1
|
Deraniyagala AS, Maier W, Parra M, Nanista E, Sowunmi DO, Hassan M, Chasen N, Sharma S, Lechtreck KF, Cole ES, Bernardes N, Chook YM, Gaertig J. Importin-9 and a TPR domain protein MpH drive periodic patterning of ciliary arrays in Tetrahymena. J Cell Biol 2025; 224:e202409057. [PMID: 40152790 PMCID: PMC11951933 DOI: 10.1083/jcb.202409057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
We explored how the number of structures is determined in an intracellular organelle series. In Tetrahymena, the oral apparatus contains three diagonal ciliary rows: M1, M2, and M3. During development, the M rows emerge by sequential segmentation of a group of basal bodies, starting with the longest and most anterior M1 and ending with the shortest and most posterior M3. The mpD-1 and mpH-1 alleles increase and decrease the number of M rows, respectively. We identify MpH as a TPR protein and MpD as an importin-9. Both proteins localize to the M rows and form concentration gradients. MpH is a row elongation factor whose loss shortens all M rows and often prevents the formation of M3. MpD limits row initiation after the emergence of M2. MpD could be a part of a negative feedback loop that limits row initiation when M1 assembly is properly advanced. We conclude that the forming oral apparatus has properties of a semi-autonomous intracellular developmental field.
Collapse
Affiliation(s)
| | - Wolfgang Maier
- Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Mireya Parra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Elise Nanista
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | | | - Michael Hassan
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Nathan Chasen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Sunita Sharma
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Eric S. Cole
- Biology Department, St. Olaf College, Northfield, MN, USA
| | - Natalia Bernardes
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuh Min Chook
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Akematsu T, Loidl J, Fukuda Y, Iwamoto M. Close cooperation between Semi1 and Semi2 proteins is essential for pronuclear positioning in Tetrahymena thermophila. Mol Biol Cell 2025; 36:ar23. [PMID: 39785685 DOI: 10.1091/mbc.e24-11-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
During sexual reproduction in the ciliate Tetrahymena thermophila, meiosis occurs in the germline micronucleus, resulting in the formation of four haploid micronuclei. Of these, only one is selected to evade autophagy, and subsequently migrates to the membrane junction with the partner cell for reciprocal pronuclear exchange. We previously demonstrated that the transmembrane protein Semi1 is essential for this nuclear migration. Semi1 is specifically expressed in mating cells and localizes to the periphery of the selected nucleus. Loss of Semi1 disrupts nuclear attachment to the junction, leading to infertility. However, the mechanism by which Semi1 positions the nucleus at the junction remains unclear. Here, we report that the Semi1-interacting protein, Semi2, is also necessary for proper nuclear positioning. Deletion of Semi2 results in the same nuclear mislocalization phenotype and infertility observed in Semi1 mutant cells. Semi2 colocalizes with Semi1, but in the absence of Semi1, Semi2 fails to exhibit perinuclear localization. The selected nucleus anchors to microtubules prior to migration, a process dependent on both Semi1 and Semi2. We propose a model in which Semi1 recruits Semi2 to the selected nucleus, facilitating the interaction between the nucleus and microtubules required for proper nuclear positioning at the membrane junction.
Collapse
Affiliation(s)
- Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan
- Department of Biology, Faculty of Science, Kanagawa University, Yokohama 221-8686, Japan
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna 1030, Austria
| | - Yasuhiro Fukuda
- Department of Biodiversity Science, Division of Biological Resource Science, Graduate School of Agricultural Science, Tohoku University, Oosaki 989-6711, Japan
| | - Masaaki Iwamoto
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan
| |
Collapse
|
3
|
Duan L, Li H, Ju A, Zhang Z, Niu J, Zhang Y, Diao J, Liu Y, Song N, Ma H, Kataoka K, Gao S, Wang Y. Methyl-dependent auto-regulation of the DNA N6-adenine methyltransferase AMT1 in the unicellular eukaryote Tetrahymena thermophila. Nucleic Acids Res 2025; 53:gkaf022. [PMID: 39868535 PMCID: PMC11760949 DOI: 10.1093/nar/gkaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
DNA N6-methyladenine (6mA) is a potential epigenetic mark involved in gene transcription in eukaryotes, yet the regulatory mechanism governing its methyltransferase (MTase) activity remains obscure. Here, we exploited the 6mA MTase AMT1 to elucidate its auto-regulation in the unicellular eukaryote Tetrahymena thermophila. The detailed endogenous localization of AMT1 in vegetative and sexual stages revealed a correlation between the 6mA reestablishment in the new MAC and the occurrence of zygotically expressed AMT1. Catalytically inactive AMT1 reduced 6mA level on the AMT1 gene and its expression, suggesting that AMT1 modulated its own transcription via 6mA. Furthermore, AMT1-dependent 6mA regulated the transcription of its target genes, thereby affecting cell fitness. Our findings unveil a positive feedback loop of transcriptional activation on the AMT1 gene and highlight the crucial role of AMT1-dependent 6mA in gene transcription.
Collapse
Affiliation(s)
- Lili Duan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Haicheng Li
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Aili Ju
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Zhe Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Junhua Niu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Yumiao Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Jinghan Diao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Yongqiang Liu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Honggang Ma
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Kensuke Kataoka
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Shan Gao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Yuanyuan Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
4
|
Cole ES, Maier W, Vo Huynh H, Reister B, Sowunmi DO, Chukka U, Lee C, Gaertig J. The 'Janus A' gene encodes a polo-kinase whose loss creates a dorsal/ventral intracellular homeosis in the ciliate, Tetrahymena. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629484. [PMID: 39763988 PMCID: PMC11702695 DOI: 10.1101/2024.12.19.629484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Genetic studies on the protist, Tetrahymena thermophila provide a glimpse into the unexpectedly rich world of intracellular patterning that unfolds within the ciliate cell cortex. Ciliate pattern studies provide a useful counterpoint to animal models of pattern formation in that the unicellular model draws attention away from fields of cells (or nuclei) as the principal players in the metazoan pattern paradigm, focusing instead on fields of ciliated basal bodies serving as sources of positional information. In this study, we identify JANA, a Polo kinase of Tetrahymena, that serves as an important factor driving global, circumferential pattern. Loss of function of JanA results in global, mirror-duplication of ventral organelles on the dorsal surface: a kind of intracellular homeosis that has been named the 'janus' phenotype. Gain of function (over-expression) reduces or even eliminates cortical organelles within the ventral 'hemi-cell'. GFP-tagging reveals that JanA decorates basal bodies predominantly within the left-dorsal hemi-cell. These results led us to propose a model in which the default state of cortical patterning is a mirror-image assemblage of cortical organelles including oral apparatus, contractile vacuole pores and cytoproct. JanA normally suppresses organelle assembly in the dorsal hemi-cellular cortex, resulting in a simple, ventral assemblage of these organelles, a 'half-pattern' as it were. PLK inhibitors produce a janus phenocopy, but reveal other unanticipated roles for PLK activities involving more local patterning events that control organelle dimensions and organization. We discuss results in light of metazoan studies in which PLK activity links cell cycle control to intracellular symmetry breaking.
Collapse
Affiliation(s)
- Eric S. Cole
- Biology Department, St. Olaf College, Northfield, MN 55057
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Huy Vo Huynh
- Biology Department, St. Olaf College, Northfield, MN 55057
| | | | | | - Uzoamaka Chukka
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
5
|
Legal T, Joachimiak E, Parra M, Peng W, Tam A, Black C, Valente-Paterno M, Brouhard G, Gaertig J, Wloga D, Bui KH. Structure of the ciliary tip central pair reveals the unique role of the microtubule-seam binding protein SPEF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626492. [PMID: 39677611 PMCID: PMC11642885 DOI: 10.1101/2024.12.02.626492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Motile cilia are unique organelles with the ability to autonomously move. Force generated by beating cilia propels cells and moves fluids. The ciliary skeleton is made of peripheral doublet microtubules and a central pair (CP) with a distinct structure at the tip. In this study, we present a high-resolution structure of the CP in the ciliary tip of the ciliate Tetrahymena thermophila and identify several tip proteins that bind and form unique patterns on both microtubules of the tip CP. Two of those proteins that contain tubulin polymerization-promoting protein (TPPP)-like domains, TLP1 and TLP2, bind to high curvature regions of the microtubule. TLP2, which contains two TPPP-like domains, is an unusually long protein that wraps laterally around half a microtubule and forms the bridge between the two microtubules. Moreover, we found that the conserved protein SPEF1 binds to both microtubule seams. In vitro, human SPEF1 not only binds to the microtubule seam but also crosslinks two parallel microtubules. Single-molecule microtubule dynamics assays indicate that SPEF1 stabilizes microtubules in vitro. Together, these data show that the proteins in the tip CP maintain stable microtubule structure and probably play important roles in maintaining the integrity of the axoneme.
