1
|
Sampath K, Shilu Z, Yan H, Tripathi YK, Ramachandran S. Assessment of interspecies and intergeneric gene flow for the GM Jatropha curcas event X8#34 with high oleic acid content in seed. GM CROPS & FOOD 2025; 16:235-251. [PMID: 40042895 PMCID: PMC11901391 DOI: 10.1080/21645698.2025.2470484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
GM Jatropha X8#34 was placed for transgene flow assessment in the open field trial on Semakau Island, Singapore, between 2015 and 2017 to evaluate the potential gene flow to its non-GM counterparts and related species. The trial featured the GM Jatropha event X8#34, which is characterized by high oleic acid content, marker-free, and a homozygous transgene. The study focused on cross-pollination from the GM event to non-GM plants, analyzing factors such as distance, wind and insects mediated transfer, using event-specific multiplex PCR analysis of F1 seeds. Pollen dispersal by wind was also assessed to understand the extent of distance traveled and pollen load. Our results showed the maximum observed transgene flow was 4.5%, occurring in non-GM plants located 2 meters in third quarter of 2016, average for four quarters is 2.57%. However, as the distance increased, the transgene flow decreased significantly, at 4 meters distance observed 0.8% in fourth quarter and an average 0.25%. Transgene flow was not observed beyond 4 meters. These results are consistent with the exponential decrease in Jatropha pollen dispersed and captured by traps over distance, with no pollen detected beyond 6 meters through wind dispersal. Furthermore, no intrageneric transgene flow was detected from GM Jatropha to Jatropha integerrima, nor intergeneric transgene flow to related weedy species such as Euphorbia hirta, Phyllanthus niruri, or Ricinus communis (Castor bean), under open-field conditions (2015-2017). The findings suggest that Jatropha pollination is primarily facilitated by short-distance foraging insects, or overlapping branches between adjacent trees enhances cross-pollination rate due to denser floral display, and attracts more pollinators. An adequate separation distance (>8 meters) is sufficient to prevent unintended transgene flow from GM Jatropha to non-GM Jatropha in Singapore ecological conditions. Additionally, transgene flow between GM Jatropha and related horticultural shrub (Jatropha integerrima) or intergeneric relatives like E. hirta, P. niruri, and castor bean is unlikely under open field conditions.
Collapse
Affiliation(s)
- Kasthurirengan Sampath
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
| | - Zhang Shilu
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
| | - Hong Yan
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yogendra Kr. Tripathi
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
| | - Srinivasan Ramachandran
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
| |
Collapse
|
2
|
Neelam K, Aggarwal SK, Kumari S, Kumar K, Kaur A, Babbar A, Lore JS, Kaur R, Khanna R, Vikal Y, Singh K. Molecular Mapping and Transfer of Quantitative Trait Loci (QTL) for Sheath Blight Resistance from Wild Rice Oryza nivara to Cultivated Rice ( Oryza sativa L.). Genes (Basel) 2024; 15:919. [PMID: 39062698 PMCID: PMC11275441 DOI: 10.3390/genes15070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Sheath blight (ShB) is the most serious disease of rice (Oryza sativa L.), caused by the soil-borne fungus Rhizoctonia solani Kühn (R. solani). It poses a significant threat to global rice productivity, resulting in approximately 50% annual yield loss. Managing ShB is particularly challenging due to the broad host range of the pathogen, its necrotrophic nature, the emergence of new races, and the limited availability of highly resistant germplasm. In this study, we conducted QTL mapping using an F2 population derived from a cross between a partially resistant accession (IRGC81941A) of Oryza nivara and the susceptible rice cultivar Punjab rice 121 (PR121). Our analysis identified 29 QTLs for ShB resistance, collectively explaining a phenotypic variance ranging from 4.70 to 48.05%. Notably, a cluster of four QTLs (qRLH1.1, qRLH1.2, qRLH1.5, and qRLH1.8) on chromosome 1 consistently exhibit a resistant response against R. solani. These QTLs span from 0.096 to 420.1 Kb on the rice reference genome and contain several important genes, including Ser/Thr protein kinase, auxin-responsive protein, protease inhibitor/seed storage/LTP family protein, MLO domain-containing protein, disease-responsive protein, thaumatin-like protein, Avr9/Cf9-eliciting protein, and various transcription factors. Additionally, simple sequence repeats (SSR) markers RM212 and RM246 linked to these QTLs effectively distinguish resistant and susceptible rice cultivars, showing great promise for marker-assisted selection programs. Furthermore, our study identified pre-breeding lines in the advanced backcrossed population that exhibited superior agronomic traits and sheath blight resistance compared to the recurrent parent. These promising lines hold significant potential for enhancing the sheath blight resistance in elite cultivars through targeted improvement efforts.
Collapse
Affiliation(s)
- Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Sumit Kumar Aggarwal
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana 141004, India
- ICAR—Indian Institute of Maize Research, PAU Campus, Ludhiana 141004, India
| | - Saundarya Kumari
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Kishor Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
- Division of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata 700103, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Ankita Babbar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Jagjeet Singh Lore
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Rupinder Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Renu Khanna
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| |
Collapse
|
3
|
He H, Shiragaki K, Tezuka T. Understanding and overcoming hybrid lethality in seed and seedling stages as barriers to hybridization and gene flow. FRONTIERS IN PLANT SCIENCE 2023; 14:1219417. [PMID: 37476165 PMCID: PMC10354522 DOI: 10.3389/fpls.2023.1219417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hybrid lethality is a type of reproductive isolation barrier observed in two developmental stages, hybrid embryos (hybrid seeds) and hybrid seedlings. Hybrid lethality has been reported in many plant species and limits distant hybridization breeding including interspecific and intergeneric hybridization, which increases genetic diversity and contributes to produce new germplasm for agricultural purposes. Recent studies have provided molecular and genetic evidence suggesting that underlying causes of hybrid lethality involve epistatic interaction of one or more loci, as hypothesized by the Bateson-Dobzhansky-Muller model, and effective ploidy or endosperm balance number. In this review, we focus on the similarities and differences between hybrid seed lethality and hybrid seedling lethality, as well as methods of recovering seed/seedling activity to circumvent hybrid lethality. Current knowledge summarized in our article will provides new insights into the mechanisms of hybrid lethality and effective methods for circumventing hybrid lethality.
Collapse
Affiliation(s)
- Hai He
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Kumpei Shiragaki
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takahiro Tezuka
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
4
|
Zhang F, Zhang C, Zhao X, Zhu S, Chen K, Zhou G, Wu Z, Li M, Zheng T, Wang W, Yan Z, Fei Q, Li Z, Chen J, Xu J. Genomic Architecture of Yield Performance of an Elite Rice Hybrid Revealed by its Derived Recombinant Inbred Line and Their Backcross Hybrid Populations. RICE (NEW YORK, N.Y.) 2022; 15:49. [PMID: 36181551 PMCID: PMC9526777 DOI: 10.1186/s12284-022-00595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Since its development and wide adoption in China, hybrid rice has reached the yield plateau for more than three decades. To understand the genetic basis of heterosis in rice and accelerate hybrid rice breeding, the yield performances of the elite rice hybrid, Quan-you-si-miao (QYSM) were genetically dissected by whole-genome sequencing, large-scale phenotyping of 1061 recombined inbred lines (RILs) and 1061 backcross F1 (BCF1) hybrids derived from QYSM's parents across three environments and gene-based analyses. RESULTS Genome-wide scanning of 13,847 segregating genes between the parents and linkage mapping based on 855 bins across the rice genome and phenotyping experiments across three environments resulted in identification of large numbers of genes, 639 main-effect QTLs (M-QTLs) and 2736 epistatic QTLs with significant additive or heterotic effects on the trait performances of the combined population consisting of RILs and BCF1 hybrids, most of which were environment-specific. The 324 M-QTLs affecting yield components included 32.7% additive QTLs, 38.0% over-dominant or dominant ones with strong and positive effects and 29.3% under-dominant or incomplete recessive ones with significant negative heterotic effects. 63.6% of 1403 genes with allelic introgression from subspecies japonica/Geng in the parents of QYSM may have contributed significantly to the enhanced yield performance of QYSM. CONCLUSIONS The parents of QYSM and related rice hybrids in China carry disproportionally more additive and under-dominant genes/QTLs affecting yield traits. Further focus in indica/Xian rice breeding should shift back to improving inbred varieties, while breaking yield ceiling of Xian hybrids can be achieved by one or combinations of the three strategies: (1) by pyramiding favorable alleles of additive genes, (2) by eliminating or minimizing under-dominant loci, and (3) by pyramiding overdominant/dominant genes polymorphic, particularly those underlying inter-subspecific heterosis.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Conghe Zhang
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuangbing Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Guixiang Zhou
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Zhichao Wu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhi Yan
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Qinyong Fei
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China.
| | - Jinjie Chen
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China.
