1
|
Zhang X, Khadka P, Puchalski P, Leehan JD, Rossi FR, Okumoto S, Pilot G, Danna CH. MAMP-elicited changes in amino acid transport activity contribute to restricting bacterial growth. PLANT PHYSIOLOGY 2022; 189:2315-2331. [PMID: 35579373 PMCID: PMC9342991 DOI: 10.1093/plphys/kiac217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/16/2022] [Indexed: 05/19/2023]
Abstract
Plants live under the constant challenge of microbes that probe the environment in search of potential hosts. Plant cells perceive microbe-associated molecular patterns (MAMPs) from incoming microbes and activate defense responses that suppress attempted infections. Despite the substantial progress made in understanding MAMP-triggered signaling pathways, the downstream mechanisms that suppress bacterial growth and disease remain poorly understood. Here, we uncover how MAMP perception in Arabidopsis (Arabidopsis thaliana) elicits dynamic changes in extracellular concentrations of free L-amino acids (AA). Within the first 3 h of MAMP perception, a fast and transient inhibition of AA uptake produces a transient increase in extracellular AA concentrations. Within 4 and 12 h of MAMP perception, a sustained enhanced uptake activity decreases the extracellular concentrations of AA. Gene expression analysis showed that salicylic acid-mediated signaling contributes to inducing the expression of AA/H+ symporters responsible for the MAMP-induced enhanced uptake. A screening of loss-of-function mutants identified the AA/H+ symporter lysin/histidine transporter-1 as an important contributor to MAMP-induced enhanced uptake of AA. Infection assays in lht1-1 seedlings revealed that high concentrations of extracellular AA promote bacterial growth in the absence of induced defense elicitation but contribute to suppressing bacterial growth upon MAMP perception. Overall, the data presented in this study reveal a mechanistic connection between MAMP-induced plant defense and suppression of bacterial growth through the modulation of AA transport activity.
Collapse
Affiliation(s)
- Xiaomu Zhang
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Pramod Khadka
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Patryk Puchalski
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Joss D Leehan
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Franco R Rossi
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
- Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Buenos Aires 7130, Argentina
| | | | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
2
|
Ngou BPM, Jones JDG, Ding P. Plant immune networks. TRENDS IN PLANT SCIENCE 2022; 27:255-273. [PMID: 34548213 DOI: 10.1016/j.tplants.2021.08.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 05/06/2023]
Abstract
Plants have both cell-surface and intracellular receptors to recognize diverse self- and non-self molecules. Cell-surface pattern recognition receptors (PRRs) recognize extracellular pathogen-/damage-derived molecules or apoplastic pathogen-derived effectors. Intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) recognize pathogen effectors. Activation of both PRRs and NLRs elevates defense gene expression and accumulation of the phytohormone salicylic acid (SA), which results in SA-dependent transcriptional reprogramming. These receptors, together with their coreceptors, form networks to mediate downstream immune responses. In addition, cell-surface and intracellular immune systems are interdependent and function synergistically to provide robust resistance against pathogens. Here, we summarize the interactions between these immune systems and attempt to provide a holistic picture of plant immune networks. We highlight current challenges and discuss potential new research directions.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
3
|
Bauer S, Mekonnen DW, Hartmann M, Yildiz I, Janowski R, Lange B, Geist B, Zeier J, Schäffner AR. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. THE PLANT CELL 2021; 33:714-734. [PMID: 33955482 PMCID: PMC8136890 DOI: 10.1093/plcell/koaa044] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/04/2020] [Indexed: 05/13/2023]
Abstract
Glucosylation modulates the biological activity of small molecules and frequently leads to their inactivation. The Arabidopsis thaliana glucosyltransferase UGT76B1 is involved in conjugating the stress hormone salicylic acid (SA) as well as isoleucic acid (ILA). Here, we show that UGT76B1 also glucosylates N-hydroxypipecolic acid (NHP), which is synthesized by FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) and activates systemic acquired resistance (SAR). Upon pathogen attack, Arabidopsis leaves generate two distinct NHP hexose conjugates, NHP-O-β-glucoside and NHP glucose ester, whereupon only NHP-O-β-glucoside formation requires a functional SA pathway. The ugt76b1 mutants specifically fail to generate the NHP-O-β-glucoside, and recombinant UGT76B1 synthesizes NHP-O-β-glucoside in vitro in competition with SA and ILA. The loss of UGT76B1 elevates the endogenous levels of NHP, SA, and ILA and establishes a constitutive SAR-like immune status. Introgression of the fmo1 mutant lacking NHP biosynthesis into the ugt76b1 background abolishes this SAR-like resistance. Moreover, overexpression of UGT76B1 in Arabidopsis shifts the NHP and SA pools toward O-β-glucoside formation and abrogates pathogen-induced SAR. Our results further indicate that NHP-triggered immunity is SA-dependent and relies on UGT76B1 as a common metabolic hub. Thereby, UGT76B1-mediated glucosylation controls the levels of active NHP, SA, and ILA in concert to balance the plant immune status.
Collapse
Affiliation(s)
- Sibylle Bauer
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dereje W Mekonnen
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Michael Hartmann
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ipek Yildiz
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert Janowski
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, München, Germany
| | - Birgit Lange
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Birgit Geist
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anton R Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| |
Collapse
|
4
|
Bauer S, Mekonnen DW, Hartmann M, Yildiz I, Janowski R, Lange B, Geist B, Zeier J, Schäffner AR. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. THE PLANT CELL 2021. [PMID: 33955482 DOI: 10.1101/2020.07.12.199356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Glucosylation modulates the biological activity of small molecules and frequently leads to their inactivation. The Arabidopsis thaliana glucosyltransferase UGT76B1 is involved in conjugating the stress hormone salicylic acid (SA) as well as isoleucic acid (ILA). Here, we show that UGT76B1 also glucosylates N-hydroxypipecolic acid (NHP), which is synthesized by FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) and activates systemic acquired resistance (SAR). Upon pathogen attack, Arabidopsis leaves generate two distinct NHP hexose conjugates, NHP-O-β-glucoside and NHP glucose ester, whereupon only NHP-O-β-glucoside formation requires a functional SA pathway. The ugt76b1 mutants specifically fail to generate the NHP-O-β-glucoside, and recombinant UGT76B1 synthesizes NHP-O-β-glucoside in vitro in competition with SA and ILA. The loss of UGT76B1 elevates the endogenous levels of NHP, SA, and ILA and establishes a constitutive SAR-like immune status. Introgression of the fmo1 mutant lacking NHP biosynthesis into the ugt76b1 background abolishes this SAR-like resistance. Moreover, overexpression of UGT76B1 in Arabidopsis shifts the NHP and SA pools toward O-β-glucoside formation and abrogates pathogen-induced SAR. Our results further indicate that NHP-triggered immunity is SA-dependent and relies on UGT76B1 as a common metabolic hub. Thereby, UGT76B1-mediated glucosylation controls the levels of active NHP, SA, and ILA in concert to balance the plant immune status.
Collapse
Affiliation(s)
- Sibylle Bauer
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dereje W Mekonnen
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Michael Hartmann
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ipek Yildiz
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert Janowski
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, München, Germany
| | - Birgit Lange
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Birgit Geist
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anton R Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| |
Collapse
|
5
|
HOS15 is a transcriptional corepressor of NPR1-mediated gene activation of plant immunity. Proc Natl Acad Sci U S A 2020; 117:30805-30815. [PMID: 33199617 PMCID: PMC7720166 DOI: 10.1073/pnas.2016049117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immune responses protect organisms against biotic challenges but can also produce deleterious effects, such as inflammation and necrosis. This growth-defense trade-off necessitates fine control of immune responses, including the activation of defense gene expression. The transcriptional coactivator NPR1 is a key regulatory hub of immune activation in plant cells. Surprisingly, full activation of NPR1-activated defense genes requires proteasome-mediated degradation of NPR1 induced by a CUL3-based E3 ubiquitin ligase complex. Our work demonstrates that HOS15 is the specificity determinant of a CUL1-based E3 ubiquitin ligase complex that limits defense gene expression by targeting NPR1 for proteasome-mediated degradation. Thus, distinct ubiquitin-based degradation pathways coordinately modulate the timing and amplitude of transcriptional outputs during plant defense. Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.
Collapse
|
6
|
Ding P, Ding Y. Stories of Salicylic Acid: A Plant Defense Hormone. TRENDS IN PLANT SCIENCE 2020; 25:549-565. [PMID: 32407695 DOI: 10.1016/j.tplants.2020.01.004] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 05/04/2023]
Abstract
Salicylic acid (SA) is a key plant hormone required for establishing resistance to many pathogens. SA biosynthesis involves two main metabolic pathways with multiple steps: the isochorismate and the phenylalanine ammonia-lyase pathways. Transcriptional regulations of SA biosynthesis are important for fine-tuning SA level in plants. We highlight here recent discoveries on SA biosynthesis and transcriptional regulations of SA biosynthesis. In addition, SA perception by NPR proteins is important to fulfil its function as a defense hormone. We highlight recent work to give a full picture of how NPR proteins support the role of SA in plant immunity. We also discuss challenges and potential opportunities for future research and application related to the functions of SA in plants.
