1
|
Leung J, Gaudin V. Who Rules the Cell? An Epi-Tale of Histone, DNA, RNA, and the Metabolic Deep State. FRONTIERS IN PLANT SCIENCE 2020; 11:181. [PMID: 32194593 PMCID: PMC7066317 DOI: 10.3389/fpls.2020.00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/06/2020] [Indexed: 05/23/2023]
Abstract
Epigenetics refers to the mode of inheritance independent of mutational changes in the DNA. Early evidence has revealed methylation, acetylation, and phosphorylation of histones, as well as methylation of DNA as part of the underlying mechanisms. The recent awareness that many human diseases have in fact an epigenetic basis, due to unbalanced diets, has led to a resurgence of interest in how epigenetics might be connected with, or even controlled by, metabolism. The Next-Generation genomic technologies have now unleashed torrents of results exposing a wondrous array of metabolites that are covalently attached to selective sites on histones, DNA and RNA. Metabolites are often cofactors or targets of chromatin-modifying enzymes. Many metabolites themselves can be acetylated or methylated. This indicates that the acetylome and methylome can actually be deep and pervasive networks to ensure the nuclear activities are coordinated with the metabolic status of the cell. The discovery of novel histone marks also raises the question on the types of pathways by which their corresponding metabolites are replenished, how they are corralled to the specific histone residues and how they are recognized. Further, atypical cytosines and uracil have also been found in eukaryotic genomes. Although these new and extensive connections between metabolism and epigenetics have been established mostly in animal models, parallels must exist in plants, inasmuch as many of the basic components of chromatin and its modifying enzymes are conserved. Plants are chemical factories constantly responding to stress. Plants, therefore, should lend themselves readily for identifying new endogenous metabolites that are also modulators of nuclear activities in adapting to stress.
Collapse
Affiliation(s)
- Jeffrey Leung
- Institut Jean-Pierre Bourgin, ERL3559 CNRS, INRAE, Versailles, France
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
2
|
Karami K, Zerehdaran S, Javadmanesh A, Shariati MM. Assessment of maternal and parent of origin effects in genetic variation of economic traits in Iranian native fowl. Br Poult Sci 2019; 60:486-492. [PMID: 31132866 DOI: 10.1080/00071668.2019.1621987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The objective of the study was to investigate the influence of maternal and parent of origin effects (POE) on genetic variation of Iranian native fowl on economic traits. 2. Studied traits were body weights at birth (BW0), at eight (BW8) and 12 weeks of age (BW12), age (ASM) and weight at sexual maturity (WSM), egg number (EN) and average egg weight (AEW). 3. Several models, including additive, maternal additive genetics, permanent environmental effects and POE were compared using Wombat software. Bayesian Information Criterion (BIC) was used to identify the best model for each trait. The chance of reranking of birds between models was investigated using Spearman correlation and Wilcoxon rank test. 4. Based on the best model, direct heritability estimates for BW0, BW8, BW12, ASM, WSM, EN and AEW traits were 0.05, 0.21, 0.23, 0.30, 0.39, 0.22 and 0.38, respectively. Proportion of variance due to paternal POE for BW8 was 4% and proportion of variance due to maternal POE for BW12 was 5%. 5. Estimated maternal heritability for BW0 was 0.30 and for BW8 and BW12 were 0.00 and 0.01, respectively, which shows that maternal heritability was reduced by age. 6. Based on the results, considering POE for BW8 and BW12 and maternal genetic effects for BW0 improved the accuracy of estimations and avoid reranking of birds for these traits.
Collapse
Affiliation(s)
- K Karami
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - S Zerehdaran
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - A Javadmanesh
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - M M Shariati
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
3
|
Genomics of Natural Populations: How Differentially Expressed Genes Shape the Evolution of Chromosomal Inversions in Drosophila pseudoobscura. Genetics 2016; 204:287-301. [PMID: 27401754 PMCID: PMC5012393 DOI: 10.1534/genetics.116.191429] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023] Open
Abstract
Chromosomal rearrangements can shape the structure of genetic variation in the genome directly through alteration of genes at breakpoints or indirectly by holding combinations of genetic variants together due to reduced recombination. The third chromosome of Drosophila pseudoobscura is a model system to test hypotheses about how rearrangements are established in populations because its third chromosome is polymorphic for >30 gene arrangements that were generated by a series of overlapping inversion mutations. Circumstantial evidence has suggested that these gene arrangements are selected. Despite the expected homogenizing effects of extensive gene flow, the frequencies of arrangements form gradients or clines in nature, which have been stable since the system was first described >80 years ago. Furthermore, multiple arrangements exist at appreciable frequencies across several ecological niches providing the opportunity for heterokaryotypes to form. In this study, we tested whether genes are differentially expressed among chromosome arrangements in first instar larvae, adult females and males. In addition, we asked whether transcriptional patterns in heterokaryotypes are dominant, semidominant, overdominant, or underdominant. We find evidence for a significant abundance of differentially expressed genes across the inverted regions of the third chromosome, including an enrichment of genes involved in sensory perception for males. We find the majority of loci show additivity in heterokaryotypes. Our results suggest that multiple genes have expression differences among arrangements that were either captured by the original inversion mutation or accumulated after it reached polymorphic frequencies, providing a potential source of genetic variation for selection to act upon. These data suggest that the inversions are favored because of their indirect effect of recombination suppression that has held different combinations of differentially expressed genes together in the various gene arrangement backgrounds.