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China.
| |
Collapse
|
5
|
Nagasawa K, Setoguchi H, Maki M, Sawa K, Horie K, Sakaguchi S. Species cohesion of an extremophyte (Carex angustisquama, Cyperaceae) in solfatara fields maintained under interspecific natural hybridization. ANNALS OF BOTANY 2021; 128:343-356. [PMID: 34104952 PMCID: PMC8389175 DOI: 10.1093/aob/mcab069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/30/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Hybridization is the main driver of plant diversification, and gene flow via hybridization has multifaceted effects on plant evolution. Carex angustisquama is an extremophyte that grows on soils heavily acidified by volcanism. Despite its habitat distinct from that of other species, this species is known to form interspecific hybrids, implying interspecific gene flow. It is crucial to verify the extent and direction of interspecific gene flow between C. angustisquama and closely related species to understand the evolutionary process of an extremophyte in solfatara fields. METHODS In this study, expressed sequence tag-simple sequence repeat markers were utilized to infer the extent and direction of interspecific gene flow between C. angustisquama and closely related species. KEY RESULTS Bayesian clustering and simulation analyses revealed that all individuals of the three hybrid species were classified into the first hybrid generation or first backcross to C. angustisquama; therefore, current interspecific gene flow is limited. Moreover, in the Bayesian inference of historical gene flow based on multispecies samples, the model that assumed no interspecific gene flow was the most strongly supported across all species pairs, including phylogenetically close but ecologically distinctive species pairs. CONCLUSIONS Our results revealed that interspecific gene flow between C. angustisquama and its related species has been limited both currently and historically. Moreover, our results of Bayesian inference of historical gene flow indicated that extrinsic, rather than intrinsic, factors probably act as isolating barriers between Carex species, with hybrid breakdown via microhabitat segregation being the probable potential barrier. Overall, our findings provide insights into the evolutionary process of an extremophyte in solfatara fields and offer an important example of the mechanisms of diversification of the speciose genus Carex.
Collapse
Affiliation(s)
- Koki Nagasawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Masayuki Maki
- Botanical Gardens, Tohoku University, Kawauchi, Sendai, Japan
| | | | - Kenji Horie
- Asahikawa City Northern Wild Plants Garden, Asahikawa, Japan
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
6
|
Zhang F, Wang C, Li M, Cui Y, Shi Y, Wu Z, Hu Z, Wang W, Xu J, Li Z. The landscape of gene-CDS-haplotype diversity in rice: Properties, population organization, footprints of domestication and breeding, and implications for genetic improvement. MOLECULAR PLANT 2021; 14:787-804. [PMID: 33578043 DOI: 10.1016/j.molp.2021.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 05/27/2023]
Abstract
Polymorphisms within gene coding regions represent the most important part of the overall genetic diversity of rice. We characterized the gene-coding sequence-haplotype (gcHap) diversity of 45 963 rice genes in 3010 rice accessions. With an average of 226 ± 390 gcHaps per gene in rice populations, rice genes could be classified into three main categories: 12 865 conserved genes, 10 254 subspecific differentiating genes, and 22 844 remaining genes. We found that 39 218 rice genes carry >255 179 major gcHaps of potential functional importance. Most (87.5%) of the detected gcHaps were specific to subspecies or populations. The inferred proto-ancestors of local landrace populations reconstructed from conserved predominant (ancient) gcHaps correlated strongly with wild rice accessions from the same geographic regions, supporting a multiorigin (domestication) model of Oryza sativa. Past breeding efforts generally increased the gcHap diversity of modern varieties and caused significant frequency shifts in predominant gcHaps of 14 266 genes due to independent selection in the two subspecies. Low frequencies of "favorable" gcHaps at most known genes related to rice yield in modern varieties suggest huge potential for rice improvement by mining and pyramiding of favorable gcHaps. The gcHap data were demonstrated to have greater power than SNPs for the detection of causal genes that affect complex traits. The rice gcHap diversity dataset generated in this study would facilitate rice basic research and improvement in the future.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Agronomy, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chunchao Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yanru Cui
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhichao Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Agronomy, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Agronomy, Anhui Agricultural University, Hefei, Anhui, 230036, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| |
Collapse
|
7
|
Yoneya Y, Wakabayashi T, Kato K. The temperature sensitive hybrid breakdown 1 induces low temperature-dependent intrasubspecific hybrid breakdown in rice. BREEDING SCIENCE 2021; 71:268-276. [PMID: 34377075 PMCID: PMC8329891 DOI: 10.1270/jsbbs.20129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 06/13/2023]
Abstract
Hybrid breakdown (HB) is an important type of post-zygotic reproductive barrier that inhibits hybrid production during the process of cross-breeding. A novel low temperature-dependent HB was identified in a chromosomal segment substitution line (CSSL) library derived from a cross of two rice (Oryza sativa L. japonica) cultivars, Yukihikari and Kirara397. A set of weakness symptoms in a target CSSL was observed at 23°C, but was rescued at 27°C and/or 30°C. Genetic analysis of HB using an F2:3 population of a cross between a target CSSL and Kirara397 found that a recessive temperature sensitive hybrid breakdown1 (thb1) gene from Yukihikari caused HB in the genetic background of Kirara397. Molecular mapping showed that thb1 was located within a 199-kb fragment on chromosome 6. A genetic study of F2 populations of reciprocal crosses between Yukihikari and Kirara397 confirmed that this HB was induced by the interaction of two recessive genes. These results provide important clues to further dissect the mechanism of generation of a novel temperature sensitive HB in rice intrasubspecific crosses and suggest that these linked markers will useful in rice breeding.
Collapse
Affiliation(s)
- Yuuki Yoneya
- Department of Agro-Environmental Science, Obihiro University of Agriculture
and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido
080-8555, Japan
| | - Tae Wakabayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture
and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido
080-8555, Japan
| | - Kiyoaki Kato
- Department of Agro-Environmental Science, Obihiro University of Agriculture
and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido
080-8555, Japan
| |
Collapse
|
8
|
Walter GM, Richards TJ, Wilkinson MJ, Blows MW, Aguirre JD, Ortiz‐Barrientos D. Loss of ecologically important genetic variation in late generation hybrids reveals links between adaptation and speciation. Evol Lett 2020; 4:302-316. [PMID: 32774880 PMCID: PMC7403682 DOI: 10.1002/evl3.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptation to contrasting environments occurs when advantageous alleles accumulate in each population, but it remains largely unknown whether these same advantageous alleles create genetic incompatibilities that can cause intrinsic reproductive isolation leading to speciation. Identifying alleles that underlie both adaptation and reproductive isolation is further complicated by factors such as dominance and genetic interactions among loci, which can affect both processes differently and obscure potential links between adaptation and speciation. Here, we use a combination of field and glasshouse experiments to explore the connection between adaptation and speciation while accounting for dominance and genetic interactions. We created a hybrid population with equal contributions from four contrasting ecotypes of Senecio lautus (Asteraceae), which produced hybrid genomes both before (F1 hybrid generation) and after (F4 hybrid generation) recombination among the parental ecotypes. In the glasshouse, plants in the second generation (F2 hybrid generation) showed reduced fitness as a loss of fertility. However, fertility was recovered in subsequent generations, suggesting that genetic variation underlying the fitness reduction was lost in subsequent generations. To quantify the effects of losing genetic variation at the F2 generation on the fitness of later generation hybrids, we used a reciprocal transplant to test for fitness differences between parental ecotypes, and F1 and F4 hybrids in all four parental habitats. Compared to the parental ecotypes and F1 hybrids, variance in F4 hybrid fitness was lower, and lowest in habitats that showed stronger native-ecotype advantage, suggesting that stronger natural selection for the native ecotype reduced fitness variation in the F4 hybrids. Fitness trade-offs that were present in the parental ecotypes and F1 hybrids were absent in the F4 hybrid. Together, these results suggest that the genetic variation lost after the F2 generation was likely associated with both adaptation and intrinsic reproductive isolation among ecotypes from contrasting habitats.
Collapse
Affiliation(s)
- Greg M. Walter
- School of Biological SciencesUniversity of QueenslandBrisbane4072Australia
- Current address: School of Biological SciencesMonash UniversityMelbourne3800Australia
| | - Thomas J. Richards
- Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐752 36Sweden
| | | | - Mark W. Blows
- School of Biological SciencesUniversity of QueenslandBrisbane4072Australia
| | - J. David Aguirre
- School of Natural and Computational SciencesMassey UniversityAuckland0745New Zealand
| | | |
Collapse
|
9
|
Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium Genomics: Trends, Scope, and Utilization for Cotton Improvement. TRENDS IN PLANT SCIENCE 2020; 25:488-500. [PMID: 31980282 DOI: 10.1016/j.tplants.2019.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber crop worldwide. The diversity of Gossypium species also provides an ideal model for investigating evolution and domestication of polyploids. However, the huge and complex cotton genome hinders genomic research. Technical advances in high-throughput sequencing and bioinformatics analysis have now largely overcome these obstacles, bringing about a new era of cotton genomics. Here, we review recent progress in Gossypium genomics based on whole genome sequencing, resequencing, and comparative genomics, which have provided insights about the genomic basis of fiber biogenesis and the landscape of cotton functional genomics. We address current challenges and present multidisciplinary genomics-enabled breeding strategies covering the breadth of high fiber yield, quality, and environmental resilience for future cotton breeding programs.