Collapse
Affiliation(s)
- Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Yuli Ding
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
7
|
Veeragoni SR, Lange B, Serrano M, Nawrath C, Bauer S, Schäffner AR, Thordal-Christensen H, Durner J, Gaupels F. Mutant Muddle: Some Arabidopsis eds5 Mutant Lines Have a Previously Unnoticed Second-Site Mutation in FAH1. PLANT PHYSIOLOGY 2020; 182:460-462. [PMID: 31685644 PMCID: PMC6945866 DOI: 10.1104/pp.19.01125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/24/2019] [Indexed: 05/26/2023]
Abstract
Some of the salicylic acid-deficient Arabidopsis eds5 mutants have an unnoticed fah1-2 background mutation, which could cause salicylic acid- and EDS5-independent mutant phenotypes.
Collapse
Affiliation(s)
- Sravani Ram Veeragoni
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Birgit Lange
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62209 Cuernavaca, Morelos, México
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sibylle Bauer
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Anton Rudolf Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Biochemical Plant Pathology, Technische Universität München, D-85354 Freising, Germany
| | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
8
|
Roberts R, Mainiero S, Powell AF, Liu AE, Shi K, Hind SR, Strickler SR, Collmer A, Martin GB. Natural variation for unusual host responses and flagellin-mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions. THE NEW PHYTOLOGIST 2019; 223:447-461. [PMID: 30861136 DOI: 10.1111/nph.15788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 05/20/2023]
Abstract
The interaction between tomato and Pseudomonas syringae pv tomato (Pst) is a well-developed model for investigating the molecular basis of the plant immune system. There is extensive natural variation in Solanum lycopersicum (tomato) but it has not been fully leveraged to enhance our understanding of the tomato-Pst pathosystem. We screened 216 genetically diverse accessions of cultivated tomato and a wild tomato species for natural variation in their response to three strains of Pst. The host response to Pst was investigated using multiple Pst strains, tomato accessions with available genome sequences, reactive oxygen species (ROS) assays, reporter genes and bacterial population measurements. The screen uncovered a broad range of previously unseen host symptoms in response to Pst, and one of these, stem galls, was found to be simply inherited. The screen also identified tomato accessions that showed enhanced responses to flagellin in bacterial population assays and in ROS assays upon exposure to flagellin-derived peptides, flg22 and flgII-28. Reporter genes confirmed that the host responses were due primarily to pattern recognition receptor-triggered immunity. This study revealed extensive natural variation in tomato for susceptibility and resistance to Pst and will enable elucidation of the molecular mechanisms underlying these host responses.
Collapse
Affiliation(s)
- Robyn Roberts
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Adrian F Powell
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Alexander E Liu
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Kai Shi
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Sarah R Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Alan Collmer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Korea
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Zhou XT, Jia LJ, Wang HY, Zhao P, Wang WY, Liu N, Song SW, Wu Y, Su L, Zhang J, Zhong NQ, Xia GX. The potato transcription factor StbZIP61 regulates dynamic biosynthesis of salicylic acid in defense against Phytophthora infestans infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1055-1068. [PMID: 29952082 DOI: 10.1111/tpj.14010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 05/21/2023]
Abstract
Salicylic acid (SA) signalling plays an essential role in plant innate immunity. In this study, we identified a component in the SA signaling pathway in potato (Solanum tuberosum), the transcription factor StbZIP61, and characterized its function in defence against Phytophthora infestans. Expression of StbZIP61 was induced upon P. infestans infection and following exposure to the defense signaling hormones SA, ethylene and jasmonic acid. Overexpression of StbZIP61 increased the tolerance of potato plants to P. infestans while RNA interference (RNAi) increased susceptibility. Yeast two-hybrid and pull down experiments revealed that StbZIP61 could interact with an NPR3-like protein (StNPR3L) that inhibited its DNA-binding and transcriptional activation activities. Moreover, StNPR3L interacted with StbZIP61 in an SA-dependent manner. Among candidate genes involved in SA-regulated defense responses, StbZIP61 had a significant impact on expression of StICS1, which encodes a key enzyme for SA biosynthesis. StICS1 transcription was induced upon P. infestans infection and this responsive expression to the pathogen was reduced in StbZIP61 RNAi plants. Accordingly, StICS1 expression was remarkably enhanced in StbZIP61-overexpressing plants. Together, our data demonstrate that StbZIP61 functions in concert with StNPR3L to regulate the temporal activation of SA biosynthesis, which contributes to SA-mediated immunity against P. infestans infection in potato.
Collapse
Affiliation(s)
- Xin-Tong Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jia Jia
- Institute of biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Beijing, 100101, China
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Pan Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Wen-Yan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Shuang-Wei Song
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
- Yunnan Agriculture University, Kunming, 650201, China
| | - Yao Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Lei Su
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Nai-Qin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Gui-Xian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| |
Collapse
|
10
|
Guo T, Mao X, Zhang H, Zhang Y, Fu M, Sun Z, Kuai P, Lou Y, Fang Y. Lamin-like Proteins Negatively Regulate Plant Immunity through NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 and NONEXPRESSOR OF PR GENES1 in Arabidopsis thaliana. MOLECULAR PLANT 2017; 10:1334-1348. [PMID: 28943325 DOI: 10.1016/j.molp.2017.09.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 05/22/2023]
Abstract
Nuclear lamins are involved in multiple biological processes in metazoan cells. The proteins of the CROWDED NUCLEI (CRWN) family are considered lamin-like candidates in Arabidopsis, although the functions of these proteins are largely unknown. In this article we show that crwn1 crwn2 double mutant displays an enhanced resistance against virulent bacterial pathogens, and both virulent bacteria and salicylic acid (SA) induce transcription of CRWN1 gene as well as proteasome-mediated degradation of CRWN1 protein. We also show that CRWN1 interacts with NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 (NTL9), a NAC transcription factor involved in plant immunity. The interaction between CRWN1 and NTL9 enhances the binding of NTL9 to the promoter of the PATHOGENESIS-RELATED1 (PR1) gene, and inhibits PR1 expression. Further genetic experiments indicated that the defense-related phenotypes of crwn1 crwn2 double mutant are dependent on NONEXPRESSOR OF PR GENES1 (NPR1), a transcriptional cofactor of PR1. These findings revealed a regulatory network composed of lamin-like protein CRWN1, NTL9, and NPR1 for the regulation of PR1 expression.
Collapse
Affiliation(s)
- Tongtong Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuegao Mao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdi Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfei Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
An C, Wang C, Mou Z. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121. THE NEW PHYTOLOGIST 2017; 214:1245-1259. [PMID: 28134437 DOI: 10.1111/nph.14442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/16/2016] [Indexed: 05/17/2023]
Abstract
Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3'-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS-SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| |
Collapse
|
12
|
Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux MJ, Gravot A. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:2158-68. [PMID: 26363358 DOI: 10.1093/pcp/pcv127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.
Collapse
Affiliation(s)
| | | | | | | | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2) Centre de Recherche Angers Nantes BIA, INRA de Rennes, F-35653 Le Rheu, France
| | | | | | - Antoine Gravot
- Université Rennes 1, UMR1349 IGEPP, F-35000 Rennes, France
| |
Collapse
|
13
|
Domínguez-Ferreras A, Kiss-Papp M, Jehle AK, Felix G, Chinchilla D. An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner. PLANT PHYSIOLOGY 2015; 168:1106-21. [PMID: 25944825 PMCID: PMC4741324 DOI: 10.1104/pp.15.00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 05/02/2023]
Abstract
The membrane-bound Brassinosteroid insensitive1-associated receptor kinase1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-interacting receptor-like kinase) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of suppressor of BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity.
Collapse
Affiliation(s)
- Ana Domínguez-Ferreras
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Marta Kiss-Papp
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Anna Kristina Jehle
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Georg Felix
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Delphine Chinchilla
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| |
Collapse
|
14
|
Tsutsui T, Nakano A, Ueda T. The Plant-Specific RAB5 GTPase ARA6 is Required for Starch and Sugar Homeostasis in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:1073-83. [PMID: 25713173 DOI: 10.1093/pcp/pcv029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 05/05/2023]
Abstract
Endosomal trafficking plays integral roles in various eukaryotic cell activities. In animal cells, a member of the RAB GTPase family, RAB5, is a key regulator of various endosomal functions. In addition to orthologs of animal RAB5, plants harbor the plant-specific RAB5 group, the ARA6 group, which is conserved in land plant lineages. In Arabidopsis thaliana, ARA6 and conventional RAB5 act in distinct endosomal trafficking pathways; ARA6 mediates trafficking from endosomes to the plasma membrane, whereas conventional RAB5 acts in endocytic and vacuolar trafficking pathways. ARA6 is also required for normal salt and osmotic stress tolerance, although the functional link between ARA6 and stress tolerance remains unclear. In this study, we investigated ARA6 function in stress tolerance by monitoring broad-scale changes in gene expression in the ara6 mutant. A comparison of the expression profiles between wild-type and ara6-1 plants revealed that the expression of the Qua-Quine Starch (QQS) gene was significantly affected by the ara6-1 mutation. QQS is involved in starch homeostasis, consistent with the starch content decreasing in the ara6 mutants to approximately 60% of that of the wild-type plant. In contrast, the free and total glucose content increased in the ara6 mutants. Moreover, the proliferation of Pseudomonas syringae pv. tomato DC3000 was repressed in ara6 mutants, which could be attributed to the elevated sugar content. These results suggest that ARA6 is responsible for starch and sugar homeostasis, most probably through the function of QQS.
