of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan, XXIII, 08028 Barcelona, Spain;
- Correspondence:
| |
Collapse
|
18
|
Shi X, Yang H, Chen C, Hou J, Hanson KM, Albert PS, Ji T, Cheng J, Birchler JA. Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. THE PLANT CELL 2021; 33:917-939. [PMID: 33677584 PMCID: PMC8226301 DOI: 10.1093/plcell/koab030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Genomic imbalance caused by changing the dosage of individual chromosomes (aneuploidy) has a more detrimental effect than varying the dosage of complete sets of chromosomes (ploidy). We examined the impact of both increased and decreased dosage of 15 distal and 1 interstitial chromosomal regions via RNA-seq of maize (Zea mays) mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated toward the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which the expression of many genes under genome imbalance are modulated toward the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Katherine M Hanson
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
19
|
Madritsch S, Burg A, Sehr EM. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species. BMC Bioinformatics 2021; 22:146. [PMID: 33752598 PMCID: PMC7986043 DOI: 10.1186/s12859-021-04078-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/15/2021] [Indexed: 01/15/2023] Open
Abstract
Background Polyploidy is very common in plants and can be seen as one of the key drivers in the domestication of crops and the establishment of important agronomic traits. It can be the main source of genomic repatterning and introduces gene duplications, affecting gene expression and alternative splicing. Since fully sequenced genomes are not yet available for many plant species including crops, de novo transcriptome assembly is the basis to understand molecular and functional mechanisms. However, in complex polyploid plants, de novo transcriptome assembly is challenging, leading to increased rates of fused or redundant transcripts. Since assemblers were developed mainly for diploid organisms, they may not well suited for polyploids. Also, comparative evaluations of these tools on higher polyploid plants are extremely rare. Thus, our aim was to fill this gap and to provide a basic guideline for choosing the optimal de novo assembly strategy focusing on autotetraploids, as the scientific interest in this type of polyploidy is steadily increasing. Results We present a comparison of two common (SOAPdenovo-Trans, Trinity) and one recently published transcriptome assembler (TransLiG) on diploid and autotetraploid species of the genera Acer and Vaccinium using Arabidopsis thaliana as a reference. The number of assembled transcripts was up to 11 and 14 times higher with an increased number of short transcripts for Acer and Vaccinium, respectively, compared to A. thaliana. In diploid samples, Trinity and TransLiG performed similarly good while in autotetraploids, TransLiG assembled most complete transcriptomes with an average of 1916 assembled BUSCOs vs. 1705 BUSCOs for Trinity. Of all three assemblers, SOAPdenovo-Trans performed worst (1133 complete BUSCOs). Conclusion All three assembly tools produced complete assemblies when dealing with the model organism A. thaliana, independently of its ploidy level, but their performances differed extremely when it comes to non-model autotetraploids, where specifically TransLiG and Trinity produced a high number of redundant transcripts. The recently published assembler TransLiG has not been tested yet on any plant organism but showed highest completeness and full-length transcriptomes, especially in autotetraploids. Including such species during the development and testing of new assembly tools is highly appreciated and recommended as many important crops are polyploid. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04078-8.
Collapse
Affiliation(s)
- Silvia Madritsch
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Tulln, Austria.,Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Agnes Burg
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Tulln, Austria
| | - Eva M Sehr
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Tulln, Austria.
| |
Collapse
|
20
|
Shi X, Chen C, Yang H, Hou J, Ji T, Cheng J, Veitia RA, Birchler JA. The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. Methods Mol Biol 2020; 2093:161-171. [PMID: 32088896 DOI: 10.1007/978-1-0716-0179-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Dosage effects in plants are caused by changes in the copy number of chromosomes, segments of chromosomes, or multiples of individual genes. Genes often exhibit a dosage effect in which the amount of product is closely correlated with the number of copies present. However, when larger segments of chromosomes are varied, there are trans-acting effects across the genome that are unleashed that modulate gene expression in cascading effects. These appear to be mediated by the stoichiometric relationship of gene regulatory machineries. There are both positive and negative modulations of target gene expression, but the latter is the plurality effect. When this inverse effect is combined with a dosage effect, compensation for a gene can occur in which its expression is similar to the normal diploid regardless of the change in chromosomal dosage. In contrast, changing the whole genome in a polyploidy series has fewer relative effects as the stoichiometric relationship is not disrupted. Together, these observations suggest that the stoichiometry of gene regulation is important as a reflection of the mode of assembly of the individual subunits involved in the effective regulatory macromolecular complexes. This principle has implications for gene expression mechanisms, quantitative trait genetics, and the evolution of genes depending on the mode of duplication, either segmentally or via whole-genome duplication.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Reiner A Veitia
- Institut Jacques Monod, Paris, France
- Universite Paris-Diderot/Paris 7, Paris, France
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
21
|
Qiu T, Liu Z, Liu B. The effects of hybridization and genome doubling in plant evolution via allopolyploidy. Mol Biol Rep 2020; 47:5549-5558. [PMID: 32572735 DOI: 10.1007/s11033-020-05597-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Polyploidy is a pervasive and recurring phenomenon across the tree of life, which occurred at variable time scales, ecological amplitudes and cell types, and is especially prominent in the evolutionary histories of plants. Importantly, many of the world's most important crops and noxious invasive weeds are recent polyploids. Polyploidy includes two major types, autopolyploidy, referring to doubling of a single species genome, and allopolyploidy referring to doubling of two or more merged genomes via biological hybridization of distinct but related species. The prevalence of both types of polyploidy implies that both genome doubling alone and doubling coupled with hybridization confer selective advantages over their diploid progenitors under specific circumstances. In cases of allopolyploidy, the two events, genome doubling and hybridization, have both advantages and disadvantages. Accumulated studies have established that, in allopolyploidy, some advantage(s) of doubling may compensate for the disadvantage(s) of hybridity and vice versa, although further study is required to validate generality of this trend. Some studies have also revealed a variety of non-Mendelian genetic and genomic consequences induced by doubling and hybridization separately or concertedly in nascent allopolyploidy; however, the significance of which to the immediate establishment and longer-term evolutionary success of allopolyploid species remain to be empirically demonstrated and ecologically investigated. This review aims to summarize recent advances in our understanding of the roles of hybridization and genome doubling, in separation and combination, in the evolution of allopolyploid genomes, as well as fruitful future research directions that are emerging from these studies.