Collapse
Affiliation(s)
- Thibault Legal
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, 02-093 Warsaw, Poland
| | - Mireya Parra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Wang Peng
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Amanda Tam
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Corbin Black
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | | | - Gary Brouhard
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, 02-093 Warsaw, Poland
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, Québec, Canada
| |
Collapse
|
6
|
Jiang YY, Kumar S, Turkewitz AP. The secretory pathway in Tetrahymena is organized for efficient constitutive secretion at ciliary pockets. iScience 2024; 27:111123. [PMID: 39498308 PMCID: PMC11532953 DOI: 10.1016/j.isci.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
In ciliates, membrane cisternae called alveoli interpose between the plasma membrane and the cytoplasm, posing a barrier to endocytic and exocytic membrane trafficking. One exception to this barrier is plasma membrane invaginations called parasomal sacs, which are adjacent to ciliary basal bodies. By following a fluorescent secretory marker called ESCargo, we imaged secretory compartments and secretion in these cells. A cortical endoplasmic reticulum is organized along cytoskeletal ridges and cradles a cohort of mitochondria. One cohort of Golgi are highly mobile in a subcortical layer, while the remainder appear stably positioned at periodic sites close to basal bodies, except near the cell tip where, interestingly, Golgi are more closely spaced. Strikingly, ESCargo secretion was readily visible at positions aligned with basal bodies and parasomal sacs. Thus peri-ciliary zones in ciliates are organized, like ciliary pockets in the highly unrelated trypanosomids, as unique hubs of exo-endocytic trafficking.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- AbCellera Boston, Inc. 91 Mystic St, Arlington, MA 02474, USA
| | - Santosh Kumar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, Maharashtra State 411007, India
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Durocher AF, Paquet VE, St-Laurent RE, Duchaine C, Charette SJ. Impact of Predation by Ciliate Tetrahymena borealis on Conjugation in Aeromonas salmonicida subsp. salmonicida. Antibiotics (Basel) 2024; 13:960. [PMID: 39452226 PMCID: PMC11504919 DOI: 10.3390/antibiotics13100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antibiotic resistance gene (ARG) spread is driven by horizontal gene transfer (HGT). Ciliated protozoa may contribute to this process, as their predation has been shown to facilitate HGT in certain bacteria. Here, this phenomenon was further investigated using A. salmonicida subsp. salmonicida. This fish pathogen bears an extensive and dynamic plasmidome, suggesting a high potential for HGT. METHODS A. salmonicida strains carrying one of three conjugative plasmids bearing ARGs (pSN254b, pRAS1b or pAsa4b) were cocultured with a recipient, either A. salmonicida, E. coli or A. hydrophila. Conjugation rates were assessed in the presence and absence of the ciliate Tetrahymena borealis. PCR genotyping confirmed the acquisition of the conjugative plasmids and was used to verify the mobilization of other plasmids. RESULTS The basal rate of conjugation observed was high. Under the conditions studied, ciliate predation did not appear to influence the conjugation rate, except at higher proportions of ciliates, which typically hampered conjugation. Microscopy revealed that most bacteria were digested in these conditions. PCR screening demonstrated that small mobilizable plasmids from A. salmonicida (pAsa1, pAsa2, pAsa3, and pAsal1) were acquired by the recipients along with the conjugative plasmids, with a slight effect of the ciliates in some donor/recipient cell combination. CONCLUSIONS These results highlight how A. salmonicida can conjugate efficiently with different species and how complex its relationship with ciliates is.
Collapse
Affiliation(s)
- Alicia F. Durocher
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université Laval, Québec, QC G1V 4G5, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Valérie E. Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rébecca E. St-Laurent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Duchaine
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université Laval, Québec, QC G1V 4G5, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Lometto S, Sparvoli D, Malengo G, Heimerl T, Hochberg GKA. The mitochondrial citrate synthase from Tetrahymena thermophila does not form an intermediate filament. Eur J Protistol 2024; 96:126121. [PMID: 39432950 DOI: 10.1016/j.ejop.2024.126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
The mitochondrial citrate synthase (mCS) purified from the ciliate Tetrahymena thermophila has been reported to form intermediate-filament-like structures during conjugation and to self-assemble into fibers when recombinantly expressed. This would represent a rare example of a tractable and recent origin of a novel cytoskeletal element. In an attempt to investigate the evolutionary emergence of this behavior, we re-investigated the ability of Tetrahymena's mCS to form filaments in vivo. Using strep-tagged mCS in Tetrahymena and monoclonal antibodies, we found no evidence of filamentous structures during conjugation or starvation. Extensive biochemical characterization of mCS revealed that the self-assembly of recombinant protein is triggered by a specific chemical moiety shared by MES and HEPES buffers used in previous studies. The absence of indicative phenotypes in fiber-deficient GFP-tagged mutants indicates that Tetrahymena mCS did not evolve a structural role in sexual reproduction or metabolic regulation.
Collapse
Affiliation(s)
- Stefano Lometto
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniela Sparvoli
- Laboratory of Pathogen Host Interactions, UMR5294, Université de Montpellier, INSERM, CNRS, Montpellier, Pl E. Bataillon Bat. 24 2et, CC107, Montpellier 34095, France
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany; Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany.
| |
Collapse
|
9
|
Guerrier S, Patterson M, Crofton K, Tucker M, Walker S. Dynamic Localization of Endoplasmic Reticulum during Tetrahymena Conjugation. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001300. [PMID: 39410966 PMCID: PMC11474315 DOI: 10.17912/micropub.biology.001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Changes in lipid composition at membrane fusion sites in mating Tetrahymena are thought to involve the endoplasmic reticulum (ER), but its localization to these sites has not been observed. Here we show ER distribution during Tetrahymena mating using TtRET1-GFP and GFP-KDEL. We find that both markers localize to perinuclear membranes and tubular structures that connect perinuclear membrane to plasma membrane at fusion sites. Interestingly, both markers disappear from parental macronuclei after emergence of zygotic macronuclei. These similarities in localization of established ER marker, GFP-KDEL, and TtRET1-GFP reveal TtRET1-GFP as a useful new live cell marker for the ER in Tetrahymena.
Collapse
Affiliation(s)
- Sabrice Guerrier
- Department of Biology, Rollins College, Winter Park, Florida, United States
| | - Michael Patterson
- Department of Chemistry and Biochemistry, Millsaps College, Jackson, Mississippi, United States
| | - Kaitlin Crofton
- Department of Biology, Rollins College, Winter Park, Florida, United States
| | - Michael Tucker
- Department of Biology, Rollins College, Winter Park, Florida, United States
| | - Shyhiem Walker
- Department of Biology, Rollins College, Winter Park, Florida, United States
| |
Collapse
|
10
|
Watanabe Y, Asada M, Inokuchi M, Kotake M, Yoshinaga T. Target Protein Expression on Tetrahymena thermophila Cell Surface Using the Signal Peptide and GPI Anchor Sequences of the Immobilization Antigen of Cryptocaryon irritans. Mol Biotechnol 2024; 66:1907-1918. [PMID: 37480447 PMCID: PMC11282128 DOI: 10.1007/s12033-023-00824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Cryptocaryoniasis, caused by Cryptocaryon irritans, is a significant threat to marine fish cultures in tropical and subtropical waters. However, controlling this disease remains a challenge. Fish infected with C. irritans acquires immunity; however, C. irritans is difficult to culture in large quantities, obstructing vaccine development using parasite cells. In this study, we established a method for expressing an arbitrary protein on the surface of Tetrahymena thermophila, a culturable ciliate, to develop a mimetic C. irritans. Fusing the signal peptide (SP) and glycosylphosphatidylinositol (GPI) anchor sequences of the immobilization antigen, a surface protein of C. irritans, to the fluorescent protein, monomeric Azami-green 1 (mAG1) of the stony coral Galaxea fascicularis, allowed protein expression on the surface and cilia of transgenic Tetrahymena cells. This technique may help develop transgenic Tetrahymena displaying parasite antigens on their cell surface, potentially contributing to the development of vaccines using "mimetic parasites".
Collapse
Affiliation(s)
- Yuho Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Maho Kotake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomoyoshi Yoshinaga
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
11
|
Dündar Orhan Y, Üstüntanır Dede AF, Duran Ş, Arslanyolu M. Use of E-64 cysteine protease inhibitor for the recombinant protein production in Tetrahymena thermophila. Eur J Protistol 2024; 94:126085. [PMID: 38703600 DOI: 10.1016/j.ejop.2024.126085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Tetrahymena thermophila is an alternative organism for recombinant protein production. However, the production efficiency in T. thermophila is quite low mainly due to the rich cysteine proteases. In this study, we studied whether supplementation of the E-64 inhibitor to T. thermophila cultures increases the recombinant protein production efficiency without any toxic side effects. Our study showed that supplementation of E-64 had no lethal effects on T. thermophila cells in flask culture at 30 °C and 38 °C. In vitro protease activity analysis using secretome as protease enzyme source from E-64-supplemented cell cultures showed a reduced protein substrate degradation using bovine serum albumin, rituximab, and milk lactoglobulin proteins. E-64 also prevented proteolysis of the recombinantly produced and secreted TtmCherry2-sfGFP fusion protein at some level. This reduced inhibitory effect of E-64 could be due to genetic compensation of the inhibited proteases. As a result, the 5 µM concentration of E-64 was found to be a non-toxic protease inhibitory supplement to improve extracellular recombinant protein production efficiency in T. thermophila. This study suggests that the use of E-64 may increase the efficiency of extracellular recombinant protein production by continuously reducing extracellular cysteine protease activity during cultivation.
Collapse
Affiliation(s)
- Yeliz Dündar Orhan
- Department of Advanced Technologies, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Turkey.
| | - Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Turkey.
| | - Şeyma Duran
- Department of Molecular Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskişehir 26470, Turkey.
| |
Collapse
|
12
|
Xiong W, Wei W, He M, Hu B, Men J, Tu J, Miao W. Construction of Tetrahymena strains with highly active arsenic methyltransferase genes for arsenic detoxification in aquatic environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116258. [PMID: 38547732 DOI: 10.1016/j.ecoenv.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Biomethylation is an effective means of arsenic detoxification by organisms living in aquatic environments. Ciliated protozoa (including Tetrahymena species) play an important role in the biochemical cycles of aquatic ecosystems and have a potential application in arsenic biotransformation. This study compared arsenic tolerance, accumulation, methylation, and efflux in 11 Tetrahymena species. Nineteen arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase (arsM) genes, of which 12 are new discoveries, were identified, and protein sequences were studied. We then constructed recombinant cell lines based on the Tetrahymena thermophila (T. thermophila) wild-type SB210 strain and expressed each of the 19 arsM genes under the control of the metal-responsive the MTT1 promoter. In the presence of Cd2+ and As(V), expression of the arsM genes in the recombinant cell lines was much higher than in the donor species. Evaluation of the recombinant cell line identified one with ultra-high arsenic methylation enzyme activity, significantly higher arsenic methylation capacity and much faster methylation rate than other reported arsenic methylated organisms, which methylated 89% of arsenic within 6.5 h. It also had an excellent capacity for the arsenic detoxification of lake water containing As(V), 56% of arsenic was methylated at 250 μg/L As(V) in 48 h. This study has made a significant contribution to our knowledge on arsenic metabolism in protozoa and demonstrates the great potential to use Tetrahymena species in the arsenic biotransformation of aquatic environments.
