1
|
De Grassi A, Tritto P, Palumbo V, Bozzetti MP, Berloco MF. The Drosophila simulans Genome Lacks the crystal- Stellate System. Cells 2022; 11:cells11233725. [PMID: 36496985 PMCID: PMC9741089 DOI: 10.3390/cells11233725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
The cry-Ste system is a genetic interaction system between heterochromatin and euchromatin in Drosophila melanogaster, regulated via the piRNA pathway. Deregulation of this system leads to meiotic defects and male sterility. Although the cry-Ste system is peculiar to D. melanogaster, ancestors of Ste and Su(Ste) elements are present in the three closely related species, D. simulans, D. sechellia, and D. mauritiana. The birth, evolution, and maintenance of this genetic system in Drosophila melanogaster are of interest. We investigate the presence of sequences homologous to cry and Ste elements in the simulans complex and describe their chromosomal distribution. The organization and expression of cry- and Ste-like sequences were further characterized in the D. simulans genome. Our results allow us to conclude that the cry-Ste genetic interaction system is absent in the D. simulans genome.
Collapse
Affiliation(s)
- Anna De Grassi
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università Degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
| | - Patrizia Tritto
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università Degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, “ Sapienza”, Università di Roma, 00185 Roma, Italy
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Maria Francesca Berloco
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università Degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
2
|
Palazzo A, Caizzi R, Moschetti R, Marsano RM. What Have We Learned in 30 Years of Investigations on Bari Transposons? Cells 2022; 11:583. [PMID: 35159391 PMCID: PMC8834629 DOI: 10.3390/cells11030583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) have been historically depicted as detrimental genetic entities that selfishly aim at perpetuating themselves, invading genomes, and destroying genes. Scientists often co-opt "special" TEs to develop new and powerful genetic tools, that will hopefully aid in changing the future of the human being. However, many TEs are gentle, rarely unleash themselves to harm the genome, and bashfully contribute to generating diversity and novelty in the genomes they have colonized, yet they offer the opportunity to develop new molecular tools. In this review we summarize 30 years of research focused on the Bari transposons. Bari is a "normal" transposon family that has colonized the genomes of several Drosophila species and introduced genomic novelties in the melanogaster species. We discuss how these results have contributed to advance the field of TE research and what future studies can still add to the current knowledge.
Collapse
|
3
|
Dupeyron M, Baril T, Bass C, Hayward A. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob DNA 2020; 11:21. [PMID: 32612713 PMCID: PMC7325037 DOI: 10.1186/s13100-020-00212-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/08/2020] [Indexed: 01/18/2023] Open
Abstract
Background Tc1/mariner transposons are widespread DNA transposable elements (TEs) that have made important contributions to the evolution of host genomic complexity in metazoans. However, the evolution and diversity of the Tc1/mariner superfamily remains poorly understood. Following recent developments in genome sequencing and the availability of a wealth of new genomes, Tc1/mariner TEs have been identified in many new taxa across the eukaryotic tree of life. To date, the majority of studies focussing on Tc1/mariner elements have considered only a single host lineage or just a small number of host lineages. Thus, much remains to be learnt about the evolution of Tc1/mariner TEs by performing analyses that consider elements that originate from across host diversity. Results We mined the non-redundant database of NCBI using BLASTp searches, with transposase sequences from a diverse set of reference Tc1/mariner elements as queries. A total of 5158 Tc1/mariner elements were retrieved and used to reconstruct evolutionary relationships within the superfamily. The resulting phylogeny is well resolved and includes several new groups of Tc1/mariner elements. In particular, we identify a new family of plant-genome restricted Tc1/mariner elements, which we call PlantMar. We also show that the pogo family is much larger and more diverse than previously appreciated, and we review evidence for a potential revision of its status to become a separate superfamily. Conclusions Our study provides an overview of Tc1-mariner phylogeny and summarises the impressive diversity of Tc1-mariner TEs among sequenced eukaryotes. Tc1/mariner TEs are successful in a wide range of eukaryotes, especially unikonts (the taxonomic supergroup containing Amoebozoa, Opisthokonta, Breviatea, and Apusomonadida). In particular, ecdysozoa, and especially arthropods, emerge as important hosts for Tc1/mariner elements (except the PlantMar family). Meanwhile, the pogo family, which is by far the largest Tc1/mariner family, also includes many elements from fungal and chordate genomes. Moreover, there is evidence of the repeated exaptation of pogo elements in vertebrates, including humans, in addition to the well-known example of CENP-B. Collectively, our findings provide a considerable advancement in understanding of Tc1/mariner elements, and more generally they suggest that much work remains to improve understanding of the diversity and evolution of DNA TEs.