Collapse
Affiliation(s)
- Tian Qiu
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China.,Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhiyuan Liu
- College of Computer Science and Technology, Changchun University, Changchun, 130022, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
22
|
Song MJ, Potter BI, Doyle JJ, Coate JE. Gene Balance Predicts Transcriptional Responses Immediately Following Ploidy Change in Arabidopsis thaliana. THE PLANT CELL 2020; 32:1434-1448. [PMID: 32184347 PMCID: PMC7203931 DOI: 10.1105/tpc.19.00832] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/18/2020] [Accepted: 03/14/2020] [Indexed: 05/22/2023]
Abstract
The gene balance hypothesis postulates that there is selection on gene copy number (gene dosage) to preserve the stoichiometric balance among interacting proteins. This presupposes that gene product abundance is governed by gene dosage and that gene dosage responses are consistent for interacting genes in a dosage-balance-sensitive network or complex. Gene dosage responses, however, have rarely been quantified, and the available data suggest that they are highly variable. We sequenced the transcriptomes of two synthetic autopolyploid accessions of Arabidopsis (Arabidopsis thaliana) and their diploid progenitors, as well as one natural tetraploid and its synthetic diploid produced via haploid induction, to estimate transcriptome size and dosage responses immediately following ploidy change. Similar to what has been observed in previous studies, overall transcriptome size does not exhibit a simple doubling in response to genome doubling, and individual gene dosage responses are highly variable in all three accessions, indicating that expression is not strictly coupled with gene dosage. Nonetheless, putatively dosage balance-sensitive gene groups (Gene Ontology terms, metabolic networks, gene families, and predicted interacting proteins) exhibit smaller and more coordinated dosage responses than do putatively dosage-insensitive gene groups, suggesting that constraints on dosage balance operate immediately following whole-genome duplication and that duplicate gene retention patterns are shaped by selection to preserve dosage balance.
Collapse
Affiliation(s)
- Michael J Song
- University and Jepson Herbaria and Department of Integrative Biology, University of California, Berkeley, California 94720
| | - Barney I Potter
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jeff J Doyle
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202
| |
Collapse
|
23
|
Marenkova TV, Sidorchuk YV, Kusnetsov VV, Deineko EV. Effect of Changes in Genome Ploidy on the Mosaic Character of nptII Gene Expression in Epialleles of the Transgenic Tobacco Line Nu21. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Iannicelli J, Guariniello J, Tossi V, Regalado J, Di Ciaccio L, van Baren C, Pitta Álvarez S, Escandón A. The “polyploid effect” in the breeding of aromatic and medicinal species. SCIENTIA HORTICULTURAE 2020. [PMID: 0 DOI: 10.1016/j.scienta.2019.108854] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
25
|
Van Drunen WE, Husband BC. Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms. THE NEW PHYTOLOGIST 2019; 224:1266-1277. [PMID: 31215649 DOI: 10.1111/nph.15999] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 05/10/2023]
Abstract
Clonal reproduction is thought to facilitate polyploid establishment in the angiosperms, but the evolutionary relationship between polyploidy and clonality has not been thoroughly tested. A perennial life history may confer many of the same advantages, and the relative importance of clonality versus perenniality is unknown. We used phylogenetic comparative analyses of 1751 species to examine associations between polyploidy, clonality, and life history. We test hypotheses of co-evolution by determining the sequence of trait development. Polyploidy is associated with both clonality and perenniality across species, and analyses show that clonality can be an important predictor of polyploidy beyond perenniality. Tests of directionality on our full dataset suggest that polyploidy is more likely to promote clonality or perenniality than vice versa, although there are significant differences in patterns of co-evolution among major angiosperm groups. Our results suggest that polyploidy and clonal reproduction are evolutionarily associated across the angiosperms, even when perenniality is considered, but we find little evidence at the whole-angiosperm level for the hypothesis that clonality promotes polyploidy. However, variation among different clades indicates that polyploidy and clonality are interacting in diverse ways, likely to be due to the variable roles of clonality in their evolutionary histories.
Collapse
Affiliation(s)
- Wendy E Van Drunen
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
26
|
Wang Z, Miao H, Liu J, Xu B, Yao X, Xu C, Zhao S, Fang X, Jia C, Wang J, Zhang J, Li J, Xu Y, Wang J, Ma W, Wu Z, Yu L, Yang Y, Liu C, Guo Y, Sun S, Baurens FC, Martin G, Salmon F, Garsmeur O, Yahiaoui N, Hervouet C, Rouard M, Laboureau N, Habas R, Ricci S, Peng M, Guo A, Xie J, Li Y, Ding Z, Yan Y, Tie W, D'Hont A, Hu W, Jin Z. Musa balbisiana genome reveals subgenome evolution and functional divergence. NATURE PLANTS 2019; 5:810-821. [PMID: 31308504 PMCID: PMC6784884 DOI: 10.1038/s41477-019-0452-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/20/2019] [Indexed: 05/19/2023]
Abstract
Banana cultivars (Musa ssp.) are diploid, triploid and tetraploid hybrids derived from Musa acuminata and Musa balbisiana. We presented a high-quality draft genome assembly of M. balbisiana with 430 Mb (87%) assembled into 11 chromosomes. We identified that the recent divergence of M. acuminata (A-genome) and M. balbisiana (B-genome) occurred after lineage-specific whole-genome duplication, and that the B-genome may be more sensitive to the fractionation process compared to the A-genome. Homoeologous exchanges occurred frequently between A- and B-subgenomes in allopolyploids. Genomic variation within progenitors resulted in functional divergence of subgenomes. Global homoeologue expression dominance occurred between subgenomes of the allotriploid. Gene families related to ethylene biosynthesis and starch metabolism exhibited significant expansion at the pathway level and wide homoeologue expression dominance in the B-subgenome of the allotriploid. The independent origin of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) homoeologue gene pairs and tandem duplication-driven expansion of ACO genes in the B-subgenome contributed to rapid and major ethylene production post-harvest in allotriploid banana fruits. The findings of this study provide greater context for understanding fruit biology, and aid the development of tools for breeding optimal banana cultivars.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Chunyan Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shancen Zhao
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China
| | | | - Caihong Jia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyi Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbin Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiashui Wang
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weihong Ma
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Lili Yu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yulan Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chun Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yu Guo
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Silong Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Frederic Salmon
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Guadeloupe, France
| | - Olivier Garsmeur
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Nathalie Laboureau
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Remy Habas
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Sebastien Ricci
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Guadeloupe, France
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Montpellier, France.