Collapse
Affiliation(s)
- Wenjun Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Man He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Men
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiawei Tu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China.
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
13
|
Ma Y, Yan G, Zhang J, Xiong J, Miao W. Cip1, a CDK regulator, determines heterothallic mating or homothallic selfing in a protist. Proc Natl Acad Sci U S A 2024; 121:e2315531121. [PMID: 38498704 PMCID: PMC10990102 DOI: 10.1073/pnas.2315531121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Mating type (sex) plays a crucial role in regulating sexual reproduction in most extant eukaryotes. One of the functions of mating types is ensuring self-incompatibility to some extent, thereby promoting genetic diversity. However, heterothallic mating is not always the best mating strategy. For example, in low-density populations or specific environments, such as parasitic ones, species may need to increase the ratio of potential mating partners. Consequently, many species allow homothallic selfing (i.e., self-fertility or intraclonal mating). Throughout the extensive evolutionary history of species, changes in environmental conditions have influenced mating strategies back and forth. However, the mechanisms through which mating-type recognition regulates sexual reproduction and the dynamics of mating strategy throughout evolution remain poorly understood. In this study, we show that the Cip1 protein is responsible for coupling sexual reproduction initiation to mating-type recognition in the protozoal eukaryote Tetrahymena thermophila. Deletion of the Cip1 protein leads to the loss of the selfing-avoidance function of mating-type recognition, resulting in selfing without mating-type recognition. Further experiments revealed that Cip1 is a regulatory subunit of the Cdk19-Cyc9 complex, which controls the initiation of sexual reproduction. These results reveal a mechanism that regulates the choice between mating and selfing. This mechanism also contributes to the debate about the ancestral state of sexual reproduction.
Collapse
Affiliation(s)
- Yang Ma
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Guanxiong Yan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Jing Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan430072, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Key laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing210000, China
- Institute of Hydrobiology, Hubei Hongshan Laboratory, Wuhan430000, China
| |
Collapse
|
14
|
Woodcock MR, Powers K, Snead K, Pellettieri J. Flatworm Transcriptomes Reveal Widespread Parasitism by Histophagous Ciliates. Genome Biol Evol 2024; 16:evae007. [PMID: 38242711 PMCID: PMC10837001 DOI: 10.1093/gbe/evae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Unicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These "histophages" feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries. From 2,615,036 screened ESTs, we identified nearly 6,000 high-confidence ciliate transcripts, supporting parasitism of seven additional flatworm species. We also cultured and identified Tetrahymena from nine terrestrial and freshwater planarians, including invasive earthworm predators from the genus Bipalium and the widely studied regeneration models Dugesia japonica and Schmidtea mediterranea. A co-phylogenetic reconstruction provides strong evidence for the coevolution of histophagous Ciliophora with their Platyhelminthes hosts. We further report the antiprotozoal aminoglycoside paromomycin expels Tetrahymena from S. mediterranea, providing new opportunities to investigate the effects of this relationship on planarian biology. Together, our findings raise the possibility that invasive flatworms constitute a novel dispersal mechanism for Tetrahymena parasites and position the Platyhelminthes as an ideal model phylum for studying the ecology and evolution of histophagous ciliates.
Collapse
Affiliation(s)
- M Ryan Woodcock
- Department of Biology, Keene State College, Keene, NH, USA
- Department of Science, Mathematics and Technology, Medaille University, Buffalo, NY, USA
- Department of Natural Science, Trocaire College, Buffalo, NY, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kirsten Snead
- Department of Science, Mathematics and Technology, Medaille University, Buffalo, NY, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
15
|
Cheng CY, Romero DP, Zoltner M, Yao MC, Turkewitz AP. Structure and dynamics of the contractile vacuole complex in Tetrahymena thermophila. J Cell Sci 2023; 136:jcs261511. [PMID: 37902010 PMCID: PMC10729820 DOI: 10.1242/jcs.261511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
The contractile vacuole complex (CVC) is a dynamic and morphologically complex membrane organelle, comprising a large vesicle (bladder) linked with a tubular reticulum (spongiome). CVCs provide key osmoregulatory roles across diverse eukaryotic lineages, but probing the mechanisms underlying their structure and function is hampered by the limited tools available for in vivo analysis. In the experimentally tractable ciliate Tetrahymena thermophila, we describe four proteins that, as endogenously tagged constructs, localize specifically to distinct CVC zones. The DOPEY homolog Dop1p and the CORVET subunit Vps8Dp localize both to the bladder and spongiome but with different local distributions that are sensitive to osmotic perturbation, whereas the lipid scramblase Scr7p colocalizes with Vps8Dp. The H+-ATPase subunit Vma4 is spongiome specific. The live imaging permitted by these probes revealed dynamics at multiple scales including rapid exchange of CVC-localized and soluble protein pools versus lateral diffusion in the spongiome, spongiome extension and branching, and CVC formation during mitosis. Although the association with DOP1 and VPS8D implicate the CVC in endosomal trafficking, both the bladder and spongiome might be isolated from bulk endocytic input.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel P. Romero
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martin Zoltner
- Biotechnology Biomedicine Centre of the Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Cheng CY, Hernández J, Turkewitz AP. VPS8D, a CORVET subunit, is required to maintain the contractile vacuole complex in Tetrahymena thermophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566071. [PMID: 37986963 PMCID: PMC10659352 DOI: 10.1101/2023.11.07.566071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Contractile vacuole complexes (CVCs) are complex osmoregulatory organelles, with vesicular (bladder) and tubular (spongiome) subcompartments. The mechanisms that underlie their formation and maintenance within the eukaryotic endomembrane network are poorly understood. In the Ciliate Tetrahymena thermophila, six differentiated CORVETs (class C core vacuole/endosome tethering complexes), with Vps8 subunits designated A-F, are likely to direct endosomal trafficking. Vps8Dp localizes to both bladder and spongiome. We show by inducible knockdown that VPS8D is essential to CVC organization and function. VPS8D knockdown increased susceptibility to osmotic shock, tolerated in the wildtype but triggering irreversible lethal swelling in the mutant. The knockdown rapidly triggered contraction of the spongiome and lengthened the period of the bladder contractile cycle. More prolonged knockdown resulted in disassembly of both the spongiome and bladder, and dispersal of proteins associated with those compartments. In stressed cells where the normally singular bladder is replaced by numerous vesicles bearing bladder markers, Vps8Dp concentrated conspicuously at long-lived inter-vesicle contact sites, consistent with tethering activity. Similarly, Vps8Dp in cell-free preparations accumulated at junctions formed after vacuoles came into close contact. Also consistent with roles for Vps8Dp in tethering and/or fusion were the emergence in knockdown cells of multiple vacuole-related structures, replacing the single bladder.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Josefina Hernández
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Üstüntanır Dede AF, Arslanyolu M. Recombinant production of hormonally active human insulin from pre-proinsulin by Tetrahymena thermophila. Enzyme Microb Technol 2023; 170:110303. [PMID: 37562115 DOI: 10.1016/j.enzmictec.2023.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Alternative cell factories, such as the unicellular ciliate eukaryotic Tetrahymena thermophila, may be required for the production of protein therapeutics that are challenging to produce in conventional expression systems. T. thermophila (Tt) can secrete proteins with the post-translational modifications necessary for their function in humans. In this study, we tested if T. thermophila could process the human pre-proinsulin to produce hormonally active human insulin (hINS) with correct modifications. Flask and bioreactor culture of T. thermophila were used to produce the recombinant Tt-hINS either with or without an affinity tag from a codon-adapted pre-proinsulin sequence. Our results indicate that T. thermophila can produce a 6 kDa Tt-hINS monomer with the appropriate disulfide bonds after removal of the human insulin signal sequence or endogenous phospholipase A signal sequence, and the C-peptide of the human insulin. Additionally, Tt-hINS can form 12 kDa dimeric, 24 kDa tetrameric, and 36 kDa hexameric complexes. Tt-hINS-sfGFP fusion protein was localized to the vesicles within the cytoplasm and was secreted extracellularly. Assessing the affinity-purified Tt-hINS activity using the in vivo T. thermophila extracellular glucose drop assay, we observed that Tt-hINS induced a significant reduction (approximately 21 %) in extracellular glucose levels, indicative of its functional insulin activity. Our results demonstrate that T. thermophila is a promising candidate for the pharmaceutical and biotechnology industries as a host organism for the production of human protein drugs.
Collapse
Affiliation(s)
- Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskisehir 26470, Turkey,.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskisehir 26470, Turkey.
| |
Collapse
|
18
|
Woodcock MR, Powers K, Snead K, Pellettieri J. FLATWORM TRANSCRIPTOMES REVEAL WIDESPREAD PARASITISM BY HISTOPHAGOUS CILIATES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558123. [PMID: 37745455 PMCID: PMC10516030 DOI: 10.1101/2023.09.17.558123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Unicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These 'histophages' feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries. From 2,615,036 screened ESTs, we identified nearly 6,000 high-confidence ciliate transcripts, supporting parasitism of seven additional flatworm species. We also cultured and identified Tetrahymena from nine terrestrial and freshwater planarians, including invasive earthworm predators from the genus Bipalium and the widely studied regeneration models Dugesia japonica and Schmidtea mediterranea. A cophylogenetic reconstruction provides strong evidence for coevolution of histophagous Ciliophora with their Platyhelminthes hosts. We further report the antiprotozoal aminoglycoside paromomycin expels Tetrahymena from S. mediterranea, providing new opportunities to investigate the effects of this relationship on planarian biology. Together, our findings raise the possibility that invasive flatworms constitute a novel dispersal mechanism for Tetrahymena parasites and position the Platyhelminthes as an ideal model phylum for studying the ecology and evolution of histophagous ciliates.