Collapse
|
4
|
Biological imprinting: Some genetic considerations. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2014. [DOI: 10.1016/j.ejmhg.2014.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Genome-wide gene expression effects of sex chromosome imprinting in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:1-10. [PMID: 24318925 PMCID: PMC3887524 DOI: 10.1534/g3.113.008029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Imprinting is well-documented in both plant and animal species. In Drosophila, the Y chromosome is differently modified when transmitted through the male and female germlines. Here, we report genome-wide gene expression effects resulting from reversed parent-of-origin of the X and Y chromosomes. We found that hundreds of genes are differentially expressed between adult male Drosophila melanogaster that differ in the maternal and paternal origin of the sex chromosomes. Many of the differentially regulated genes are expressed specifically in testis and midgut cells, suggesting that sex chromosome imprinting might globally impact gene expression in these tissues. In contrast, we observed much fewer Y-linked parent-of-origin effects on genome-wide gene expression in females carrying a Y chromosome, indicating that gene expression in females is less sensitive to sex chromosome parent-of-origin. Genes whose expression differs between females inheriting a maternal or paternal Y chromosome also show sex chromosome parent-of-origin effects in males, but the direction of the effects on gene expression (overexpression or underexpression) differ between the sexes. We suggest that passage of sex chromosome chromatin through male meiosis may be required for wild-type function in F1 progeny, whereas disruption of Y-chromosome function through passage in the female germline likely arises because the chromosome is not adapted to the female germline environment.
Collapse
|
6
|
Abbott JK, Innocenti P, Chippindale AK, Morrow EH. Epigenetics and sex-specific fitness: an experimental test using male-limited evolution in Drosophila melanogaster. PLoS One 2013; 8:e70493. [PMID: 23922998 PMCID: PMC3726629 DOI: 10.1371/journal.pone.0070493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/19/2013] [Indexed: 12/04/2022] Open
Abstract
When males and females have different fitness optima for the same trait but share loci, intralocus sexual conflict is likely to occur. Epigenetic mechanisms such as genomic imprinting (in which expression is altered according to parent-of-origin) and sex-specific maternal effects have been suggested as ways by which this conflict can be resolved. However these ideas have not yet been empirically tested. We designed an experimental evolution protocol in Drosophila melanogaster that enabled us to look for epigenetic effects on the X-chromosome–a hotspot for sexually antagonistic loci. We used special compound-X females to enforce father-to-son transmission of the X-chromosome for many generations, and compared fitness and gene expression levels between Control males, males with a Control X-chromosome that had undergone one generation of father-son transmission, and males with an X-chromosome that had undergone many generations of father-son transmission. Fitness differences were dramatic, with experimentally-evolved males approximately 20% greater than controls, and with males inheriting a non-evolved X from their father about 20% lower than controls. These data are consistent with both strong intralocus sexual conflict and misimprinting of the X-chromosome under paternal inheritance. However, expression differences suggested that reduced fitness under paternal X inheritance was largely due to deleterious maternal effects. Our data confirm the sexually-antagonistic nature of Drosophila’s X-chromosome and suggest that the response to male-limited X-chromosome evolution entails compensatory evolution for maternal effects, and perhaps modification of other epigenetic effects via coevolution of the sex chromosomes.
Collapse
Affiliation(s)
- Jessica K Abbott
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
7
|
Zastavna D, Makukh H, Tretjak B, Bilevych O, Tyrka M. Loss of Imprinting of IGF2 Gene in the Chorionic Tissues of Spontaneously Eliminated Human Embryos. GENETICS & EPIGENETICS 2013; 5:17-22. [PMID: 25512704 PMCID: PMC4222333 DOI: 10.4137/geg.s11460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Insulin-like growth factor-2 (IGF-2) is a mitogen, growth and differentiation modulator for many cell types. It is mainly expressed during the prenatal development, and its activity strongly depends on the genomic imprinting. Genomic imprinting in the chorionic tissues of spontaneously eliminated human embryos has been studied on the model of 820-AG (Apa1) of the IGF-2 gene locus. Molecular and genetic analysis was performed on the polymorphic 820-AG IGF2 locus in 107 samples of DNA extracted from the chorionic tissues of spontaneously eliminated human embryos within 5–10 weeks of gestation. Presence of AG genotype Apa1 single nucleotide polymorphisms of the IGF-2 was shown to cause more than a 7-fold increase in the risk of embryo elimination. Thus, the loss of genomic imprinting of the IGF-2 gene may be an important cause of the miscarriages in human.
Collapse
Affiliation(s)
| | - Halyna Makukh
- Institute of Hereditary Pathology NAMS of Ukraine, Lviv
| | | | | | | |
Collapse
|
8
|
Genomic imprinting absent in Drosophila melanogaster adult females. Cell Rep 2012; 2:69-75. [PMID: 22840398 DOI: 10.1016/j.celrep.2012.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/27/2012] [Accepted: 06/12/2012] [Indexed: 12/15/2022] Open
Abstract
Genomic imprinting occurs when expression of an allele differs based on the sex of the parent that transmitted the allele. In D. melanogaster, imprinting can occur, but its impact on allelic expression genome-wide is unclear. Here, we search for imprinted genes in D. melanogaster using RNA-seq to compare allele-specific expression between pools of 7- to 10-day-old adult female progeny from reciprocal crosses. We identified 119 genes with allelic expression consistent with imprinting, and these genes showed significant clustering within the genome. Surprisingly, additional analysis of several of these genes showed that either genomic heterogeneity or high levels of intrinsic noise caused imprinting-like allelic expression. Consequently, our data provide no convincing evidence of imprinting for D. melanogaster genes in their native genomic context. Elucidating sources of false-positive signals for imprinting in allele-specific RNA-seq data, as done here, is critical given the growing popularity of this method for identifying imprinted genes.