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
27
|
Christensen KA, Sakhrani D, Rondeau EB, Richards J, Koop BF, Devlin RH. Effect of triploidy on liver gene expression in coho salmon (Oncorhynchus kisutch) under different metabolic states. BMC Genomics 2019; 20:336. [PMID: 31053056 PMCID: PMC6500012 DOI: 10.1186/s12864-019-5655-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triploid coho salmon are excellent models for studying gene dosage and the effects of increased cell volume on gene expression. Triploids have an additional haploid genome in each cell and have fewer but larger cells than diploid coho salmon to accommodate the increased genome size. Studying gene expression in triploid coho salmon provides insight into how gene expression may have been affected after the salmonid-specific genome duplication which occurred some 90 MYA. Triploid coho salmon are sterile and consequently can live longer and grow larger than diploid congeners in many semelparous species (spawning only once) because they never reach maturity and post-spawning mortality is averted. Triploid fishes are also of interest to the commercial sector (larger fish are more valuable) and to fisheries management since sterile fish can potentially minimize negative impacts of escaped fish in the wild. RESULTS The vast majority of genes in liver tissue had similar expression levels between diploid and triploid coho salmon, indicating that the same amount of mRNA transcripts were being produced per gene copy (positive gene dosage effects) within a larger volume cell. Several genes related to nutrition and compensatory growth were differentially expressed between diploid and triploid salmon, indicating that some loci are sensitive to cell size and/or DNA content per cell. To examine how robust expression between ploidies is under different conditions, a genetic/metabolic modifier in the form of different doses of a growth hormone transgene was used to assess gene expression under conditions that the genome has not naturally experienced or adapted to. While many (up to 1400) genes were differentially expressed between non-transgenic and transgenic fish, relatively few genes were differentially expressed between diploids and triploids with similar doses of the transgene. These observations indicate that the small effect of ploidy on gene expression is robust to large changes in physiological state. CONCLUSIONS These findings are of interest from a gene regulatory perspective, but also valuable for understanding phenotypic effects in triploids, transgenics, and triploid transgenics that could affect their utility in culture conditions and their fitness and potential consequences of release into nature.
Collapse
Affiliation(s)
- Kris A Christensen
- Fisheries and Oceans Canada, West Vancouver, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Eric B Rondeau
- Fisheries and Oceans Canada, West Vancouver, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jeffery Richards
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
28
|
Genomic Prediction of Autotetraploids; Influence of Relationship Matrices, Allele Dosage, and Continuous Genotyping Calls in Phenotype Prediction. G3-GENES GENOMES GENETICS 2019; 9:1189-1198. [PMID: 30782769 PMCID: PMC6469427 DOI: 10.1534/g3.119.400059] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Estimation of allele dosage, using genomic data, in autopolyploids is challenging and current methods often result in the misclassification of genotypes. Some progress has been made when using SNP arrays, but the major challenge is when using next generation sequencing data. Here we compare the use of read depth as continuous parameterization with ploidy parameterizations in the context of genomic selection (GS). Additionally, different sources of information to build relationship matrices were compared. A real breeding population of the autotetraploid species blueberry (Vaccinium corybosum), composed of 1,847 individuals was phenotyped for eight yield and fruit quality traits over two years. Continuous genotypic based models performed as well as the best models. This approach also reduces the computational time and avoids problems associated with misclassification of genotypic classes when assigning dosage in polyploid species. This approach could be very valuable for species with higher ploidy levels or for emerging crops where ploidy is not well understood. To our knowledge, this work constitutes the first study of genomic selection in blueberry. Accuracies are encouraging for application of GS for blueberry breeding. GS could reduce the time for cultivar release by three years, increasing the genetic gain per cycle by 86% on average when compared to phenotypic selection, and 32% when compared with pedigree-based selection. Finally, the genotypic and phenotypic data used in this study are made available for comparative analysis of dosage calling and genomic selection prediction models in the context of autopolyploids.
Collapse
|
29
|
Long YL, Qiao F, Jiang XF, Cong HQ, Sun ML, Xu ZJ. Screening and analysis on the differentially expression genes between diploid and autotetraploid watermelon by using of digital gene expression profile. BRAZ J BIOL 2019; 79:180-190. [DOI: 10.1590/1519-6984.174475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 12/27/2017] [Indexed: 11/22/2022] Open
Abstract
Abstract Synthetic polyploids are key breeding materials for watermelon. Compared with diploid watermelon, the tetraploid watermelon often exhibit wide phenotypic differences and differential gene expression. Digital gene expression (DGE) profile technique was performed in this study to present gene expression patterns in an autotetraploid and its progenitor diploid watermelon, and deferentially expressed genes (DEGs) related to the abiotic and biotic stress were also addressed. Altogether, 4,985 DEGs were obtained in the autotetraploid against its progenitor diploid, and 66.02% DEGs is up-regulated. GO analysis shows that these DEGs mainly distributed in ‘metabolic process’, ‘cell’ and ‘catalytic activity’. KEGG analysis revealed that these DEGs mainly cover ‘metabolic pathways’, ‘secondary metabolites’ and ‘ribosome’. Moreover, 134 tolerance related DEGs were identified which cover osmotic adjustment substance, protective enzymes/protein, signaling proteins and pathogenesis-related proteins. This study present the differential expression of stress related genes and global gene expression patterns at background level in autotetraploid watermelons. These new evidences could supplement the molecular theoretical basis for the better resistance after the genome doubling in the gourd family.
Collapse
Affiliation(s)
- Y. L. Long
- Hainan University, China; Chinese Academy of Tropical Agricultural Sciences, China
| | - F. Qiao
- Chinese Academy of Tropical Agricultural Sciences, China
| | | | - H. Q. Cong
- Chinese Academy of Tropical Agricultural Sciences, China
| | | | | |
Collapse
|
30
|
Matos I, Machado MP, Schartl M, Coelho MM. Allele-specific expression variation at different ploidy levels in Squalius alburnoides. Sci Rep 2019; 9:3688. [PMID: 30842567 PMCID: PMC6403402 DOI: 10.1038/s41598-019-40210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022] Open
Abstract
Allopolyploid plants are long known to be subject to a homoeolog expression bias of varying degree. The same phenomenon was only much later suspected to occur also in animals based on studies of single selected genes in an allopolyploid vertebrate, the Iberian fish Squalius alburnoides. Consequently, this species became a good model for understanding the evolution of gene expression regulation in polyploid vertebrates. Here, we analyzed for the first time genome-wide allele-specific expression data from diploid and triploid hybrids of S. alburnoides and compared homoeolog expression profiles of adult livers and of juveniles. Co-expression of alleles from both parental genomic types was observed for the majority of genes, but with marked homoeolog expression bias, suggesting homoeolog specific reshaping of expression level patterns in hybrids. Complete silencing of one allele was also observed irrespective of ploidy level, but not transcriptome wide as previously speculated. Instead, it was found only in a restricted number of genes, particularly ones with functions related to mitochondria and ribosomes. This leads us to hypothesize that allelic silencing may be a way to overcome intergenomic gene expression interaction conflicts, and that homoeolog expression bias may be an important mechanism in the achievement of sustainable genomic interactions, mandatory to the success of allopolyploid systems, as in S. alburnoides.