Collapse
Affiliation(s)
- M. Ryan Woodcock
- Department of Biology, Keene State College, Keene, NH, USA
- Department of Science, Mathematics & Technology, Medaille University, Buffalo, NY, USA
- Department of Natural Science, Trocaire College, Buffalo, NY, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kirsten Snead
- Department of Science, Mathematics & Technology, Medaille University, Buffalo, NY, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
19
|
Cole ES, Maier W, Joachimiak E, Jiang YY, Lee C, Collet E, Chmelik C, Romero DP, Chalker D, Alli NK, Ruedlin TM, Ozzello C, Gaertig J. The Tetrahymena bcd1 mutant implicates endosome trafficking in ciliate, cortical pattern formation. Mol Biol Cell 2023; 34:ar82. [PMID: 37163326 PMCID: PMC10398878 DOI: 10.1091/mbc.e22-11-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/15/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
Ciliates, such as Tetrahymena thermophila, evolved complex mechanisms to determine both the location and dimensions of cortical organelles such as the oral apparatus (OA: involved in phagocytosis), cytoproct (Cyp: for eliminating wastes), and contractile vacuole pores (CVPs: involved in water expulsion). Mutations have been recovered in Tetrahymena that affect both the localization of such organelles along anterior-posterior and circumferential body axes and their dimensions. Here we describe BCD1, a ciliate pattern gene that encodes a conserved Beige-BEACH domain-containing protein a with possible protein kinase A (PKA)-anchoring activity. Similar proteins have been implicated in endosome trafficking and are linked to human Chediak-Higashi syndrome and autism. Mutations in the BCD1 gene broaden cortical organelle domains as they assemble during predivision development. The Bcd1 protein localizes to membrane pockets at the base of every cilium that are active in endocytosis. PKA activity has been shown to promote endocytosis in other organisms, so we blocked clathrin-mediated endocytosis (using "dynasore") and inhibited PKA (using H89). In both cases, treatment produced partial phenocopies of the bcd1 pattern mutant. This study supports a model in which the dimensions of diverse cortical organelle assembly-platforms may be determined by regulated balance between constitutive exocytic delivery and PKA-regulated endocytic retrieval of organelle materials and determinants.
Collapse
Affiliation(s)
- Eric S. Cole
- Biology Department, St. Olaf College, Northfield, MN 55057
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Yu-yang Jiang
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA 30605
| | - Erik Collet
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Carl Chmelik
- Biology Department, St. Olaf College, Northfield, MN 55057
| | - Daniel P. Romero
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Chalker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63021
| | - Nurudeen K. Alli
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63021
| | - Tina M. Ruedlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63021
| | - Courtney Ozzello
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30605
| |
Collapse
|
20
|
Kubo S, Black CS, Joachimiak E, Yang SK, Legal T, Peri K, Khalifa AAZ, Ghanaeian A, McCafferty CL, Valente-Paterno M, De Bellis C, Huynh PM, Fan Z, Marcotte EM, Wloga D, Bui KH. Native doublet microtubules from Tetrahymena thermophila reveal the importance of outer junction proteins. Nat Commun 2023; 14:2168. [PMID: 37061538 PMCID: PMC10105768 DOI: 10.1038/s41467-023-37868-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
Cilia are ubiquitous eukaryotic organelles responsible for cellular motility and sensory functions. The ciliary axoneme is a microtubule-based cytoskeleton consisting of two central singlets and nine outer doublet microtubules. Cryo-electron microscopy-based studies have revealed a complex network inside the lumen of both tubules composed of microtubule-inner proteins (MIPs). However, the functions of most MIPs remain unknown. Here, we present single-particle cryo-EM-based analyses of the Tetrahymena thermophila native doublet microtubule and identify 42 MIPs. These data shed light on the evolutionarily conserved and diversified roles of MIPs. In addition, we identified MIPs potentially responsible for the assembly and stability of the doublet outer junction. Knockout of the evolutionarily conserved outer junction component CFAP77 moderately diminishes Tetrahymena swimming speed and beat frequency, indicating the important role of CFAP77 and outer junction stability in cilia beating generation and/or regulation.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Corbin S Black
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Shun Kai Yang
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Katya Peri
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Ahmad Abdelzaher Zaki Khalifa
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Avrin Ghanaeian
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Chelsea De Bellis
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Phuong M Huynh
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Zhe Fan
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Cfap91-Dependent Stability of the RS2 and RS3 Base Proteins and Adjacent Inner Dynein Arms in Tetrahymena Cilia. Cells 2022; 11:cells11244048. [PMID: 36552811 PMCID: PMC9776847 DOI: 10.3390/cells11244048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.
Collapse
|
22
|
Sparvoli D, Delabre J, Penarete‐Vargas DM, Kumar Mageswaran S, Tsypin LM, Heckendorn J, Theveny L, Maynadier M, Mendonça Cova M, Berry‐Sterkers L, Guérin A, Dubremetz J, Urbach S, Striepen B, Turkewitz AP, Chang Y, Lebrun M. An apical membrane complex for triggering rhoptry exocytosis and invasion in Toxoplasma. EMBO J 2022; 41:e111158. [PMID: 36245278 PMCID: PMC9670195 DOI: 10.15252/embj.2022111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Jason Delabre
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | | | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lev M Tsypin
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Justine Heckendorn
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Liam Theveny
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Marjorie Maynadier
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Marta Mendonça Cova
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Laurence Berry‐Sterkers
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jean‐François Dubremetz
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Serge Urbach
- IGFUniversité de Montpellier, CNRS, INSERMMontpellierFrance
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
| | - Yi‐Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Maryse Lebrun
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| |
Collapse
|
23
|
Tian M, Cai X, Liu Y, Liucong M, Howard-Till R. A practical reference for studying meiosis in the model ciliate Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:595-608. [PMID: 37078080 PMCID: PMC10077211 DOI: 10.1007/s42995-022-00149-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/28/2022] [Indexed: 05/03/2023]
Abstract
Meiosis is a critical cell division program that produces haploid gametes for sexual reproduction. Abnormalities in meiosis are often causes of infertility and birth defects (e.g., Down syndrome). Most organisms use a highly specialized zipper-like protein complex, the synaptonemal complex (SC), to guide and stabilize pairing of homologous chromosomes in meiosis. Although the SC is critical for meiosis in many eukaryotes, there are organisms that perform meiosis without a functional SC. However, such SC-less meiosis is poorly characterized. To understand the features of SC-less meiosis and its adaptive significance, the ciliated protozoan Tetrahymena was selected as a model. Meiosis research in Tetrahymena has revealed intriguing aspects of the regulatory programs utilized in its SC-less meiosis, yet additional efforts are needed for obtaining an in-depth comprehension of mechanisms that are associated with the absence of SC. Here, aiming at promoting a wider application of Tetrahymena for meiosis research, we introduce basic concepts and core techniques for studying meiosis in Tetrahymena and then suggest future directions for expanding the current Tetrahymena meiosis research toolbox. These methodologies could be adopted for dissecting meiosis in poorly characterized ciliates that might reveal novel features. Such data will hopefully provide insights into the function of the SC and the evolution of meiosis from a unique perspective. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00149-8.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Institute of Human Genetics, CNRS, University of Montpellier, 34090 Montpellier, France
| | - Xia Cai
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yujie Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Mingmei Liucong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Rachel Howard-Till
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA USA
| |
Collapse
|
24
|
Sanchez Granel ML, Siburu NG, Fricska A, Maldonado LL, Gargiulo LB, Nudel CB, Uttaro AD, Nusblat AD. A novel Tetrahymena thermophila sterol C-22 desaturase belongs to the Fatty Acid Hydroxylase/Desaturase superfamily. J Biol Chem 2022; 298:102397. [PMID: 35988640 PMCID: PMC9485055 DOI: 10.1016/j.jbc.2022.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Sterols in eukaryotic cells play important roles in modulating membrane fluidity and in cell signaling and trafficking. During evolution, a combination of gene losses and acquisitions gave rise to an extraordinary diversity of sterols in different organisms. The sterol C-22 desaturase identified in plants and fungi as a cytochrome P-450 monooxygenase evolved from the first eukaryotic cytochrome P450 and was lost in many lineages. Although the ciliate Tetrahymena thermophila desaturates sterols at the C-22 position, no cytochrome P-450 orthologs are present in the genome. Here, we aim to identify the genes responsible for the desaturation as well as their probable origin. We used gene knockout and yeast heterologous expression approaches to identify two putative genes, retrieved from a previous transcriptomic analysis, as sterol C-22 desaturases. Furthermore, we demonstrate using bioinformatics and evolutionary analyses that both genes encode a novel type of sterol C-22 desaturase that belongs to the large fatty acid hydroxylase/desaturase superfamily and the genes originated by genetic duplication prior to functional diversification. These results stress the widespread existence of nonhomologous isofunctional enzymes among different lineages of the tree of life as well as the suitability for the use of T. thermophila as a valuable model to investigate the evolutionary process of large enzyme families.