Collapse
Affiliation(s)
- Mathilde Dupeyron
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| |
Collapse
|
4
|
Palazzo A, Caizzi R, Viggiano L, Marsano RM. Does the Promoter Constitute a Barrier in the Horizontal Transposon Transfer Process? Insight from Bari Transposons. Genome Biol Evol 2018; 9:1637-1645. [PMID: 28854630 PMCID: PMC5570127 DOI: 10.1093/gbe/evx122] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
The contribution of the transposons’ promoter in the horizontal transfer process is quite overlooked in the scientific literature. To shed light on this aspect we have mimicked the horizontal transfer process in laboratory and assayed in a wide range of hosts (fly, human, yeast and bacteria) the promoter activity of the 5′ terminal sequences in Bari1 and Bari3, two Drosophila transposons belonging to the Tc1-mariner superfamily. These sequences are able to drive the transcription of a reporter gene even in distantly related organisms at least at the episomal level. By combining bioinformatics and experimental approaches, we define two distinct promoter sequences for each terminal sequence analyzed, which allow transcriptional activity in prokaryotes and eukaryotes, respectively. We propose that the Bari family of transposons, and possibly other members of the Tc1-mariner superfamily, might have evolved “blurry promoters,” which have facilitated their diffusion in many living organisms through horizontal transfer.
Collapse
Affiliation(s)
- Antonio Palazzo
- Department of Biology, University of Bari "Aldo Moro," Italy
| | - Ruggiero Caizzi
- Department of Biology, University of Bari "Aldo Moro," Italy
| | - Luigi Viggiano
- Department of Biology, University of Bari "Aldo Moro," Italy
| | | |
Collapse
|
5
|
Palazzo A, Lovero D, D’Addabbo P, Caizzi R, Marsano RM. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer. PLoS One 2016; 11:e0156014. [PMID: 27213270 PMCID: PMC4877112 DOI: 10.1371/journal.pone.0156014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon’s co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon’s evolutionary dynamics and increases our understanding on the Tc1-mariner elements’ biology.
Collapse
Affiliation(s)
- Antonio Palazzo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
| | - Domenica Lovero
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126, Bari, Italy
| | - Pietro D’Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
- * E-mail:
| |
Collapse
|
6
|
Abstract
Sleeping Beauty (SB) is a synthetic transposon that was constructed based on sequences of transpositionally inactive elements isolated from fish genomes. SB is a Tc1/mariner superfamily transposon following a cut-and-paste transpositional reaction, during which the element-encoded transposase interacts with its binding sites in the terminal inverted repeats of the transposon, promotes the assembly of a synaptic complex, catalyzes excision of the element out of its donor site, and integrates the excised transposon into a new location in target DNA. SB transposition is dependent on cellular host factors. Transcriptional control of transposase expression is regulated by the HMG2L1 transcription factor. Synaptic complex assembly is promoted by the HMGB1 protein and regulated by chromatin structure. SB transposition is highly dependent on the nonhomologous end joining (NHEJ) pathway of double-strand DNA break repair that generates a transposon footprint at the excision site. Through its association with the Miz-1 transcription factor, the SB transposase downregulates cyclin D1 expression that results in a slowdown of the cell-cycle in the G1 phase, where NHEJ is preferentially active. Transposon integration occurs at TA dinucleotides in the target DNA, which are duplicated at the flanks of the integrated transposon. SB shows a random genome-wide insertion profile in mammalian cells when launched from episomal vectors and "local hopping" when launched from chromosomal donor sites. Some of the excised transposons undergo a self-destructive autointegration reaction, which can partially explain why longer elements transpose less efficiently. SB became an important molecular tool for transgenesis, insertional mutagenesis, and gene therapy.