Collapse
Affiliation(s)
- Isa Matos
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal.,University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany
| | - Miguel P Machado
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal.,University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany.,Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manfred Schartl
- University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany. .,Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, 97074, Würzburg, Germany. .,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, USA.
| | - Maria Manuela Coelho
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
31
|
Bin Z, Qi P, Dongao H, Pan Z, Bowei C, Xianhong G, Zaiyun L. Transcriptional Aneuploidy Responses of Brassica rapa- oleracea Monosomic Alien Addition Lines (MAALs) Derived From Natural Allopolyploid B. napus. Front Genet 2019; 10:67. [PMID: 30815011 PMCID: PMC6381038 DOI: 10.3389/fgene.2019.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/28/2019] [Indexed: 01/21/2023] Open
Abstract
Establishing the whole set of aneuploids, for one naturally evolved allopolyploid species, provides a unique opportunity to elucidate the transcriptomic response of the constituent subgenomes to serial aneuploidy. Previously, the whole set of monosomic alien addition lines (MAALs, C1-C9) with each of the nine C subgenome chromosomes, added to the extracted A subgenome, was developed in the context of the allotetraploid Brassica napus donor “Oro,” after the restitution of the ancestral B. rapa (RBR Oro) was realized. Herein, transcriptomic analysis using high-throughput technology was conducted to detect gene expression alterations in these MAALs and RBR. Compared to diploid RBR, the genes of all of the MAALs showed various degrees of dysregulated expressions that resulted from cis effects and more prevailing trans effects. In addition, the trans-effect on gene expression in MAALs increased with higher levels of homology between the recipient A subgenome and additional C subgenome chromosomes, instead of gene numbers of extra chromosomes. A total of 10 trans-effect dysregulated genes, among all pairwise comparisons, were mainly involved in the function of transporter activity. Furthermore, highly expressed genes were more prone to downregulation and vice-versa, suggesting a common trend for transcriptional pattern responses to aneuploidy. These results provided a comprehensive insight of the impact of gene expression of individual chromosomes, in one subgenome, on another intact subgenome for one allopolyploid with a long evolutionary history.
Collapse
Affiliation(s)
- Zhu Bin
- School of Life Sciences, Guizhou Normal University, Guiyang, China.,National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pan Qi
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huo Dongao
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Zeng Pan
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cai Bowei
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ge Xianhong
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zaiyun
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Transcriptome-based gene expression profiling of diploid radish (Raphanus sativus L.) and the corresponding autotetraploid. Mol Biol Rep 2018; 46:933-945. [PMID: 30560406 DOI: 10.1007/s11033-018-4549-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Polyploidy is an important evolutionary factor in most land plant lineages which possess more than two complete sets of chromosomes. Radish (Raphanus sativus L.) is an economically annual/biennial root vegetable crop worldwide. However, the expression patterns of duplicated homologs involved in the autopolyploidization remains unclear. In present study, the autotetraploid radish plants (2n = 4x = 36) were produced with colchicine and exhibited an increase in the size of flowers, leaves, stomata and pollen grains. The differential gene expression (DGE) profiling was performed to investigate the differences in gene expression patterns between diploid and its corresponding autotetraploid by RNA-Sequencing (RNA-Seq). Totally, 483 up-regulated differentially expressed genes (DEGs) and 408 down-regulated DEGs were detected in diploid and autotetraploid radishes, which majorly involved in the pathways of hormones, photosynthesis and stress response. Moreover, the xyloglucan endotransglucosylase/hydrolase (XTH) and pectin methylesterases (PME) family members related to cell enlargement and cell wall construction were found to be enriched in GO enrichment analysis, of which XTH family members enriched in "apoplast" and "cell wall" terms, while PME family members enriched in "cell wall" term. Reverse-transcription quantitative PCR (RT-qPCR) analysis indicated that the expression profile of DEGs were consistent with results from the RNA-Seq analysis. The DEGs involved in cell wall construction and auxin metabolism were predicted to be associated with organs size increase of autotetraploid radishes in the present study. These results could provide valuable information for elucidating the molecular mechanism underlying polyploidization and facilitating further genetic improvements of important traits in radish breeding programs.
Collapse
|
33
|
Tran HT, Ramaraj T, Furtado A, Lee LS, Henry RJ. Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1756-1766. [PMID: 29509991 PMCID: PMC6131422 DOI: 10.1111/pbi.12912] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 05/21/2023]
Abstract
Arabica coffee (Coffea arabica) has a small gene pool limiting genetic improvement. Selection for caffeine content within this gene pool would be assisted by identification of the genes controlling this important trait. Sequencing of DNA bulks from 18 genotypes with extreme high- or low-caffeine content from a population of 232 genotypes was used to identify linked polymorphisms. To obtain a reference genome, a whole genome assembly of arabica coffee (variety K7) was achieved by sequencing using short read (Illumina) and long-read (PacBio) technology. Assembly was performed using a range of assembly tools resulting in 76 409 scaffolds with a scaffold N50 of 54 544 bp and a total scaffold length of 1448 Mb. Validation of the genome assembly using different tools showed high completeness of the genome. More than 99% of transcriptome sequences mapped to the C. arabica draft genome, and 89% of BUSCOs were present. The assembled genome annotated using AUGUSTUS yielded 99 829 gene models. Using the draft arabica genome as reference in mapping and variant calling allowed the detection of 1444 nonsynonymous single nucleotide polymorphisms (SNPs) associated with caffeine content. Based on Kyoto Encyclopaedia of Genes and Genomes pathway-based analysis, 65 caffeine-associated SNPs were discovered, among which 11 SNPs were associated with genes encoding enzymes involved in the conversion of substrates, which participate in the caffeine biosynthesis pathways. This analysis demonstrated the complex genetic control of this key trait in coffee.
Collapse
Affiliation(s)
- Hue T.M. Tran
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandSt LuciaQldAustralia
- Western Highlands Agriculture & Forestry Science Institute (WASI)Buon Ma ThuotVietnam
| | | | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandSt LuciaQldAustralia
| | - Leonard Slade Lee
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandSt LuciaQldAustralia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandSt LuciaQldAustralia
| |
Collapse
|
34
|
Van Drunen WE, Husband BC. Whole-genome duplication decreases clonal stolon production and genet size in the wild strawberry Fragaria vesca. AMERICAN JOURNAL OF BOTANY 2018; 105:1712-1724. [PMID: 30248174 DOI: 10.1002/ajb2.1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Clonal reproduction is often associated with polyploidy and is expected to influence polyploid establishment success, but the immediate effects of whole-genome duplication (WGD) on clonal reproduction in autopolyploids are unknown. METHODS We used synthesized neopolyploids to assess the direct effects of WGD on stolon and plantlet production in the wild strawberry Fragaria vesca by (1) comparing absolute clonal investment between diploids and neotetraploids under high and low resource conditions in the greenhouse and (2) determining realized clonal plantlet establishment and genet spatial structure using artificial field populations comprising both cytotypes. KEY RESULTS Neotetraploids produced fewer stolons and plantlets than diploids at slower weekly rates in the greenhouse when resources were high, resulting in lower total investment in clonal reproduction. Low resources led to smaller reductions in clonal biomass for neotetraploids and less pronounced differences between cytotypes. Comparisons between neotetraploids representing 13 independent WGD events and close diploid relatives revealed considerable variation in the response to polyploidization for some clonal traits. Field populations corroborated greenhouse results; neotetraploid genets were smaller than diploid genets, containing 28% fewer stolons and 46% fewer rooted plantlets. CONCLUSIONS WGD significantly decreases the clonal output of neotetraploid F. vesca, which is likely attributable to slower whole-plant growth of the neotetraploids than the diploids. In natural populations, smaller neotetraploid genets could decrease the probability of polyploid establishment in this species. However, variation between separate neopolyploid lines emphasizes that the response of clonal investment to WGD may not be uniform across polyploid origins.