Collapse
|
9
|
Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. GENETICS RESEARCH INTERNATIONAL 2012; 2012:585024. [PMID: 22567394 PMCID: PMC3335465 DOI: 10.1155/2012/585024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 09/26/2011] [Indexed: 01/08/2023]
Abstract
Genomic imprinting is a form of epigenetic inheritance whereby the regulation of a gene or chromosomal region is dependent on the sex of the transmitting parent. During gametogenesis, imprinted regions of DNA are differentially marked in accordance to the sex of the parent, resulting in parent-specific expression. While mice are the primary research model used to study genomic imprinting, imprinted regions have been described in a broad variety of organisms, including other mammals, plants, and insects. Each of these organisms employs multiple, interrelated, epigenetic mechanisms to maintain parent-specific expression. While imprinted genes and imprint control regions are often species and locus-specific, the same suites of epigenetic mechanisms are often used to achieve imprinted expression. This review examines some examples of the epigenetic mechanisms responsible for genomic imprinting in mammals, plants, and insects.
Collapse
|
10
|
Abstract
Chromosomes acquire different epigenetic marks during oogenesis and spermatogenesis. After fertilization, if retained and selected, these differences may result in imprinting effects. Rather than being an oddity, imprinting effects have been found in many sexually reproducing organisms. Interestingly, imprinting can result in disparate effects under different selective forces. At the same time, epigenetic mechanisms and selective pressures shared by sexually reproducing organisms could underlie common imprinting effects. Large-scale studies are revealing that parent-of-origin effects are more common than previously thought and supporting the important contribution of imprinting to many traits and diseases.
Collapse
|
11
|
Genetics: polymorphisms, epigenetics, and something in between. GENETICS RESEARCH INTERNATIONAL 2011; 2012:867951. [PMID: 22567405 PMCID: PMC3335516 DOI: 10.1155/2012/867951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/20/2011] [Indexed: 11/17/2022]
Abstract
At its broadest sense, to say that a phenotype is epigenetic suggests that it occurs without changes in DNA sequence, yet is heritable through cell division and occasionally from one organismal generation to the next. Since gene regulatory changes are oftentimes in response to environmental stimuli and may be retained in descendent cells, there is a growing expectation that one's experiences may have consequence for subsequent generations and thus impact evolution by decoupling a selectable phenotype from its underlying heritable genotype. But the risk of this overbroad use of “epigenetic” is a conflation of genuine cases of heritable non-sequence genetic information with trivial modes of gene regulation. A look at the term “epigenetic” and some problems with its increasing prevalence argues for a more reserved and precise set of defining characteristics. Additionally, questions arising about how we define the “sequence independence” aspect of epigenetic inheritance suggest a form of genome evolution resulting from induced polymorphisms at repeated loci (e.g., the rDNA or heterochromatin).
Collapse
|
12
|
Mosher RA, Tan EH, Shin J, Fischer RL, Pikaard CS, Baulcombe DC. An atypical epigenetic mechanism affects uniparental expression of Pol IV-dependent siRNAs. PLoS One 2011; 6:e25756. [PMID: 22003406 PMCID: PMC3189211 DOI: 10.1371/journal.pone.0025756] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/11/2011] [Indexed: 12/29/2022] Open
Abstract
Background Small RNAs generated by RNA polymerase IV (Pol IV) are the most abundant class of small RNAs in flowering plants. In Arabidopsis thaliana Pol IV-dependent short interfering (p4-si)RNAs are imprinted and accumulate specifically from maternal chromosomes in the developing seeds. Imprinted expression of protein-coding genes is controlled by differential DNA or histone methylation placed in gametes. To identify epigenetic factors required for maternal-specific expression of p4-siRNAs we analyzed the effect of a series of candidate mutations, including those required for genomic imprinting of protein-coding genes, on uniparental expression of a representative p4-siRNA locus. Results Paternal alleles of imprinted genes are marked by DNA or histone methylation placed by DNA METHYLTRANSFERASE 1 or the Polycomb Repressive Complex 2. Here we demonstrate that repression of paternal p4-siRNA expression at locus 08002 is not controlled by either of these mechanisms. Similarly, loss of several chromatin modification enzymes, including a histone acetyltransferase, a histone methyltransferase, and two nucleosome remodeling proteins, does not affect maternal expression of locus 08002. Maternal alleles of imprinted genes are hypomethylated by DEMETER DNA glycosylase, yet expression of p4-siRNAs occurs irrespective of demethylation by DEMETER or related glycosylases. Conclusions Differential DNA methylation and other chromatin modifications associated with epigenetic silencing are not required for maternal-specific expression of p4-siRNAs at locus 08002. These data indicate that there is an as yet unknown epigenetic mechanism causing maternal-specific p4-siRNA expression that is distinct from the well-characterized mechanisms associated with DNA methylation or the Polycomb Repressive Complex 2.