Collapse
Affiliation(s)
- María L Sanchez Granel
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Nicolás G Siburu
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, S2000FHQ, Rosario, Argentina
| | - Annamária Fricska
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Lucas L Maldonado
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Laura B Gargiulo
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Clara B Nudel
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, S2000FHQ, Rosario, Argentina.
| | - Alejandro D Nusblat
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Zhang J, Tian M, Chen K, Yan G, Xiong J, Miao W. Zfp1, a Cys2His2 zinc finger protein is required for meiosis initiation in Tetrahymena thermophila. Cell Cycle 2022; 21:1422-1433. [PMID: 35293272 PMCID: PMC9345619 DOI: 10.1080/15384101.2022.2053449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Meiosis is an important and highly conserved process that occurs during eukaryotic sexual reproduction. Diverse mechanisms are responsible for meiosis initiation among eukaryotes, and transcription factors have been established to have an important role in many species. However, the specific function of transcription factors in initiating meiosis in ciliates is unknown. Here we show that a putative Cys2His2 zinc finger-containing transcription factor encoded by the ZFP1 gene is specifically expressed during sexual reproduction in Tetrahymena thermophila. Meiosis is not initiated in the cells lacking ZFP1. Transcriptome sequencing analyses reveal that Zfp1 is required for the expression of many meiosis-specific genes. Our results indicate that Zfp1 could be a transcriptional activator required for meiosis initiation in T. thermophila.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Miao Tian
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, Shanghai, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,CAS Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan, China
| |
Collapse
|
26
|
Kuppannan A, Jiang YY, Maier W, Liu C, Lang CF, Cheng CY, Field MC, Zhao M, Zoltner M, Turkewitz AP. A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila. PLoS Genet 2022; 18:e1010194. [PMID: 35587496 PMCID: PMC9159632 DOI: 10.1371/journal.pgen.1010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/01/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
In the ciliate Tetrahymena thermophila, lysosome-related organelles called mucocysts accumulate at the cell periphery where they secrete their contents in response to extracellular events, a phenomenon called regulated exocytosis. The molecular bases underlying regulated exocytosis have been extensively described in animals but it is not clear whether similar mechanisms exist in ciliates or their sister lineage, the Apicomplexan parasites, which together belong to the ecologically and medically important superphylum Alveolata. Beginning with a T. thermophila mutant in mucocyst exocytosis, we used a forward genetic approach to uncover MDL1 (Mucocyst Discharge with a LamG domain), a novel gene that is essential for regulated exocytosis of mucocysts. Mdl1p is a 40 kDa membrane glycoprotein that localizes to mucocysts, and specifically to a tip domain that contacts the plasma membrane when the mucocyst is docked. This sub-localization of Mdl1p, which occurs prior to docking, underscores a functional asymmetry in mucocysts that is strikingly similar to that of highly polarized secretory organelles in other Alveolates. A mis-sense mutation in the LamG domain results in mucocysts that dock but only undergo inefficient exocytosis. In contrast, complete knockout of MDL1 largely prevents mucocyst docking itself. Mdl1p is physically associated with 9 other proteins, all of them novel and largely restricted to Alveolates, and sedimentation analysis supports the idea that they form a large complex. Analysis of three other members of this putative complex, called MDD (for Mucocyst Docking and Discharge), shows that they also localize to mucocysts. Negative staining of purified MDD complexes revealed distinct particles with a central channel. Our results uncover a novel macromolecular complex whose subunits are conserved within alveolates but not in other lineages, that is essential for regulated exocytosis in T. thermophila.
Collapse
Affiliation(s)
- Aarthi Kuppannan
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United State of America
| | - Yu-Yang Jiang
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United State of America
| | - Wolfgang Maier
- Bio3/Bioinformatics and Molecular Genetics, Faculty of Biology and ZBMZ, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Chang Liu
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Charles F. Lang
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Chao-Yin Cheng
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United State of America
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Minglei Zhao
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Martin Zoltner
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec, Czech Republic
| | - Aaron P. Turkewitz
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United State of America
| |
Collapse
|
27
|
Identification and utilization of a mutated 60S ribosomal subunit coding gene as an effective and cost-efficient selection marker for Tetrahymena genetic manipulation. Int J Biol Macromol 2022; 204:1-8. [PMID: 35122796 DOI: 10.1016/j.ijbiomac.2022.01.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Since the onset of molecular biology, the ciliate Tetrahymena thermophila has been one of the most convenient single-celled model eukaryotes for genetics, biochemistry, and cell biology. Particularly, thanks to the availability of several different selection markers, it is possible to knock out or knock in genes at multiple genetic loci simultaneously in Tetrahymena, which makes it an excellent model ciliate for tackling complex regulatory mechanisms. Despite these selection markers are efficient for genetic manipulation, the costly drugs used for selection have highlighted the urgent demand for an additional cost-efficient and effective selection marker. Here, we found that a mutated 60S ribosomal subunit component, RPL36A, confers T. thermophila with cycloheximide resistance. On top of that, we developed a cycloheximide cassette and explored suitable transformation and selection conditions. Using the new cassette, we obtained both knockout and knock-in strains successfully at a relatively low cost. This study also provided the first evidence that a cycloheximide resistance gene can be engineered as a selection marker to completely delete a gene from the highly-polyploid somatic nucleus in Tetrahymena.
Collapse
|
28
|
Bo T, Kang Y, Liu Y, Xu J, Wang W. Atg5 Regulates Selective Autophagy of the Parental Macronucleus during Tetrahymena Sexual Reproduction. Cells 2021; 10:3071. [PMID: 34831293 PMCID: PMC8623110 DOI: 10.3390/cells10113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Nuclear autophagy is an important selective autophagy process. The selective autophagy of sexual development micronuclei (MICs) and the programmed nuclear degradation of parental macronucleus (paMAC) occur during sexual reproduction in Tetrahymena thermophila. The molecular regulatory mechanism of nuclear selective autophagy is unclear. In this study, the autophagy-related protein Atg5 was identified from T. thermophila. Atg5 was localized in the cytoplasm in the early sexual-development stage and was localized in the paMAC in the late sexual-development stage. During this stage, the degradation of meiotic products of MIC was delayed in atg5i mutants. Furthermore, paMAC was abnormally enlarged and delayed or failed to degrade. The expression level and lipidation of Atg8.2 significantly decreased in the mutants. All these results indicated that Atg5 was involved in the regulation of the selective autophagy of paMAC by regulating Atg8.2 in Tetrahymena.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| | - Yu Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| | - Ya Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| |
Collapse
|
29
|
Fabritius AS, Bayless BA, Li S, Stoddard D, Heydeck W, Ebmeier CC, Anderson L, Gunnels T, Nachiappan C, Whittall JB, Old W, Agard DA, Nicastro D, Winey M. Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs. Mol Biol Cell 2021; 32:br8. [PMID: 34406789 PMCID: PMC8693976 DOI: 10.1091/mbc.e20-12-0786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function.
Collapse
Affiliation(s)
- Amy S. Fabritius
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Brian A. Bayless
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
- Department of Biology, Santa Clara University, Santa Clara, CA 95053
| | - Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158
| | - Daniel Stoddard
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Westley Heydeck
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Christopher C. Ebmeier
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Lauren Anderson
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Tess Gunnels
- Department of Biology, Santa Clara University, Santa Clara, CA 95053
| | | | | | - William Old
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| |
Collapse
|
30
|
Using a Hand-Held Gene Gun for Genetic Transformation of Tetrahymena thermophila. Methods Mol Biol 2021. [PMID: 34542863 DOI: 10.1007/978-1-0716-1661-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Biolistic bombardment is widely used as a means of delivering vector-coated microparticles into microorganisms, cultured cells, and tissues. The first particle delivery system contained a helium propulsion unit (the gun) mounted in a vacuum-controlled chamber. In contrast, the hand-held gene gun does not operate within a chamber. It is completely hand-held, easy, and efficient to use, and it requires minimal space on the laboratory bench top. This chapter describes protocols for using a hand-held gene gun to deliver transformation vectors for overexpression of genes or gene replacement into the macronucleus of Tetrahymena thermophila. The protocols provide helpful information for preparing Tetrahymena for biolistic bombardment, preparation of vector-coated microcarriers, and basic gene gun operating procedures.
Collapse
|
31
|
Lv H, Hu L, Xu J, Bo T, Wang W. Identification and functional analysis of the mitochondrial cysteine synthase TtCsa2 from Tetrahymena thermophila. J Cell Biochem 2021; 122:1817-1831. [PMID: 34427342 DOI: 10.1002/jcb.30136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023]
Abstract
Cysteine is a crucial component for all organisms and plays a critical role in the structure, stability, and catalytic functions of many proteins. Tetrahymena has reverse transsulfuration and de novo pathways for cysteine biosynthesis. Cysteine synthase is involved in the de novo cysteine biosynthesis and catalyzes the production of cysteine from O-acetylserine. The novel cysteine synthase TtCSA2 was identified from Tetrahymena thermophila. The TtCSA2 showed high expression levels at the log-phase and the sexual development stage. The TtCsa2 was localized on the outer mitochondrial membrane throughout different developmental stages. However, the truncated N-terminal signal peptide mutant TtCsa2-ΔN23 was localized into the mitochondria. His-TtCsa2 was expressed in Escherichia coli and purified using affinity chromatography. The His-TtCsa2 showed O-acetylserine sulfhydrylase and serine sulfhydrylase activities. Cysteine and glutathione contents decreased in the csa2KD mutant. Furthermore, mutant cells were sensitive to cadmium and copper stresses. This study indicated that the TtCSA2 was involved in the cysteine synthesis in mitochondria and related to heavy metal stresses resistance in Tetrahymena.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Lina Hu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
32
|
Composition and function of the C1b/C1f region in the ciliary central apparatus. Sci Rep 2021; 11:11760. [PMID: 34083607 PMCID: PMC8175508 DOI: 10.1038/s41598-021-90996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
Motile cilia are ultrastructurally complex cell organelles with the ability to actively move. The highly conserved central apparatus of motile 9 × 2 + 2 cilia is composed of two microtubules and several large microtubule-bound projections, including the C1b/C1f supercomplex. The composition and function of C1b/C1f subunits has only recently started to emerge. We show that in the model ciliate Tetrahymena thermophila, C1b/C1f contains several evolutionarily conserved proteins: Spef2A, Cfap69, Cfap246/LRGUK, Adgb/androglobin, and a ciliate-specific protein Tt170/TTHERM_00205170. Deletion of genes encoding either Spef2A or Cfap69 led to a loss of the entire C1b projection and resulted in an abnormal vortex motion of cilia. Loss of either Cfap246 or Adgb caused only minor alterations in ciliary motility. Comparative analyses of wild-type and C1b-deficient mutant ciliomes revealed that the levels of subunits forming the adjacent C2b projection but not C1d projection are greatly reduced, indicating that C1b stabilizes C2b. Moreover, the levels of several IFT and BBS proteins, HSP70, and enzymes that catalyze the final steps of the glycolytic pathway: enolase ENO1 and pyruvate kinase PYK1, are also reduced in the C1b-less mutants.