Collapse
Affiliation(s)
- Wendy E Van Drunen
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
35
|
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “Polyploid Hop”: Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00117] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Picard MAL, Cosseau C, Ferré S, Quack T, Grevelding CG, Couté Y, Vicoso B. Evolution of gene dosage on the Z-chromosome of schistosome parasites. eLife 2018; 7:e35684. [PMID: 30044216 PMCID: PMC6089595 DOI: 10.7554/elife.35684] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/16/2018] [Indexed: 12/05/2022] Open
Abstract
XY systems usually show chromosome-wide compensation of X-linked genes, while in many ZW systems, compensation is restricted to a minority of dosage-sensitive genes. Why such differences arose is still unclear. Here, we combine comparative genomics, transcriptomics and proteomics to obtain a complete overview of the evolution of gene dosage on the Z-chromosome of Schistosoma parasites. We compare the Z-chromosome gene content of African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes and describe lineage-specific evolutionary strata. We use these to assess gene expression evolution following sex-linkage. The resulting patterns suggest a reduction in expression of Z-linked genes in females, combined with upregulation of the Z in both sexes, in line with the first step of Ohno's classic model of dosage compensation evolution. Quantitative proteomics suggest that post-transcriptional mechanisms do not play a major role in balancing the expression of Z-linked genes.
Collapse
Affiliation(s)
| | - Celine Cosseau
- University of Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University MontpellierPerpignanFrance
| | - Sabrina Ferré
- Université Grenoble Alpes, CEA, Inserm, BIG-BGEGrenobleFrance
| | - Thomas Quack
- Institute for Parasitology, Biomedical Research Center SeltersbergJustus-Liebig-UniversityGiessenGermany
| | - Christoph G Grevelding
- Institute for Parasitology, Biomedical Research Center SeltersbergJustus-Liebig-UniversityGiessenGermany
| | - Yohann Couté
- Université Grenoble Alpes, CEA, Inserm, BIG-BGEGrenobleFrance
| | - Beatriz Vicoso
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
37
|
Ferrão LFV, Benevenuto J, Oliveira IDB, Cellon C, Olmstead J, Kirst M, Resende MFR, Munoz P. Insights Into the Genetic Basis of Blueberry Fruit-Related Traits Using Diploid and Polyploid Models in a GWAS Context. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Van Drunen WE, Husband BC. Immediate vs. evolutionary consequences of polyploidy on clonal reproduction in an autopolyploid plant. ANNALS OF BOTANY 2018; 122:195-205. [PMID: 29726889 PMCID: PMC6025202 DOI: 10.1093/aob/mcy071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/19/2018] [Indexed: 05/23/2023]
Abstract
Background and Aims Clonal reproduction in polyploids is expected to exceed that in diploids, due to either the immediate direct effects of whole-genome duplication (WGD) or selection during establishment. The timing of polyploidy effects on clonality are largely unknown despite its hypothesized influence on polyploid success. This study tests the direction and timing of divergence in clonal traits in diploid and polyploid Chamerion angustifolium. Methods Root bud production and biomass allocation patterns were compared between diploids and synthesized tetraploids (neotetraploids), and between neotetraploids and naturally occurring tetraploids grown in a common environment. Key Results Neotetraploids produced more root buds and fewer sexual structures than diploids and natural tetraploids; diploids and natural tetraploids had similar root bud numbers and sexual investment. The root bud:inflorescence biomass ratio was 71 % higher in neotetraploids than in natural tetraploids. Root bud location suggests that ramet density in neotetraploid genets could be higher than in diploid genets. Conclusions WGD immediately increases investment in asexual vs. sexual reproduction in C. angustifolium, potentially promoting within-cytotype mating and establishment for neopolyploids. However, evolutionary change after the polyploidization event negates the direct effects of WGD. Natural polyploids and diploids have similar root bud production and biomass allocation patterns, probably resulting from habitat- and ploidy-mediated selection on polyploids to become more like diploids. These results highlight the value of studying the effects of polyploidization in young vs. established polyploids.
Collapse
Affiliation(s)
- Wendy E Van Drunen
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
39
|
Hallahan BF, Fernandez-Tendero E, Fort A, Ryder P, Dupouy G, Deletre M, Curley E, Brychkova G, Schulz B, Spillane C. Hybridity has a greater effect than paternal genome dosage on heterosis in sugar beet (Beta vulgaris). BMC PLANT BIOLOGY 2018; 18:120. [PMID: 29907096 PMCID: PMC6003118 DOI: 10.1186/s12870-018-1338-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/31/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND The phenomenon of heterosis is critical to plant breeding and agricultural productivity. Heterosis occurs when F1 hybrid offspring display quantitative improvements in traits to levels that do not occur in the parents. Increasing the genome dosage (i.e. ploidy level) of F1 offspring can contribute to heterosis effects. Sugar beet (Beta vulgaris) provides a model for investigating the relative effects of genetic hybridity and genome dosage on heterosis. Sugar beet lines of different ploidy levels were crossed to generate diploid and triploid F1 offspring to investigate the effect of; (1) paternal genome dosage increase on F1 heterosis, and; (2) homozygous versus heterozygous tetraploid male parents on F1 triploid heterosis. A range of traits of agronomic and commercial importance were analyzed for the extent of heterosis effects observed in the F1 offspring. RESULTS Comparisons of parental lines to diploid (EA, EB) and triploid (EAA, EBB) F1 hybrids for total yield, root yield, and sugar yield indicated that there was no effect of paternal genome dosage increases on heterosis levels, indicating that hybridity is the main contributor to the heterosis levels observed. For all traits measured (apart from seed viability), F1 triploid hybrids derived from heterozygous tetraploid male parents displayed equivalent levels of heterosis as F1 triploid hybrids generated with homozygous tetraploid male parents, suggesting that heterosis gains in F1 triploids do not arise by simply increasing the extent of multi-locus heterozygosity in sugar beet F1 offspring. CONCLUSIONS Overall, our study indicates that; (1) increasing the paternal genome dosage does not enhance heterosis in F1 hybrids, and; (2) increasing multi-locus heterozygosity using highly heterozygous paternal genomes to generate F1 triploid hybrids does not enhance heterosis. Our findings have implications for the design of future F1 hybrid improvement programs for sugar beet.