Collapse
Affiliation(s)
- Tomokazu Tsutsui
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Akihiko Nakano
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
15
|
Seyfferth C, Tsuda K. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. FRONTIERS IN PLANT SCIENCE 2014; 5:697. [PMID: 25538725 PMCID: PMC4260477 DOI: 10.3389/fpls.2014.00697] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/24/2014] [Indexed: 05/18/2023]
Abstract
The phytohormone salicylic acid (SA) is a small phenolic compound that regulates diverse physiological processes, in particular plant resistance against pathogens. Understanding SA-mediated signaling has been a major focus of plant research. Pathogen-induced SA is mainly synthesized via the isochorismate pathway in chloroplasts, with ICS1 (ISOCHORISMATE SYNTHASE 1) being a critical enzyme. Calcium signaling regulates activities of a subset of transcription factors thereby activating nuclear ICS1 expression. The produced SA triggers extensive transcriptional reprogramming in which NPR1 (NON-EXPRESSOR of PATHOGENESIS-RELATED GENES 1) functions as the central coactivator of TGA transcription factors. Recently, two alternative but not exclusive models for SA perception mechanisms were proposed. The first model is that NPR1 homologs, NPR3 and NPR4, perceive SA thereby regulating NPR1 protein accumulation. The second model describes that NPR1 itself perceives SA, triggering an NPR1 conformational change thereby activating SA-mediated transcription. Besides the direct SA binding, NPR1 is also regulated by SA-mediated redox changes and phosphorylation. Emerging evidence show that pathogen virulence effectors target SA signaling, further strengthening the importance of SA-mediated immunity.
Collapse
Affiliation(s)
| | - Kenichi Tsuda
- *Correspondence: Kenichi Tsuda, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany e-mail:
| |
Collapse
|
16
|
Laird J, McInally C, Carr C, Doddiah S, Yates G, Chrysanthou E, Khattab A, Love AJ, Geri C, Sadanandom A, Smith BO, Kobayashi K, Milner JJ. Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. J Gen Virol 2013; 94:2777-2789. [PMID: 24088344 PMCID: PMC3836500 DOI: 10.1099/vir.0.057729-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected Arabidopsis with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic Arabidopsis line. A deletion in the minimum transactivator domain was defective in virus replication but retained the capacity to suppress RNA silencing locally. Symptom expression in CaMV-infected plants is apparently linked to the ability to suppress RNA silencing. When transiently co-expressed with tomato bushy stunt virus P19, an elicitor of programmed cell death in Nicotiana tabacum, WT P6 suppressed the hypersensitive response, but three mutants, two with deletions within the distal end of domain D-I and one involving the N-terminal nuclear export signal (NES), were unable to do so. Deleting the N-terminal 20 aa also abolished the suppression of pathogen-associated molecular pattern-dependent PR1a expression following agroinfiltration. However, the two other deletions in domain D-I retained this activity, evidence that the mechanisms underlying these functions are not identical. The D-I domain of P6 when expressed alone failed to suppress either cell death or PR1a expression and is therefore necessary but not sufficient for all three defence suppression activities. Consequently, concerns about the biosafety of genetically modified crops carrying truncated ORFVI sequences appear unfounded.
Collapse
Affiliation(s)
- Janet Laird
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Carol McInally
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig Carr
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sowjanya Doddiah
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gary Yates
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elina Chrysanthou
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ahmed Khattab
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew J Love
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Chiara Geri
- Istituto di Biologia e Biotechnologia Agraria, Consiglio Nazionale Delle Richerche, Pisa, Italy.,Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Brian O Smith
- Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kappei Kobayashi
- Plant Molecular Biology and Virology, Faculty of Agriculture, Ehime University, Ehime 790-8566, Japan
| | - Joel J Milner
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
17
|
Ravichandran S, Stone SL, Benkel B, Prithiviraj B. Purple Acid Phosphatase5 is required for maintaining basal resistance against Pseudomonas syringae in Arabidopsis. BMC PLANT BIOLOGY 2013; 13:107. [PMID: 23890153 PMCID: PMC3751912 DOI: 10.1186/1471-2229-13-107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/24/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plants have evolved an array of constitutive and inducible defense strategies to restrict pathogen ingress. However, some pathogens still manage to invade plants and impair growth and productivity. Previous studies have revealed several key regulators of defense responses, and efforts have been made to use this information to develop disease resistant crop plants. These efforts are often hampered by the complexity of defense signaling pathways. To further elucidate the complexity of defense responses, we screened a population of T-DNA mutants in Colombia-0 background that displayed altered defense responses to virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). RESULTS In this study, we demonstrated that the Arabidopsis Purple Acid Phosphatse5 (PAP5) gene, induced under prolonged phosphate (Pi) starvation, is required for maintaining basal resistance to certain pathogens. The expression of PAP5 was distinctly induced only under prolonged Pi starvation and during the early stage of Pst DC3000 infection (6 h.p.i). T-DNA tagged mutant pap5 displayed enhanced susceptibility to the virulent bacterial pathogen Pst DC3000. The pap5 mutation greatly reduced the expression of pathogen inducible gene PR1 compared to wild-type plants. Similarly, other defense related genes including ICS1 and PDF1.2 were impaired in pap5 plants. Moreover, application of BTH (an analog of SA) restored PR1 expression in pap5 plants. CONCLUSION Taken together, our results demonstrate the requirement of PAP5 for maintaining basal resistance against Pst DC3000. Furthermore, our results provide evidence that PAP5 acts upstream of SA accumulation to regulate the expression of other defense responsive genes. We also provide the first experimental evidence indicating the role PAP5 in plant defense responses.
Collapse
Affiliation(s)
- Sridhar Ravichandran
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Sophia L Stone
- Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
| | - Bernhard Benkel
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
18
|
Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. Tell me more: roles of NPRs in plant immunity. TRENDS IN PLANT SCIENCE 2013; 18:402-11. [PMID: 23683896 DOI: 10.1016/j.tplants.2013.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Plants and animals maintain evolutionarily conserved innate immune systems that give rise to durable resistances. Systemic acquired resistance (SAR) confers plant-wide immunity towards a broad spectrum of pathogens. Numerous studies have revealed that NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR) is a key regulator of SAR. Here, we review the mechanisms of NPR1 action in concert with its paralogues NPR3 and NPR4 and other SAR players. We provide insights into the mechanisms of salicylic acid (SA) perception. We discuss the binding of NPR3 and NPR4 with SA that modulates NPR1 coactivator capacity, leading to diverse immune outputs. Finally, we highlight the function of NPR1 as a bona fide SA receptor and propose a possible model of SA perception in planta.
Collapse
|
19
|
Love AJ, Geri C, Laird J, Carr C, Yun BW, Loake GJ, Tada Y, Sadanandom A, Milner JJ. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One 2012; 7:e47535. [PMID: 23071821 PMCID: PMC3469532 DOI: 10.1371/journal.pone.0047535] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/12/2012] [Indexed: 01/05/2023] Open
Abstract
Cauliflower mosaic virus (CaMV) encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling) and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst). Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity) suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls) but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants. These results demonstrate that P6 is a new type of pathogenicity effector protein that enhances susceptibility to biotrophic pathogens by suppressing SA- but enhancing JA-signaling responses.
Collapse
Affiliation(s)
- Andrew J. Love
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chiara Geri
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Istituto di Biologia e Biotechnologia Agraria, Consiglio Nazionale Delle Richerche, Pisa, Italy
| | - Janet Laird
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Craig Carr
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Byung-Wook Yun
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Edinburgh, United Kingdom
| | - Gary J. Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Edinburgh, United Kingdom
| | - Yasuomi Tada
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ari Sadanandom
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joel J. Milner
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
20
|
Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl Environ Microbiol 2012; 78:5882-9. [PMID: 22706044 DOI: 10.1128/aem.01095-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Consumption of fresh and fresh-cut fruits and vegetables contaminated with Escherichia coli O157:H7 has resulted in hundreds of cases of illness and, in some instances, death. In this study, the influence of cell surface structures of E. coli O157:H7, such as flagella, curli fimbriae, lipopolysaccharides, or exopolysaccharides, on plant defense responses and on survival or colonization on the plant was investigated. The population of the E. coli O157:H7 ATCC 43895 wild-type strain was significantly lower on wild-type Arabidopsis plants than that of the 43895 flagellum-deficient mutant. The population of the E. coli O157:H7 43895 flagellum mutant was greater on both wild-type and npr1-1 mutant (nonexpressor of pathogenesis-related [PR] genes) plants and resulted in less PR gene induction, estimated based on a weak β-glucuronidase (GUS) signal, than did the 43895 wild-type strain. These results suggest that the flagella, among the other pathogen-associated molecular patterns (PAMPs), made a substantial contribution to the induction of plant defense response and contributed to the decreased numbers of the E. coli O157:H7 ATCC 43895 wild-type strain on the wild-type Arabidopsis plant. A curli-deficient E. coli O157:H7 86-24 strain survived better on wild-type Arabidopsis plants than the curli-producing wild-type 86-24 strain did. The curli-deficient E. coli O157:H7 86-24 strain exhibited a GUS signal at a level substantially lower than that of the curli-producing wild-type strain. Curli were recognized by plant defense systems, consequently affecting bacterial survival. The cell surface structures of E. coli O157:H7 have a significant impact on the induction of differential plant defense responses, thereby impacting persistence or survival of the pathogen on plants.