Collapse
Affiliation(s)
- Rebecca A Mosher
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
OBATA Y. Study on the Mechanism of Maternal Imprinting During Oocyte Growth. J Reprod Dev 2011; 57:1-8. [DOI: 10.1262/jrd.10-195e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yayoi OBATA
- Department of BioScience, Tokyo University of Agriculture
| |
Collapse
|
14
|
Hou C, Corces VG. Insulators and imprinting from flies to mammals. BMC Biol 2010; 8:104. [PMID: 20687908 PMCID: PMC2912829 DOI: 10.1186/1741-7007-8-104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022] Open
Abstract
The nuclear factor CTCF has been shown to be necessary for the maintenance of genetic imprinting at the mammalian H19/Igf2 locus. MacDonald and colleagues now report in BMC Biology that the mechanisms responsible for maintaining the imprinted state in Drosophila may be evolutionarily conserved and that CTCF may also play a critical role in this process. See research article http://www.biomedcentral.com/1741-7007/8/105
Collapse
Affiliation(s)
- Chunhui Hou
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | | |
Collapse
|
15
|
MacDonald WA, Menon D, Bartlett NJ, Sperry GE, Rasheva V, Meller V, Lloyd VK. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster. BMC Biol 2010; 8:105. [PMID: 20673338 PMCID: PMC2922095 DOI: 10.1186/1741-7007-8-105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 07/30/2010] [Indexed: 11/28/2022] Open
Abstract
Background CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. Results To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;f)LJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;f)LJ9 mini-X chromosome. Conclusions CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104
Collapse
|
16
|
Imprinting of the Y chromosome influences dosage compensation in roX1 roX2 Drosophila melanogaster. Genetics 2009; 183:811-20. [PMID: 19704014 DOI: 10.1534/genetics.109.107219] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Drosophila melanogaster males have a well-characterized regulatory system that increases X-linked gene expression. This essential process restores the balance between X-linked and autosomal gene products in males. A complex composed of the male-specific lethal (MSL) proteins and RNA is recruited to the body of transcribed X-linked genes where it modifies chromatin to increase expression. The RNA components of this complex, roX1 and roX2 (RNA on the X1, RNA on the X2), are functionally redundant. Males mutated for both roX genes have dramatically reduced survival. We show that reversal of sex chromosome inheritance suppresses lethality in roX1 roX2 males. Genetic tests indicate that the effect on male survival depends upon the presence and source of the Y chromosome, revealing a germ line imprint that influences dosage compensation. Conventional paternal transmission of the Y chromosome enhances roX1 roX2 lethality, while maternal transmission of the Y chromosome suppresses lethality. roX1 roX2 males with both maternal and paternal Y chromosomes have very low survival, indicating dominance of the paternal imprint. In an otherwise wild-type male, the Y chromosome does not appreciably affect dosage compensation. The influence of the Y chromosome, clearly apparent in roX1 roX2 mutants, thus requires a sensitized genetic background. We believe that the Y chromosome is likely to act through modulation of a process that is defective in roX1 roX2 mutants: X chromosome recognition or chromatin modification by the MSL complex.
Collapse
|
17
|
Abstract
Genomic imprinting results in the expression of genes in a parent-of-origin-dependent manner. The mechanism and developmental consequences of genomic imprinting are most well characterized in mammals, plants, and certain insect species (e.g., sciarid flies and coccid insects). However, researchers have observed imprinting phenomena in species in which imprinting of endogenous genes is not known to exist or to be developmentally essential. In this review, I survey the known mechanisms of imprinting, focusing primarily on examples from mammals, where imprinting is relatively well characterized. Where appropriate, I draw attention to imprinting mechanisms in other organisms to compare and contrast how diverse organisms employ different strategies to perform the same process. I discuss how the various mechanisms come into play in the context of the imprint life cycle. Finally, I speculate why imprinting may be more widely prevalent than previously thought.
Collapse
Affiliation(s)
- Ky Sha
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
18
|
Anaka M, Lynn A, McGinn P, Lloyd VK. Genomic Imprinting in Drosophila has properties of both mammalian and insect imprinting. Dev Genes Evol 2008; 219:59-66. [DOI: 10.1007/s00427-008-0267-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/29/2008] [Indexed: 11/30/2022]
|
19
|
Garnier O, Laouiellé-Duprat S, Spillane C. Genomic imprinting in plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:89-100. [PMID: 18372793 DOI: 10.1007/978-0-387-77576-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Olivier Garnier
- Genetics and Biotechnology Lab, Department of Biochemistry, Biosciences Institute, University College Cork, Ireland
| | | | | |
Collapse
|
20
|
Tuiskula-Haavisto M, Vilkki J. Parent-of-origin specific QTL--a possibility towards understanding reciprocal effects in chicken and the origin of imprinting. Cytogenet Genome Res 2007; 117:305-12. [PMID: 17675872 DOI: 10.1159/000103192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 10/06/2006] [Indexed: 01/16/2023] Open
Abstract
Reciprocal effects for sexual maturity, egg production, egg quality traits and viability are well known in poultry crosses. They have been used in an optimal way to form profitable production hybrids. These effects have been hypothesized to originate from sex-linked genes, maternal effects or a combination of both. However, these may not be the only explanations for reciprocal effects. Recent mapping of quantitative trait loci (QTL) has revealed autosomal areas with parent-of-origin specific effects in the chicken. In mammals, parental imprinting, i.e. the specifically regulated expression of either maternal or paternal allele in the offspring, is the main cause of such effects. The most commonly accepted hypothesis for the origin of imprinting, the conflict hypothesis, assumes a genetic conflict of interest between the maternal and paternal genomes regarding the allocation of resources to the offspring. It also intrinsically implies that imprinting should not occur in oviparous taxa. However, new molecular genetic information has raised a need to review the possible involvement of imprinting or some related phenomena as a putative cause of reciprocal effects in poultry. Comparative mapping provides strong evidence for the conservation of orthologous imprinted gene clusters on chicken macrochromosomes. Furthermore, these gene clusters exhibit asynchronous DNA replication, an epigenetic mark specific for all imprinted regions. It has been proposed that these intrinsic chromosomal properties have been important for the evolution of imprinted gene expression in the mammalian lineage. Many of the mapped parent-of-origin specific QTL effects in chicken locate in or close to these conserved regions that show some of the basic features involved in monoallelic expression. If monoallelic expression in these regions would be observed in birds, the actual mechanism and cause may be different from the imprinting that evolved later in the mammalian lineage. In this review we discuss recent molecular genetic results that may provide tools for understanding of reciprocal differences in poultry breeding and the evolution of imprinting.
Collapse
Affiliation(s)
- M Tuiskula-Haavisto
- Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen, Finland.
| | | |
Collapse
|
21
|
Abstract
Genomic imprinting is a process that genetically distinguishes maternal and paternal genomes, and can result in parent-of-origin-dependent monoallelic expression of a gene that is dependent on the parent of origin. As such, an otherwise functional maternally inherited allele may be silenced so that the gene is expressed exclusively from the paternal allele, or vice versa. Once thought to be restricted to mammals, genomic imprinting has been documented in angiosperm plants (J.L. Kermicle. 1970. Genetics, 66: 69-85), zebrafish (C.C. Martin and R. McGowan. 1995. Genet. Res. 65: 21-28), insects, and C. elegans (C.J. Bean, C.E. Schaner, and W.G. Kelly. 2004. Nat. Genet. 36: 100-105.). In each case, it appears to rely on differential chromatin structure. Aberrant imprinting has been implicated in various human cancers and has been detected in a number of cloned mammals, potentially limiting the usefulness of somatic nuclear transfer. Here we show that genomic imprinting associated with a mini-X chromosome is lost in Drosophila melanogaster clones.