Collapse
Affiliation(s)
- Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
10
|
He H, Iizuka T, Maekawa M, Sadahisa K, Morikawa T, Yanase M, Yokoi S, Oda M, Tezuka T. Nicotiana suaveolens accessions with different ploidy levels exhibit different reproductive isolation mechanisms in interspecific crosses with Nicotiana tabacum. JOURNAL OF PLANT RESEARCH 2019; 132:461-471. [PMID: 31115709 DOI: 10.1007/s10265-019-01114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Reproductive isolation, including prezygotic and postzygotic barriers, is a mechanism that separates species. Many species in the Nicotiana section Suaveolentes exhibit reproductive isolation in crosses with Nicotiana tabacum. In this study, we investigated whether the chromosome numbers and ploidy levels of eight Nicotiana suaveolens accessions are related to the reproductive isolation after crosses with N. tabacum by flow cytometry and chromosome analyses. Additionally, the internal transcribed spacer (ITS) regions of the eight N. suaveolens accessions were sequenced and compared with the previously reported sequences of 22 Suaveolentes species to elucidate the phylogenetic relationships in the section Suaveolentes. We revealed that four N. suaveolens accessions comprised 64 chromosomes, while the other four accessions carried 32 chromosomes. Depending on the ploidy levels of N. suaveolens, several types of reproductive isolation were observed after crosses with N. tabacum, including decreases in the number of capsules and the germination rates of hybrid seeds, as well as hybrid lethality and abscission of enlarged ovaries at 12-17 days after pollination. A phylogenetic analysis involving ITS sequences divided the eight N. suaveolens accessions into three distinct clades. Based on the results, we confirmed that N. suaveolens accessions vary regarding ploidy levels and reproductive isolation mechanisms in crosses with N. tabacum. These accessions will be very useful for revealing and characterizing the reproductive isolation mechanisms in interspecific crosses and their relationships with ploidy levels.
Collapse
Affiliation(s)
- Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Maho Maekawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kumi Sadahisa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masanori Yanase
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
11
|
Li C, Zhao T, Yu H, Li C, Deng X, Dong Y, Zhang F, Zhang Y, Mei L, Chen J, Zhu S. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. BMC Genomics 2018; 19:910. [PMID: 30541432 PMCID: PMC6292039 DOI: 10.1186/s12864-018-5289-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/20/2018] [Indexed: 12/02/2022] Open
Abstract
Background Quantitative trait loci (QTL) mapping provides a powerful tool to unravel the genetic bases of cotton yield and its components, as well as their heterosis. In the present study, the genetic basis underlying inbreeding depression and heterosis for yield and yield components of upland cotton was investigated in recombinant inbred line (RIL), immortalized F2 (IF2), and two backcross (BCF1) populations based on a high-density SNP linkage map across four environments. Results Significant inbreeding depression of fruit branches per plant (FB), boll numbers per plant (BN), seed cotton yield (SY), and lint yield (LY) in RIL population and high levels of heterosis for SY, LY, and boll weight (BW) in IF2 and two BCF1 populations were observed. A total of 285 QTLs were identified in the four related populations using a composite interval mapping approach. In the IF2 population, 26.60% partially dominant (PD) QTLs and 71.28% over-dominant (OD) QTLs were identified. In two BCF1 populations, 42.41% additive QTLs, 4.19% PD QTLs, and 53.40% OD QTLs were detected. For multi-environment analysis, phenotypic variances (PV) explained by e-QTLs were higher than those by m-QTLs in each of the populations, and the average PV of m-QTLs and e-QTLs explained by QTL × environment interactions occupied a considerable proportion of total PV in all seven datasets. Conclusions At the single-locus level, the genetic bases of heterosis varied in different populations. Partial dominance and over-dominance were the main cause of heterosis in the IF2 population, while additive effects and over-dominance were the main genetic bases of heterosis in two BCF1 populations. In addition, the various genetic components to heterosis presented trait specificity. In the multi-environment model analysis, epistasis was a common feature of most loci associated with inbreeding depression and heterosis. Furthermore, the environment was a critical factor in the expression of these m-QTLs and e-QTLs. Altogether, additive effects, over-dominance, epistasis and environmental interactions all contributed to the heterosis of yield and its components in upland cotton, with over-dominance and epistasis more important than the others. Electronic supplementary material The online version of this article (10.1186/s12864-018-5289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Li
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Tianlun Zhao
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Hurong Yu
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Cheng Li
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Xiaolei Deng
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Yating Dong
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Fan Zhang
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Yi Zhang
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Lei Mei
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Jinhong Chen
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
12
|
Bundus JD, Wang D, Cutter AD. Genetic basis to hybrid inviability is more complex than hybrid male sterility in Caenorhabditis nematodes. Heredity (Edinb) 2018; 121:169-182. [PMID: 29626207 PMCID: PMC6039526 DOI: 10.1038/s41437-018-0069-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/22/2018] [Accepted: 02/11/2018] [Indexed: 12/31/2022] Open
Abstract
Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.
Collapse
Affiliation(s)
- Joanna D Bundus
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Donglin Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
13
|
Burke JM, Voss TJ, Arnold ML. GENETIC INTERACTIONS AND NATURAL SELECTION IN LOUISIANA IRIS HYBRIDS. Evolution 2017; 52:1304-1310. [PMID: 28565382 DOI: 10.1111/j.1558-5646.1998.tb02012.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/1998] [Accepted: 06/08/1998] [Indexed: 10/19/2022]
Affiliation(s)
- John M. Burke
- Department of Genetics University of Georgia Athens Georgia 30602‐7223
| | - Tiffany J. Voss
- Department of Genetics University of Georgia Athens Georgia 30602‐7223
| | - Michael L. Arnold
- Department of Genetics University of Georgia Athens Georgia 30602‐7223
| |
Collapse
|
14
|
Du H, Yu Y, Ma Y, Gao Q, Cao Y, Chen Z, Ma B, Qi M, Li Y, Zhao X, Wang J, Liu K, Qin P, Yang X, Zhu L, Li S, Liang C. Sequencing and de novo assembly of a near complete indica rice genome. Nat Commun 2017; 8:15324. [PMID: 28469237 PMCID: PMC5418594 DOI: 10.1038/ncomms15324] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/17/2017] [Indexed: 01/03/2023] Open
Abstract
A high-quality reference genome is critical for understanding genome structure, genetic variation and evolution of an organism. Here we report the de novo assembly of an indica rice genome Shuhui498 (R498) through the integration of single-molecule sequencing and mapping data, genetic map and fosmid sequence tags. The 390.3 Mb assembly is estimated to cover more than 99% of the R498 genome and is more continuous than the current reference genomes of japonica rice Nipponbare (MSU7) and Arabidopsis thaliana (TAIR10). We annotate high-quality protein-coding genes in R498 and identify genetic variations between R498 and Nipponbare and presence/absence variations by comparing them to 17 draft genomes in cultivated rice and its closest wild relatives. Our results demonstrate how to de novo assemble a highly contiguous and near-complete plant genome through an integrative strategy. The R498 genome will serve as a reference for the discovery of genes and structural variations in rice. High-quality reference genomes facilitate analysis of genome structure and variation. Here Du et al. create a near-complete assembly of the indica rice genome by combining single molecule sequencing with mapping data and fosmid sequences and identify genetic variants by comparison with other rice genomes.
Collapse
Affiliation(s)
- Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Yanfei Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Zhuo Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Jing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Kunfan Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Hersh E, Grimm J, Whitton J. Attack of the clones: reproductive interference between sexuals and asexuals in the Crepis agamic complex. Ecol Evol 2016; 6:6473-6483. [PMID: 27777723 PMCID: PMC5058521 DOI: 10.1002/ece3.2353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 02/02/2023] Open
Abstract
Negative reproductive interactions are likely to be strongest between close relatives and may be important in limiting local coexistence. In plants, interspecific pollen flow is common between co-occurring close relatives and may serve as the key mechanism of reproductive interference. Agamic complexes, systems in which some populations reproduce through asexual seeds (apomixis), while others reproduce sexually, provide an opportunity to examine effects of reproductive interference in limiting coexistence. Apomictic populations experience little or no reproductive interference, because apomictic ovules cannot receive pollen from nearby sexuals. Oppositely, apomicts produce some viable pollen and can exert reproductive interference on sexuals by siring hybrids. In the Crepis agamic complex, sexuals co-occur less often with other members of the complex, but apomicts appear to freely co-occur with one another. We identified a mixed population and conducted a crossing experiment between sexual diploid C. atribarba and apomictic polyploid C. barbigera using pollen from sexual diploids and apomictic polyploids. Seed set was high for all treatments, and as predicted, diploid-diploid crosses produced all diploid offspring. Diploid-polyploid crosses, however, produced mainly polyploidy offspring, suggesting that non-diploid hybrids can be formed when the two taxa meet. Furthermore, a small proportion of seeds produced in open-pollinated flowers was also polyploid, indicating that polyploid hybrids are produced under natural conditions. Our results provide evidence for asymmetric reproductive interference, with pollen from polyploid apomicts contributing to reduce the recruitment of sexual diploids in subsequent generations. Existing models suggest that these mixed sexual-asexual populations are likely to be transient, eventually leading to eradication of sexual individuals from the population.
Collapse
Affiliation(s)
- Evan Hersh
- Department of Botany and Biodiversity Research CentreThe University of British Columbia6270 University BoulevardVancouverBritish ColumbiaCanadaV6T 1Z4
| | - Jaime Grimm
- Department of Botany and Biodiversity Research CentreThe University of British Columbia6270 University BoulevardVancouverBritish ColumbiaCanadaV6T 1Z4
- Present address: Department of BiologyMcGill University1205 Dr. Penfield AvenueMontrealQuébecCanadaH3A 1B1
| | - Jeannette Whitton
- Department of Botany and Biodiversity Research CentreThe University of British Columbia6270 University BoulevardVancouverBritish ColumbiaCanadaV6T 1Z4
| |
Collapse
|
16
|
Pollen Killer Gene S35 Function Requires Interaction with an Activator That Maps Close to S24, Another Pollen Killer Gene in Rice. G3-GENES GENOMES GENETICS 2016; 6:1459-68. [PMID: 27172610 PMCID: PMC4856096 DOI: 10.1534/g3.116.027573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pollen killer genes disable noncarrier pollens, and are responsible for male sterility and segregation distortion in hybrid populations of distantly related plant species. The genetic networks and the molecular mechanisms underlying the pollen killer system remain largely unknown. Two pollen killer genes, S24 and S35, have been found in an intersubspecific cross of Oryza sativa ssp. indica and japonica The effect of S24 is counteracted by an unlinked locus EFS Additionally, S35 has been proposed to interact with S24 to induce pollen sterility. These genetic interactions are suggestive of a single S24-centric genetic pathway (EFS-S24-S35) for the pollen killer system. To examine this hypothetical genetic pathway, the S35 and the S24 regions were further characterized and genetically dissected in this study. Our results indicated that S35 causes pollen sterility independently of both the EFS and S24 genes, but is dependent on a novel gene close to the S24 locus, named incentive for killing pollen (INK). We confirmed the phenotypic effect of the INK gene separately from the S24 gene, and identified the INK locus within an interval of less than 0.6 Mb on rice chromosome 5. This study characterized the genetic effect of the two independent genetic pathways of INK-S35 and EFS-S24 in indica-japonica hybrid progeny. Our results provide clear evidence that hybrid male sterility in rice is caused by several pollen killer networks with multiple factors positively and negatively regulating pollen killer genes.