Collapse
|
21
|
An C, Mou Z. Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. PLoS One 2012; 7:e31130. [PMID: 22299054 PMCID: PMC3267768 DOI: 10.1371/journal.pone.0031130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
22
|
Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic Acid biosynthesis and metabolism. THE ARABIDOPSIS BOOK 2011; 9:e0156. [PMID: 22303280 PMCID: PMC3268552 DOI: 10.1199/tab.0156] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented.
Collapse
Affiliation(s)
| | | | - Mary C. Wildermuth
- Department of Plant and Microbial Biology, 221 Koshland Hall, University of California, Berkeley, California 94720-3102
- Address correspondence to and
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Address correspondence to and
| |
Collapse
|
23
|
Wang L, Mitra RM, Hasselmann KD, Sato M, Lenarz-Wyatt L, Cohen JD, Katagiri F, Glazebrook J. The genetic network controlling the Arabidopsis transcriptional response to Pseudomonas syringae pv. maculicola: roles of major regulators and the phytotoxin coronatine. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1408-1420. [PMID: 18842091 DOI: 10.1094/mpmi-21-11-1408] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Expression profiling of wild-type plants and mutants with defects in key components of the defense signaling network was used to model the Arabidopsis network 24 h after infection by Pseudomonas syringae pv. maculicola ES4326. Results using the Affymetrix ATH1 array revealed that expression levels of most pathogen-responsive genes were affected by mutations in coi1, ein2, npr1, pad4, or sid2. These five mutations defined a small number of different expression patterns displayed by the majority of pathogen-responsive genes. P. syringae pv. tomato strain DC3000 elicited a much weaker salicylic acid (SA) response than ES4326. Additional mutants were profiled using a custom array. Profiles of pbs3 and ndr1 revealed major effects of these mutations and allowed PBS3 and NDR1 to be placed between the EDS1/PAD4 node and the SA synthesis node in the defense network. Comparison of coi1, dde2, and jar1 profiles showed that many genes were affected by coi1 but very few were affected by dde2 or jar1. Profiles of coi1 plants infected with ES4326 were very similar to those of wild-type plants infected with bacteria unable to produce the phytotoxin coronatine, indicating that, essentially, all COI1-dependent gene expression changes in this system are caused by coronatine.
Collapse
Affiliation(s)
- Lin Wang
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1445 Gortner Avenue, St. Paul 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Genger RK, Jurkowski GI, McDowell JM, Lu H, Jung HW, Greenberg JT, Bent AF. Signaling pathways that regulate the enhanced disease resistance of Arabidopsis "defense, no death" mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1285-96. [PMID: 18785824 PMCID: PMC2923831 DOI: 10.1094/mpmi-21-10-1285] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis dnd1 and dnd2 mutants lack cyclic nucleotide-gated ion channel proteins and carry out avirulence or resistance gene-mediated defense with a greatly reduced hypersensitive response (HR). They also exhibit elevated broad-spectrum disease resistance and constitutively elevated salicylic acid (SA) levels. We examined the contributions of NPR1, SID2 (EDS16), NDR1, and EIN2 to dnd phenotypes. Mutations that affect SA accumulation or signaling (sid2, npr1, and ndr1) abolished the enhanced resistance of dnd mutants against Pseudomonas syringae pv. tomato and Hyaloperonospora parasitica but not Botrytis cinerea. When SA-associated pathways were disrupted, the constitutive activation of NPR1-dependent and NPR1-independent and SA-dependent pathways was redirected toward PDF1.2-associated pathways. This PDF1.2 overexpression was downregulated after infection by P. syringae. Disruption of ethylene signaling abolished the enhanced resistance to B. cinerea but not P. syringae or H. parasitica. However, loss of NPR1, SID2, NDR1, or EIN2 did not detectably alter the reduced HR in dnd mutants. The susceptibility of dnd ein2 plants to B. cinerea despite their reduced-HR phenotype suggests that cell death repression is not the primary cause of dnd resistance to necrotrophic pathogens. The partial restoration of resistance to B. cinerea in dnd1 npr1 ein2 triple mutants indicated that this resistance is not entirely EIN2 dependent. The above findings indicate that the broad-spectrum resistance of dnd mutants occurs due to activation or sensitization of multiple defense pathways, yet none of the investigated pathways are required for the reduced-HR phenotype.
Collapse
Affiliation(s)
- Ruth K Genger
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Cuzick A, Lee S, Gezan S, Hammond-Kosack KE. NPR1 and EDS11 contribute to host resistance against Fusarium culmorum in Arabidopsis buds and flowers. MOLECULAR PLANT PATHOLOGY 2008; 9:697-704. [PMID: 19018998 PMCID: PMC6640498 DOI: 10.1111/j.1364-3703.2008.00488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The cereal ear blight fungal pathogen Fusarium culmorum can infect Arabidopsis floral tissue, causing disease symptoms and mycotoxin production. Here we assessed the effect of seven mutants and one transgenic overexpression line, residing in either the salicylic acid (SA), jasmonic acid (JA) or ethylene (ET) defence signalling pathways, on the outcome of the Fusarium-Arabidopsis floral interaction. The bacterial susceptiblity mutant eds11 was also assessed. Flowering plants were spray inoculated with F. culmorum conidia to determine the host responses to initial infection and subsequent colonization. Enhanced susceptibility and higher concentrations of deoxynivalenol mycotoxin were observed in buds and flowers of the npr1 and eds11 mutants than in the wild-type Col-0 plants. An effect of the other two defence signalling pathways on disease was either absent (ET/JA combined), absent/minimal (ET) or inconclusive (JA). Overall, this study highlights a role for NPR1 and EDS11 in basal defence against F. culmorum in some floral organs. This is the first time that any of these well-characterized defence signalling mutations have been evaluated for a role in floral defence in any plant species.
Collapse
Affiliation(s)
- Alayne Cuzick
- Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire AL52JQ, UK
| | | | | | | |
Collapse
|
26
|
Kourtchenko O, Andersson MX, Hamberg M, Brunnström A, Göbel C, McPhail KL, Gerwick WH, Feussner I, Ellerström M. Oxo-phytodienoic acid-containing galactolipids in Arabidopsis: jasmonate signaling dependence. PLANT PHYSIOLOGY 2007; 145:1658-69. [PMID: 17951463 PMCID: PMC2151682 DOI: 10.1104/pp.107.104752] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 10/09/2007] [Indexed: 05/17/2023]
Abstract
The jasmonate family of phytohormones, as represented by 12-oxo-phytodienoic acid (OPDA), dinor-phytodienoic acid (dn-OPDA), and jasmonic acid in Arabidopsis (Arabidopsis thaliana), has been implicated in a vast array of different developmental processes and stress responses. Recent reports indicate that OPDA and dn-OPDA occur not only as free acids in Arabidopsis, but also as esters with complex lipids, so-called arabidopsides. Recently, we showed that recognition of the two bacterial effector proteins AvrRpm1 and AvrRpt2 induced high levels of a molecule consisting of two OPDAs and one dn-OPDA esterified to a monogalactosyl diacylglycerol moiety, named arabidopside E. In this study, we demonstrate that the synthesis of arabidopsides is mainly independent of the prokaryotic lipid biosynthesis pathway in the chloroplast, and, in addition to what previously has been reported, arabidopside E as well as an all-OPDA analog, arabidopside G, described here accumulated during the hypersensitive response and in response to wounding. We also show that different signaling pathways lead to the formation of arabidopsides during the hypersensitive response and the wounding response, respectively. However, the formation of arabidopsides during both responses is dependent on an intact jasmonate signaling pathway. Additionally, we report inhibition of growth of the fungal necrotrophic pathogen Botrytis cinerea and in planta release of free jasmonates in a time frame that overlaps with the observed reduction of arabidopside levels. Thus, arabidopsides may have a dual function: as antipathogenic substances and as storage compounds that allow the slow release of free jasmonates.
Collapse
Affiliation(s)
- Olga Kourtchenko
- Department of Plant and Environmental Sciences, Göteborg University, SE-405 30 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Love AJ, Laval V, Geri C, Laird J, Tomos AD, Hooks MA, Milner JJ. Components of Arabidopsis defense- and ethylene-signaling pathways regulate susceptibility to Cauliflower mosaic virus by restricting long-distance movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:659-70. [PMID: 17555274 DOI: 10.1094/mpmi-20-6-0659] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We analyzed the susceptibility of Arabidopsis mutants with defects in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling to infection by Cauliflower mosaic virus (CaMV). Mutants cpr1-1 and cpr5-2, in which SA-dependent defense signaling is activated constitutively, were substantially more resistant than the wild type to systemic infection, implicating SA signaling in defense against CaMV. However, SA-deficient NahG, sid2-2, eds5-1, and pad4-1 did not show enhanced susceptibility. A cpr5 eds5 double mutant also was resistant, suggesting that resistance in cpr5 may function partially independently of SA. Treatment of cpr5 and cpr5 eds5, but not cpr1, with salicyl-hydroxamic acid, an inhibitor of alternative oxidase, partially restored susceptibility to wild-type levels. Mutants etr1-1, etr1-3, and ein2-1, and two mutants with lesions in ET/JA-mediated defense, eds4 and eds8, also showed reduced virus susceptibility, demonstrating that ET-dependent responses also play a role in susceptibility. We used a green fluorescent protein (GFP)-expressing CaMV recombinant to monitor virus movement. In mutants with reduced susceptibility, cpr1-1, cpr5-2, and etr1-1, CaMV-GFP formed local lesions similar to the wild type, but systemic spread was almost completely absent in cpr1 and cpr5 and was substantially reduced in etr1-1. Thus, mutations with enhanced systemic acquired resistance or compromised ET signaling show diminished long-distance virus movement.