Collapse
|
33
|
Üstüntanır Dede AF, Arslanyolu M. The in vivo Tetrahymena thermophila extracellular glucose drop assay for characterization of mammalian insulin activity. Eur J Protistol 2021; 79:125803. [PMID: 34044354 DOI: 10.1016/j.ejop.2021.125803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
Insulin activity is generally determined by an in vivo rabbit blood glucose drop assay in research and industriel laboratories. The humane experimental techniques imply the use of alternative invertebrate organisms in place of animals, known as replacement rule of the 3Rs. In this study, we report an alternative in vivo extracellular glucose drop assay using unicellular invertebrate Tetrahymena thermophila to replace the use of rabbit and mouse. This assay has four major steps; growing cells, starving cells, treatment of cells and measurement of glucose drop. In this assay, 0.2 mg/ml of human, porcine and bovine insulins dropped extracellular glucose level to 16%, 14% and 12%, respectively in ten minutes. In addition, mammalian insulins respectively increased the cell area about 19%, 15%, and 16% at 6th hour with statistically significant effect on the cell growth, but not in the cell viability. The results showed that the in vivo Tetrahymena thermophila extracellular glucose drop assay could be used as an alternative assay to replace the mouse or the rabbit insulin blood glucose drop assay.
Collapse
Affiliation(s)
- Ayça Fulya Üstüntanır Dede
- Department of Biology, Graduate School of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskisehir 26470, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskisehir, Turkey.
| |
Collapse
|
34
|
Çalıseki M, Üstüntanır Dede AF, Arslanyolu M. Characterization and use of Tetrahymena thermophila artificial chromosome 2 (TtAC2) constructed by biomimetic of macronuclear rDNA minichromosome. Microbiol Res 2021; 248:126764. [PMID: 33887535 DOI: 10.1016/j.micres.2021.126764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022]
Abstract
Efficient expression vectors for unicellular ciliate eukaryotic Tetrahymena thermophila are still needed in recombinant biology and biotechnology applications. Previously, the construction of the T. thermophila Macronuclear Artificial Chromosome 1 (TtAC1) vector revealed additional needs for structural improvements such as better in vivo stability and maintenance as a recombinant protein expression platform. In this study, we designed an efficiently maintained artificial chromosome by biomimetic of the native macronuclear rDNA minichromosome. TtAC2 was constructed by sequential cloning of subtelomeric 3'NTS region (1.8 kb), an antibiotic resistance gene cassette (2 kb neo4), a gene expression cassette (2 kb TtsfGFP), rDNA coding regions plus a dominant C3 origin sequence (10.3 kb), and telomeres (2.4 kb) in a pUC19 backbone plasmid (2.6 kb). The 21 kb TtAC2 was characterized using fluorescence microscopy, qPCR, western blot and Southern blot after its transformation to vegetative T. thermophila CU428.2 strain, which has a recessive B origin allele. All experimental data show that circular or linear forms of novel TtAC2 were maintained as free replicons in T. thermophila macronucleus with or without antibiotic treatment. Notably, TtAC2 carrying strains expressed a TtsfGFP marker protein, demonstrating the efficacy and functionality of the protein expression platform. We show that TtAC2 is functionally maintained for more than two months, and can be efficiently used in recombinant DNA, and protein production applications.
Collapse
Affiliation(s)
- Mehmet Çalıseki
- Department of Advanced Technologies, Graduate School of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| | - Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| |
Collapse
|
35
|
Bazan R, Schröfel A, Joachimiak E, Poprzeczko M, Pigino G, Wloga D. Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet 2021; 17:e1009388. [PMID: 33661892 PMCID: PMC7987202 DOI: 10.1371/journal.pgen.1009388] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.
Collapse
Affiliation(s)
- Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adam Schröfel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Human Technopole, Milan, Italy
- * E-mail: (GP); (DW)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (GP); (DW)
| |
Collapse
|
36
|
Tian M, Agreiter C, Loidl J. Spatial constraints on chromosomes are instrumental to meiotic pairing. J Cell Sci 2020; 133:jcs253724. [PMID: 33172984 PMCID: PMC7725606 DOI: 10.1242/jcs.253724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
In most eukaryotes, the meiotic chromosomal bouquet (comprising clustered chromosome ends) provides an ordered chromosome arrangement that facilitates pairing and recombination between homologous chromosomes. In the protist Tetrahymena thermophila, the meiotic prophase nucleus stretches enormously, and chromosomes assume a bouquet-like arrangement in which telomeres and centromeres are attached to opposite poles of the nucleus. We have identified and characterized three meiosis-specific genes [meiotic nuclear elongation 1-3 (MELG1-3)] that control nuclear elongation, and centromere and telomere clustering. The Melg proteins interact with cytoskeletal and telomere-associated proteins, and probably repurpose them for reorganizing the meiotic prophase nucleus. A lack of sequence similarity between the Tetrahymena proteins responsible for telomere clustering and bouquet proteins of other organisms suggests that the Tetrahymena bouquet is analogous, rather than homologous, to the conserved eukaryotic bouquet. We also report that centromere clustering is more important than telomere clustering for homologous pairing. Therefore, we speculate that centromere clustering may have been the primordial mechanism for chromosome pairing in early eukaryotes.
Collapse
Affiliation(s)
- Miao Tian
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Christiane Agreiter
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
37
|
Lv H, Xu J, Bo T, Wang W. Characterization of Cystathionine β-Synthase TtCbs1 and Cysteine Synthase TtCsa1 Involved in Cysteine Biosynthesis in Tetrahymena thermophila. J Eukaryot Microbiol 2020; 68:e12834. [PMID: 33190347 DOI: 10.1111/jeu.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022]
Abstract
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5'-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
38
|
Cid NG, Puca G, Nudel CB, Nusblat AD. Genome analysis of sphingolipid metabolism-related genes in Tetrahymena thermophila and identification of a fatty acid 2-hydroxylase involved in the sexual stage of conjugation. Mol Microbiol 2020; 114:775-788. [PMID: 32713049 DOI: 10.1111/mmi.14578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022]
Abstract
Sphingolipids are bioactive lipids present in all eukaryotes. Tetrahymena thermophila is a ciliate that displays remarkable sphingolipid moieties, that is, the unusual phosphonate-linked headgroup ceramides, present in membranes. To date, no identification has been made in this organism of the functions or related genes implicated in sphingolipid metabolism. By gathering information from the T. thermophila genome database together with sphingolipid moieties and enzymatic activities reported in other Tetrahymena species, we were able to reconstruct the putative de novo sphingolipid metabolic pathway in T. thermophila. Orthologous genes of 11 enzymatic steps involved in the biosynthesis and degradation pathways were retrieved. No genes related to glycosphingolipid or phosphonosphingolipid headgroup transfer were found, suggesting that both conserved and innovative mechanisms are used in ciliate. The knockout of gene TTHERM_00463850 allowed to identify the gene encoding a putative fatty acid 2-hydroxylase, which is involved in the biosynthesis pathway. Knockout cells have shown several impairments in the sexual stage of conjugation since different mating types of knockout strains failed to form cell pairs and complete the conjugation process. This fatty acid 2-hydroxylase gene is the first gene of a sphingolipid metabolic pathway to be identified in ciliates and have a critical role in their sexual stage.
Collapse
Affiliation(s)
- Nicolas G Cid
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Gervasio Puca
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Clara B Nudel
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| |
Collapse
|
39
|
Üstüntanır Dede AF, Arslanyolu M. Construction and dynamic characterization of a Tetrahymena thermophila macronuclear artificial chromosome. Gene 2020; 748:144697. [PMID: 32325092 DOI: 10.1016/j.gene.2020.144697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/18/2022]
Abstract
Artificial chromosomes were previously generated for use in bacteria, protists, yeast and human cells. A Tetrahymena thermophila artificial chromosome could serve as a versatile platform to study diverse aspects of Tetrahymena biology and beyond. Here, we placed a C3-type rDNA replication origin and telomere sequences from T. thermophila into a pNeo4 vector, producing the first T. thermophila macronuclear artificial chromosome (TtAC1). Circular or linear forms of TtAC1 can be stably transformed into both vegetative and conjugative T. thermophila cells. Linear TtAC1 was stably double in copy number under antibiotic selection, but its copy number was dropping without antibiotic selection pressure. Southern blot, Real-Time PCR and E. coli retransformation analyses together showed that TtAC1 vector did not integrate into the macronuclear genome, and was maintained as a linear or a circular chromosome in T. thermophila macronucleus under antibiotic selection. The use of TtAC1 for recombinant protein production was demonstrated by western blot analysis of a secreted 27 kDa TtsfGFP-12XHis protein. We present the first macronuclear artificial chromosome with species-specific chromosomal elements for use in T. thermophila studies and to aid broad recombinant biotechnology applications.