Collapse
|
17
|
Waghmare VN, Rong J, Rogers CJ, Bowers JE, Chee PW, Gannaway JR, Katageri I, Paterson AH. Comparative transmission genetics of introgressed chromatin in Gossypium (cotton) polyploids. AMERICAN JOURNAL OF BOTANY 2016; 103:719-729. [PMID: 27056931 DOI: 10.3732/ajb.1500266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Introgression is widely acknowledged as a potential source of valuable genetic variation, and growing effort is being invested in analysis of interspecific crosses conferring transgressive variation. Experimental backcross populations provide an opportunity to study transmission genetics following interspecific hybridization, identifying opportunities and constraints to introgressive crop improvement. The evolutionary consequences of introgression have been addressed at the theoretical level, however, issues related to levels and patterns of introgression among (plant) species remain inadequately explored, including such factors as polyploidization, subgenome interaction inhabiting a common nucleus, and the genomic distribution and linkage relationships of introgressant alleles. METHODS We analyze introgression into the polyploid Gossypium hirsutum (upland cotton) from its sister G. tomentosum and compare the level and pattern with that of G. barbadense representing a different clade tracing to the same polyploidization. KEY RESULTS Across the genome, recurrent backcrossing to Gossypium hirsutum yielded only one-third of the expected average frequency of the G. tomentosum allele, although one unusual region showed preferential introgression. Although a similar rate of introgression is found in the two subgenomes of polyploid (AtDt) G. hirsutum, a preponderance of multilocus interactions were largely within the Dt subgenome. CONCLUSIONS Skewed G. tomentosum chromatin transmission is polymorphic among two elite G. hirsutum genotypes, which suggests that genetic background may profoundly affect introgression of particular chromosomal regions. Only limited correspondence is found between G. hirsutum chromosomal regions that are intolerant to introgression from the two species, G. barbadense and G. tomentosum, concentrated near possible inversion polymorphisms. Complex transmission of introgressed chromatin highlights the challenges to utilization of exotic germplasm in crop improvement.
Collapse
Affiliation(s)
- Vijay N Waghmare
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA Division of Crop Improvement, Central Institute for Cotton Research, Nagpur, India
| | - Junkang Rong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Carl J Rogers
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - John E Bowers
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Peng W Chee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | | | - Ishwarappa Katageri
- Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka, India
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| |
Collapse
|
18
|
Carletti G, Carra A, Allegro G, Vietto L, Desiderio F, Bagnaresi P, Gianinetti A, Cattivelli L, Valè G, Nervo G. QTLs for Woolly Poplar Aphid (Phloeomyzus passerinii L.) Resistance Detected in an Inter-Specific Populus deltoides x P. nigra Mapping Population. PLoS One 2016; 11:e0152569. [PMID: 27022954 PMCID: PMC4811529 DOI: 10.1371/journal.pone.0152569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/16/2016] [Indexed: 02/08/2023] Open
Abstract
The genus Populus represents one of the most economically important groups of forest trees. It is composed by approximately 30 species used for wood and non-wood products, phytoremediation and biomass. Poplar is subjected to several biological and environmental threats although, compared to annual crops, we know far less about the genetic bases of biotic stress resistance. Woolly poplar aphid (Phloeomyzus passerinii) is considered a main pest of cultivated poplars in European and American countries. In this work we present two high density linkage maps in poplar obtained by a genotyping by sequencing (GBS) approach and the identification of QTLs involved in Ph. passerinii resistance. A total of 5,667 polymorphic markers (5,606 SNPs and 61 SSRs) identified on expressed sequences have been used to genotype 131 plants of an F1 population P ×canadensis obtained by an interspecific mate between Populus deltoides (resistant to woolly poplar aphid) and Populus nigra (susceptible to woolly poplar aphid). The two linkage maps, obtained following the two-way pseudo-testcross mapping strategy, have been used to investigate the genetic bases of woolly poplar aphid resistance. One major QTL and two QTLs with minor effects (mapped on LGV, LGXVI and LG XIX) explaining the 65.8% of the genetic variance observed in the progeny in response to Ph. passerinii attack were found. The high density coverage of functional markers allowed the identification of three genes belonging to disease resistance pathway as putative candidates for P. deltoides resistance to woolly poplar aphid. This work is the first report on genetic of woolly poplar aphid genetic resistance and the resistant loci associated markers identified represent a valuable tool in resistance poplar breeding programs.
Collapse
Affiliation(s)
- Giorgia Carletti
- Council for Agricultural Research and Economics (CREA)-Research Unit for Intensive Wood Production, Casale Monferrato (AL), Italy
| | - Andrea Carra
- Council for Agricultural Research and Economics (CREA)-Research Unit for Intensive Wood Production, Casale Monferrato (AL), Italy
| | - Gianni Allegro
- Council for Agricultural Research and Economics (CREA)-Research Unit for Intensive Wood Production, Casale Monferrato (AL), Italy
| | - Lorenzo Vietto
- Council for Agricultural Research and Economics (CREA)-Research Unit for Intensive Wood Production, Casale Monferrato (AL), Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Alberto Gianinetti
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Giampiero Valè
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
- Council for Agricultural Research and Economics (CREA)-Rice Research Unit, Vercelli, Italy
| | - Giuseppe Nervo
- Council for Agricultural Research and Economics (CREA)-Research Unit for Intensive Wood Production, Casale Monferrato (AL), Italy
- * E-mail:
| |
Collapse
|
19
|
Liang Q, Shang L, Wang Y, Hua J. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.). PLoS One 2015; 10:e0143548. [PMID: 26618635 PMCID: PMC4664285 DOI: 10.1371/journal.pone.0143548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Determination of genetic basis of heterosis may promote hybrid production in Upland cotton (Gossypium hirsutum L.). This study was designed to explore the genetic mechanism of heterosis for yield and yield components in F2: 3 and F2: 4 populations derived from a hybrid 'Xinza No. 1'. Replicated yield field trials of the progenies were conducted in 2008 and 2009. Phenotypic data analyses indicated overdominance in F1 for yield and yield components. Additive and dominance effects at single-locus level and digenic epistatic interactions at two-locus level were analyzed by 421 marker loci spanning 3814 cM of the genome. A total of 38 and 49 QTLs controlling yield and yield components were identified in F2: 3 and F2: 4 populations, respectively. Analyses of these QTLs indicated that the effects of partial dominance and overdominance contributed to heterosis in Upland cotton simultaneously. Most of the QTLs showed partial dominance whereas 13 QTLs showing overdominance in F2:3 population, and 19 QTLs showed overdominance in F2:4. Among them, 21 QTLs were common in both F2: 3 and F2: 4 populations. A large number of two-locus interactions for yield and yield components were detected in both generations. AA (additive × additive) epistasis accounted for majority portion of epistatic effects. Thirty three complementary two-locus homozygotes (11/22 and 22/11) were the best genotypes for AA interactions in terms of bolls per plant. Genotypes of double homozygotes, 11/22, 22/11 and 22/22, performed best for AD/DA interactions, while genotype of 11/12 performed best for DD interactions. These results indicated that (1) partial dominance and overdominance effects at single-locus level and (2) epistasis at two-locus level elucidated the genetic basis of heterosis in Upland cotton.
Collapse
Affiliation(s)
- Qingzhi Liang
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, China Agricultural University, Beijing, 100193, P. R. China
| | - Lianguang Shang
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, China Agricultural University, Beijing, 100193, P. R. China
| | - Yumei Wang
- Research Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Jinping Hua
- Department of Plant Genetics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, China Agricultural University, Beijing, 100193, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Dumas P, Legeai F, Lemaitre C, Scaon E, Orsucci M, Labadie K, Gimenez S, Clamens AL, Henri H, Vavre F, Aury JM, Fournier P, Kergoat GJ, d'Alençon E. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica 2015; 143:305-16. [PMID: 25694156 PMCID: PMC4419160 DOI: 10.1007/s10709-015-9829-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
Abstract
The moth Spodoptera frugiperda is a well-known pest of crops throughout the Americas, which consists of two strains adapted to different host-plants: the first feeds preferentially on corn, cotton and sorghum whereas the second is more associated with rice and several pasture grasses. Though morphologically indistinguishable, they exhibit differences in their mating behavior, pheromone compositions, and show development variability according to the host-plant. Though the latter suggest that both strains are different species, this issue is still highly controversial because hybrids naturally occur in the wild, not to mention the discrepancies among published results concerning mating success between the two strains. In order to clarify the status of the two host-plant strains of S. frugiperda, we analyze features that possibly reflect the level of post-zygotic isolation: (1) first generation (F1) hybrid lethality and sterility; (2) patterns of meiotic segregation of hybrids in reciprocal second generation (F2), as compared to the meiosis of the two parental strains. We found a significant reduction of mating success in F1 in one direction of the cross and a high level of microsatellite markers showing transmission ratio distortion in the F2 progeny. Our results support the existence of post-zygotic reproductive isolation between the two laboratory strains and are in accordance with the marked level of genetic differentiation that was recovered between individuals of the two strains collected from the field. Altogether these results provide additional evidence in favor of a sibling species status for the two strains.