Collapse
Affiliation(s)
- Andrew J Love
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC. Arabidopsis Isochorismate Synthase Functional in Pathogen-induced Salicylate Biosynthesis Exhibits Properties Consistent with a Role in Diverse Stress Responses. J Biol Chem 2007; 282:5919-33. [PMID: 17190832 DOI: 10.1074/jbc.m605193200] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Salicylic acid (SA) is a phytohormone best known for its role in plant defense. It is synthesized in response to diverse pathogens and responsible for the large scale transcriptional induction of defense-related genes and the establishment of systemic acquired resistance. Surprisingly, given its importance in plant defense, an understanding of the underlying enzymology is lacking. In Arabidopsis thaliana, the pathogen-induced accumulation of SA requires isochorismate synthase (AtICS1). Here, we show that AtICS1 is a plastid-localized, stromal protein using chloroplast import assays and immunolocalization. AtICS1 acts as a monofunctional isochorismate synthase (ICS), catalyzing the conversion of chorismate to isochorismate (IC) in a reaction that operates near equilibrium (K(eq) = 0.89). It does not convert chorismate directly to SA (via an IC intermediate) as does Yersinia enterocolitica Irp9. Using an irreversible coupled spectrophotometric assay, we found that AtICS1 exhibits an apparent K(m) of 41.5 mum and k(cat) = 38.7 min(-1) for chorismate. This affinity for chorismate would allow it to successfully compete with other pathogen-induced, chorismate-utilizing enzymes. Furthermore, the biochemical properties of AtICS1 indicate its activity is not regulated by light-dependent changes in stromal pH, Mg(2+), or redox and that it is remarkably active at 4 degrees C consistent with a role for SA in cold-tolerant growth. Finally, our analyses support plastidic synthesis of stress-induced SA with the requirement for one or more additional enzymes responsible for the conversion of IC to SA, because non-enzymatic conversion of IC to SA under physiological conditions was negligible.
Collapse
Affiliation(s)
- Marcus A Strawn
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720-3102, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wrzaczek M, Rozhon W, Jonak C. A Proteasome-regulated Glycogen Synthase Kinase-3 Modulates Disease Response in Plants. J Biol Chem 2007; 282:5249-55. [PMID: 17179144 DOI: 10.1074/jbc.m610135200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a key player in various important signaling pathways in animals. The activity of GSK-3 is known to be modulated by protein phosphorylation and differential complex formation. However, little information is available regarding the function and regulation of plant GSK-3/shaggy-like kinases (GSKs). Analysis of the in vivo kinase activity of MsK1, a GSK from Medicago sativa, revealed that MsK1 is active in healthy plants and that MsK1 activity is down-regulated by the elicitor cellulase in a time- and dose-dependent manner. Surprisingly, cellulase treatment triggered the degradation of the MsK1 protein in a proteasome-dependent manner suggesting a novel mechanism of GSK-3 regulation. Inhibition of MsK1 kinase activity and degradation of the protein were two successive processes that could be uncoupled. In a transgenic approach, stimulus-induced inhibition of MsK1 was impeded by constant replenishment of MsK1 by a strong constitutive promoter. MsK1 overexpressing plants exhibited enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae. MAP kinase activation in response to pathogen infection was compromised in plants with elevated MsK1 levels. These data strongly suggest that tight regulation of the plant GSK-3, MsK1, may be important for innate immunity to limit the severity of virulent bacterial infection.
Collapse
Affiliation(s)
- Michael Wrzaczek
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
30
|
Roberts K, Love AJ, Laval V, Laird J, Tomos AD, Hooks MA, Milner JJ. Long-distance movement of Cauliflower mosaic virus and host defence responses in Arabidopsis follow a predictable pattern that is determined by the leaf orthostichy. THE NEW PHYTOLOGIST 2007; 175:707-717. [PMID: 17688586 DOI: 10.1111/j.1469-8137.2007.02136.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Long-distance virus transport takes place through the vascular system and is dependent on the movement of photoassimilates. Here, patterns of symptom development, virus movement and gene expression were analysed in Arabidopsis following inoculation with Cauliflower mosaic virus (CaMV) on a single leaf. Virus accumulation and expression of markers for the salicylic acid (SA) and ethylene/jasmonate (Et/JA) defence pathways, PR-1 and PDF1.2, were analysed on a leaf-by-leaf basis by real-time reverse transcription polymerase chain reaction (qRT-PCR). Virus spread followed a strictly defined pattern identical to that of a source-sink relationship. This was exploited to study differences between local and systemic defence responses in a developmental and spatial manner. In infected plants, PR-1 transcripts accumulated primarily but not exclusively in leaves with a direct vascular connection to the inoculated leaf. Abundances fell significantly as virus accumulated. By contrast, PDF1.2 transcripts were significantly lower than in controls in all leaves at early stages of infection, but recovered as virus accumulated. Virus and PR-1 transcript abundances are negatively correlated, and SA- and Et/JA-mediated signalling of gene expression occurs independently of the presence of virus. Although SA-dependent signalling responses were mainly linked to the orthostichy, Et/JA-dependent responses were independent of vascular connections.
Collapse
Affiliation(s)
- Karen Roberts
- Plant Science Group, Division of Biochemistry & Molecular Biology, Institute of Biomedical and Life Sciences, Glasgow University, Glasgow G12 8QQ, UK
- School of Biological Sciences, University of Wales - Bangor, Memorial Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Andrew J Love
- Plant Science Group, Division of Biochemistry & Molecular Biology, Institute of Biomedical and Life Sciences, Glasgow University, Glasgow G12 8QQ, UK
| | - Valérie Laval
- Plant Science Group, Division of Biochemistry & Molecular Biology, Institute of Biomedical and Life Sciences, Glasgow University, Glasgow G12 8QQ, UK
| | - Janet Laird
- Plant Science Group, Division of Biochemistry & Molecular Biology, Institute of Biomedical and Life Sciences, Glasgow University, Glasgow G12 8QQ, UK
| | - A Deri Tomos
- School of Biological Sciences, University of Wales - Bangor, Memorial Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Mark A Hooks
- School of Biological Sciences, University of Wales - Bangor, Memorial Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Joel J Milner
- Plant Science Group, Division of Biochemistry & Molecular Biology, Institute of Biomedical and Life Sciences, Glasgow University, Glasgow G12 8QQ, UK
| |
Collapse
|
31
|
Butenko MA, Stenvik GE, Alm V, Saether B, Patterson SE, Aalen RB. Ethylene-dependent and -independent pathways controlling floral abscission are revealed to converge using promoter::reporter gene constructs in the ida abscission mutant. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:3627-37. [PMID: 16990374 DOI: 10.1093/jxb/erl130] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The process of floral organ abscission in Arabidopsis thaliana can be modulated by ethylene and involves numerous genes contributing to cell separation. One gene that is absolutely required for abscission is INFLORESCENCE DEFICIENT IN ABSCISSION, IDA, as the ida mutant is completely blocked in abscission. To elucidate the genetic pathways regulating floral abscission, molecular markers expressed in the floral abscission zone have been studied in an ida mutant background. Using plants with promoter-reporter gene constructs including promoters of a novel FLORAL ABSCISSION ASSOCIATED gene (FAA) encoding a putative single-stranded binding protein (BASIL), chitinase (CHIT::GUS) and cellulase (BAC::GUS), it is shown that IDA acts in the last steps of the abscission process. These markers, as well as HAESA, encoding a receptor-like kinase, were unaffected in their temporal expression patterns in ida compared with wild-type plants; thus showing that different regulatory pathways are active in the abscission process. In contrast to BASIL, CHIT::GUS and BAC::GUS showed, however, much weaker induction of expression in an ida background, consistent with a reduction in pathogen-associated responses and a lack of total dissolution of cell walls in the mutant. IDA, encoding a putative secreted peptide ligand, and HAESA appeared to have identical patterns of expression in floral abscission zones. Lastly, to address the role of ethylene, IDA::GUS expression in the wild type and the ethylene-insensitive mutant etr1-1 was compared. Similar temporal patterns, yet restricted spatial expression patterns were observed in etr1-1, suggesting that the pathways regulated by IDA and by ethylene act in parallel, but are, to some degree, interdependent.