Collapse
Affiliation(s)
- Andrew J Haigh
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
22
|
Wittkopp PJ, Haerum BK, Clark AG. Parent-of-origin effects on mRNA expression in Drosophila melanogaster not caused by genomic imprinting. Genetics 2006; 173:1817-21. [PMID: 16702434 PMCID: PMC1526670 DOI: 10.1534/genetics.105.054684] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parent-of-origin effects create differences in gene expression among genetically identical individuals. Using measurements of allele-specific expression, we demonstrate that previously reported parent-of-origin effects on standing mRNA levels in Drosophila melanogaster are not attributable to genomic imprinting. Offspring from reciprocal crosses exhibit differences in total expression without differences in allelic expression, indicating that other types of maternal and/or paternal effects alter expression.
Collapse
Affiliation(s)
- Patricia J Wittkopp
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
23
|
Bonduriansky R, Rowe L. INTRALOCUS SEXUAL CONFLICT AND THE GENETIC ARCHITECTURE OF SEXUALLY DIMORPHIC TRAITS IN PROCHYLIZA XANTHOSTOMA (DIPTERA: PIOPHILIDAE). Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01066.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Sha K, Fire A. Imprinting capacity of gamete lineages in Caenorhabditis elegans. Genetics 2005; 170:1633-52. [PMID: 15944356 PMCID: PMC1449763 DOI: 10.1534/genetics.104.040303] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 04/20/2005] [Indexed: 01/05/2023] Open
Abstract
We have observed a gamete-of-origin imprinting effect in C. elegans using a set of GFP reporter transgenes. From a single progenitor line carrying an extrachromosomal unc-54::gfp transgene array, we generated three independent autosomal integrations of the unc-54::gfp transgene. The progenitor line, two of its three integrated derivatives, and a nonrelated unc-119:gfp transgene exhibit an imprinting effect: single-generation transmission of these transgenes through the male germline results in approximately 1.5- to 2.0-fold greater expression than transmission through the female germline. There is a detectable resetting of the imprint after passage through the opposite germline for a single generation, indicating that the imprinted status of the transgenes is reversible. In cases where the transgene is maintained in either the oocyte lineage or sperm lineage for multiple, consecutive generations, a full reset requires passage through the opposite germline for several generations. Taken together, our results indicate that C. elegans has the ability to imprint chromosomes and that differences in the cell and/or molecular biology of oogenesis and spermatogenesis are manifest in an imprint that can persist in both somatic and germline gene expression for multiple generations.
Collapse
Affiliation(s)
- Ky Sha
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA
| | | |
Collapse
|
25
|
Bonduriansky R, Rowe L. INTRALOCUS SEXUAL CONFLICT AND THE GENETIC ARCHITECTURE OF SEXUALLY DIMORPHIC TRAITS IN PROCHYLIZA XANTHOSTOMA (DIPTERA: PIOPHILIDAE). Evolution 2005. [DOI: 10.1554/05-236.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Curley JP, Barton S, Surani A, Keverne EB. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc Biol Sci 2004; 271:1303-9. [PMID: 15306355 PMCID: PMC1691726 DOI: 10.1098/rspb.2004.2725] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigates how a targeted mutation of a paternally expressed imprinted gene regulates multiple aspects of foetal and post-natal development including placental size, foetal growth, suckling and post-natal growth, weaning age and puberty onset. This same mutation in a mother impairs maternal reproductive success with reduced maternal care, reduced maternal food intake during pregnancy, and impaired milk let-down, which in turn reduces infant growth and delays weaning and onset of puberty. The significance of these coadaptive traits being synchronized in mother and offspring by the same paternally expressed imprinted gene ensures that offspring that have extracted 'good' maternal nurturing will themselves be both well provisioned and genetically predisposed towards 'good' mothering.
Collapse
Affiliation(s)
- James P Curley
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK
| | | | | | | |
Collapse
|
27
|
Weisstein AE, Spencer HG. The evolution of genomic imprinting via variance minimization: an evolutionary genetic model. Genetics 2004; 165:205-22. [PMID: 14504228 PMCID: PMC1462741 DOI: 10.1093/genetics/165.1.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A small number of mammalian loci exhibit genomic imprinting, in which only one copy of a gene is expressed while the other is silenced. At some such loci, the maternally inherited allele is inactivated; others show paternal inactivation. Several hypotheses have been put forward to explain how this genetic system could have evolved in the face of the selective advantages of diploidy. In this study, we examine the variance-minimization hypothesis, which proposes that imprinting arose through selection for reduced variation in levels of gene expression. We present an evolutionary genetic model incorporating both this selection pressure and deleterious mutations to elucidate the conditions under which imprinting could evolve. Our analysis implies that additional mechanisms such as genetic drift are required for imprinting to evolve from an initial nonimprinting state. Other predictions of this hypothesis do not appear to fit the available data as well as predictions for two alternative hypotheses, genetic conflict and the ovarian time bomb. On the basis of this evidence, we conclude that the variance-minimization hypothesis appears less adequate to explain the evolution of genomic imprinting.