Collapse
Affiliation(s)
- Pascaline Dumas
- UM - UMR 1333 DGIMI, Université Montpellier, Place Eugène Bataillon, 34095, Montpellier, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dan Z, Hu J, Zhou W, Yao G, Zhu R, Huang W, Zhu Y. Hierarchical additive effects on heterosis in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2015; 6:738. [PMID: 26442051 PMCID: PMC4566041 DOI: 10.3389/fpls.2015.00738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/31/2015] [Indexed: 05/21/2023]
Abstract
Exploitation of heterosis in crops has contributed greatly to improvement in global food and energy production. In spite of the pervasive importance of heterosis, a complete understanding of its mechanisms has remained elusive. In this study, a small test-crossed rice population was constructed to investigate the formation mechanism of heterosis for 13 traits. The results of the relative mid-parent heterosis and modes of inheritance of all investigated traits demonstrated that additive effects were the foundation of heterosis for complex traits in a hierarchical structure, and multiplicative interactions among the component traits were the framework of heterosis in complex traits. Furthermore, new balances between unit traits and related component traits provided hybrids with the opportunity to achieve an optimal degree of heterosis for complex traits. This study dissected heterosis of both reproductive and vegetative traits from the perspective of hierarchical structure for the first time. Additive multiplicative interactions of component traits were proven to be the origin of heterosis in complex traits. Meanwhile, more attention should be paid to component traits, rather than complex traits, in the process of revealing the mechanism of heterosis.
Collapse
Affiliation(s)
- Zhiwu Dan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Wei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Guoxin Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
- *Correspondence: Wenchao Huang and Yingguo Zhu, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China, ;
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
- *Correspondence: Wenchao Huang and Yingguo Zhu, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China, ;
| |
Collapse
|
22
|
Matsubara K, Yamamoto E, Mizobuchi R, Yonemaru JI, Yamamoto T, Kato H, Yano M. Hybrid breakdown caused by epistasis-based recessive incompatibility in a cross of rice (Oryza sativa L.). J Hered 2014; 106:113-22. [PMID: 25429024 DOI: 10.1093/jhered/esu065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Viability and fertility in organisms depend on epistatic interactions between loci maintained in lineages. Here, we describe reduced fitness of segregants (hybrid breakdown, HB) that emerged in an F2 population derived from a cross between 2 rice (Oryza sativa L.) cultivars, "Tachisugata" (TS) and "Hokuriku 193" (H193), despite both parents and F1s showing normal fitness. Quantitative trait locus (QTL) analyses detected 13 QTLs for 4 morphological traits associated with the HB and 6 associated with principal component scores calculated from values of the morphological traits in the F2 population. Two-way analysis of variance of the putative QTLs identified 4 QTL pairs showing significant epistasis; among them, a pair on chromosomes 1 and 12 made the greatest contribution to HB. The finding was supported by genetic experiments using F3 progeny. HB emerged only when a plant was homozygous for the TS allele at the QTL on chromosome 1 and homozygous for the H193 allele at the QTL on chromosome 12, indicating that each allele behaves as recessive to the other. Our results support the idea that epistasis is an essential part of hybrid fitness.
Collapse
Affiliation(s)
- Kazuki Matsubara
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan.
| | - Eiji Yamamoto
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| | - Ritsuko Mizobuchi
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| | - Jun-ichi Yonemaru
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| | - Toshio Yamamoto
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| | - Hiroshi Kato
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan.
| | - Masahiro Yano
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| |
Collapse
|
23
|
Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J. Genetic basis of grain yield heterosis in an "immortalized F₂" maize population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2149-58. [PMID: 25104328 DOI: 10.1007/s00122-014-2368-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 07/19/2014] [Indexed: 05/04/2023]
Abstract
Genetic basis of grain yield heterosis relies on the cumulative effects of dominance, overdominance, and epistasis in maize hybrid Yuyu22. Heterosis, i.e., when F1 hybrid phenotypes are superior to those of the parents, continues to play a critical role in boosting global grain yield. Notwithstanding our limited insight into the genetic and molecular basis of heterosis, it has been exploited extensively using different breeding approaches. In this study, we investigated the genetic underpinnings of grain yield and its components using "immortalized F2" and recombinant inbred line populations derived from the elite hybrid Yuyu22. A high-density linkage map consisting of 3,184 bins was used to assess (1) the additive and additive-by-additive effects determined using recombinant inbred lines; (2) the dominance and dominance-by-dominance effects from a mid-parent heterosis dataset; and (3) the various genetic effects in the "immortalized F2" population. Compared with a low-density simple sequence repeat map, the bin map identified more quantitative trait loci, with higher LOD scores and better accuracy of detecting quantitative trait loci. The bin map showed that, among all traits, dominance was more important to heterosis than other genetic effects. The importance of overdominance/pseudo-overdominance was proportional to the amount of heterosis. In addition, epistasis contributed to heterosis as well. Phenotypic variances explained by the QTLs detected were close to the broad-sense heritabilities of the observed traits. Comparison of the analyzed results obtained for the "immortalized F2" population with those for the mid-parent heterosis dataset indicated identical genetic modes of action for mid-parent heterosis and grain yield performance of the hybrid.
Collapse
Affiliation(s)
- Tingting Guo
- National Maize Improvement Center, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Resolution of genetic map expansion caused by excess heterozygosity in plant recombinant inbred populations. G3-GENES GENOMES GENETICS 2014; 4:1963-9. [PMID: 25128435 PMCID: PMC4199702 DOI: 10.1534/g3.114.012468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinant inbred populations of many plant species exhibit more heterozygosity than expected under the Mendelian model of segregation. This segregation distortion causes the overestimation of recombination frequencies and consequent genetic map expansion. Here we build upon existing genetic models of differential zygotic viability to model a heterozygote fitness term and calculate expected genotypic proportions in recombinant inbred populations propagated by selfing. We implement this model using the existing open-source genetic map construction code base for R/qtl to estimate recombination fractions. Finally, we show that accounting for excess heterozygosity in a sorghum recombinant inbred mapping population shrinks the genetic map by 213 cM (a 13% decrease corresponding to 4.26 fewer recombinations per meiosis). More accurate estimates of linkage benefit linkage-based analyses used in the identification and utilization of causal genetic variation.
Collapse
|
25
|
Zhang F, Ma XF, Gao YM, Hao XB, Li ZK. Genome-wide response to selection and genetic basis of cold tolerance in rice (Oryza sativa L.). BMC Genet 2014; 15:55. [PMID: 24885138 PMCID: PMC4024214 DOI: 10.1186/1471-2156-15-55] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cold stress is an important factor limiting rice yield in many areas of high latitude and altitude. Considerable efforts have been taken to genetically dissect cold tolerance (CT) in rice using DNA markers. Because of possible epistasis and gene × environment interactions associated with identified quantitative trait loci, the results of these genetic studies have unfortunately not been directly applicable to marker-assisted selection for improved rice CT. In this study, we demonstrated the utility of a selective introgression strategy for simultaneous improvement and genetic dissection of rice seedling CT. RESULTS A set of japonica introgression lines (ILs) with significantly improved seedling CT were developed from four backcross populations based on two rounds of selection. Genetic characterization of these cold-tolerant ILs revealed two important aspects of genome-wide responses to strong phenotypic selection for rice CT: (1) significant over-introgression of donor alleles at 57 loci in 29 functional genetic units (FGUs) across the rice genome and (2) pronounced non-random associations between or among alleles at many unlinked CT loci. Linkage disequilibrium analyses of the detected CT loci allowed us to construct putative genetic networks (multi-locus structures) underlying the seedling CT of rice. Each network consisted of a single FGU, with high introgression as the putative regulator plus two to three groups of highly associated downstream FGUs. A bioinformatics search of rice genomic regions harboring these putative regulators identified a small set of candidate regulatory genes that are known to be involved in plant stress response. CONCLUSIONS Our results suggest that CT in rice is controlled by multiple pathways. Genetic complementarity between parental-derived functional alleles at many loci within a given pathway provides an appropriate explanation for the commonly observed hidden diversity and transgressive segregation of CT and other complex traits in rice.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
26
|
Fitz Gerald JN, Carlson AL, Smith E, Maloof JN, Weigel D, Chory J, Borevitz JO, Swanson RJ. New Arabidopsis advanced intercross recombinant inbred lines reveal female control of nonrandom mating. PLANT PHYSIOLOGY 2014; 165:175-85. [PMID: 24623850 PMCID: PMC4012578 DOI: 10.1104/pp.113.233213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/28/2014] [Indexed: 05/23/2023]
Abstract
Female control of nonrandom mating has never been genetically established, despite being linked to inbreeding depression and sexual selection. In order to map the loci that control female-mediated nonrandom mating, we constructed a new advanced intercross recombinant inbred line (RIL) population derived from a cross between Arabidopsis (Arabidopsis thaliana) accessions Vancouver (Van-0) and Columbia (Col-0) and mapped quantitative trait loci (QTLs) responsible for nonrandom mating and seed yield traits. We genotyped a population of 490 RILs. A subset of these lines was used to construct an expanded map of 1,061.4 centimorgans with an average interval of 6.7±5.3 centimorgans between markers. QTLs were then mapped for female- and male-mediated nonrandom mating and seed yield traits. To map the genetic loci responsible for female-mediated nonrandom mating and seed yield, we performed mixed pollinations with genetically marked Col-0 pollen and Van-0 pollen on RIL pistils. To map the loci responsible for male-mediated nonrandom mating and seed yield, we performed mixed pollinations with genetically marked Col-0 and RIL pollen on Van-0 pistils. Composite interval mapping of these data identified four QTLs that control female-mediated nonrandom mating and five QTLs that control female-mediated seed yield. We also identified four QTLs that control male-mediated nonrandom mating and three QTLs that control male-mediated seed yield. Epistasis analysis indicates that several of these loci interact. To our knowledge, the results of these experiments represent the first time female-mediated nonrandom mating has been genetically defined.