Collapse
|
7
|
Palazzo A, Moschetti R, Caizzi R, Marsano RM. The Drosophila mojavensis Bari3 transposon: distribution and functional characterization. Mob DNA 2014; 5:21. [PMID: 25093043 PMCID: PMC4120734 DOI: 10.1186/1759-8753-5-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/13/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bari-like transposons belong to the Tc1-mariner superfamily, and they have been identified in several genomes of the Drosophila genus. This transposon's family has been used as paradigm to investigate the complex dynamics underlying the persistence and structural evolution of transposable elements (TEs) within a genome. Three structural Bari variants have been identified so far and can be distinguished based on the organization of their terminal inverted repeats. Bari3 is the last discovered member of this family identified in Drosophila mojavensis, a recently emerged species of the Repleta group of the genus Drosophila. RESULTS We studied the insertion pattern of Bari3 in different D. mojavensis populations and found evidence of recent transposition activity. Analysis of the transposase domains unveiled the presence of a functional nuclear localization signal, as well as a functional binding domain. Using luciferase-based assays, we investigated the promoter activity of Bari3 as well as the interaction of its transposase with its left terminus. The results suggest that Bari3 is transposition-competent. Finally we demonstrated transposase transcript processing when the transposase gene is overexpressed in vivo and in vitro. CONCLUSIONS Bari3 displays very similar structural and functional features with its close relative, Bari1. Our results strongly suggest that Bari3 is an independent element that has generated genomic diversity in D. mojavensis. It can autonomously transcribe its transposase gene, which in turn can localize in the nucleus and bind the terminal inverted repeats of the transposon. Nevertheless, the identification of an unpredicted spliced form of the Bari3 transposase transcript allows us to hypothesize a control mechanism of its mobility based on mRNA processing. These results will aid the studies on the Bari family of transposons, which is intriguing for its widespread diffusion in Drosophilids coupled with a structural diversity generated during the evolution of Bari-like elements in their host genomes.
Collapse
Affiliation(s)
- Antonio Palazzo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
8
|
Palazzo A, Marconi S, Specchia V, Bozzetti MP, Ivics Z, Caizzi R, Marsano RM. Functional characterization of the Bari1 transposition system. PLoS One 2013; 8:e79385. [PMID: 24244492 PMCID: PMC3828361 DOI: 10.1371/journal.pone.0079385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023] Open
Abstract
The transposons of the Bari family are mobile genetic elements widespread in the Drosophila genus. However, despite a broad diffusion, virtually no information is available on the mechanisms underlying their mobility. In this paper we report the functional characterization of the Bari elements transposition system. Using the Bari1 element as a model, we investigated the subcellular localization of the transposase, its physical interaction with the transposon, and its catalytic activity. The Bari1 transposase localized in the nucleus and interacted with the terminal sequences of the transposon both in vitro and in vivo, however, no transposition activity was detected in transposition assays. Profiling of mRNAs expressed by the transposase gene revealed the expression of abnormal, internally processed transposase transcripts encoding truncated, catalytically inactive transposase polypeptides. We hypothesize that a post-transcriptional control mechanism produces transposase-derived polypeptides that effectively repress transposition. Our findings suggest further clues towards understanding the mechanisms that control transposition of an important class of mobile elements, which are both an endogenous source of genomic variability and widely used as transformation vectors/biotechnological tools.