Collapse
Affiliation(s)
- Melinka A Butenko
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
32
|
Koch M, Vorwerk S, Masur C, Sharifi-Sirchi G, Olivieri N, Schlaich NL. A role for a flavin-containing mono-oxygenase in resistance against microbial pathogens in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:629-39. [PMID: 16856982 DOI: 10.1111/j.1365-313x.2006.02813.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Using activation tagging in the Arabidopsis Col-0 rps2-101C background, we identified a mutant (FMO1-3D) that showed virtually no symptoms after inoculation with virulent Pseudomonas syringae pv. tomato DC3000 bacteria. The dominant, gain-of-function phenotype of the FMO1-3D mutant is due to over-expression of a class 3 flavin-containing mono-oxygenase (FMO). We recapitulated the FMO1-3D mutant phenotype in independent transgenic Col-0 lines over-expressing the FMO1 cDNA under the control of the 35S CaMV promoter. The increased basal resistance observed in the FMO1-3D mutant was also effective against the taxonomically unrelated downy mildew-causing pathogen Hyaloperonospora parasitica. By investigating the progeny from crosses of the FMO1-3D mutant with the NahG transgenic line, we showed that the enhanced basal resistance phenotype was dependent on the accumulation of salicylic acid. FMO1-3D plants showed wild-type resistant reactions after inoculation with avirulent bacteria, indicating that the R-gene-mediated defence physiology was not compromised by FMO1 over-expression. Transcripts of the class 3 FMO1 gene accumulated within 6 h after inoculation of wild-type Col-0 plants with avirulent Pst + avrRpt2 cells. Moreover, a T-DNA insertion into the FMO1 gene resulted in enhanced susceptibility to virulent Pseudomonas and Hyaloperonospora parasitica, suggesting that expression of the FMO1 gene is a hitherto undescribed component of the plant's resistance repertoire. We discuss the possibility that the FMO may participate in the detoxification of virulence factors produced by pathogens.
Collapse
Affiliation(s)
- Martina Koch
- RWTH Aachen University, Institut Bio III Pflanzenphysiologie, 52056 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Love AJ, Yun BW, Laval V, Loake GJ, Milner JJ. Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. PLANT PHYSIOLOGY 2005; 139:935-48. [PMID: 16169957 PMCID: PMC1256007 DOI: 10.1104/pp.105.066803] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 06/10/2005] [Accepted: 06/30/2005] [Indexed: 05/04/2023]
Abstract
We analyzed expression of marker genes for three defense pathways during infection by Cauliflower mosaic virus (CaMV), a compatible pathogen of Arabidopsis (Arabidopsis thaliana), using luciferase reporter transgenes and directly by measuring transcript abundance. Expression of PR-1, a marker for salicylic acid signaling, was very low until 8 d postinoculation and then rose sharply, coinciding with the rise in virus levels. In contrast, as early as 2 h postinoculation, transcriptional up-regulation of GST1-a marker for reactive oxygen species-and PDF1.2-a marker for jasmonic acid/ethylene defense signaling-was detectable in the virus-inoculated leaf and systemically. In parallel with the activation of GST1, H(2)O(2) accumulated locally and systemically in virus- but not mock-inoculated plants. However, in plants inoculated with infectious CaMV DNA rather than virus particles, the onset of systemic luciferase activity was delayed by 24 to 48 h, suggesting that virion structural proteins act as the elicitor. This phenomenon, which we term the rapid systemic response, preceded virus movement from the inoculated leaf; therefore, the systemic signal is not viral. Systemic, but not local, H(2)O(2) accumulation was abolished in rbohDF double mutants and in etr1-1 and ein2-1 mutants, implicating NADPH oxidase and ethylene signaling in the generation and transduction of the response. Ethylene, but not rbohDF mutants, also showed reduced susceptibility to CaMV, whereas in NahG transgenics, virus levels were similar to wild type. These findings implicate reactive oxygen species and ethylene in signaling in response to CaMV infection, but suggest that salicylic acid does not play an effective role.
Collapse
Affiliation(s)
- Andrew J Love
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | | | | | |
Collapse
|
34
|
Diener AC, Ausubel FM. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 2005; 171:305-21. [PMID: 15965251 PMCID: PMC1456520 DOI: 10.1534/genetics.105.042218] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis thaliana ecotypes differ in their susceptibility to Fusarium wilt diseases. Ecotype Taynuilt-0 (Ty-0) is susceptible to Fusarium oxysporum forma specialis (f.) matthioli whereas Columbia-0 (Col-0) is resistant. Segregation analysis of a cross between Ty-0 and Col-0 revealed six dominant RESISTANCE TO FUSARIUM OXYSPORUM (RFO) loci that significantly contribute to f. matthioli resistance in Col-0 relative to Ty-0. We refer to the locus with the strongest effect as RFO1. Ty-0 plants in which only the Col-0 allele of RFO1 (RFO1(Col-0)) was introduced were resistant to f. matthioli. Surprisingly, RFO1(Col-0) also conferred resistance to f. raphani, demonstrating that RFO1-mediated resistance is not race specific. Expression of resistance by RFO2, RFO4, or RFO6 was dependent on RFO1(Col-0). Map-based cloning of RFO1(Col-0) showed that RFO1 is identical to the previously named Arabidopsis gene WAKL22 (WALL-ASSOCIATED KINASE-LIKE KINASE 22), which encodes a receptor-like kinase that does not contain an extracellular leucine-rich repeat domain. Consistent with these results, a Col-0 rfo1 loss-of-function mutant was more susceptible to f. matthioli, f. conglutinans, and f. raphani. Thus, RFO1 encodes a novel type of dominant disease-resistance protein that confers resistance to a broad spectrum of Fusarium races.
Collapse
Affiliation(s)
- Andrew C Diener
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
35
|
Zeier J, Pink B, Mueller MJ, Berger S. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. PLANTA 2004; 219:673-83. [PMID: 15098125 DOI: 10.1007/s00425-004-1272-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 03/12/2004] [Indexed: 05/19/2023]
Abstract
In incompatible plant-pathogen interactions, disease resistance is generated by rapid activation of a multitude of plant defence reactions. Little is known about the dependency of these resistance responses on external factors. The plasticity of plant defence mechanisms in terms of light conditions is studied here. Interaction of Arabidopsis thaliana (L.) Heynh. with an avirulent strain of Pseudomonas syringae pv. maculicola in the dark resulted in increased apoplastic bacterial growth and therefore reduced local resistance as compared to an infection process in the presence of light. Several characteristic defence reactions, including activation of phenylalanine ammonia-lyase, accumulation of salicylic acid (SA), expression of the pathogenesis-related protein PR-1 and the development of a microscopically defined hypersensitive response, proved to be light dependent. In contrast, the extent of the oxidative burst, as estimated by induction of the protectant gene glutathione- S-transferase, was not weakened by the absence of light. Moreover, pathogen-induced accumulation of jasmonic acid, production of the phytoalexin camalexin and transcriptional induction of a pathogen-inducible myrosinase were even more pronounced in the dark. Apart from affecting local defence responses, light also influenced the establishment of systemic acquired resistance (SAR). SAR development in response to infection by avirulent bacteria was completely lost when the primary infection process occurred in the absence of light. SAR developed both under medium (70 micromol photons m(-2) s(-1)) and strong (500 micromol photons m(-2) s(-1)) light conditions but was in the latter case not associated with an accumulation of SA and PR-1 in systemic leaves, demonstrating that SAR can be executed independently from these molecular SAR markers. Our results are consistent with the notion that SA accumulation in infected primary leaves is necessary for induction of systemic resistance and indicate that defence mechanisms different from SA signalling and PR-protein action exist in systemic tissue to confer resistance during SAR.
Collapse
Affiliation(s)
- Jürgen Zeier
- Julius-von-Sachs-Institute of Biological Science, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Germany.
| | | | | | | |
Collapse
|
36
|
Sauerbrunn N, Schlaich NL. PCC1: a merging point for pathogen defence and circadian signalling in Arabidopsis. PLANTA 2004; 218:552-61. [PMID: 14614626 DOI: 10.1007/s00425-003-1143-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 09/10/2003] [Indexed: 05/09/2023]
Abstract
Using a cDNA-array we identified expressed sequence tag 163B24T7 as rapidly up-regulated in Arabidopsis thaliana (L.) Heynh. after pathogen exposure. Detailed expression analysis revealed that the corresponding gene is up-regulated not only after exposure to avirulent Pseudomonas syringae pv. tomato but also to virulent strains. This up-regulation is dependent on functional salicylic acid defence-signalling pathways. Moreover, we found the gene was circadian-regulated, showing peaks of expression at the end of the day. Using plants overexpressing the clock component CCA1, we showed that the PCC1 gene is regulated by the inner clock of Arabidopsis. Accordingly, we named the gene PCC1, for pathogen and circadian controlled. PCC1 is a member of a novel family of six small polypeptides in Arabidopsis. A functional role for PCC1 in plant defence was demonstrated since plants overexpressing PCC1 are resistant against normally virulent oomycetes. Thus, PCC1 demonstrates a potential interrelationship between pathogen and circadian signalling pathways.