Collapse
Affiliation(s)
- Jonathan Nesbit Fitz Gerald
- Department of Biology, Rhodes College, Memphis, Tennessee 38112 (J.N.F.G.)
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 (A.L.C., R.J.S.)
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (E.S., J.O.B.)
- Department of Plant Biology, Salk Institute, San Diego, California 92037 (J.N.M., D.W., J.C., J.O.B.)
- Department of Plant Biology, University of California, Davis, California 95616 (J.N.M.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (D.W.); and
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (J.O.B.)
| | - Ann Louise Carlson
- Department of Biology, Rhodes College, Memphis, Tennessee 38112 (J.N.F.G.)
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 (A.L.C., R.J.S.)
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (E.S., J.O.B.)
- Department of Plant Biology, Salk Institute, San Diego, California 92037 (J.N.M., D.W., J.C., J.O.B.)
- Department of Plant Biology, University of California, Davis, California 95616 (J.N.M.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (D.W.); and
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (J.O.B.)
| | - Evadne Smith
- Department of Biology, Rhodes College, Memphis, Tennessee 38112 (J.N.F.G.)
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 (A.L.C., R.J.S.)
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (E.S., J.O.B.)
- Department of Plant Biology, Salk Institute, San Diego, California 92037 (J.N.M., D.W., J.C., J.O.B.)
- Department of Plant Biology, University of California, Davis, California 95616 (J.N.M.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (D.W.); and
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (J.O.B.)
| | - Julin N. Maloof
- Department of Biology, Rhodes College, Memphis, Tennessee 38112 (J.N.F.G.)
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 (A.L.C., R.J.S.)
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (E.S., J.O.B.)
- Department of Plant Biology, Salk Institute, San Diego, California 92037 (J.N.M., D.W., J.C., J.O.B.)
- Department of Plant Biology, University of California, Davis, California 95616 (J.N.M.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (D.W.); and
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (J.O.B.)
| | - Detlef Weigel
- Department of Biology, Rhodes College, Memphis, Tennessee 38112 (J.N.F.G.)
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 (A.L.C., R.J.S.)
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (E.S., J.O.B.)
- Department of Plant Biology, Salk Institute, San Diego, California 92037 (J.N.M., D.W., J.C., J.O.B.)
- Department of Plant Biology, University of California, Davis, California 95616 (J.N.M.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (D.W.); and
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (J.O.B.)
| | - Joanne Chory
- Department of Biology, Rhodes College, Memphis, Tennessee 38112 (J.N.F.G.)
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 (A.L.C., R.J.S.)
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (E.S., J.O.B.)
- Department of Plant Biology, Salk Institute, San Diego, California 92037 (J.N.M., D.W., J.C., J.O.B.)
- Department of Plant Biology, University of California, Davis, California 95616 (J.N.M.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (D.W.); and
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (J.O.B.)
| | - Justin O. Borevitz
- Department of Biology, Rhodes College, Memphis, Tennessee 38112 (J.N.F.G.)
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 (A.L.C., R.J.S.)
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (E.S., J.O.B.)
- Department of Plant Biology, Salk Institute, San Diego, California 92037 (J.N.M., D.W., J.C., J.O.B.)
- Department of Plant Biology, University of California, Davis, California 95616 (J.N.M.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (D.W.); and
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (J.O.B.)
| | | |
Collapse
|
27
|
Dan Z, Liu P, Huang W, Zhou W, Yao G, Hu J, Zhu R, Lu B, Zhu Y. Balance between a higher degree of heterosis and increased reproductive isolation: a strategic design for breeding inter-subspecific hybrid rice. PLoS One 2014; 9:e93122. [PMID: 24667442 PMCID: PMC3965518 DOI: 10.1371/journal.pone.0093122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/03/2014] [Indexed: 11/19/2022] Open
Abstract
The application of heterosis (hybrid vigor) has brought great success to plant breeding, particularly of hybrid rice, achieving significant yield increases. Attempts to explore the heterosis of inter-subspecific hybrids between indica and japonica rice, which result in even greater yield increases, have greatly increased in the past decades. However, because of the reduced seed setting rate in F1 hybrids as a result of increased reproductive isolation, the application of inter-subspecific hybrids in rice has slowed. Understanding the balance between heterosis and the reproductive isolation of inter-subspecific hybrids will facilitate the strategic design of inter-subspecific hybrid breeding. In this study, five indica and seven japonica rice varieties were chosen as the parental lines of a complete diallel mating design. Data from six group traits from all of the hybrids and inbred lines were collected. We found that the grain weight per plant, grain number per panicle, tiller per plant, thousand grain weight and plant height, which reflected increased heterosis, were associated with the genetic divergence index (GDI) of the parents. Meanwhile, owing to the reduced seed setting rate, which was also associated with the parents' GDI, the grain production of the hybrids was negatively affected. After analyzing the relationships between the GDI of indica-japonica parents and the grain weight per plant of the F1 hybrids, an ideal GDI value (0.37) for the two indica-japonica parents that could provide an optimal balance between the inter-subspecific heterosis and reproductive isolation was proposed. Our findings will help in the strategic design of an inter-subspecific hybrid rice breeding program by identifying the ideal indica and japonica parents for a hybrid combination to achieve hybrid rice with an optimal yield. This strategic design of an inter-subspecific hybrid rice breeding program will be time saving and cost effective.
Collapse
Affiliation(s)
- Zhiwu Dan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Ping Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Wei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Guoxin Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Baorong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
28
|
Anderson CJR, Harmon L. Ecological and Mutation-Order Speciation in Digital Organisms. Am Nat 2014; 183:257-68. [DOI: 10.1086/674359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Gene identification using rice genome sequences. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Bocianowski J. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genet Mol Biol 2013; 36:93-100. [PMID: 23569413 PMCID: PMC3615531 DOI: 10.1590/s1415-47572013000100013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/12/2012] [Indexed: 11/21/2022] Open
Abstract
Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.
Collapse
Affiliation(s)
- Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
31
|
Ouyang Y, Zhang Q. Understanding reproductive isolation based on the rice model. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:111-35. [PMID: 23638826 DOI: 10.1146/annurev-arplant-050312-120205] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Reproductive isolation is both an indicator of speciation and a mechanism for maintaining species identity. Here we review the progress in studies of hybrid sterility in rice to illustrate the present understanding of the molecular and evolutionary mechanisms underlying reproductive isolation. Findings from molecular characterization of genes controlling hybrid sterility can be summarized with three evolutionary genetic models. The parallel divergence model features duplicated loci generated by genome evolution; in this model, the gametes abort when the two copies of loss-of-function mutants meet in hybrids. In the sequential divergence model, mutations of two linked loci occur sequentially in one lineage, and negative interaction between the ancestral and nascent alleles of different genes causes incompatibility. The parallel-sequential divergence model involves three tightly linked loci, exemplified by a killer-protector system formed of mutations in two steps. We discuss the significance of such findings and their implications for crop improvement.
Collapse
Affiliation(s)
- Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
32
|
Reflinur, Chin JH, Jang SM, Kim B, Lee J, Koh HJ. QTLs for hybrid fertility and their association with female and male sterility in rice. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0209-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics 2011; 189:1083-92. [PMID: 21868603 DOI: 10.1534/genetics.111.132035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In intraspecific crosses between cultivated rice (Oryza sativa) subspecies indica and japonica, the hybrid male sterility gene S24 causes the selective abortion of male gametes carrying the japonica allele (S24-j) via an allelic interaction in the heterozygous hybrids. In this study, we first examined whether male sterility is due solely to the single locus S24. An analysis of near-isogenic lines (NIL-F(1)) showed different phenotypes for S24 in different genetic backgrounds. The S24 heterozygote with the japonica genetic background showed male semisterility, but no sterility was found in heterozygotes with the indica background. This result indicates that S24 is regulated epistatically. A QTL analysis of a BC(2)F(1) population revealed a novel sterility locus that interacts with S24 and is found on rice chromosome 2. The locus was named Epistatic Factor for S24 (EFS). Further genetic analyses revealed that S24 causes male sterility when in combination with the homozygous japonica EFS allele (efs-j). The results suggest that efs-j is a recessive sporophytic allele, while the indica allele (EFS-i) can dominantly counteract the pollen sterility caused by S24 heterozygosity. In summary, our results demonstrate that an additional epistatic locus is an essential element in the hybrid sterility caused by allelic interaction at a single locus in rice. This finding provides a significant contribution to our understanding of the complex molecular mechanisms underlying hybrid sterility and microsporogenesis.