Collapse
Affiliation(s)
| | - Simona Marconi
- Dipartimento di Biologia, Università di Bari, Bari, Italy
| | - Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | | |
Collapse
|
9
|
Dias ES, Carareto CMA. Ancestral polymorphism and recent invasion of transposable elements in Drosophila species. BMC Evol Biol 2012; 12:119. [PMID: 22823479 PMCID: PMC3499218 DOI: 10.1186/1471-2148-12-119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 07/10/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND During the evolution of transposable elements, some processes, such as ancestral polymorphisms and horizontal transfer of sequences between species, can produce incongruences in phylogenies. We investigated the evolutionary history of the transposable elements Bari and 412 in the sequenced genomes of the Drosophila melanogaster group and in the sibling species D. melanogaster and D. simulans using traditional phylogenetic and network approaches. RESULTS Maximum likelihood (ML) phylogenetic analyses revealed incongruences and unresolved relationships for both the Bari and 412 elements. The DNA transposon Bari within the D. ananassae genome is more closely related to the element of the melanogaster complex than to the sequence in D. erecta, which is inconsistent with the species phylogeny. Divergence analysis and the comparison of the rate of synonymous substitutions per synonymous site of the Bari and host gene sequences explain the incongruence as an ancestral polymorphism that was inherited stochastically by the derived species. Unresolved relationships were observed in the ML phylogeny of both elements involving D. melanogaster, D. simulans and D. sechellia. A network approach was used to attempt to resolve these relationships. The resulting tree suggests recent transfers of both elements between D. melanogaster and D. simulans. The divergence values of the elements between these species support this conclusion. CONCLUSIONS We showed that ancestral polymorphism and recent invasion of genomes due to introgression or horizontal transfer between species occurred during the evolutionary history of the Bari and 412 elements in the melanogaster group. These invasions likely occurred in Africa during the Pleistocene, before the worldwide expansion of D. melanogaster and D. simulans.
Collapse
Affiliation(s)
- Elaine Silva Dias
- Department of Biology, São José do Rio Preto, UNESP-São Paulo State University, São Paulo, Brazil
| | | |
Collapse
|
10
|
de Setta N, Van Sluys MA, Capy P, Carareto CMA. Multiple invasions of Gypsy and Micropia retroelements in genus Zaprionus and melanogaster subgroup of the genus Drosophila. BMC Evol Biol 2009; 9:279. [PMID: 19954522 PMCID: PMC2797524 DOI: 10.1186/1471-2148-9-279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 12/02/2009] [Indexed: 11/23/2022] Open
Abstract
Background The Zaprionus genus shares evolutionary features with the melanogaster subgroup, such as space and time of origin. Although little information about the transposable element content in the Zaprionus genus had been accumulated, some of their elements appear to be more closely related with those of the melanogaster subgroup, indicating that these two groups of species were involved in horizontal transfer events during their evolution. Among these elements, the Gypsy and the Micropia retroelements were chosen for screening in seven species of the two Zaprionus subgenera, Anaprionus and Zaprionus. Results Screening allowed the identification of diverse Gypsy and Micropia retroelements only in species of the Zaprionus subgenus, showing that they are transcriptionally active in the sampled species. The sequences of each retroelement were closely related to those of the melanogaster species subgroup, and the most parsimonious hypothesis would be that 15 horizontal transfer events shaped their evolution. The Gypsy retroelement of the melanogaster subgroup probably invaded the Zaprionus genomes about 11 MYA. In contrast, the Micropia retroelement may have been introduced into the Zaprionus subgenus and the melanogaster subgroup from an unknown donor more recently (~3 MYA). Conclusion Gypsy and Micropia of Zaprionus and melanogaster species share similar evolutionary patterns. The sharing of evolutionary, ecological and ethological features probably allowed these species to pass through a permissive period of transposable element invasion, explaining the proposed waves of horizontal transfers.
Collapse
Affiliation(s)
- Nathalia de Setta
- Department of Biology, UNESP - São Paulo State University, São José do Rio Preto, SP, Brazil.
| | | | | | | |
Collapse
|
11
|
Conserved motifs and dynamic aspects of the terminal inverted repeat organization within Bari-like transposons. Mol Genet Genomics 2008; 279:451-61. [PMID: 18247055 DOI: 10.1007/s00438-008-0324-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
In this work the structural variations of Terminal Inverted Repeats (TIR) of Bari like transposons in Drosophila species has been studied. The aim is to try and assess the relevance of different variants in the evolutionary distribution of Bari elements. Bari is a member of the widespread Tc1 superfamily of transposable elements that has colonized most species of the Drosophila genus. We previously reported the structure of two related elements that differ in their TIR organization: Bari1 harbouring 26-bp TIR (short TIRs) and Bari2 with about 250-bp TIR (long TIIR). While elements with short TIRs are complete and potentially autonomous, long ones are invariably composed of defective copies. The results show that in D. pseudobscura, D. persimilis and D. mojavensis, there is a third class of Bari elements, Bari3, that exhibit a long TIR structure and are not defective. Phylogenetic relationships among reconstructed transposases are consistent with the three subfamilies sharing a common origin. However, the final TIR organization into long or short structure is not related by descent but appears to be lineage-specific. Furthermore, we show that, independently of origin and organization, within the 250-bp terminal sequences there are three regions that are conserved in both sequence and position suggesting they are under functional constraint.