Collapse
Affiliation(s)
- Anton E Weisstein
- Department of Zoology, Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
28
|
Isidore E, van Os H, Andrzejewski S, Bakker J, Barrena I, Bryan GJ, Caromel B, van Eck H, Ghareeb B, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort JR, Rousselle-Bourgeois F, van Vliet J, Waugh R. Toward a Marker-Dense Meiotic Map of the Potato Genome: Lessons From Linkage Group I. Genetics 2003; 165:2107-16. [PMID: 14704190 PMCID: PMC1462890 DOI: 10.1093/genetics/165.4.2107] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractSegregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a heterozygous diploid potato population. Analytical tools that identified potential typing errors and/or inconsistencies in the data and that assembled cosegregating markers into bins were applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is defined as the bin signature. The bin signatures were used to construct a skeleton bin map that was based solely on observed recombination events. Markers that did not match any of the bin signatures exactly (and that were excluded from the calculation of the skeleton bin map) were placed on the map by maximum likelihood. The resulting maternal and paternal maps consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and SacI/MseI primer combinations showed different genetic distributions. Approximately three-fourths of the markers placed into a bin were considered to fit well on the basis of an estimated residual “error rate” of 0–3%. However, twice as many PstI-based markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the population. Recombination frequencies were highly variable across the map. Inert, presumably centromeric, regions caused extensive marker clustering while recombination hotspots (or regions identical by descent) resulted in empty bins, despite the level of marker saturation.
Collapse
Affiliation(s)
- Edwige Isidore
- Genome Dynamics Programme, Scottish Crop Research Institute, Dundee DD2 5DA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Sexual reproduction results from the fusion of gametes in which the chromatin configuration of maternal and paternal chromosomes is distinct at fertilization. Although many of the differences are erased during successive cellular divisions and chromatin modifications, some are retained in both somatic and germline cells. These epigenetic modifications can confer different characteristics on maternal and paternal chromosomes and such differences can be selected during any process that has the ability to distinguish between homologues. The end result of these selective forces are parental origin effects, writ large. The range of effects observed, including transcriptional imprinting and effects on chromosome segregation and heterochromatization, reflects the diversity of selective forces in operation. However, a closer look at these effects suggests that parental origin-dependent differences in chromatin structure might be subject to some common forces and that these forces may explain many of the "nontranscriptional" parental origin effects observed in mammals.
Collapse
Affiliation(s)
- Elena de la Casa-Esperón
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | |
Collapse
|
30
|
Abstract
Sex dimorphism in recombination is widespread on both sex chromosomes and autosomes. Various hypotheses have been proposed to explain these dimorphisms. Yet no theoretical model has been explored to determine how heterochiasmy--the autosomal dimorphism--could evolve. The model presented here shows three circumstances in which heterochiasmy is likely to evolve: (i) a male-female difference in haploid epistasis, (ii) a male-female difference in cis-epistasis minus trans-epistasis in diploids, or (iii) a difference in epistasis between combinations of genes inherited maternally or paternally. These results hold even if sources of linkage disequilibria besides epistasis, such as migration or Hill-Robertson interference, are considered and shed light on previous verbal models of sex dimorphism in recombination rates. Intriguingly, these results may also explain why imprinted regions on the autosomes of humans or sheep are particularly heterochiasmate.
Collapse
Affiliation(s)
- Thomas Lenormand
- CEFE-Centre National de la Recherche Scientifique, 34293 Montpellier, France.
| |
Collapse
|
31
|
Maggert KA, Golic KG. The Y chromosome of Drosophila melanogaster exhibits chromosome-wide imprinting. Genetics 2002; 162:1245-58. [PMID: 12454070 PMCID: PMC1462351 DOI: 10.1093/genetics/162.3.1245] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Genomic imprinting is well known as a regulatory property of a few specific chromosomal regions and leads to differential behavior of maternally and paternally inherited alleles. We surveyed the activity of two reporter genes in 23 independent P-element insertions on the heterochromatic Y chromosome of Drosophila melanogaster and found that all but one location showed differential expression of one or both genes according to the parental source of the chromosome. In contrast, genes inserted in autosomal heterochromatin generally did not show imprint-regulated expression. The imprints were established on Y-linked transgenes inserted into many different sequences and locations. We conclude that genomic imprinting affecting gene expression is a general property of the Drosophila Y chromosome and distinguishes the Y from the autosomal complement.
Collapse
Affiliation(s)
- Keith A Maggert
- The Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
32
|
Belloni M, Tritto P, Bozzetti MP, Palumbo G, Robbins LG. Does Stellate cause meiotic drive in Drosophila melanogaster? Genetics 2002; 161:1551-9. [PMID: 12196400 PMCID: PMC1462201 DOI: 10.1093/genetics/161.4.1551] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Drosophila melanogaster males deficient for the crystal (cry) locus of the Y chromosome that carry between 15 and 60 copies of the X-linked Stellate (Ste) gene are semisterile, have elevated levels of nondisjunction, produce distorted sperm genotype ratios (meiotic drive), and evince hyperactive transcription of Ste in the testes. Ste seems to be the active element in this system, and it has been proposed that the ancestral Ste gene was "selfish" and increased in frequency because it caused meiotic drive. This hypothetical evolutionary history is based on the idea that Ste overexpression, and not the lack of cry, causes the meiotic drive of cry(-) males. To test whether this is true, we have constructed a Ste-deleted X chromosome and examined the phenotype of Ste(-)/cry(-) males. If hyperactivity of Ste were necessary for the transmission defects seen in cry(-) males, cry(-) males completely deficient for Ste would be normal. Although it is impossible to construct a completely Ste(-) genotype, we find that Ste(-)/cry(-) males have exactly the same phenotype as Ste(+)/cry(-) males. The deletion of all X chromosome Ste copies not only does not eliminate meiotic drive and nondisjunction, but it also does not even reduce them below the levels produced when the X carries 15 copies of Ste.