Collapse
Affiliation(s)
- Brendan F. Hallahan
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Eva Fernandez-Tendero
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Antoine Fort
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Peter Ryder
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Gilles Dupouy
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Marc Deletre
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Edna Curley
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Galina Brychkova
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | | | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| |
Collapse
|
40
|
Nicolas-Francès V, Grandperret V, Liegard B, Jeandroz S, Vasselon D, Aimé S, Klinguer A, Lamotte O, Julio E, de Borne FD, Wendehenne D, Bourque S. Evolutionary diversification of type-2 HDAC structure, function and regulation in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:66-74. [PMID: 29606218 DOI: 10.1016/j.plantsci.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Type-2 HDACs (HD2s) are plant-specific histone deacetylases that play diverse roles during development and in responses to biotic and abiotic stresses. In this study we characterized the six tobacco genes encoding HD2s that mainly differ by the presence or the absence of a typical zinc finger in their C-terminal part. Of particular interest, these HD2 genes exhibit a highly conserved intron/exon structure. We then further investigated the phylogenetic relationships among the HD2 gene family, and proposed a model of the genetic events that led to the organization of the HD2 family in Solanaceae. Absolute quantification of HD2 mRNAs in N. tabacum and in its precursors, N. tomentosiformis and N. sylvestris, did not reveal any pseudogenization of any of the HD2 genes, but rather specific regulation of HD2 expression in these three species. Functional complementation approaches in Arabidopsis thaliana demonstrated that the four zinc finger-containing HD2 proteins exhibit the same biological function in response to salt stress, whereas the two HD2 proteins without zinc finger have different biological function.
Collapse
Affiliation(s)
- Valérie Nicolas-Francès
- Université de Bourgogne-Franche Comté, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France.
| | - Vincent Grandperret
- Université de Bourgogne-Franche Comté, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France.
| | - Benjamin Liegard
- Université de Bourgogne-Franche Comté, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France.
| | - Sylvain Jeandroz
- Université de Bourgogne-Franche Comté, UMR 1347 Agroécologie, AgroSup Dijon, BP 86510, F-21000, Dijon, France.
| | - Damien Vasselon
- Université de Bourgogne-Franche Comté, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France.
| | - Sébastien Aimé
- INRA, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France.
| | - Agnès Klinguer
- INRA, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France.
| | - Olivier Lamotte
- ERL CNRS 6300, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France.
| | - Emilie Julio
- Institut du Tabac, Domaine de la Tour, LBCM, 24100, Bergerac, France.
| | | | - David Wendehenne
- Université de Bourgogne-Franche Comté, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France.
| | - Stéphane Bourque
- Université de Bourgogne-Franche Comté, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France.
| |
Collapse
|
41
|
Wang T, Huang D, Chen B, Mao N, Qiao Y, Ji M. Differential expression of photosynthesis-related genes in pentaploid interspecific hybrid and its decaploid of Fragaria spp. Genes Genomics 2018; 40:321-331. [DOI: 10.1007/s13258-018-0647-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022]
|
42
|
Lloyd A, Blary A, Charif D, Charpentier C, Tran J, Balzergue S, Delannoy E, Rigaill G, Jenczewski E. Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. THE NEW PHYTOLOGIST 2018; 217:367-377. [PMID: 29034956 DOI: 10.1111/nph.14836] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 08/02/2017] [Indexed: 05/22/2023]
Abstract
Structural variation is a major source of genetic diversity and an important substrate for selection. In allopolyploids, homoeologous exchanges (i.e. between the constituent subgenomes) are a very frequent type of structural variant. However, their direct impact on gene content and gene expression had not been determined. Here, we used a tissue-specific mRNA-Seq dataset to measure the consequences of homoeologous exchanges (HE) on gene expression in Brassica napus, a representative allotetraploid crop. We demonstrate that expression changes are proportional to the change in gene copy number triggered by the HEs. Thus, when homoeologous gene pairs have unbalanced transcriptional contributions before the HE, duplication of one copy does not accurately compensate for loss of the other and combined homoeologue expression also changes. These effects are, however, mitigated over time. This study sheds light on the origins, timing and functional consequences of homeologous exchanges in allopolyploids. It demonstrates that the interplay between new structural variation and the resulting impacts on gene expression, influences allopolyploid genome evolution.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Aurélien Blary
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Joseph Tran
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, Beaucouzé cedex, 49071, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, Évry Cedex, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| |
Collapse
|
43
|
Zhang A, Li N, Gong L, Gou X, Wang B, Deng X, Li C, Dong Q, Zhang H, Liu B. Global Analysis of Gene Expression in Response to Whole-Chromosome Aneuploidy in Hexaploid Wheat. PLANT PHYSIOLOGY 2017; 175:828-847. [PMID: 28821592 PMCID: PMC5619904 DOI: 10.1104/pp.17.00819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/14/2017] [Indexed: 05/25/2023]
Abstract
Aneuploidy, a condition of unbalanced chromosome content, represents a large-effect mutation that bears significant relevance to human health and microbe adaptation. As such, extensive studies of aneuploidy have been conducted in unicellular model organisms and cancer cells. Aneuploidy also frequently is associated with plant polyploidization, but its impact on gene expression and its relevance to polyploid genome evolution/functional innovation remain largely unknown. Here, we used a panel of diverse types of whole-chromosome aneuploidy of hexaploid wheat (Triticum aestivum), all under the common genetic background of cv Chinese Spring, to systemically investigate the impact of aneuploidy on genome-, subgenome-, and chromosome-wide gene expression. Compared with prior findings in haploid or diploid aneuploid systems, we unravel additional and novel features of alteration in global gene expression resulting from the two major impacts of aneuploidy, cis- and trans-regulation, as well as dosage compensation. We show that the expression-altered genes map evenly along each chromosome, with no evidence for coregulating aggregated expression domains. However, chromosomes and subgenomes in hexaploid wheat are unequal in their responses to aneuploidy with respect to the number of genes being dysregulated. Strikingly, homeologous chromosomes do not differ from nonhomologous chromosomes in terms of aneuploidy-induced trans-acting effects, suggesting that the three constituent subgenomes of hexaploid wheat are largely uncoupled at the transcriptional level of gene regulation. Together, our findings shed new insights into the functional interplay between homeologous chromosomes and interactions between subgenomes in hexaploid wheat, which bear implications to further our understanding of allopolyploid genome evolution and efforts in breeding new allopolyploid crops.