Collapse
Affiliation(s)
- Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunusemre Campus, Eskisehir 26470, Turkey
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir 26470, Turkey.
| |
Collapse
|
40
|
Wang Y, Sheng Y, Liu Y, Zhang W, Cheng T, Duan L, Pan B, Qiao Y, Liu Y, Gao S. A distinct class of eukaryotic MT-A70 methyltransferases maintain symmetric DNA N6-adenine methylation at the ApT dinucleotides as an epigenetic mark associated with transcription. Nucleic Acids Res 2020; 47:11771-11789. [PMID: 31722409 PMCID: PMC7145601 DOI: 10.1093/nar/gkz1053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Rediscovered as a potential eukaryotic epigenetic mark, DNA N6-adenine methylation (6mA) varies across species in abundance and its relationships with transcription. Here we characterize AMT1—representing a distinct MT-A70 family methyltransferase—in the ciliate Tetrahymena thermophila. AMT1 loss-of-function leads to severe defects in growth and development. Single Molecule, Real-Time (SMRT) sequencing reveals that AMT1 is required for the bulk of 6mA and all symmetric methylation at the ApT dinucleotides. The detection of hemi-methylated ApT sites suggests a semi-conservative mechanism for maintaining symmetric methylation. AMT1 affects expression of many genes; in particular, RAB46, encoding a Rab family GTPase involved in contractile vacuole function, is likely a direct target. The distribution of 6mA resembles H3K4 methylation and H2A.Z, two conserved epigenetic marks associated with RNA polymerase II transcription. Furthermore, strong 6mA and nucleosome positioning in wild-type cells is attenuated in ΔAMT1 cells. Our results support that AMT1-catalyzed 6mA is an integral part of the transcription-associated epigenetic landscape. AMT1 homologues are generally found in protists and basal fungi featuring ApT hyper-methylation associated with transcription, which are missing in animals, plants, and true fungi. This dichotomy of 6mA functions and the underlying molecular mechanisms may have implications in eukaryotic diversification.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yalan Sheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongqiang Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenxin Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Ting Cheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lili Duan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Pan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yu Qiao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
41
|
Pavlovic Djuranovic S, Erath J, Andrews RJ, Bayguinov PO, Chung JJ, Chalker DL, Fitzpatrick JAJ, Moss WN, Szczesny P, Djuranovic S. Plasmodium falciparum translational machinery condones polyadenosine repeats. eLife 2020; 9:e57799. [PMID: 32469313 PMCID: PMC7295572 DOI: 10.7554/elife.57799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.
Collapse
Affiliation(s)
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
| | - Joyce J Chung
- Department of Biology, Washington UniversitySt LouisUnited States
| | | | - James AJ Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Biomedical Engineering, Washington UniversitySt LouisUnited States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Pawel Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Department of BioinformaticsWarsawPoland
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
42
|
Ma Y, Yan G, Han X, Zhang J, Xiong J, Miao W. Sexual cell cycle initiation is regulated by CDK19 and CYC9 in Tetrahymena thermophila. J Cell Sci 2020; 133:jcs235721. [PMID: 32041901 DOI: 10.1242/jcs.235721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/27/2020] [Indexed: 01/31/2023] Open
Abstract
To investigate the mechanisms underlying initiation of the sexual cell cycle in eukaryotes, we have focused on cyclins and cyclin-dependent kinases (CDKs) in the well-studied model ciliate, Tetrahymena thermophila We identified two genes, CDK19 and CYC9, which are highly co-expressed with the mating-associated factors MTA, MTB and HAP2. Both CDK19 and CYC9 were found to be essential for mating in T. thermophila Subcellular localization experiments suggested that these proteins are located at the oral area, including the conjugation junction area, and that CDK19 or CYC9 knockout prevents mating. We found that CDK19 and CYC9 form a complex, and also identified several additional subunits, which may have regulatory or constitutive functions. RNA sequencing analyses and cytological experiments showed that mating is abnormal in both ΔCDK19 and ΔCYC9, mainly at the entry to the co-stimulation stage. These results indicate that the CDK19-CYC9 complex initiates the sexual cell cycle in T. thermophila.
Collapse
Affiliation(s)
- Yang Ma
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan 430072, China
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanxiong Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan 430072, China
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Han
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan 430072, China
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming 650223, China
| |
Collapse
|
43
|
Tian M, Loidl J. An MCM family protein promotes interhomolog recombination by preventing precocious intersister repair of meiotic DSBs. PLoS Genet 2019; 15:e1008514. [PMID: 31815942 PMCID: PMC6922451 DOI: 10.1371/journal.pgen.1008514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/19/2019] [Accepted: 11/11/2019] [Indexed: 12/02/2022] Open
Abstract
Recombinational repair of meiotic DNA double-strand breaks (DSBs) uses the homologous chromosome as a template, although the sister chromatid offers itself as a spatially more convenient substrate. In many organisms, this choice is reinforced by the recombination protein Dmc1. In Tetrahymena, the repair of DSBs, which are formed early in prophase, is postponed to late prophase when homologous chromosomes and sister chromatids become juxtaposed owing to tight parallel packing in the thread-shaped nucleus, and thus become equally suitable for use as repair templates. The delay in DSB repair is achieved by rejection of the invading strand by the Sgs1 helicase in early meiotic prophase. In the absence of Mcmd1, a meiosis-specific minichromosome maintenance (MCM)-like protein (and its partner Pamd1), Dmc1 is prematurely lost from chromatin and DNA synthesis (as monitored by BrdU incorporation) takes place in early prophase. In mcmd1Δ and pamd1Δ mutants, only a few crossovers are formed. In a mcmd1Δ hop2Δ double mutant, normal timing of Dmc1 loss and DNA synthesis is restored. Because Tetrahymena Hop2 is believed to enable homologous strand invasion, we conclude that Dmc1 loss in the absence of Mcmd1 affects only post-invasion recombination intermediates. Therefore, we propose that the Dmc1 nucleofilament becomes dismantled immediately after forming a heteroduplex with a template strand. As a consequence, repair synthesis and D-loop extension starts in early prophase intermediates and prevents strand rejection before the completion of homologous pairing. In this case, DSB repair may primarily use the sister chromatid. We conclude that Mcmd1‒Pamd1 protects the Dmc1 nucleofilament from premature dismantling, thereby suppressing precocious repair synthesis and excessive intersister strand exchange at the cost of homologous recombination. Minichromosome maintenance (MCM) proteins are mainly known for their involvement in DNA replication. However, distant members of this protein family have recently been shown to promote interhomolog over intersister recombination in meiosis. They achieve this by enforcing or stabilizing the invasion of a double-stranded DNA by a filament consisting of a homologous single-stranded DNA molecule coated with a strand exchange protein. This interaction then would lead to the exchange of DNA strands and, ultimately, crossing over. Here, we study a member of the MCM protein family in the protist Tetrahymena thermophila. Meiosis in this organism has several unusual features: A synaptonemal complex is not formed, and homologous prealignment occurs during the close parallel arrangement of chromosomes in the extremely elongated, threadlike meiotic prophase nucleus. This noncanonical pairing has come along with altered mechanisms for recombination partner choice. Thus, we find that the Tetrahymena meiotic MCM protein promotes crossovers in an unprecedented way: It suppresses the formation of recombination intermediates between sister DNA molecules early in meiosis, thereby increasing the chance of competing interhomolog recombination events. Thus, members of the same protein family have been harnessed by different organisms to achieve the same result via completely different mechanisms.
Collapse
Affiliation(s)
- Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
44
|
Jaspan VN, Taye ME, Carle CM, Chung JJ, Chalker DL. Boundaries of eliminated heterochromatin of Tetrahymena are positioned by the DNA-binding protein Ltl1. Nucleic Acids Res 2019; 47:7348-7362. [PMID: 31194876 PMCID: PMC6698652 DOI: 10.1093/nar/gkz504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 05/16/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
During differentiation of the Tetrahymena thermophila somatic nucleus, its germline-derived DNA undergoes extensive reorganization including the removal of ∼50 Mb from thousands of loci called internal eliminated sequences (IESs). IES-associated chromatin is methylated on lysines 9 and 27 of histone H3, marking newly formed heterochromatin for elimination. To ensure that this reorganized genome maintains essential coding and regulatory sequences, the boundaries of IESs must be accurately defined. In this study, we show that the developmentally expressed protein encoded by Lia3-Like 1 (LTL1) (Ttherm_00499370) is necessary to direct the excision boundaries of particular IESs. In ΔLTL1 cells, boundaries of eliminated loci are aberrant and heterogeneous. The IESs regulated by Ltl1 are distinct from those regulated by the guanine-quadruplex binding Lia3 protein. Ltl1 has a general affinity for double stranded DNA (Kd ∼ 350 nM) and binds specifically to a 50 bp A+T rich sequence flanking each side of the D IES (Kd ∼ 43 nM). Together these data reveal that Ltl1 and Lia3 control different subsets of IESs and that their mechanisms for flanking sequence recognition are distinct.