Collapse
Affiliation(s)
- Massimo Belloni
- Dipartimento di Biologia Evolutiva, Università di Siena, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
33
|
Abstract
There are three major classes of insect genetic systems: those with diploid males (diplodiploidy), those with effectively haploid males (haplodiploidy), and those without males (thelytoky). Mixed systems, involving cyclic or facultative switching between thelytoky and either of the other systems, also occur. I present a classification of the genetic systems of insects and estimate the number of evolutionary transitions between them that have occurred. Obligate thelytoky has arisen from each of the other systems, and there is evidence that over 900 such origins have occurred. The number of origins of facultative thelytoky and the number of reversions from obligate thelytoky to facultative and cyclic thelytoky are difficult to estimate. The other transitions are few in number: five origins of cyclic thelytoky, eight origins of obligate haplodiploidy (including paternal genome elimination), the strange case of Micromalthus, and the two reversions from haplodiploidy to diplodiploidy in scale insects. Available evidence tends to support W.D. Hamilton's hypothesis that maternally transmitted endosymbionts have been involved in the origins of haplodiploidy. Bizarre systems of extrazygotic inheritance in Sternorrhyncha are not easily accommodated into any existing classification of genetic systems.
Collapse
Affiliation(s)
- Benjamin B Normark
- Department of Entomology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
34
|
de Koning DJ, Bovenhuis H, van Arendonk JAM. On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 2002; 161:931-8. [PMID: 12072486 PMCID: PMC1462155 DOI: 10.1093/genetics/161.2.931] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this article, the quantitative genetic aspects of imprinted genes and statistical properties of methods to detect imprinted QTL are studied. Different models to detect imprinted QTL and to distinguish between imprinted and Mendelian QTL were compared in a simulation study. Mendelian and imprinted QTL were simulated in an F2 design and analyzed under Mendelian and imprinting models. Mode of expression was evaluated against the H(0) of a Mendelian QTL as well as the H(0) of an imprinted QTL. It was shown that imprinted QTL might remain undetected when analyzing the genome with Mendelian models only. Compared to testing against a Mendelian QTL, using the H(0) of an imprinted QTL gave a higher proportion of correctly identified imprinted QTL, but also gave a higher proportion of false inference of imprinting for Mendelian QTL. When QTL were segregating in the founder lines, spurious detection of imprinting became more prominent under both tests, especially for designs with a small number of F1 sires.
Collapse
Affiliation(s)
- Dirk-Jan de Koning
- Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands.
| | | | | |
Collapse
|
35
|
Beaudet AL, Jiang YH. A rheostat model for a rapid and reversible form of imprinting-dependent evolution. Am J Hum Genet 2002; 70:1389-97. [PMID: 11992247 PMCID: PMC379123 DOI: 10.1086/340969] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2002] [Accepted: 03/29/2002] [Indexed: 01/30/2023] Open
Abstract
The evolutionary advantages of genomic imprinting are puzzling. We propose that genomic imprinting evolved as a mechanism that maximizes the interindividual variability in the rates of gene expression for dosage-sensitive loci that, with minimal unrelated deleterious effects, can alter the phenotype over a wide continuum. We hypothesize (1) that genomic imprinting provides a previously suggested haploid selective advantage (HSA); (2) that many imprinted genes have evolved mechanisms that facilitate quantitative hypervariability (QH) of gene expression; (3) that the combination of HSA and QH makes possible a rapid and reversible form of imprinting-dependent evolution (IDE) that can mediate changes in phenotype; and (4) that this enhanced adaptability to a changing environment provides selective advantage to the population, as an assisted form of evolution. These mechanisms may have provided at least one of the driving forces for the evolution of genomic imprinting in mammals. The rheostat model suggests that both genetic and epigenetic variants can contribute to an integrated mechanism of mixed Mendelian and non-Mendelian inheritance and suggests the possibility that the majority of variants are not intrinsically deleterious but, depending on the environment, are each potentially advantageous. Moreover, this would be a reversible form of evolution, with the ability not only to protect a silent allele from selection for many generations but to reactivate and expand it in the population quickly.
Collapse
Affiliation(s)
- Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm. T619, Houston, TX 77030, USA.
| | | |
Collapse
|
36
|
Affiliation(s)
- N Rougier
- Department of Anatomy, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0452, USA.
| | | |
Collapse
|
37
|
Pardo-Manuel de Villena F, de la Casa-Esperón E, Sapienza C. Natural selection and the function of genome imprinting: beyond the silenced minority. Trends Genet 2000; 16:573-9. [PMID: 11102708 DOI: 10.1016/s0168-9525(00)02134-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Most hypotheses of the evolutionary origin of genome imprinting assume that the biochemical character on which natural selection has operated is the expression of the allele from only one parent at an affected locus. We propose an alternative - that natural selection has operated on differences in the chromatin structure of maternal and paternal chromosomes to facilitate pairing during meiosis and to maintain the distinction between homologues during DNA repair and recombination in both meiotic and mitotic cells. Maintenance of differences in chromatin structure in somatic cells can sometimes result in the transcription of only one allele at a locus. This pattern of transcription might be selected, in some instances, for reasons that are unrelated to the original establishment of the imprint. Differences in the chromatin structure of homologous chromosomes might facilitate pairing and recombination during meiosis, but some such differences could also result in non-random segregation of chromosomes, leading to parental-origin-dependent transmission ratio distortion. This hypothesis unites two broad classes of parental origin effects under a single selective force and identifies a single substrate through which Mendel's first and second laws might be violated.