Collapse
Affiliation(s)
- Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xin Deng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
44
|
Qiao G, Liu M, Song K, Li H, Yang H, Yin Y, Zhuo R. Phenotypic and Comparative Transcriptome Analysis of Different Ploidy Plants in Dendrocalamus latiflorus Munro. FRONTIERS IN PLANT SCIENCE 2017; 8:1371. [PMID: 28848575 PMCID: PMC5550759 DOI: 10.3389/fpls.2017.01371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/24/2017] [Indexed: 05/17/2023]
Abstract
Elucidating the differences in gene expression profiles of plants with different ploidy levels and how they affect phenotypic traits is vital to allow genetic improvement of plants such as Ma bamboo (Dendrocalamus latiflorus Munro). We previously obtained triploid (2n = 3X = 36), hexaploid (2n = 6X = 72), and dodecaploid (2n = 12X = 144) Ma bamboo plants from embryogenic callus by anther culturing. Phenotypic differences between these plants appeared to be correlated with differences in ploidy. Here, we performed transcriptome profiling and sequencing of anther-regenerated plants and F1 seedlings of different ploidy levels using RNA-Seq technology. Pair-wise comparisons of the four resulting libraries revealed 8,396 differentially expressed genes. These differentially expressed genes were annotated, functionally classified, and partially validated. We found that the chromosome doubling led to substantially up- or down-regulation of genes that were involved in cell growth and differentiation; the polyploidy levels altered the anatomical, physiological and growth characteristics, such as leaf thickness, fusoid cell and stomatal size, shoot number, photosynthesis and respiration rate and so on. Additionally, two candidate genes, EXPB3 and TCP with potenitial regulatory roles in cell division and differentiation, were identified through gene coexpresseion network analysis. These results highlight the significance of potential applications of polyploidy, and provide valuable information for the genetic breeding of bamboo species.
Collapse
Affiliation(s)
- Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, Zhejiang, China
| | - Kunlin Song
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of ForestryBeijing, China
| | - Haiying Li
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, Zhejiang, China
| | - Huiqin Yang
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, Zhejiang, China
| | - Yafang Yin
- Wood Anatomy and Utilization Department, Research Institute of Wood Industry, Chinese Academy of ForestryBeijing, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, Zhejiang, China
| |
Collapse
|
45
|
Harvey AC, Fjelldal PG, Solberg MF, Hansen T, Glover KA. Ploidy elicits a whole-genome dosage effect: growth of triploid Atlantic salmon is linked to the genetic origin of the second maternal chromosome set. BMC Genet 2017; 18:34. [PMID: 28399816 PMCID: PMC5387229 DOI: 10.1186/s12863-017-0502-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Background The Atlantic salmon aquaculture industry is investigating the feasibility of using sterile triploids to mitigate genetic interactions with wild conspecifics, however, studies investigating diploid and triploid performance often show contrasting results. Studies have identified dosage and dosage-compensation effects for gene expression between triploid and diploid salmonids, but no study has investigated how ploidy and parent-origin effects interact on a polygenic trait in divergent lines of Atlantic salmon (i.e. slow growing wild versus fast growing domesticated phenotype). This study utilised two experiments relating to the freshwater growth of diploid and triploid groups of pure wild (0% domesticated genome), pure domesticated (100% domesticated genome), and F1 reciprocal hybrid (33%, 50% or 66% domesticated genome) salmon where triploidy was either artificially induced (experiment 1) or naturally developed/spontaneous (experiment 2). Results In both experiments, reciprocal hybrid growth was influenced by the dosage effect of the second maternal chromosome, with growth increasing as ploidy level increased in individuals with a domesticated dam (from 50% to 66% domesticated genome), and the inverse in individuals with a wild dam (from 50% to 33% domesticated genome). Conclusions We demonstrate that the combined effect of ploidy and parent-origin on growth, a polygenic trait, is regulated in an additive pattern. Therefore, in order to maximise growth potential, the aquaculture industry should consider placing more emphasis on the breeding value of the dam than the sire when producing triploid families for commercial production. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0502-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A C Harvey
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | - P G Fjelldal
- Institute of Marine Research (IMR), Matre Research Station, NO-5984, Matredal, Norway
| | - M F Solberg
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - T Hansen
- Institute of Marine Research (IMR), Matre Research Station, NO-5984, Matredal, Norway
| | - K A Glover
- Institute of Marine Research, P. O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Department of Biology, University of Bergen, P. O. Box 7803, N-5020, Bergen, Norway
| |
Collapse
|
46
|
Tang Q, Zang G, Cheng C, Luan M, Dai Z, Xu Y, Yang Z, Zhao L, Su J. Diplosporous development in Boehmeria tricuspis: Insights from de novo transcriptome assembly and comprehensive expression profiling. Sci Rep 2017; 7:46043. [PMID: 28382950 PMCID: PMC5382578 DOI: 10.1038/srep46043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 01/05/2023] Open
Abstract
Boehmeria tricuspis includes sexually reproducing diploid and apomictic triploid individuals. Previously, we established that triploid B. tricuspis reproduces through obligate diplospory. To understand the molecular basis of apomictic development in B. tricuspis, we sequenced and compared transcriptomic profiles of the flowers of sexual and apomictic plants at four key developmental stages. A total of 283,341 unique transcripts were obtained from 1,463 million high-quality paired-end reads. In total, 18,899 unigenes were differentially expressed between the reproductive types at the four stages. By classifying the transcripts into gene ontology categories of differentially expressed genes, we showed that differential plant hormone signal transduction, cell cycle regulation, and transcription factor regulation are possibly involved in apomictic development and/or a polyploidization response in B. tricuspis. Furthermore, we suggest that specific gene families are possibly related to apomixis and might have important effects on diplosporous floral development. These results make a notable contribution to our understanding of the molecular basis of diplosporous development in B. tricuspis.
Collapse
Affiliation(s)
- Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Gonggu Zang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Lining Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| |
Collapse
|
47
|
Ali SS, Shao J, Lary DJ, Kronmiller BA, Shen D, Strem MD, Amoako-Attah I, Akrofi AY, Begoude BD, ten Hoopen GM, Coulibaly K, Kebe BI, Melnick RL, Guiltinan MJ, Tyler BM, Meinhardt LW, Bailey BA. Phytophthora megakarya and P. palmivora, closely related causal agents of cacao black pod rot, underwent increases in genome sizes and gene numbers by different mechanisms. Genome Biol Evol 2017; 9:2982378. [PMID: 28186564 PMCID: PMC5381587 DOI: 10.1093/gbe/evx021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/21/2016] [Accepted: 02/04/2017] [Indexed: 12/13/2022] Open
Abstract
Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) are closely related species causing cacao black pod rot. Although Ppal is a cosmopolitan pathogen, cacao is the only known host of economic importance for Pmeg. Pmeg is more virulent on cacao than Ppal. We sequenced and compared the Pmeg and Ppal genomes and identified virulence-related putative gene models (PGeneM) that may be responsible for their differences in host specificities and virulence. Pmeg and Ppal have estimated genome sizes of 126.88 and 151.23 Mb and PGeneM numbers of 42,036 and 44,327, respectively. The evolutionary histories of Pmeg and Ppal appear quite different. Postspeciation, Ppal underwent whole-genome duplication whereas Pmeg has undergone selective increases in PGeneM numbers, likely through accelerated transposable element-driven duplications. Many PGeneMs in both species failed to match transcripts and may represent pseudogenes or cryptic genetic reservoirs. Pmeg appears to have amplified specific gene families, some of which are virulence-related. Analysis of mycelium, zoospore, and in planta transcriptome expression profiles using neural network self-organizing map analysis generated 24 multivariate and nonlinear self-organizing map classes. Many members of the RxLR, necrosis-inducing phytophthora protein, and pectinase genes families were specifically induced in planta . Pmeg displays a diverse virulence-related gene complement similar in size to and potentially of greater diversity than Ppal but it remains likely that the specific functions of the genes determine each species’ unique characteristics as pathogens.