Collapse
Affiliation(s)
- Nicolas Sauerbrunn
- Institut Bio III (Pflanzenphysiologie), RWTH Aachen, 52056 Aachen, Germany
| | | |
Collapse
|
37
|
Ton J, De Vos M, Robben C, Buchala A, Métraux JP, Van Loon LC, Pieterse CMJ. Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:11-21. [PMID: 12060223 DOI: 10.1046/j.1365-313x.2002.01190.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the rhizobacterial strain Pseudomonas fluorescens WCS417r triggers jasmonate (JA)- and ethylene (ET)-dependent induced systemic resistance (ISR) that is effective against different pathogens. Arabidopsis genotypes unable to express rhizobacteria-mediated ISR against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) exhibit enhanced disease susceptibility towards this pathogen. To identify novel components controlling induced resistance, we tested 11 Arabidopsis mutants with enhanced disease susceptibility (eds) to pathogenic P. syringae bacteria for WCS417r-mediated ISR and pathogen-induced systemic acquired resistance (SAR). Mutants eds4-1, eds8-1 and eds10-1 failed to develop WCS417r-mediated ISR, while mutants eds5-1 and eds12-1 failed to express pathogen-induced SAR. Whereas eds5-1 is known to be blocked in salicylic acid (SA) biosynthesis, analysis of eds12-1 revealed that its impaired SAR response is caused by reduced sensitivity to this molecule. Analysis of the ISR-impaired eds mutants revealed that they are non-responsive to induction of resistance by methyl jasmonate (MeJA) (eds4-1, eds8-1 and eds10-1), or the ET precursor 1-aminocyclopropane-1-carboxylate (ACC) (eds4-1 and eds10-1). Moreover, eds4-1 and eds8-1 showed reduced expression of the plant defensin gene PDF1.2 after MeJA and ACC treatment, which was associated with reduced sensitivity to either ET (eds4-1) or MeJA (eds8-1). Although blocked in WCS417r-, MeJA- and ACC-induced ISR, eds10-1 behaved normally for several other responses to MeJA or ACC. The results indicate that EDS12 is required for SAR and acts downstream of SA, whereas EDS4, EDS8 and EDS10 are required for ISR acting either in JA signalling (EDS8), ET signalling (EDS4), or downstream JA and ET signalling (EDS10) in the ISR pathway.
Collapse
Affiliation(s)
- Jurriaan Ton
- Graduate School Experimental Plant Sciences, Section of Phytopathology, Faculty of Biology, Utrecht University, PO Box 800.84, 3508 TB Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Roberts JA, Elliott KA, Gonzalez-Carranza ZH. Abscission, dehiscence, and other cell separation processes. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:131-58. [PMID: 12221970 DOI: 10.1146/annurev.arplant.53.092701.180236] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cell separation is a critical process that takes place throughout the life cycle of a plant. It enables roots to emerge from germinating seeds, cotyledons, and leaves to expand, anthers to dehisce, fruit to ripen, and organs to be shed. The focus of this review is to examine how processes such as abscission and dehiscence are regulated and the ways new research strategies are helping us to understand the mechanisms involved in bringing about a reduction in cell-to-cell adhesion. The opportunities for using this information to manipulate cell separation for the benefit of agriculture and horticulture are evaluated.
Collapse
Affiliation(s)
- Jeremy A Roberts
- Division of Plant Science, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leics LE12 5RD, United Kingdom.
| | | | | |
Collapse
|
39
|
Nawrath C, Heck S, Parinthawong N, Métraux JP. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. THE PLANT CELL 2002; 14:275-86. [PMID: 11826312 PMCID: PMC150564 DOI: 10.1105/tpc.010376] [Citation(s) in RCA: 403] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2001] [Accepted: 10/10/2001] [Indexed: 05/18/2023]
Abstract
The eds5 mutant of Arabidopsis (earlier named sid1) was shown previously to accumulate very little salicylic acid and PR-1 transcript after pathogen inoculation and to be hypersusceptible to pathogens. We have isolated EDS5 by positional cloning and show that it encodes a protein with a predicted series of nine to 11 membrane-spanning domains and a coil domain at the N terminus. EDS5 is homologous with members of the MATE (multidrug and toxin extrusion) transporter family. EDS5 expression is very low in unstressed plants and strongly induced by pathogens and UV-C light. The transcript starts to accumulate 2 hr after inoculation of Arabidopsis with an avirulent strain of Pseudomonas syringae or UV-C light exposure, and it stays induced for approximately 2 days. EDS5 also is expressed after treatments with salicylic acid, indicating a possible positive feedback regulation. EDS5 expression after infection by certain pathogens as well as after UV-C light exposure depends on the pathogen response proteins EDS1, PAD4, and NDR1, indicating that the signal transduction pathways after UV-C light exposure and pathogen inoculation share common elements.
Collapse
Affiliation(s)
- Christiane Nawrath
- Department of Biology, Unit of Plant Biology, Route Albert Gockel 3, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
40
|
Tierens KFMJ, Thomma BPHJ, Bari RP, Garmier M, Eggermont K, Brouwer M, Penninckx IAMA, Broekaert WF, Cammue BPA. Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:131-140. [PMID: 11862946 DOI: 10.1046/j.1365-313x.2002.01199.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An Arabidopsis thaliana mutant, esa1, that shows enhanced susceptibility to the necrotrophic pathogens Alternaria brassicicola, Botrytis cinerea and Plectosphaerella cucumerina, but has wild-type levels of resistance to the biotrophic pathogens Pseudomonas syringae pv. tomato and Peronospora parasitica. The enhanced susceptibility towards necrotrophic pathogens correlated with a delayed induction of phytoalexin accumulation and delayed induction of the plant defensin gene PDF1.2 upon inoculation with pathogens. Two reactive oxygen generating compounds, paraquat and acifluorfen, were found to cause induction of both phytoalexin accumulation and PDF1.2 expression in wild-type plants, but this induction was almost completely abolished in esa1. This finding suggests that esa1 may somehow be involved in transduction of signals generated by reactive oxygen species.
Collapse
|
41
|
Shapiro AD, Zhang C. The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. PLANT PHYSIOLOGY 2001; 127:1089-1101. [PMID: 11706189 DOI: 10.1104/pp.010096] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis plants containing the ndr1-1 mutation are incapable of mounting a hypersensitive response to bacteria carrying avrRpt2, but show an exaggerated cell death response to bacteria carrying avrB (Century et al., 1995). We show here that ndr1-1 plants are severely impaired in induction of systemic acquired resistance and PR1-driven transcription of a reporter gene in response to Pseudomonas syringae strains carrying avrRpt2 but not in response to P. syringae carrying avrB. The ndr1-1 mutation also impaired salicylic acid (SA) accumulation in response to treatments that produced reactive oxygen species (ROS) and impaired induction of systemic acquired resistance in response to in situ production of ROS. Hydrogen peroxide accumulated in wild-type Arabidopsis leaves beginning 4 to 7 h postinoculation with P. syringae carrying either avrRpt2 or avrB. In ndr1-1 plants, P. syringae carrying avrRpt2 elicited no detectable hydrogen peroxide production. Hydrogen peroxide production in response to bacteria carrying avrB was similar to that of Columbia in kinetics but of lesser intensity at early time points. These data are interpreted to indicate that NDR1 links ROS generation to SA production and that the phenotypic consequences of the ndr1-1 mutation are caused by a reduced ability to accumulate SA upon pathogen infection.
Collapse
Affiliation(s)
- A D Shapiro
- Delaware Agricultural Experiment Station, Department of Plant and Soil Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19717-1303, USA.
| | | |
Collapse
|
42
|
Li X, Clarke JD, Zhang Y, Dong X. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1131-9. [PMID: 11605952 DOI: 10.1094/mpmi.2001.14.10.1131] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis NPR1 protein is an essential regulatory component of systemic acquired resistance (SAR). Mutations in the NPR1 gene completely block the induction of SAR by signals such as salicylic acid (SA). An Arabidopsis mutant, snc1 (suppressor of npr1-1, constitutive 1), was isolated in a screen for suppressors of npr1-1. In the npr1-1 background, the snc1 mutation resulted in constitutive resistance to Pseudomonas syringae maculicola ES4326 and Peronospora parasitica Noco2. High levels of SA were detected in the mutant and shown to be required for manifestation of the snc1 phenotype. The snc1 mutation was mapped to the RPP5 resistance (R) gene cluster and the eds1 mutation that blocks RPP5-mediated resistance suppressed snc1. These data suggest that a RPP5-related resistance pathway is activated constitutively in snc1. This pathway does not employ NPR1 but requires the signal molecule SA and the function of EDS1. Moreover, in snc1, constitutive resistance is conferred in the absence of cell death, which is often associated with R-gene mediated resistance.
Collapse
Affiliation(s)
- X Li
- Department of Biology, Duke University, Durham, NC 27708-1000, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Significant progress has been made in the past year in understanding the mechanism of systemic acquired resistance. Mitogen-activated protein kinase cascades have been implicated as negative regulators of salicyclic acid accumulation and the induction of resistance. The salicylic acid signal is transduced through NPR1, a nuclear-localized protein that interacts with transcription factors that are involved in regulating salicylic-acid-mediated gene expression. Both promoter analyses and genetic studies have shown that gene expression in systemic acquired resistance requires not only the activation of a transcriptional activator(s) but also inhibition of a transcriptional repressor(s). Microarray experiments have been performed to search for those genes whose expression is transcriptionally regulated during systemic acquired resistance and to identify common promoter elements that control these genes.