Collapse
Affiliation(s)
- F Pardo-Manuel de Villena
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
38
|
Hahn Y, Lee YJ, Yun JH, Yang SK, Park CW, Mita K, Huh TL, Rhee M, Chung JH. Duplication of genes encoding non-clathrin coat protein gamma-COP in vertebrate, insect and plant evolution. FEBS Lett 2000; 482:31-6. [PMID: 11018518 DOI: 10.1016/s0014-5793(00)02033-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Coatomer is a major component of COPI vesicles and consists of seven subunits. The gamma-COP subunit of the coatomer is believed to mediate the binding to the cytoplasmic dilysine motifs of membrane proteins. We characterized cDNAs for Copg genes encoding gamma-COP from mouse, zebrafish, Drosophila melanogaster and Bombyx mori. Two copies of Copg genes are present in vertebrates and in B. mori. Phylogenetic analysis revealed that two paralogous genes had been derived from a single ancestral gene by duplication independently in vertebrates and in B. mori. Mouse Copg1 showed ubiquitous expression with the highest level in testis. Zebrafish copg2 was biallelically expressed in hybrid larvae in contrast to its mammalian ortholog expressed in a parent-of-origin-specific manner. A phylogenetic analysis with partial plant cDNA sequences suggested that copg gene was also duplicated in the grass family (Poaceae).
Collapse
Affiliation(s)
- Y Hahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alleman M, Doctor J. Genomic imprinting in plants: observations and evolutionary implications. PLANT MOLECULAR BIOLOGY 2000; 43:147-161. [PMID: 10999401 DOI: 10.1023/a:1006419025155] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The epigenetic phenomenon of genomic imprinting occurs among both plants and animals. In species where imprinting is observed, there are parent-of-origin effects on the expression of imprinted genes in offspring. This review focuses on imprinting in plants with examples from maize, where gene imprinting was first described, and Arabidopsis. Our current understanding of imprinting in plants is presented in the context of cytosine methylation and imprinting in mammals, where developmentally essential genes are imprinted. Important considerations include the structure and organization of imprinted genes and the role of regional, differential methylation. Imprinting in plants may be related to other epigenetic phenomena including paramutation and transgene silencing. Finally, we discuss the role of gene structure and evolutionary implications of imprinting in plants.
Collapse
Affiliation(s)
- M Alleman
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| | | |
Collapse
|
40
|
Haller BS, Woodruff RC. Varied expression of a Y-linked P[w+] insert due to imprinting in Drosophila melanogaster. Genome 2000; 43:285-92. [PMID: 10791816 DOI: 10.1139/g99-125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During gametogenesis, a gene can become imprinted affecting its expression in progeny. We have used the expression of a Y-linked P[w+]YAL transposable DNA element as a reporter system to investigate the effect of parental origination on the expression of the w+ insert. Expression of w+ was greater in male progeny when the Y chromosome, harboring the insert, was inherited from the parental male rather than from the parental female. Imprinting was not due to a genetic background influence in the males, since the only difference among the males was the parental origin of the Y chromosome. It was also observed that the genetic background can affect imprinting, since w+ expression was also higher in males when the Y was derived from C(1)DX attached-X parental females rather than from C(1)RM attached-X parental females. Though the heterochromatic imprinting mechanism is unknown, a mutated Heterochromatin Protein 1 (HP1) gene, which is associated with suppression of position-effect variegation, increases expression of the w+ locus in the P[w+]YAL insert, indicating that HP1 may play a role in Y chromosome packaging.
Collapse
Affiliation(s)
- B S Haller
- Department of Biological Sciences, Bowling Green State University, OH 43403, USA
| | | |
Collapse
|
41
|
Murphy SK, Jirtle RL. Imprinted genes as potential genetic and epigenetic toxicologic targets. ENVIRONMENTAL HEALTH PERSPECTIVES 2000; 108 Suppl 1:5-11. [PMID: 10698719 PMCID: PMC1637779 DOI: 10.1289/ehp.00108s15] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon in eutherian mammals that results in the differential expression of the paternally and maternally inherited alleles of a gene. Imprinted genes are necessary for normal mammalian development. This requirement has been proposed to have evolved because of an interparental genetic battle for the utilization of maternal resources during gestation and postnatally. The nonrandom requisite for monoallelic expression of a subset of genes has also resulted in the formation of susceptibility loci for neurobehavioral disorders, developmental disorders, and cancer. Since imprinting involves both cytosine methylation within CpG islands and changes in chromatin structure, imprinted genes are potential targets for dysregulation by epigenetic toxicants that modify DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- S K Murphy
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
Greally JM, Gray TA, Gabriel JM, Song L, Zemel S, Nicholls RD. Conserved characteristics of heterochromatin-forming DNA at the 15q11-q13 imprinting center. Proc Natl Acad Sci U S A 1999; 96:14430-5. [PMID: 10588722 PMCID: PMC24453 DOI: 10.1073/pnas.96.25.14430] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear matrix binding assays (NMBAs) define certain DNA sequences as matrix attachment regions (MARs), which often have cis-acting epigenetic regulatory functions. We used NMBAs to analyze the functionally important 15q11-q13 imprinting center (IC). We find that the IC is composed of an unusually high density of MARs, located in close proximity to the germ line elements that are proposed to direct imprint switching in this region. Moreover, we find that the organization of MARs is the same at the homologous mouse locus, despite extensive divergence of DNA sequence. MARs of this size are not usually associated with genes but rather with heterochromatin-forming areas of the genome. In contrast, the 15q11-q13 region contains multiple transcribed genes and is unusual for being subject to genomic imprinting, causing the maternal chromosome to be more transcriptionally silent, methylated, and late replicating than the paternal chromosome. We suggest that the extensive MAR sequences at the IC are organized as heterochromatin during oogenesis, an organization disrupted during spermatogenesis. Consistent with this model, multicolor fluorescence in situ hybridization to halo nuclei demonstrates a strong matrix association of the maternal IC, whereas the paternal IC is more decondensed, extending into the nuclear halo. This model also provides a mechanism for spreading of the imprinting signal, because heterochromatin at the IC on the maternal chromosome may exert a suppressive position effect in cis. We propose that the germ line elements at the 15q11-q13 IC mediate their effects through the candidate heterochromatin-forming DNA identified in this study.
Collapse
Affiliation(s)
- J M Greally
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|