Collapse
Affiliation(s)
- Shahin S. Ali
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | - Jonathan Shao
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | | | | | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, China
| | - Mary D. Strem
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | | | | | - B.A. Didier Begoude
- Regional Laboratory for Biological and Applied Microbiology (IRAD), Yaoundé, Cameroon
| | - G. Martijn ten Hoopen
- Regional Laboratory for Biological and Applied Microbiology (IRAD), Yaoundé, Cameroon
- CIRAD, UPR 106 Bioagresseurs, Montpellier, France
| | | | | | - Rachel L. Melnick
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | | | - Brett M. Tyler
- Center for Genome Research and Biocomputing, Oregon State University
- Department of Botany and Plant Pathology, Oregon State University
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | - Bryan A. Bailey
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| |
Collapse
|
48
|
Ma W, Gabriel TS, Martis MM, Gursinsky T, Schubert V, Vrána J, Doležel J, Grundlach H, Altschmied L, Scholz U, Himmelbach A, Behrens SE, Banaei-Moghaddam AM, Houben A. Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. THE NEW PHYTOLOGIST 2017; 213:916-928. [PMID: 27468091 DOI: 10.1111/nph.14110] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/18/2016] [Indexed: 05/21/2023]
Abstract
B chromosomes (Bs) are supernumerary, dispensable parts of the nuclear genome, which appear in many different species of eukaryote. So far, Bs have been considered to be genetically inert elements without any functional genes. Our comparative transcriptome analysis and the detection of active RNA polymerase II (RNAPII) in the proximity of B chromatin demonstrate that the Bs of rye (Secale cereale) contribute to the transcriptome. In total, 1954 and 1218 B-derived transcripts with an open reading frame were expressed in generative and vegetative tissues, respectively. In addition to B-derived transposable element transcripts, a high percentage of short transcripts without detectable similarity to known proteins and gene fragments from A chromosomes (As) were found, suggesting an ongoing gene erosion process. In vitro analysis of the A- and B-encoded AGO4B protein variants demonstrated that both possess RNA slicer activity. These data demonstrate unambiguously the presence of a functional AGO4B gene on Bs and that these Bs carry both functional protein coding genes and pseudogene copies. Thus, B-encoded genes may provide an additional level of gene control and complexity in combination with their related A-located genes. Hence, physiological effects, associated with the presence of Bs, may partly be explained by the activity of B-located (pseudo)genes.
Collapse
Affiliation(s)
- Wei Ma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Tobias Sebastian Gabriel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Mihaela Maria Martis
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- National Bioinformatics Infrastructure Sweden, Department of Clinical and Experimental Medicine, Linköping University, SE-558185, Linköping, Sweden
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Faculty of Life Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Heidrun Grundlach
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Faculty of Life Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Ali Mohammad Banaei-Moghaddam
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, PO Box 13145-1384, Tehran, Iran
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| |
Collapse
|
49
|
Coate JE, Song MJ, Bombarely A, Doyle JJ. Expression-level support for gene dosage sensitivity in three Glycine subgenus Glycine polyploids and their diploid progenitors. THE NEW PHYTOLOGIST 2016; 212:1083-1093. [PMID: 27418296 DOI: 10.1111/nph.14090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/02/2016] [Indexed: 05/25/2023]
Abstract
Retention or loss of paralogs following duplication correlates strongly with the function of the gene and whether the gene was duplicated by whole-genome duplication (WGD) or by small-scale duplication. Selection on relative gene dosage (to maintain proper stoichiometry among interacting proteins) has been invoked to explain these patterns of duplicate gene retention and loss. In order for gene dosage to be visible to natural selection, there must necessarily be a correlation between gene copy number and gene expression level (transcript abundance), but this has rarely been examined. We used RNA-Seq data from seven Glycine subgenus Glycine species (three recently formed allotetraploids and their four diploid progenitors) to determine if expression patterns and gene dosage responses at the level of transcription are consistent with selection on relative gene dosage. As predicted, metabolic pathways and gene ontologies that are putatively dosage-sensitive based on duplication history exhibited reduced expression variance across species, and more coordinated expression responses to recent WGD, relative to putatively dosage-insensitive networks. We conclude that selection on relative dosage has played an important role in shaping gene networks in Glycine.
Collapse
Affiliation(s)
- Jeremy E Coate
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Michael J Song
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | | | - Jeff J Doyle
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
50
|
Tan C, Pan Q, Cui C, Xiang Y, Ge X, Li Z. Genome-Wide Gene/Genome Dosage Imbalance Regulates Gene Expressions in Synthetic Brassica napus and Derivatives (AC, AAC, CCA, CCAA). FRONTIERS IN PLANT SCIENCE 2016; 7:1432. [PMID: 27721820 PMCID: PMC5033974 DOI: 10.3389/fpls.2016.01432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/08/2016] [Indexed: 05/29/2023]
Abstract
Gene/genome dosage balance is an essential evolutionary mechanism for organisms to ensure a normal function, but the underlying causes of dosage-imbalance regulation remain poorly understood. Herein, the serial Brassica hybrids/polyploids (AC, AAC, CCA, CCAA) with different copies of A and C subgenomes from the same two parents of Brassica rapa and Brassica oleracea were synthesized to investigate the effects of genome dosages on gene expressions and interactions by using RNA-Seq. The expression changes of A- and C-subgenome genes were consistent with dosage alterations. Dosage-dependent and -independent genes were grouped according to the correlations between dosage variations and gene expressions. Expression levels of dosage-dependent genes were strongly correlated with dosage changes and mainly contributed to dosage effects, while those of dosage-independent genes gave weak correlations with dosage variations and mostly facilitated dosage compensation. More protein-protein interactions were detected for dosage-independent genes than dosage-dependent ones, as predicted by the dosage balance hypothesis. Dosage-dependent genes more likely impacted the expressions by trans effects, whereas dosage-independent genes preferred to play by cis effects. Furthermore, dosage-dependent genes were mainly associated with the basic biological processes to maintain the stability of the growth and development, while dosage-independent genes were more enriched in the stress response related processes to accelerate adaptation. The present comprehensive analysis of gene expression dependent/independent on dosage alterations in Brassica polyploids provided new insights into gene/genome dosage-imbalance regulation of gene expressions.
Collapse
Affiliation(s)
- Chen Tan
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Qi Pan
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Yi Xiang
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|