Collapse
|
34
|
Chin JH, Chu SH, Jiang W, Cho YI, Basyirin R, Brar DS, Koh HJ. Identification of QTLs for hybrid fertility in inter-subspecific crosses of rice (Oryza sativa L.). Genes Genomics 2011. [DOI: 10.1007/s13258-010-0100-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Zhang F, Zhai HQ, Paterson AH, Xu JL, Gao YM, Zheng TQ, Wu RL, Fu BY, Ali J, Li ZK. Dissecting genetic networks underlying complex phenotypes: the theoretical framework. PLoS One 2011; 6:e14541. [PMID: 21283795 PMCID: PMC3024316 DOI: 10.1371/journal.pone.0014541] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
Great progress has been made in genetic dissection of quantitative trait variation during the past two decades, but many studies still reveal only a small fraction of quantitative trait loci (QTLs), and epistasis remains elusive. We integrate contemporary knowledge of signal transduction pathways with principles of quantitative and population genetics to characterize genetic networks underlying complex traits, using a model founded upon one-way functional dependency of downstream genes on upstream regulators (the principle of hierarchy) and mutual functional dependency among related genes (functional genetic units, FGU). Both simulated and real data suggest that complementary epistasis contributes greatly to quantitative trait variation, and obscures the phenotypic effects of many 'downstream' loci in pathways. The mathematical relationships between the main effects and epistatic effects of genes acting at different levels of signaling pathways were established using the quantitative and population genetic parameters. Both loss of function and "co-adapted" gene complexes formed by multiple alleles with differentiated functions (effects) are predicted to be frequent types of allelic diversity at loci that contribute to the genetic variation of complex traits in populations. Downstream FGUs appear to be more vulnerable to loss of function than their upstream regulators, but this vulnerability is apparently compensated by different FGUs of similar functions. Other predictions from the model may account for puzzling results regarding responses to selection, genotype by environment interaction, and the genetic basis of heterosis.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu-Qu Zhai
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Jian-Long Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Ming Gao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian-Qing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong-Ling Wu
- Center for Statistical Genetics, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Bin-Ying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jauhar Ali
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Manila, Philippines
- * E-mail:
| |
Collapse
|
36
|
Mather KA, Molina J, Flowers JM, Rubinstein S, Rauh BL, Lawton-Rauh A, Caicedo AL, McNally KL, Purugganan MD. Migration, isolation and hybridization in island crop populations: the case of Madagascar rice. Mol Ecol 2010; 19:4892-905. [PMID: 20964753 DOI: 10.1111/j.1365-294x.2010.04845.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how crop species spread and are introduced to new areas provides insights into the nature of species range expansions. The domesticated species Oryza sativa or Asian rice is one of the key domesticated crop species in the world. The island of Madagascar off the coast of East Africa was one of the last major Old World areas of introduction of rice after the domestication of this crop species and before extensive historical global trade in this crop. Asian rice was introduced in Madagascar from India, the Malay Peninsula and Indonesia approximately 800-1400 years ago. Studies of domestication traits characteristic of the two independently domesticated Asian rice subspecies, indica and tropical japonica, suggest two major waves of migrations into Madagascar. A population genetic analysis of rice in Madagascar using sequence data from 53 gene fragments provided insights into the dynamics of island founder events during the expansion of a crop species' geographic range and introduction to novel agro-ecological environments. We observed a significant decrease in genetic diversity in rice from Madagascar when compared to those in Asia, likely the result of a bottleneck on the island. We also found a high frequency of a unique indica type in Madagascar that shows clear population differentiation from most of the sampled Asian landraces, as well as differential exchange of alleles between Asia and Madagascar populations of the tropical japonica subspecies. Finally, despite partial reproductive isolation between japonica and indica, there was evidence of indica/japonica recombination resulting from their hybridization on the island.
Collapse
Affiliation(s)
- Kristie A Mather
- Department of Biology and Center for Genomics and Systems Biology, 1009 Silver, 100 Washington Square East, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
WANG Y, CHENG LR, SUN Y, ZHOU Z, ZHU LH, XU ZJ, XU JL, LI ZK. Effect of Genetic Background on QTLs for Heading Date and Plant Height and Interactions Between QTL and Environment Using Reciprocal Introgression Lines in Rice. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1875-2780(08)60095-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
|
39
|
Kubo T, Yamagata Y, Eguchi M, Yoshimura A. A novel epistatic interaction at two loci causing hybrid male sterility in an inter-subspecific cross of rice (Oryza sativa L.). Genes Genet Syst 2009; 83:443-53. [PMID: 19282622 DOI: 10.1266/ggs.83.443] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Postzygotic reproductive isolation (RI) often arises in inter-subspecific crosses as well as inter-specific crosses of rice (Oryza sativa L.). To further understand the genetic architecture of the postzygotic RI, we analyzed genes causing hybrid sterility and hybrid breakdown in a rice inter-subspecific cross. Here we report hybrid male sterility caused by epistatic interaction between two novel genes, S24 and S35, which were identified on rice chromosomes 5 and 1, respectively. Genetic analysis using near-isogenic lines (NILs) carrying IR24 (ssp. indica) segments with Asominori (ssp. japonica) genetic background revealed a complicated aspect of the epistasis. Allelic interaction at the S24 locus in the heterozygous plants caused abortion of male gametes carrying the Asominori allele (S24-as) independent of the S35 genotype. On the other hand, male gametes carrying the Asominori allele at the S35 locus (S35-as) showed abortion only when the IR24 allele at the S24 locus (S24-ir) was concurrently introgressed into the S35 heterozygous plants, indicating that the sterility phenotype due to S35 was dependent on the S24 genotype through negative epistasis between S24-ir and S35-as alleles. Due to the interaction between S24 and S35, self-pollination of the double heterozygous plants produced pollen-sterile progeny carrying the S24-ir/S24-ir S35-as/S35-ir genotype in addition to the S24 heterozygous plants. This result suggests that the S35 gene might function as a modifier of S24. This study presents strong evidence for the importance of epistatic interaction as a part of the genetic architecture of hybrid sterility in rice. In addition, it suggests that diverse systems have been developed as postzygotic RI mechanisms within the rice.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Breeding Laboratory, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University, Japan.
| | | | | | | |
Collapse
|
40
|
Luo X, Fu Y, Zhang P, Wu S, Tian F, Liu J, Zhu Z, Yang J, Sun C. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:393-408. [PMID: 21452591 DOI: 10.1111/j.1744-7909.2008.00807.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A set of 148 F9 recombinant inbred lines (RILs) was developed from the cross of an indica cultivar 93-11 and japonica cultivar DT713, showing strong F1 heterosis. Subsequently, two backcross F1 (BCF1) populations were constructed by backcrossing these 148 RILs to two parents, 93-11 and DT713. These three related populations (281BCF1 lines, 148 RILs) were phenotyped for six yield-related traits in two locations. Significant inbreeding depression was detected in the population of RILS and a high level of heterosis was observed in the two BCF1 populations. A total of 42 main-effect quantitative trait loci (M-QTLs) and 109 epistatic effect QTL pairs (E-QTLs) were detected in the three related populations using the mixed model approach. By comparing the genetic effects of these QTLs detected in the RILs, BCF1 performance and mid-parental heterosis (HMP), we found that, in both BCF1 populations, the QTLs detected could be classified into two predominant types: additive and over-dominant loci, which indicated that the additive and over-dominant effect were more important than complete or partially dominance for M-QTLs and E-QTLs. Further, we found that the E-QTLs detected collectively explained a larger portion of the total phenotypic variation than the M-QTLs in both RILs and BCF1 populations. All of these results suggest that additive and over-dominance resulting from epistatic loci might be the primary genetic basis of heterosis in rice.
Collapse
Affiliation(s)
- Xiaojin Luo
- Department of Plant Genetics and Breeding and State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li S, Tan Y, Wang K, Wan C, Zhu Y. Gametophytically alloplasmic CMS line of rice (Oryza sativa L.) with variant orfH79 haplotype corresponds to specific fertility restorer. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1389-1397. [PMID: 18762904 DOI: 10.1007/s00122-008-0872-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/15/2008] [Indexed: 05/26/2023]
Abstract
For years discovery and identification of the cytoplasmic male sterility (CMS) resource in wild rice is the most intriguing events in breeding field. orfH79, a chimeric gene in mitochondria, has been suggested being the determinant for Honglian CMS in rice. In this report orfH79 gene as molecular marker to screen the wild rice, we found eight accessions with orfH79 gene in the total 42 investigated objects. Sequence analysis revealed that there were a total of nine nucleotide substitutions resulting in the change of nine amino acids in the newly identified orfH79 in wild rice, which further fell into seven haplotypes. In order to investigate the underlying relationship between orfH79 haplotypes and the corresponding fertility restorers, four accessions were selected with different orfH79 haplotype as female parents to hybridize the Honglian maintainer line, Yuetai B. After eight consecutive recurrent backcrosses, four alloplasmic CMS lines with different orfH79 haplotype were developed. Microscopic observation exhibited that their pollen grains were spherical and clear in 1% I(2)-KI solution same as that of Honglian CMS line. Moreover, these four CMS lines displayed various fertility restoring model through test cross, suggesting that each orfH79 haplotye represents a new CMS type and corresponds to their specific Rf allele.