Collapse
Affiliation(s)
- X Dong
- Developmental, Cell and Molecular Biology Group, Department of Biology, LSRC Building, P. O. Box 91000, Duke University, Durham, North Carolina 27708-1000, USA.
| |
Collapse
|
44
|
Genoud T, Trevino Santa Cruz MB, Métraux JP. Numeric simulation of plant signaling networks. PLANT PHYSIOLOGY 2001; 126:1430-7. [PMID: 11500542 PMCID: PMC117143 DOI: 10.1104/pp.126.4.1430] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2001] [Revised: 04/23/2001] [Accepted: 05/10/2001] [Indexed: 05/20/2023]
Abstract
Plants have evolved an intricate signaling apparatus that integrates relevant information and allows an optimal response to environmental conditions. For instance, the coordination of defense responses against pathogens involves sophisticated molecular detection and communication systems. Multiple protection strategies may be deployed differentially by the plant according to the nature of the invading organism. These responses are also influenced by the environment, metabolism, and developmental stage of the plant. Though the cellular signaling processes traditionally have been described as linear sequences of events, it is now evident that they may be represented more accurately as network-like structures. The emerging paradigm can be represented readily with the use of Boolean language. This digital (numeric) formalism allows an accurate qualitative description of the signal transduction processes, and a dynamic representation through computer simulation. Moreover, it provides the required power to process the increasing amount of information emerging from the fields of genomics and proteomics, and from the use of new technologies such as microarray analysis. In this review, we have used the Boolean language to represent and analyze part of the signaling network of disease resistance in Arabidopsis.
Collapse
Affiliation(s)
- T Genoud
- Département de Biologie, University of Fribourg, Rue Albert Gockel 3, CH-1700 Fribourg, Switzerland.
| | | | | |
Collapse
|
45
|
Patterson SE. Cutting loose. Abscission and dehiscence in Arabidopsis. PLANT PHYSIOLOGY 2001; 126:494-500. [PMID: 11402180 PMCID: PMC1540116 DOI: 10.1104/pp.126.2.494] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- S E Patterson
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706-1381, USA.
| |
Collapse
|
46
|
Lu M, Tang X, Zhou JM. Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. THE PLANT CELL 2001; 13:437-47. [PMID: 11226196 PMCID: PMC102253 DOI: 10.1105/tpc.13.2.437] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2000] [Accepted: 12/12/2000] [Indexed: 05/17/2023]
Abstract
Nonhost interactions are prevalent between plants and specialized phytopathogens. Although it has great potential for providing crop plants with durable resistance, nonhost resistance is poorly understood. Here, we show that nonhost resistance is controlled, at least in part, by general resistance. Arabidopsis plants are resistant to the nonhost pathogen Pseudomonas syringae pv phaseolicola NPS3121 and completely arrest bacterial multiplication in the plant. Ten Arabidopsis mutants were isolated that were compromised in nonhost (nho) resistance to P. s. phaseolicola. Among these, nho1 is caused by a single recessive mutation that defines a novel gene. nho1 is defective in nonspecific resistance to Pseudomonas bacteria, because it also supported the growth of P. s. tabaci and P. fluorescens bacteria, both of which are nonpathogenic on Arabidopsis. In addition, the nho1 mutation also compromised resistance mediated by RPS2, RPS4, RPS5, and RPM1. Interestingly, the nho1 mutation had no effect on the growth of the virulent bacteria P. s. maculicola ES4326 and P. s. tomato DC3000, but it partially restored the in planta growth of the DC3000 hrpS(-) mutant bacteria. Thus, the virulent bacteria appear to evade or suppress NHO1-mediated resistance by means of an Hrp-dependent virulence mechanism.
Collapse
Affiliation(s)
- M Lu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
47
|
Plotnikova JM, Rahme LG, Ausubel FM. Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. PLANT PHYSIOLOGY 2000; 124:1766-74. [PMID: 11115892 PMCID: PMC59873 DOI: 10.1104/pp.124.4.1766] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2000] [Revised: 08/26/2000] [Accepted: 09/17/2000] [Indexed: 05/22/2023]
Abstract
The human opportunistic pathogen Pseudomonas aeruginosa strain PA14 is a multihost pathogen that can infect Arabidopsis. We found that PA14 pathogenesis in Arabidopsis involves the following steps: attachment to the leaf surface, congregation of bacteria at and invasion through stomata or wounds, colonization of intercellular spaces, and concomitant disruption of plant cell wall and membrane structures, basipetal movement along the vascular parenchyma, and maceration and rotting of the petiole and central bud. Distinctive features of P. aeruginosa pathogenesis are that the surface of mesophyll cell walls adopt an unusual convoluted or undulated appearance, that PA14 cells orient themselves perpendicularly to the outer surface of mesophyll cell walls, and that PA14 cells make circular perforations, approximately equal to the diameter of P. aeruginosa, in mesophyll cell walls. Taken together, our data show that P. aeruginosa strain PA14 is a facultative pathogen of Arabidopsis that is capable of causing local and systemic infection, which can result in the death of the infected plant.
Collapse
Affiliation(s)
- J M Plotnikova
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
48
|
Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in arabidopsis. THE PLANT CELL 2000; 12:2175-90. [PMID: 11090217 PMCID: PMC150166 DOI: 10.1105/tpc.12.11.2175] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2000] [Accepted: 09/18/2000] [Indexed: 05/18/2023]
Abstract
Disease resistance in Arabidopsis is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) function as key signaling molecules. Epistasis analyses were performed between mutants that disrupt these pathways (npr1, eds5, ein2, and jar1) and mutants that constitutively activate these pathways (cpr1, cpr5, and cpr6), allowing exploration of the relationship between the SA- and JA/ET-mediated resistance responses. Two important findings were made. First, the constitutive disease resistance exhibited by cpr1, cpr5, and cpr6 is completely suppressed by the SA-deficient eds5 mutant but is only partially affected by the SA-insensitive npr1 mutant. Moreover, eds5 suppresses the SA-accumulating phenotype of the cpr mutants, whereas npr1 enhances it. These data indicate the existence of an SA-mediated, NPR1-independent resistance response. Second, the ET-insensitive mutation ein2 and the JA-insensitive mutation jar1 suppress the NPR1-independent resistance response exhibited by cpr5 and cpr6. Furthermore, ein2 potentiates SA accumulation in cpr5 and cpr5 npr1 while dampening SA accumulation in cpr6 and cpr6 npr1. These latter results indicate that cpr5 and cpr6 regulate resistance through distinct pathways and that SA-mediated, NPR1-independent resistance works in combination with components of the JA/ET-mediated response pathways.
Collapse
Affiliation(s)
- J D Clarke
- Developmental, Cell, and Molecular Biology Group, Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | | | |
Collapse
|
49
|
Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in arabidopsis. THE PLANT CELL 2000. [PMID: 11090217 DOI: 10.2307/3871113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Disease resistance in Arabidopsis is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) function as key signaling molecules. Epistasis analyses were performed between mutants that disrupt these pathways (npr1, eds5, ein2, and jar1) and mutants that constitutively activate these pathways (cpr1, cpr5, and cpr6), allowing exploration of the relationship between the SA- and JA/ET-mediated resistance responses. Two important findings were made. First, the constitutive disease resistance exhibited by cpr1, cpr5, and cpr6 is completely suppressed by the SA-deficient eds5 mutant but is only partially affected by the SA-insensitive npr1 mutant. Moreover, eds5 suppresses the SA-accumulating phenotype of the cpr mutants, whereas npr1 enhances it. These data indicate the existence of an SA-mediated, NPR1-independent resistance response. Second, the ET-insensitive mutation ein2 and the JA-insensitive mutation jar1 suppress the NPR1-independent resistance response exhibited by cpr5 and cpr6. Furthermore, ein2 potentiates SA accumulation in cpr5 and cpr5 npr1 while dampening SA accumulation in cpr6 and cpr6 npr1. These latter results indicate that cpr5 and cpr6 regulate resistance through distinct pathways and that SA-mediated, NPR1-independent resistance works in combination with components of the JA/ET-mediated response pathways.
Collapse
Affiliation(s)
- J D Clarke
- Developmental, Cell, and Molecular Biology Group, Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | | | |
Collapse
|
50
|
Mayda E, Mauch-Mani B, Vera P. Arabidopsis dth9 mutation identifies a gene involved in regulating disease susceptibility without affecting salicylic acid-dependent responses. THE PLANT CELL 2000; 12:2119-28. [PMID: 11090213 PMCID: PMC150162 DOI: 10.1105/tpc.12.11.2119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2000] [Accepted: 09/20/2000] [Indexed: 05/18/2023]
Abstract
To determine which components of the plant defense response make important contributions to limiting pathogen attack, an M(2) mutagenized population of a transgenic Arabidopsis line was screened for mutants showing constitutive expression of beta-glucuronidase activity driven by the promoter region of the CEVI-1 gene. The CEVI-1 gene originally was isolated from tomato plants and has been shown to be induced in susceptible varieties of tomato plants by virus infection in a salicylic acid-independent manner. We report here the characterization of a recessive mutant, detachment9 (dth9). This mutant is more susceptible to both virulent and avirulent forms of the oomycete Peronospora and also exhibits increased susceptibility to the moderately virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326. However, this mutant is not affected in salicylic acid metabolism and shows normal expression of pathogenesis-related (PR) genes after pathogen attack. Furthermore, after inoculation with avirulent pathogens, the dth9 mutant shows a compromised systemic acquired resistance response that cannot be complemented by exogenous application of salicylic acid, although this molecule is able to promote normal activation of PR genes. Therefore, the dth9 mutation defines a regulator of disease susceptibility that operates upstream or independently of salicylic acid. Pleiotropy is also evident in the dth9 mutant in the sense that the shoots of dth9 plants are insensitive to the exogenously applied auxin analog 2,4-dichlorophenoxyacetic acid.
Collapse
Affiliation(s)
- E Mayda
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica-Consejo Superior de Investigaciones Científicas, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | |
Collapse
|