Collapse
Affiliation(s)
- Vita N Jaspan
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Marta E Taye
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Christine M Carle
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joyce J Chung
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Douglas L Chalker
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
45
|
Jawinski K, Hartmann M, Singh C, Kinnear E, Busse DC, Ciabattini A, Fiorino F, Medaglini D, Trombetta CM, Montomoli E, Contreras V, Le Grand R, Coiffier C, Primard C, Verrier B, Tregoning JS. Recombinant Haemagglutinin Derived From the Ciliated Protozoan Tetrahymena thermophila Is Protective Against Influenza Infection. Front Immunol 2019; 10:2661. [PMID: 31798589 PMCID: PMC6863932 DOI: 10.3389/fimmu.2019.02661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Current influenza vaccines manufactured using eggs have considerable limitations, both in terms of scale up production and the potential impact passaging through eggs can have on the antigenicity of the vaccine virus strains. Alternative methods of manufacture are required, particularly in the context of an emerging pandemic strain. Here we explore the production of recombinant influenza haemagglutinin using the ciliated protozoan Tetrahymena thermophila. For the first time we were able to produce haemagglutinin from both seasonal influenza A and B strains. This ciliate derived material was immunogenic, inducing an antibody response in both mice and non-human primates. Mice immunized with ciliate derived haemagglutinin were protected against challenge with homologous influenza A or B viruses. The antigen could also be combined with submicron particles containing a Nod2 ligand, significantly boosting the immune response and reducing the dose of antigen required. Thus, we show that Tetrahymena can be used as a manufacturing platform for viral vaccine antigens.
Collapse
Affiliation(s)
| | | | - Charanjit Singh
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Ekaterina Kinnear
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - David C Busse
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,VisMederi s.r.l., Siena, Italy
| | - Vanessa Contreras
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Le Kremlin-Bicêtre, France
| | - Celine Coiffier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | | | | | - John S Tregoning
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Tian M, Mochizuki K, Loidl J. Non-coding RNA Transcription in Tetrahymena Meiotic Nuclei Requires Dedicated Mediator Complex-Associated Proteins. Curr Biol 2019; 29:2359-2370.e5. [PMID: 31280995 DOI: 10.1016/j.cub.2019.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022]
Abstract
To preserve genome integrity, eukaryotic cells use small RNA-directed mechanisms to repress transposable elements (TEs). Paradoxically, in order to silence TEs, precursors of the small RNAs must be transcribed from TEs. However, it is still poorly understood how these precursors are transcribed from TEs under silenced conditions. In the otherwise transcriptionally silent germline micronucleus (MIC) of Tetrahymena, a burst of non-coding RNA (ncRNA) transcription occurs during meiosis. The transcripts are processed into small RNAs that serve to identify TE-related sequences for elimination. The Mediator complex (Med) has an evolutionarily conserved role for transcription by bridging gene-specific transcription factors and RNA polymerase II. Here, we report that three Med-associated factors, Emit1, Emit2, and Rib1, are required for the biogenesis of small ncRNAs. Med localizes to the MIC only during meiosis, and both Med localization and MIC ncRNA transcription require Emit1 and Emit2. In the MIC, Med occupies TE-rich pericentromeric and telomeric regions in a Rib1-dependent manner. Rib1 is dispensable for ncRNA transcription but is required for the accumulation of double-stranded ncRNAs. Nuclear and sub-nuclear localization of the three Med-associated proteins is interdependent. Hence, Emit1 and Emit2 act coordinately to import Med into the MIC, and Rib1 recruits Med to specific chromosomal locations to quantitatively or qualitatively promote the biogenesis of functional ncRNA. Our results underscore that the transcription machinery can be regulated by a set of specialized Med-associated proteins to temporally transcribe TE-related sequences from a silent genome for small RNA biogenesis and genome defense.
Collapse
Affiliation(s)
- Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, 34090 Montpellier, France
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
47
|
Tian M, Loidl J. A chromatin-associated protein required for inducing and limiting meiotic DNA double-strand break formation. Nucleic Acids Res 2019; 46:11822-11834. [PMID: 30357385 PMCID: PMC6294514 DOI: 10.1093/nar/gky968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) are required for meiotic recombination, but the number is strictly controlled because they are potentially harmful. Here we report a novel protein, Pars11, which is required for Spo11-dependent DSB formation in the protist Tetrahymena. Pars11 localizes to chromatin early in meiotic prophase in a Spo11-independent manner and is removed before the end of prophase. Pars11 removal depends on DSB formation and ATR-dependent phosphorylation. In the absence of the DNA damage sensor kinase ATR, Pars11 is retained on chromatin and excess DSBs are generated. Similar levels of Pars11 persistence and DSB overproduction occur in a non-phosphorylatable pars11 mutant. We conclude that Pars11 supports DSB formation by Spo11 until enough DSBs are formed; thereafter, DSB production stops in response to ATR-dependent degradation of Pars11 or its removal from chromatin. A similar DSB control mechanism involving a Rec114-Tel1/ATM-dependent negative feedback loop regulates DSB formation in budding yeast. However, there is no detectable sequence homology between Pars11 and Rec114, and DSB numbers are more tightly controlled by Pars11 than by Rec114. The discovery of this mechanism for DSB regulation in the evolutionarily distant protist and fungal lineages suggests that it is conserved across eukaryotes.
Collapse
Affiliation(s)
- Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
48
|
Ashraf K, Nabeel-Shah S, Garg J, Saettone A, Derynck J, Gingras AC, Lambert JP, Pearlman RE, Fillingham J. Proteomic Analysis of Histones H2A/H2B and Variant Hv1 in Tetrahymena thermophila Reveals an Ancient Network of Chaperones. Mol Biol Evol 2019; 36:1037-1055. [PMID: 30796450 PMCID: PMC6502085 DOI: 10.1093/molbev/msz039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetic information, which can be passed on independently of the DNA sequence, is stored in part in the form of histone posttranslational modifications and specific histone variants. Although complexes necessary for deposition have been identified for canonical and variant histones, information regarding the chromatin assembly pathways outside of the Opisthokonts remains limited. Tetrahymena thermophila, a ciliated protozoan, is particularly suitable to study and unravel the chromatin regulatory layers due to its unique physical separation of chromatin states in the form of two distinct nuclei present within the same cell. Using a functional proteomics pipeline, we carried out affinity purification followed by mass spectrometry of endogenously tagged T. thermophila histones H2A, H2B and variant Hv1.We identified a set of interacting proteins shared among the three analyzed histones that includes the FACT-complex, as well as H2A- or Hv1-specific chaperones. We find that putative subunits of T. thermophila versions of SWR- and INO80-complexes, as well as transcription-related histone chaperone Spt6Tt specifically copurify with Hv1. We also identified importin β6 and the T. thermophila ortholog of nucleoplasmin 1 (cNpl1Tt) as H2A–H2B interacting partners. Our results further implicate Poly [ADP-ribose] polymerases in histone metabolism. Molecular evolutionary analysis, reciprocal affinity purification coupled to mass spectrometry experiments, and indirect immunofluorescence studies using endogenously tagged Spt16Tt (FACT-complex subunit), cNpl1Tt, and PARP6Tt underscore the validity of our approach and offer mechanistic insights. Our results reveal a highly conserved regulatory network for H2A (Hv1)–H2B concerning their nuclear import and assembly into chromatin.
Collapse
Affiliation(s)
- Kanwal Ashraf
- Department of Biology, York University, Toronto, ON, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jyoti Garg
- Department of Biology, York University, Toronto, ON, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Joanna Derynck
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada.,CHU de Québec Research Center, CHUL, Québec, QC, Canada
| | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
49
|
Howard-Till R, Tian M, Loidl J. A specialized condensin complex participates in somatic nuclear maturation in Tetrahymena thermophila. Mol Biol Cell 2019; 30:1326-1338. [PMID: 30893010 PMCID: PMC6724606 DOI: 10.1091/mbc.e18-08-0487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Condensins are highly conserved proteins that are important for chromosome maintenance in nearly all forms of life. Although many organisms employ two forms of the condensin complex, the condensin genes in Tetrahymena have expanded even further. Here we report a form of condensin that is specifically active during sexual reproduction. This complex, condensin D, is composed of the core condensin proteins, Smc2 and Smc4, and two unique subunits, the kleisin Cph5 and Cpd2. Cpd2 is also found in somatic nuclei in vegetative cells, but is dispensable for growth and nuclear division. Immunoprecipitation experiments show that condensin D interacts with a putative member of a chromatin-remodeling complex during development. Condensin D is required for sexual reproduction and for endoreplication and genome reduction of the progeny’s somatic nuclei. Altogether, Tetrahymena possesses at least four forms of condensin to fulfill the needs of maintaining chromosomes in two different nuclei containing the somatic and germline genomes.
Collapse
Affiliation(s)
- Rachel Howard-Till
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
50
|
Xu J, Li X, Song W, Wang W, Gao S. Cyclin Cyc2p is required for micronuclear bouquet formation in Tetrahymena thermophila. SCIENCE CHINA-LIFE SCIENCES 2019; 62:668-680. [PMID: 30820856 DOI: 10.1007/s11427-018-9369-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/19/2018] [Indexed: 01/31/2023]
Abstract
Meiotic bouquet formation (known as crescent formation in Tetrahymena thermophila) is indispensable for homologous pairing and recombination, but the regulatory mechanism of bouquet formation remains largely unknown. As a conjugation specific cyclin gene, CYC2 knockout mutants failed to form an elongated crescent structure and aborted meiosis progress in T. thermophila. γ-H2A.X staining revealed fewer micronuclear DNA double-strand breaks (DSBs) in cyc2Δ cells than in wild-type cells. Furthermore, cyc2Δ cells still failed to form a crescent structure even though DSBs were induced by exogenous agents, indicating that a lack of DSBs was not completely responsible for failure to enter the crescent stage. Tubulin staining showed that impaired perinuclear microtubule structure may contribute to the blockage in micronuclear elongation. At the same time, expression of microtubule-associated kinesin genes, KIN11 and KIN141, was significantly downregulated in cyc2Δ cells. Moreover, micronuclear specific accumulation of heterochromatin marker trimethylated H3K23 abnormally increased in the cyc2Δ mutants. Together, these results show that cyclin Cyc2p is required for micronuclear bouquet formation via controlling microtubule-directed nuclear elongation in Tetrahymena.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Life Science, Shanxi University, Taiyuan, 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiaoxiong Li
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|