Collapse
Affiliation(s)
- Shaoqing Li
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, 430072, Wuhan, People's Republic of China.
| | | | | | | | | |
Collapse
|
42
|
Koide Y, Ikenaga M, Sawamura N, Nishimoto D, Matsubara K, Onishi K, Kanazawa A, Sano Y. The evolution of sex-independent transmission ratio distortion involving multiple allelic interactions at a single locus in rice. Genetics 2008; 180:409-20. [PMID: 18723891 PMCID: PMC2535691 DOI: 10.1534/genetics.108.090126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/24/2008] [Indexed: 11/18/2022] Open
Abstract
Transmission ratio distortion (TRD) is frequently observed in inter- and intraspecific hybrids of plants, leading to a violation of Mendelian inheritance. Sex-independent TRD (siTRD) was detected in a hybrid between Asian cultivated rice and its wild ancestor. Here we examined how siTRD caused by an allelic interaction at a specific locus arose in Asian rice species. The siTRD is controlled by the S6 locus via a mechanism in which the S6 allele acts as a gamete eliminator, and both the male and female gametes possessing the opposite allele (S6a) are aborted only in heterozygotes (S6/S6a). Fine mapping revealed that the S6 locus is located near the centromere of chromosome 6. Testcross experiments using near-isogenic lines (NILs) carrying either the S6 or S6a alleles revealed that Asian rice strains frequently harbor an additional allele (S6n) the presence of which, in heterozygotic states (S6/S6n and S6a/S6n), does not result in siTRD. A prominent reduction in the nucleotide diversity of S6 or S6a carriers relative to that of S6n carriers was detected in the chromosomal region. These results suggest that the two incompatible alleles (S6 and S6a) arose independently from S6n and established genetically discontinuous relationships between limited constituents of the Asian rice population.
Collapse
Affiliation(s)
- Yohei Koide
- Plant Breeding Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Meffert LM, Hicks SK, Regan JL. Nonadditive genetic effects in animal behavior. Am Nat 2008; 160 Suppl 6:S198-213. [PMID: 18707477 DOI: 10.1086/342896] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heritabilities, commonly used to predict evolutionary potential, are notoriously low for behaviors. Apart from strong contributions of environmental variance in reducing heritabilities, the additive genetic components can be very low, especially when they are camouflaged by nonadditive genetic effects. We first report the heritabilities of courtship traits in founder-flush and control populations of the housefly (Musca domestica L.). We estimated the heritability of each male and female display through the regression of the courtships involving daughters and sons (with randomly selected mates) onto the "midparental" courtship values of their parents. Overall, the average heritability was significantly (P = .012) higher for the parent-daughter assays than for the parent-son assays. We attributed the low (even negative) heritabilities to genotype-by-environment interactions whereby the male's behavior is influenced by the "environment" of his mating partner's preferences for the display, generating epistasis through indirect genetic effects. Moreover, bottlenecked lines had up to 800% of the heritability of the controls, suggesting "conversion" of additive genetic variance from nonadditive components. Second, we used line-cross assays on separate populations that had been selected for divergence in mating behavior to identify dominance and epistasis through heterosis and outbreeding depression in courtship. Finally, our literature review confirms the prevalence of such low heritabilities (i.e., a conservative mean of 0.38) and nonadditive genetics in other behavioral repertoires (64% of the studies). We conclude that animal behavior is especially prone to the gamut of quantitative genetic complexities that can result in negative heritabilities, negative selection responses, inbreeding depression, conversion, heterosis, and outbreeding depression.
Collapse
Affiliation(s)
- Lisa M Meffert
- Department of Ecology and Evolutionary Biology, Rice University, MS 170, Box 1892, Houston, Texas 77251-1892, USA
| | | | | |
Collapse
|
44
|
Jiang W, Chu SH, Piao R, Chin JH, Jin YM, Lee J, Qiao Y, Han L, Piao Z, Koh HJ. Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:1117-1127. [PMID: 18335199 DOI: 10.1007/s00122-008-0740-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 02/25/2008] [Indexed: 05/26/2023]
Abstract
Hybrid breakdown (HB), a phenomenon of reduced viability or fertility accompanied with retarded growth in hybrid progenies, often arises in the offspring of intersubspecific hybrids between indica and japonica in rice. We detected HB plants in F8 recombinant inbred lines derived from the cross between an indica variety, Milyang 23, and a japonica variety, Tong 88-7. HB plants showed retarded growth, with fewer tillers and spikelets. Genetic analysis revealed that HB was controlled by the complementary action of two recessive genes, hwh1 and hwh2, originating from each of both parents, which were fine-mapped on the short arm of chromosome 2 and on the near centromere region of the long arm of chromosome 11, respectively. A comparison of the sequences of candidate genes among both parents and HB plants revealed that hwh1 encoded a putative glucose-methanol-choline oxidoreductase with one amino acid change compared to Hwh1 and that hwh2 probably encoded a putative hexose transporter with a six amino acid insertion compared to Hwh2. Investigation of the distribution of these alleles among 54 japonica and indica cultivars using candidate gene-based markers suggested that the two loci might be involved in developing reproductive barriers between two subspecies.
Collapse
Affiliation(s)
- Wenzhu Jiang
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Koide Y, Onishi K, Kanazawa A, Sano Y. Genetics of Speciation in Rice. RICE BIOLOGY IN THE GENOMICS ERA 2008. [DOI: 10.1007/978-3-540-74250-0_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Moyle LC. Genetic underpinnings of postzygotic reproductive barriers among plants. THE NEW PHYTOLOGIST 2008; 179:572-574. [PMID: 18715322 DOI: 10.1111/j.1469-8137.2008.02559.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Leonie C Moyle
- Indiana University, Bloomington, Department of Biology, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
47
|
Miura K, Yamamoto E, Morinaka Y, Takashi T, Kitano H, Matsuoka M, Ashikari M. The hybrid breakdown 1(t) locus induces interspecific hybrid breakdown between rice Oryza sativa cv. Koshihikari and its wild relative O. nivara. BREEDING SCIENCE 2008. [PMID: 0 DOI: 10.1270/jsbbs.58.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Kotaro Miura
- Bioscience and Biotechnology Center, Nagoya University
- Research Fellow of the Japan Society for the Promotion of Science
| | - Eiji Yamamoto
- Bioscience and Biotechnology Center, Nagoya University
| | | | | | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University
| | | | | |
Collapse
|
48
|
Koide Y, Onishi K, Nishimoto D, Baruah AR, Kanazawa A, Sano Y. Sex-independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. THE NEW PHYTOLOGIST 2008; 179:888-900. [PMID: 18507773 DOI: 10.1111/j.1469-8137.2008.02490.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
* A sex-independent transmission ratio distortion (siTRD) system detected in the interspecific cross in rice was analyzed in order to understand its significance in reproductive barriers. The S(1) gene, derived from African rice Oryza glaberrima, induced preferential abortion of both male and female gametes possessing its allelic alternative (), from Asian rice O. sativa, only in the heterozygote. * The siTRD was characterized by resolving it into mTRD and fTRD occurring through male and female gametes, respectively, cytological analysis of gametophyte development, and mapping of the S(1) locus using near-isogenic lines. The allelic distribution of the S(1) locus in Asian and African rice species complexes was also analyzed. * The siTRD system involved at least two components affecting male and female gametogeneses, respectively, including a modifier(s) that enhances fTRD. The chromosomal location of the major component causing the mTRD was delimited within an approx. 40 kb region. The S(1) locus induced hybrid sterility in any pairwise combination between Asian and African rice species complexes. * The allelic state of the S(1) locus has diverged between Asian and African rice species complexes, suggesting that the TRD system has a significant role in the reproductive barriers in rice.
Collapse
Affiliation(s)
- Yohei Koide
- Plant Breeding Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kazumitsu Onishi
- Plant Breeding Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Daisuke Nishimoto
- Plant Breeding Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Akhil Ranjan Baruah
- Plant Breeding Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Akira Kanazawa
- Laboratory of Cell Biology and Manipulation, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yoshio Sano
- Plant Breeding Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
49
|
|
50
|
Matsubara K, Ando T, Mizubayashi T, Ito S, Yano M. Identification and linkage mapping of complementary recessive genes causing hybrid breakdown in an intraspecific rice cross. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:179-86. [PMID: 17486310 DOI: 10.1007/s00122-007-0553-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 04/10/2007] [Indexed: 05/09/2023]
Abstract
One outcome of hybrid breakdown is poor growth, which we observed as a reduction in the number of panicles per plant and in culm length in an F(2) population derived from a cross between the genetically divergent rice (Oryza sativa L.) cultivars 'Sasanishiki' (japonica) and 'Habataki' (indica). Quantitative trait locus (QTL) analysis of the two traits and two-way ANOVA of the detected QTLs suggested that the poor growth was due mainly to an epistatic interaction between genes at QTLs located on chromosomes 2 and 11. The poor growth was likely to result when a plant was homozygous for the 'Habataki' allele at the QTL on chromosome 2 and homozygous for the 'Sasanishiki' allele at the QTL on chromosome 11. The results suggest that the poor growth found in the F(2) population was due to hybrid breakdown of a set of complementary genes. To test this hypothesis and determine the precise chromosomal location of the genes causing the hybrid breakdown, we performed genetic analyses using a chromosome segment substitution line, in which a part of chromosome 2 from 'Habataki' was substituted into the genetic background of 'Sasanishiki'. The segregation patterns of poor growth in plants suggested that both of the genes underlying the hybrid breakdown were recessive. The gene on chromosome 2, designated hybrid breakdown 2 (hbd2), was mapped between simple sequence repeat markers RM3515 and RM3730. The gene on chromosome 11, hbd3, was mapped between RM5824 and RM1341.
Collapse
Affiliation(s)
- K Matsubara
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | |
Collapse
|