Collapse
|
12
|
Germanos E, Mota NR, Loreto EL. Transposable elements from the mesophragmatica group of Drosophila. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000400026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Elgion L.S. Loreto
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
13
|
Castro JPD, Setta ND, Carareto CMA. Distribution and insertion numbers of transposable elements in species of the Drosophila saltans group. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000200029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Marsano RM, Caizzi R, Moschetti R, Junakovic N. Evidence for a functional interaction between the Bari1 transposable element and the cytochrome P450 cyp12a4 gene in Drosophila melanogaster. Gene 2005; 357:122-8. [PMID: 16076534 DOI: 10.1016/j.gene.2005.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 11/30/2022]
Abstract
Previous studies of the genomic distribution of the transposon Bari1 in Drosophila melanogaster have revealed an element which is fixed at division 91F in over 90 lab and natural populations. Here we report about the structural and transcriptional features of the insertion site which was studied in sublines isolated from an exceptional Drosophila line polymorphic for the presence/absence of Bari1 at 91F. The insert is located at the 3' end of the cyp12a4 gene that belongs to the cytochrome P450 family. In flies with the insert the transcript of this gene encompasses 18 nucleotides of the transposon, it is shorter and is about tenfold more abundant compared to flies devoid of it. Although the hypothetical selective agent remains unknown, these data are suggestive of a selective advantage brought about by the Bari1 insert and are reminiscent of recent evidence for functional mutagenesis of cyp6g1, another P450 gene, brought about by Accord and Doc transposable elements in D. melanogaster and Drosophila simulans.
Collapse
|
15
|
Marsano RM, Moschetti R, Barsanti P, Caggese C, Caizzi R. A survey of the DNA sequences surrounding the Bari1 repeats in the pericentromeric h39 region of Drosophila melanogaster. Gene 2003; 307:167-74. [PMID: 12706899 DOI: 10.1016/s0378-1119(03)00458-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Drosophila melanogaster, clustered copies of the Bari1 transposon are only present in the pericentromeric h39 region of the second chromosome, where other clusters of repetitive elements, either found organized in large tandem arrays only in the h39 region (Responder, PortoI), or both in the h39 region and in other heterochromatic regions (Hoppel), are also observed. The topological relationship among the repetitive sequences of the h39 region and the nature of the sequences separating its large repeat clusters are at present largely unknown. To get new insights on the sequence composition of the heterochromatin and on the forces governing its origin and maintenance, we have cloned and analyzed part of the DNA sequences flanking the h39 Bari1 repeats. In a region spanning 3 and 9 kb, respectively, from the ends of a Bari1 array we found only single copies of the PortoI and Hoppel transposable elements, and five copies of a variant form of the Responder repeats. No large tandem arrays of any repeated element were present. In addition, a highly conserved 596 bp sequence, that may have a functional role, is present on both sides of the Bari1 repeats. We suggest that the current organization of the h39 heterochromatin implies some topological or functional constraint that prevents the formation of further arrays of repetitive elements in the region.
Collapse
|
16
|
Bergman CM, Pfeiffer BD, Rincón-Limas DE, Hoskins RA, Gnirke A, Mungall CJ, Wang AM, Kronmiller B, Pacleb J, Park S, Stapleton M, Wan K, George RA, de Jong PJ, Botas J, Rubin GM, Celniker SE. Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol 2002; 3:RESEARCH0086. [PMID: 12537575 PMCID: PMC151188 DOI: 10.1186/gb-2002-3-12-research0086] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 11/25/2002] [Accepted: 12/05/2002] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND It is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined. RESULTS We analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis) covering more than 500 kb of the D. melanogaster genome. All D. melanogaster genes (and 78-82% of coding exons) identified in divergent species such as D. pseudoobscura show evidence of functional constraint. Addition of a third species can reveal functional constraint in otherwise non-significant pairwise exon comparisons. Microsynteny is largely conserved, with rearrangement breakpoints, novel transposable element insertions, and gene transpositions occurring in similar numbers. Rates of amino-acid substitution are higher in uncharacterized genes relative to genes that have previously been studied. Conserved non-coding sequences (CNCSs) tend to be spatially clustered with conserved spacing between CNCSs, and clusters of CNCSs can be used to predict enhancer sequences. CONCLUSIONS Our results provide the basis for choosing species whose genome sequences would be most useful in aiding the functional annotation of coding and cis-regulatory sequences in Drosophila. Furthermore, this work shows how decoding the spatial organization of conserved sequences, such as the clustering of CNCSs, can complement efforts to annotate eukaryotic genomes on the basis of sequence conservation alone.
Collapse
Affiliation(s)
- Casey M Bergman
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- These authors contributed equally to this work
| | - Barret D Pfeiffer
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- These authors contributed equally to this work
| | - Diego E Rincón-Limas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Current address: Departamento de Biologia Molecular, Universidad Autonoma de Tamaulipas-UAMRA, Reynosa, CP 88740, Mexico
| | - Roger A Hoskins
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | | | - Chris J Mungall
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Adrienne M Wang
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Current address: Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Brent Kronmiller
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Current address: Department of Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Joanne Pacleb
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Soo Park
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Mark Stapleton
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Kenneth Wan
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Reed A George
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Pieter J de Jong
- Children's Hospital and Research Center at Oakland, Oakland, CA 94609, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald M Rubin
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Susan E Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Izsvák Z, Ivics Z, Plasterk RH. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 2000; 302:93-102. [PMID: 10964563 DOI: 10.1006/jmbi.2000.4047] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sleeping Beauty (SB), a member of the Tc1/mariner superfamily of transposable elements, is the only active DNA-based transposon system of vertebrate origin that is available for experimental manipulation. We have been using the SB element as a research tool to investigate some of the cis and trans-requirements of element mobilization, and mechanisms that regulate transposition in vertebrate species. In contrast to mariner transposons, which are regulated by overexpression inhibition, the frequency of SB transposition was found to be roughly proportional to the amount of transposase present in cells. Unlike Tc1 and mariner elements, SB contains two binding sites within each of its terminal inverted repeats, and we found that the presence of both of these sites is a strict requirement for mobilization. In addition to the size of the transposon itself, the length as well as sequence of the DNA outside the transposon have significant effects on transposition. As a general rule, the closer the transposon ends are, the more efficient transposition is from a donor molecule. We have found that SB can transform a wide range of vertebrate cells from fish to human. However, the efficiency and precision of transposition varied significantly among cell lines, suggesting potential involvement of host factors in SB transposition. A positive-negative selection assay was devised to enrich populations of cells harboring inserted transposons in their chromosomes. Using this assay, of the order of 10,000 independent transposon insertions can be generated in human cells in a single transfection experiment. Sleeping Beauty can be a powerful alternative to other vectors that are currently used for the production of transgenic animals and for human gene therapy.
Collapse
Affiliation(s)
- Z Izsvák
- Division of Molecular Biology Centre for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Abstract
Transgenic technology is currently applied to several animal species of agricultural or medical importance, such as fish, cattle, mosquitos and parasitic worms. However, the repertoire of genetic tools used for molecular analyses of mice and Drosophila is not always applicable to other species. For example, while retroviral enhancer-trap experiments in mice can be based on embryonic stem (ES) cell technology, this is not currently an option with other animals. Similarly, the germline transformation of Drosophila depends on the use of the P-element transposon, which does not jump in other genera. This article analyses the main characteristics of Tc1/mariner transposable elements, examines some of the factors that have contributed to their evolutionary success, and describes their potential, as well as their limitations, for transgenesis and insertional mutagenesis in diverse animals.
Collapse
Affiliation(s)
- R H Plasterk
- Division of Molecular Biology, Netherlands Cancer Institute and Center for Biomedical Genetics, Division of Molecular Biology, Plesmanlaan 121, Amsterdam 1066CX, The Netherlands.
| | | | | |
Collapse
|